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ABSTRACT 

Construction robots have drawn increased attention as a potential means of improving 

construction safety and productivity. However, it is still challenging to ensure safe human-robot 

collaboration on dynamic and unstructured construction workspaces. On construction sites, 

multiple entities dynamically collaborate with each other and the situational context between 

them evolves continually. Construction robots must therefore be equipped to visually understand 

the scene’s contexts (i.e., semantic relations to surrounding entities), thereby safely collaborating 

with humans, as a human vision system does. Toward this end, this study builds a unique deep 

neural network architecture and develops a construction-specialized model by experimenting 

multiple fine-tuning scenarios. Also, this study evaluates its performance on real construction 

operations data in order to examine its potential toward real-world applications. The results 

showed the promising performance of the tuned model: the recall@5 on training and validation 

dataset reached 92% and 67%, respectively. The proposed method, which supports construction 

co-robots with the holistic scene understanding, is expected to contribute to promoting safer 

human-robot collaboration in construction. 

INTRODUCTION 

Autonomous robots have drawn increased attention in construction industry as an effective 

means of relieving human workers from the unsafe, repetitive, and unpleasant tasks of 

construction operations. Recently, a variety of construction robots are under development and in 

the early stage of deployment, including a 3D-printing robot (Zhang et al. 2018), autonomous 

vehicles (Sutter et al. 2018), and a humanoid robot (Kurien et al. 2018). It is expected that the 

successful deployment of construction robots will significantly contribute to improving both 

construction safety and productivity (Feng et al. 2015; Lundeen et al. 2017). 

Despite such promises, persistent challenges in the co-robots’ deployment have thwarted the 

safe collaboration between human and robot co-workers. Construction takes place in a highly 

dynamic and unstructured environment where multiple machines/robots and human workers 
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collaborate with each other in complex ways. The situational context between them evolves 

continually as the project proceeds. Construction robots must thus be able to understand the 

evolving scene contexts (i.e., semantic relations to surrounding entities), thereby safely 

collaborating with humans, as a human vision system does. 

With the use of deep neural network (DNN) and computer vision, several construction 

studies have accomplished construction scene understandings, such as construction resources 

detection (Zhu et al. 2017; Yuan et al. 2017; Fang et al. 2018), workers’ action recognition (Ding 

et al. 2018), and proximity monitoring (Kim et al. 2019). However, little research attempts to 

address the situational context understanding, such as semantic relation detection (e.g., an 

excavator is guided by a worker or an excavator is not working with a worker). In computer 

vision society, the semantic relation detection also remains one of the most challenging tasks 

(Newell and Deng 2017). 

To address these challenges, this study builds a unique DNN architecture for semantic 

relation detection and develops a construction-specialized model that is fine-tuned to the 

construction-specific settings. Further, this study evaluates the developed model on real 

construction operations data so as to demonstrate its’ potential in real-world applications. 

TECHNICAL CHALLENGES IN SEMANTIC RELATION DETECTION 

In recent years, computer vision society has made large strides with the advancement of 

DNN. “Starting from breakthrough achievement in image classification from 2012, there is no 

computer vision applications that has not been affected by this paradigm shift” (Girshick 2017). 

The scope of scene understanding is rapidly expanding as a variety of DNN architectures and 

learning algorithms are being developed. 

Accordingly, many construction studies have leveraged DNNs [e.g., convolutional neural 

network (CNN) and recurrent neural network (RNN)] and computer vision, and accomplished 

several construction scene understandings, which include construction resources detection (Zhu 

et al. 2017; Yuan et al. 2017; Fang et al. 2018), workers’ action recognition (Ding et al. 2018), 

and proximity monitoring (Kim et al. 2019). However, the semantic relation detection has not 

been tackled yet in the construction domain. 

The semantic relation detection has recently garnered attention in computer vision society 

(Newell and Deng 2017). With the challenging nature of the task, it remains an open-ended 

study, leading to diverse approaches: fusing imagery and text data (Lu et al. 2016); using 

message-passing RNNs (Xu et al. 2017); predicting over triplets of object proposals (Li et al. 

2017); using reinforcement learning to predict over object proposals (Liang et al. 2017). Most 

previous approaches depend on bounding boxes proposed from region proposal network (RPN). 

The use of RPN helps to break the task down into more manageable steps (i.e., two-stage 

inference: region proposal and semantic relation detection). However, “this breakdown often 

restricts the visual features used in later steps and limits reasoning over the full contents of the 

image” (Newell and Deng 2017). The separation can make an architecture not only lose the 

advantage of end-to-end training, but also be easily affected by errors of RPN. 

In addition, developing a construction-specialized model from a DNN architecture has 

another challenge: how to successfully train and fine-tune the empty architecture so that it can 

perform well in construction-specific settings. Higher levels of scene understanding naturally 

demand deeper inference processing and correspondingly deeper network architecture, which in 

turn requires an extensive training dataset, otherwise leads to overfitting. Transfer learning offers 

a viable option to address this issue using a small training dataset. Pre-training with an extensive 
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benchmark dataset followed by fine-tuning with a relatively small construction-specific dataset 

will help to customize a model to construction-specific settings without the issue of overfitting. 

However, the fine-tuning still requires a certain amount of construction-specific dataset as well 

as experiments on various fine-tuning scenarios. 

RESEARCH OBJECTIVE AND FRAMEWORK 

To address these challenges, this study builds a unique DNN architecture (Px2Graph, Newell 

and Deng 2017) in which scene understandings not only for individual entities (i.e., location) but 

also for their semantic relations can be interactively drawn. Further, a construction-specialized 

model is developed by experimenting multiple fine-tuning scenarios, and validated on real 

construction operations data so as to demonstrate its potential in real-world applications. This 

study follows the below framework to achieve these aims (Figure 1). 

 
Figure 1. Research framework. 

 DNN architecture development: This study builds a unique DNN architecture that can 

synchronously detect multiple objects and their semantic relations, leveraging hourglass 

networks and 1x1 convolution (Px2Graph, Newell and Deng 2017). 

 Data collection and annotation: Extensive construction operations data (i.e., videos) has 

been collected via YouTube and annotated through a web-based crowdsourcing [i.e., 

Amazon Mechanical Turk (AMT)] with a complete inspection. 

 Construction-specialized model development: Construction-specialized model is then 

developed by pre-training the proposed architecture (i.e., Px2Graph) with benchmark 

dataset [i.e., Visual Genome (Krishna et al. 2016)] and fine-tuning with the collected 

construction dataset. 

 Validation on real construction data: Evaluation on real construction operations data is 
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conducted. Lastly, discussion on the results and implications is followed. 

DNN ARCHITECTURE DEVELOPMENT 

To develop an end-to-end model that can concurrently detect both object and relation, this 

study builds a unique network architecture that can address the following questions: (i) how to 

extract global features that can likely be effective for semantic relation detection and (ii) how to 

localize both object and relation in a single network without region proposal. The model 

architecture is detailed, as (Figure 2, for more information, please refer to the previous work, 

Newell and Deng 2017): 

 
Figure 2. Network architecture: Px2Graph, Newell and Deng 2017. 

 Feature tensor extractor: The four hourglass units stacked in a row takes an image as 

input and produces a feature tensor of fixed size. The unique design of hourglass allows 

the combination of global and local information, which can likely be effective in 

inferencing the semantic relations on a frame (Newell and Deng 2017). 

 Feature vector localizer: The output tensor is then converted to heat-maps by 1x1 

convolution and sigmoid activation. Each heat value represents the likelihood that an 

entity (i.e., object or relation) exists at the given location. The feature vectors of interest 

are extracted based on these likelihood values. 

 Classifier: In succession, the corresponding feature vectors are fed into the fully 

connected layer and Soft-Max classifier, in which final classification of (i) subject class 

(e.g., an excavator); relation (e.g., is guided by); and (iii) object class (e.g., a worker) are 

performed. 

DATA COLLECTION AND ANNOTATION 

As an axiom of deep learning in computer vision, the quantity and quality of training dataset 

have a significant impact on a model’s final performance. Hence, this study attempts to collect 

an extensive data (i.e., videos) for real construction operations and conducted frame-wise 

annotations with a complete inspection. First, a variety of videos for real construction sites were 
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collected from YouTube, which includes various scenes of human-machine (replacement of co-

robots, e.g., excavator, wheel loader, or truck) interactions. Further, the authors developed an 

annotation template that links the collected data to web-based crowdsourcing (i.e., AMT) to 

reduce the avoidable efforts for massive annotations. The template leads workers to annotate 

each object’s bounding box and relations with others (Figure 1, data collection and annotation). 

Lastly, manual inspection ensured the validity of the annotations. The annotation examples are 

illustrated in Figure 3. 

 
Figure 3. Examples of data annotation. 

76 videos from different projects were collected. These videos capture (i) 7 types of objects 

(i.e., worker, excavator, truck, wheel loader, roller, grader, and van/car) and (ii) 4 types of 

relations (i.e., not working with, guided by, adjusted by, and filling) (Table 1). To avoid 

duplications in the dataset, one frame per a second was sampled in each video. As the result, the 

total of 2,502 frames were annotated as well as manually inspected (Table 1). This dataset 

includes (i) 5,468 objects and (ii) 3,110 relations in total (Table 1). 

Table 1. Summary of data. 

Category Detail 

The # of videos collected 76 

The # of images annotated 2,502 

Object categories excavator, person, truck, wheel loader, roller, grader, van/car 

Relation categories not working with, guided by, adjusted by, filling 

The # of objects annotated 5,468 

The # of relations annotated 3,110 

CONSTRUCTION-SPECIALIZED MODEL DEVELOPMENT 

This study elected transfer learning in developing a construction-specialized model, thereby 

complementing insufficiency of training dataset. First, the whole network (i.e., Px2Graph) was 

pre-trained with Visual Genome dataset (Krishna et al. 2016) that is the most extensive dataset 

widely used in relation detection studies (Newell and Deng 2017; Xu et al. 2017; Lu et al. 2016). 

The Visual Genome contains 108,077 frames including 3.8 million objects and 2.3 million 

relations (Krishana et al. 2017). In succession, the fine-tuning followed with collected 

construction data. 2,000 (80% of total) and 502 (20%) images were used for fine-tuning and 

validation, respectively. 

To discover a better way to transfer the pre-trained network to construction-specific settings, 

the fine-tuning particularly considered four different scenarios such that each scenario has 
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distinctive set of layers (i.e., hourglass unit) to be fine-tuned. Table 2 illustrates the four different 

tuning scenarios. For example, the scenario #1 fine-tunes only the last hourglass unit (i.e., 4th 

hourglass in the feature tensor extractor) by having zero learning rate at the other three units, 

whereas the scenario #4 fine-tunes all hourglass units in the feature tensor extractor. 

Table 2. Fine-tuning scenarios. 

Scenarios 
Hourglass unit to be fine-tuned 

Hourglass #1 Hourglass #2 Hourglass #3 Hourglass #4 

S #1 X X X O 

S #2 X X O O 

S #3 X O O O 

S #4 O O O O 

Table 3. Validation results: Recall@5 of each scenario. 

Scenarios 
Recall @5 (%) 

Training dataset Validation dataset 

S #1 87.78 63.90 

S #2 92.20 61.68 

S #3 93.62 65.12 

S #4 91.93 67.41 

VALIDATION ON REAL CONSTRUCTION DATA 

To examine feasibility of the developed model in real-world applications, evaluation on real 

construction data is conducted. As an evaluation metric, this study applied recall@x, which is the 

most common metric used in relation detection studies (Newell and Deng 2017; Xu et al. 2017; 

Lu et al. 2016). Note that the recall@x reports the fraction of ground truth tuples to appear in a 

set of top x predictions. Considering diversity of the construction dataset, this work applied 

recall@5. The results for the four scenarios are summarized in Table 3, and graph for the 

recall@5 values during training is illustrated in Figure 4 with prediction examples. 

It turned out that Scenario #4 (i.e., fine-tuning the entire feature tensor extractor, hourglass 

#1~4) outperformed all the other scenarios (Table 3). The construction dataset is highly 

distinctive to the Visual Genome dataset to cover universal objects and relations. Accordingly, 

fine-tuning the entire feature tensor extractor offered a better option over focusing on last several 

layers, as shown in this evaluation. 

During the fine-tuning, the relation recall@5 values for training dataset steadily increased 

(Figure 4). Consequently, the values converged to around 90% for all scenarios (Table 3). The 

stably increasing pattern of relation recall@5 for training dataset shows that the proposed 

architecture is capable of being specialized to construction-specific settings. On the other hand, 

the relation recall@5 for validation dataset plateaued at around 61~67% (Table 3 and Figure 4). 

Although the relation recall@5 on validation dataset for all scenarios showed steadily increasing 

pattern, they started to converge at the early stage of fine-tuning. It is analyzed that the all 

scenarios suffered from insufficiency of the fine-tuning dataset, and therefore resulted in the 

significant overfitting. 

Although the developed model showed promising performance on training dataset (i.e., more 

than 87% recall@5), it failed at generalization, resulting in the poor performance on validation 

dataset (i.e., less than 68% recall@5). It may not be sufficient for real-world applications. 
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However, it is noteworthy that the proposed architecture demonstrated its potential of being 

specialized to construction-specific settings. A follow-up study will therefore more focus on 

improving the generalization capability, which can include (i) augmentation of fine-tuning 

dataset and (ii) hyper-parameter tuning (e.g., width, height, and depth of feature tensor 

extractor). 

 
Figure 4. Results of S #4: Recall@5 during fine-tuning and prediction examples. 

CONCLUSION 

To support safe human-robot collaboration in construction sites, this study proposes a DNN-

based computer vision method for semantic relation detection. A unique DNN architecture that 

can interactively detect both objects and relations is built using hourglass networks and 1x1 

convolution. Further, a construction-specialized model is developed by experimenting multiple 

fine-tuning scenarios. As a result, the best model (i.e., scenario #4) can achieve recall@5 of 

91.93% and 67.41% on training and validation dataset, respectively. The performance on 

validation dataset may not be sufficient for real-world applications; however, there are still 

plenty of opportunities to improve the performance, which include (i) augmentation of fine-

tuning dataset and (ii) hyper-parameter tuning. With such critical refinement, the proposed 

architecture can likely result in a more robust model for construction-specific settings. The 

improved model will help construction robots to understand evolving scene contexts (i.e., 

semantic relations to surrounding entities), and it will ultimately contribute to promoting safe 

collaboration between human and robot co-workers in construction. 
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