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ABSTRACT 

Struck-by accidents are potential safety concerns on construction sites and require a robust 

machine pose estimation. The development of deep learning methods has enhanced the human 

pose estimation that can be adapted for articulated machines. These methods require abundant 

dataset for training, which is challenging and time-consuming to obtain on-site. This paper 

proposes a fast data collection approach to build the dataset for excavator pose estimation. It uses 

two industrial robot arms as the excavator and the camera monopod to collect different excavator 

pose data. The 3D annotation can be obtained from the robot's embedded encoders. The 2D pose 

is annotated manually. For evaluation, 2,500 pose images were collected and trained with the 

stacked hourglass network. The results showed that the dataset is suitable for the excavator pose 

estimation network training in a controlled environment, which leads to the potential of the 

dataset augmenting with real construction site images. 

INTRODUCTION 

The prospect of human-robot collaboration (HRC) on construction sites raises safety 

concerns (Liang et al. 2018b; You et al. 2018). Unlike HRC in typical industrial settings, the 

robot on the construction site has to maneuver around the unstructured environment to their next 

task location. The workplace of the robot changes dynamically based on their location, which is 

a challenge for HRC safety. According to ISO standards, the safety of the HRC must be adhered 

to either by stopping the robot before human contact, or be controlled by regulating force and 

speed limits (Salmi et al. 2018). The recently developed dynamic safety system utilized human 

detection sensors and optical sensors to adjust the robot speed according to the detected human 

action and the protective distance. However, the protective distance has to be very large since the 

 Computing in Civil Engineering 2019 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

on
 0

8/
18

/1
9.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Computing in Civil Engineering 2019 147 

© ASCE 

optical sensors only identify the difference between current frame and previous frame instead of 

tracking the robot’s exact pose (Salmi et al. 2018). This highlights the need for developing an 

effective on-site pose estimation system for articulated construction equipment and human 

workers, as shown in Figure 1. 

Vision-based methods can extract object’s pose directly from input data with a marker 

(marker-based) or without marker (marker-less) (Liang et al. 2018b). The marker-based method 

identifies all the markers mounted on equipment and estimates the pose by their geometric 

relations or marker network (Feng et al. 2018; Liang et al. 2017; Lundeen et al. 2016; Rezazadeh 

Azar et al. 2015), whereas the marker-less method directly extracts features and estimates the 

pose from them (Liang et al. 2018a; Soltani et al. 2018). The marker-less pose estimation method 

only requires an on-site camera system, which is common on typical construction sites today, or 

utilizes RGB-D cameras (Han et al. 2013, 2014; Han and Lee 2013; Seo et al. 2015). Feature 

descriptor is the first type of marker-less pose estimation method (Chen et al. 2017; Lundeen et 

al. 2017; Rezazadeh Azar et al. 2013). The recently emerging Convolutional Neural Networks 

(CNN) is another type of pose estimation method (Andriluka et al. 2014), which has improved 

performance (accuracy and speed) in comparison with all other vision-based methods, especially 

for human pose estimation. The majority of the human pose estimation methods are 2D-based 

methods (Newell et al. 2016), which estimate the human pose in 2D pixel-wise coordinates, as 

shown in Figure 1. This is due to the lack of 3D ground truth posture data (Martinez et al. 2017). 

For human pose data collection, the motion capture system is primarily used to obtain the ground 

truth data of human skeleton in an indoor environment (Ionescu et al. 2014), which is difficult to 

employ for construction equipment in an outdoor environment. 

In this study, a fast dataset collection approach for articulated equipment pose estimation is 

developed and evaluated. This approach collects images from a factory environment with a 

robotic manipulator and from real construction sites. Both 2D and 3D data are annotated. The 

performance of the dataset is validated by a state-of-the-art 2D human pose estimation network 

(Newell et al. 2016) and a 3D human pose estimation baseline network (Martinez et al. 2017), 

and compared with the IMU sensor pose estimation method. 

DATA COLLECTION APPROACH 

The image dataset is collected with an articulated robotic manipulator outfitted with a 

simulated excavator bucket. The dataset is separated into training and testing groups. The 2D and 

3D networks are trained by the training group and then evaluated by the testing group. 

Dataset Collection Setup: For the dataset collection setup, a KUKA seven degrees-of-

freedom (DOF) robot arm (KUKA KR120) was used to simulate the excavator, and the images 

of the robot arm with different poses were captured. Figure 2 illustrates the simulated excavator 

in the laboratory. The upper arm represents the excavator stick and the lower arm represents the 

excavator boom. A bucket is mounted on the robot arm end-effector for a more realistic 

simulation. In order to control the robot as an excavator, the profile of the mounted bucket must 

remain perpendicular to the ground level. Thus, only four of the robot joints were moved during 

the dataset collection process, and the others were fixed at all times. The robot arm was 

controlled to follow trajectories to perform several excavator-like tasks such as digging, 

swinging, or unloading. The ground truth of the excavator pose data was acquired from the robot 

arm’s embedded encoders, including 6 DOF pose of the robot’s end-effector  , , , , ,X Y Z A B C  

and angles of all joints  1 2 3 4 5 6, , , , ,A A A A A A . 
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Figure 1. Illustration of the 2D on-site pose estimation system on a video frame for both 

articulated equipment and human workers. Red lines are the estimated pose. 

 
Figure 2. The simulated robotic excavator - robot arm mounted with an excavator bucket. 

 
Figure 3. The camera mounted on the second robot arm to capture the images (red square). 

In order to collect the images of the simulated excavator, a Point Grey camera was used in 

the process. The camera was mounted on a second KUKA robot arm in the laboratory, as shown 

in Figure 3. This could not only provide several different locations and orientations of the camera 

to increase the variety of the dataset but also helped obtain the 6 DOF pose of the camera itself, 

which is the end-effector of the camera robot, for further processing. The mounted camera on the 

second robot arm was triggered by the same controller (Programmable Logic Controller, PLC) 

utilized to control the first robot arm. Thus, the captured image and the recorded ground truth 

 Computing in Civil Engineering 2019 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

on
 0

8/
18

/1
9.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Computing in Civil Engineering 2019 149 

© ASCE 

pose data were synchronized with each other. In the data collection process, a total of 2,500 

images were collected; 2,000 of them were used as training images and 500 of them were used as 

testing images. Figure 4 shows a set of the collected images from the dataset. The size of each 

image is 2048x2048 pixels. 

 
Figure 4. A set of the captured images for the excavator dataset with different camera 

location and orientation, and excavator pose. 

Data Annotation: Data annotation is required in order to indicate the location of the 

excavator’s joints in the images as the ground truth. The structure of the excavator data 

annotation follows the similar structure to the human pose dataset annotation, MPII for the 2D 

pose (Andriluka et al. 2014) and Human3.6M for the 3D pose (Ionescu et al. 2014). In the 2D 

pose annotation, excavator joint locations were annotated in the pixel-wise coordinate. The scale 

of the image was measured with respect to a height of 200 pixels. On the other hand, in the 3D 

pose annotation, the locations of the excavator’s joints were labeled as (X, Y) in pixel-wise 

coordinates and Z was considered as the distance from the camera to each joint, which was 

calculated from the robot arm end-effector and joints’ ground truth data. The bounding box was 

also labeled to show the area of the excavator in the image. The annotations were performed via 

MATLAB and saved as two separated annotation files, one for the 2D pose and the other for the 

3D pose. Figure 5 shows an example of an annotated image. 

 
Figure 5. An example of the annotated image. Stars represent the joint locations and the 

rectangle represents the bounding box. 

The 3D ground truth data was acquired by the robot arm’s built-in encoders and the PLC. 

The PLC sent the control command to both robot arms (North and South). The South robot 

would perform the predefined trajectory, such as digging or unloading, whereas the North robot 

would stay as it is to capture the images. Several trigger points were set to trigger the camera on 

the North robot to capture the image and acquire the pose of both robots, and then transfer them 

to a computer. After the South robot finished the entire trajectory, the North robot would move to 
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the different pose and re-run the process. This could increase the variety of the dataset by having 

different orientations in the images. The 3D pose of the end-effector was directly read from the 

robot arm, and the 3D pose of the rest of the robot joints was obtained using inverse kinematics. 

Sensor-based Pose Estimation: For evaluating the excavator dataset, the sensor-based pose 

estimation method was used to compare the performance. Four IMU sensors were deployed to 

measure the angular change of the robot joints. These sensors were placed on the axis of each 

joint so that they can measure the correct angle when the robot changed its pose. The results 

were compared with the ground truth joint angle of the robot arm. The 3D pose of each joint 

could be calculated by Forward Kinematics. Since the exact location of a joint required location 

sensors such as GPS, which was not available in the experiment, the first joint (A1) was aligned 

with the ground truth A1 joint location, and then the other joints were calculated relative to the 

first joint. The Xsens MTw Awinda wireless motion tracker system was used for the sensor-

based method. The system contained four motion trackers with IMU embedded and a wireless 

receiver to transmit the data. The sensor data was also synchronized with the vision-based pose 

data and the ground truth data so that it could be compared with each other. 

 
Figure 6. Results of the excavator 3D pose estimation. The left image is the result from 2D 

pose estimation and the right image is the 3D result. 

Table 1. Results of the average Euclidean distance (mm) between the predicted and the 

ground truth joint location. 

(mm) 3D Vision-based Sensor-based 

Boom-Stick 148.16 84.35 

Stick-Bucket 134.22 97.21 

Bucket 151.58 99.42 

EXPERIMENT RESULTS 

The proposed pose estimation dataset was evaluated by comparing the estimated results and 

the ground truth, as shown in Figure 6. The left image was the 2D result and the right image was 

the 3D result. The dashed line is the vision-based result, the dotted line is the sensor-based result, 

and the solid line is the ground truth. The Euclidean distance between the estimated joint location 

and the ground truth joint location are used to evaluate the performance, as shown in Table 1. 

The average Euclidean distance between the 3D vision-based method and ground truth is 144.65 

mm, and between the sensor-based method and the ground truth is 93.66 mm. The result showed 

that the error of the 3D vision-based is higher than the sensor-based method. One of the reasons 

was that the 3D vision-based method predicted the pose based on the 2D pose estimation result, 

wherein the error would accumulate from 2D prediction and decrease the accuracy in the 3D 
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prediction. The reason was that the camera coordinates preprocessing mentioned in (Martinez et 

al. 2017) was not applied to the ground truth data because the camera matrix was not determined 

in the laboratory dataset. In addition, the occlusion issue also affected the prediction result. 

CONCLUSION 

In this research, a fast dataset collection approach for 2D and 3D articulated construction 

robots pose estimation methods were proposed. A KUKA robot arm was utilized to represent an 

excavator in a factory and a camera on the second robot arm was used to capture the image. The 

3D pose was acquired from robot arm sensors and the 2D pose was annotated manually. A 3D 

pose estimation network was evaluated on the dataset. The sensor-based pose estimation method 

was also implemented to compare the performance. The results showed that the dataset collected 

by the proposed approach could estimate excavator's joints but had higher estimation error. 
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