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Evolutionary convergence has been long considered primary evidence of
adaptation driven by natural selection and provides opportunities to explore
evolutionary repeatability and predictability. In recent years, there has been
increased interest in exploring the genetic mechanisms underlying convergent
evolution, in part, owing to the advent of genomic techniques. However, the
current ‘genomics gold rush’ in studies of convergence has overshadowed
the reality that most trait classifications are quite broadly defined, resulting
in incomplete or potentially biased interpretations of results. Genomic studies
of convergence would be greatly improved by integrating deep ‘vertical’, natu-
ral history knowledge with ‘horizontal” knowledge focusing on the breadth of
taxonomic diversity. Natural history collections have and continue to be best
positioned for increasing our comprehensive understanding of phenotypic
diversity, with modern practices of digitization and databasing of morpho-
logical traits providing exciting improvements in our ability to evaluate the
degree of morphological convergence. Combining more detailed phenotypic
data with the well-established field of genomics will enable scientists to make
progress on an important goal in biology: to understand the degree to which
genetic or molecular convergence is associated with phenotypic convergence.
Although the fields of comparative biology or comparative genomics alone
can separately reveal important insights into convergent evolution, here we
suggest that the synergistic and complementary roles of natural history collec-
tion-derived phenomic data and comparative genomics methods can be
particularly powerful in together elucidating the genomic basis of convergent
evolution among higher taxa.

This article is part of the theme issue ‘Convergent evolution in the
genomics era: new insights and directions’.

1. Introduction

Electronic supplementary material is available Convergent evolution is the independent acquisition of similar features in distantly
online at https://doi.org/10.6084/m9.figshare. related lineages [1]. Ever since Darwin suggested that similar traits could arise
4468724, independently in different organisms [2], understanding the underlying causes
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Figure 1. Conceptual framework for studies on the genomics of phenotypic convergence. Starting from the top, organismal expertise and knowledge of natural
history are the starting points for such studies. Environmental gradients and constraints in physiology, biochemical and developmental pathways may limit or direct
trait evolution, potentially driving phenotypic convergence. Phylogenetic comparative methods can be used to test, quantify and visualize instances of convergence.
Finally, comparative genomics methods can be used to test whether convergent phenotypes have common underlying genomic mechanisms at various hierarchical
levels of individual genetic loci or regulatory networks. Functional validations of genes or pathways identified from genome-wide scans provide means to test the
role of specific genomic regions in producing a given convergent phenotype and to attempt a historical reconstruction of evolutionary events.

and mechanisms of convergence has been one of the funda-
of evolutionary biology. Convergent
evolution has been a central component to study evolutionary
predictability [3] by integrating phenotypic, phylogenetic and
environmental data [1,4,5]. While convergent evolution is

mental objectives

usually presumed to be the result of adaptation [6-8], it is
clear that convergent patterns can also result from non-adaptive
processes such as exaptation, evolutionary constraints, demo-
graphic history [1,5,9,10], mutational bias [11] or hemiplasy
[12,13]. Conceptual differences in defining phenotypic conver-
gence as process-based (when trait similarity evolves by
similar forces of natural selection) versus pattern-based (when
lineages independently evolve patterns of similar traits, regard-
less of mechanism) have practical implications for the adequate
identification and measurement of convergent traits [14].
In addition to such challenges for defining convergence at the
phenotypic level, additional uncertainties exist for defining
the genetic basis of phenotypic convergence [15,16].

Convergent phenotypes may or may not share a genetic
basis at many different hierarchical levels (e.g. nucleotide,
gene, protein, regulatory networks, function; figure 1) [5].
Additionally, high-levels of pleiotropy, already recognized as
a likely component of many cases of convergence [17], means
that our definition of ‘genomic basis’ of convergence may
require expansion to include the role of individual genes parti-
cipating in multiple networks as well as functionally
overlapping networks that may not share many genes.

Here, we explore how recent advancements in comparative
genomics have provided tools to expand genetic studies of con-
vergent phenotypes based on a few candidate genes to entire
genomes, and how such large-scale genomic data are being
used to explore the rate and pattern of convergence at different
hierarchical levels. In particular, we highlight the need to
carefully define the convergent phenotype and using the role
of natural history records in aiding this definition. As generat-
ing genomic data becomes easier with time, integration of



community-wide organismal expertise and natural history
collections will remain key to understanding the genomics of
convergence. We focus primarily on convergence among
distantly related species, largely in animals, and generally do
not discuss convergence among close relatives or populations,
which are covered elsewhere in this issue [18].

2. Role of organismal expertise in understanding
convergence

The resurgence of interest in phenotypic convergence is driven
by the desire to add a new layer—genomics—to what has been
a long-standing, centuries-old interest in natural history and
organismal biology (figure 1). Without genomics, studies of
phenotypic convergence would no doubt continue as they
have for decades, particularly given the firm foundation of
comparative biology on which studies of convergence now
rest [19,20]. However, the rapidly declining costs of genome
sequencing have reinvigorated questions about the degree to
which convergent phenotypes share a genetic basis and gener-
ated considerable excitement about using convergence as a
means to understand the genetic basis of phenotypes [5]. How-
ever, the ‘genomics gold rush’ in studies of convergence has
tended to focus on a few easily defined and extensively studied
traits, such as the transition to marine [21], subterranean [22],
or high-altitude [15,23] life, loss of flight in birds [24], eusocial-
ity in insects [25,26], social behaviour in vertebrates [27-29],
vocal learning in birds [30] and echolocation in mammals
[16,31,32], among others. While these studies have laid the
groundwork for the field, organismal and natural history
expertise remains critical for the maturation of studies relating
phenotypic convergence and genomics.

(a) Definition and complex nature of convergent
phenotypes

Organismal expertise and knowledge of natural history data
can inform comparative genomics in several ways. A mechan-
istic understanding of convergent phenotypes ultimately
requires in-depth knowledge of how organisms function in
the wild. It is relatively easy to designate a given species as
having either a subterranean lifestyle or a lifestyle wholly
above ground, but such a simple dichotomy might mask the
substantial diversity of ecological and behavioural traits even
within the subterranean lifestyle—for example, the diversity
of burrow structures and whether or how the work of digging
the burrow is shared between the sexes. Similarly, categoriz-
ation of species as either ‘marine’ or ‘non-marine’, or ‘volant’
and ‘flightless” will no doubt capture important components
of phenotypic convergence, without necessarily advancing a
mechanistic understanding of these phenotypes. Such categor-
ization ignores behavioural, developmental, physiological and
ecological complexity that will add nuance to any comparative
analysis. For example, birds categorized as ‘flightless” may
exhibit forelimb morphologies varying from complete absence
(e.g. moas, Hesperornis) to slightly shortened (e.g. ostriches and
Galapagos cormorants) to highly modified forelimbs actively
deployed in diving underwater but not in flight (e.g. penguins,
Great Auk; figure 24). Similarly, ‘limblessness’ in squamate
reptiles can mean complete loss of forelimbs, hindlimbs or
both, or partial loss of digits and/or limb long bones
(figure 2b). While simple binary categorizations of specific

character states have proven powerful in guiding comparative n

genomic analyses [22], finer dissection of convergent pheno-
types as a quantitative continuum rather than a binary
phenomenon [34] will allow both an adequate testing of the
adaptive value of the traits in question and a more detailed
categorization of adaptations themselves. Recent models
designed to test the significance of genotype—phenotype
associations in a phylogenetic context are an important part
of this new framework [35,36]. An important question is how
to derive the most statistical power to detect convergent geno-
type—phenotype associations when phenotypes are defined
continuously or with more than two states. New quantitative
methods of assessing convergence in phenotypic traits
[37-39], as well as phylogenetic quantitative genetic models
[40,41] will both be helpful in accommodating complex
characters into genomic studies of convergent evolution.

(b) Diverse types of natural history knowledge can
inform comparative genomic studies of convergence

Whereas the above perspective emphasizes ‘vertical” knowl-
edge, that is, deep understanding of the natural history of
individual species, comprehending the breadth of taxonomic
diversity across clades is a second way in which natural history
knowledge can inform comparative genomics. Integration of
this ‘horizontal” knowledge of the total biology of a particu-
lar clade of organisms will be important to broaden our
perspective on convergent evolution (figure 1). The wealth of
convergent traits across the Tree of Life is likely to be found
not in textbooks but in taxonomic monographs written by
naturalists and curators over the past couple of centuries [42].
One example of such a convergent trait is testis colour in
birds: why are testes in disparate groups of birds black instead
of the usual tan? Another example is the evolution of parity
mode (oviparous or viviparous), which otherwise being a
highly conserved trait in amniotes, shows a complex mosaic
of convergence in squamates. Similarly, affiliative behaviours
such as pair bonding and parental care have complex neuro-
logical underpinnings that are important to understand in
the convergence [27].

The number of such convergent traits is seemingly limitless,
yet we know little about the power of comparative genomics to
unravel the molecular basis of these phenotypes, or how our
understanding of the link between genotypic and phenotypic
convergence will change as the number and type of convergent
traits studied from a genomic perspective increase.

Natural history and phenomic knowledge from fossils can
inform the interpretation of character polarity, diversity and
variation by directly informing the number and type of occur-
rences of convergence in extinct and extant taxa. For example,
the number of extant flightless avian taxa is much smaller than
the number of flightless avian taxa known from the fossil
record, with many convergent instances of flightlessness rep-
resented only by extinct taxa (e.g. elephant birds, moa,
adzebills, the Atitlan Grebe, the Great Auk, the Kaua’i Mole
Duck [43]). The inclusion of fossil taxa near the base of clades
can clarify whether traits are derived and potentially conver-
gent or with a single origin and ancestral to a group. This
may provide a better estimate of the ancestral phenotype
from which the convergent traits evolved. Fossil data from
natural history collections are similarly crucial for calibrating
phylogenies by time, allowing investigations to assess not
only which phenotypes are convergent, but when they arose.
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Figure 2. lllustration of the continuous nature of limb states often categorized as binary in studies of evolutionary convergence. In (a,b), taxa were chosen to
illustrate a range of forelimb character states and for which we had easily verified details from microscopy, photographs or specimens. X indicates the complete
absence of fore- or hindlimb elements. Drawings not to scale. (a) Tree for palaeognathous birds (topology after [19]), with representative drawings of forelimbs for
taxa casually deemed volant or flightless. Taxa and sources as follows: Elegant Crested Tinamou (Eudromia elegans, M(Z343064 and 340325); Little Bush Moa
(Anomalopteryx didiformis; all forelimb elements absent); Emu (Dromaius novaehollandiae; after photo by J.A.C. from Muséum National d’Histoire Naturelle
[MHNH]); Southern Cassowary (Casuarius casuarius, JAC MHNH photo, M(Z364589); Little Spotted Kiwi (Apteryx owenii, M(Z340308); Greater Rhea (Rhea americana,
JAC MHNH photo, M(Z341488); Common Ostrich (Struthio camelus, JAC MHNH photo, M(Z341420); Chicken (Gallus gallus, online sources). (b) Examples of limbed
and limbless squamates. Relationships after [33]. Common Crag Lizard (Pseudocordylus melanotus, CAS173019); Cape Grass Lizard (Chamaesaura anguina, M(Z
R-173157); European Legless Lizard (Pseudopus apodus, CAS-184449), body cavity shown in light grey to provide positional context for hindlimb; Mexican
Mole Lizard (Bipes biporus, CAS-142262, hindlimb absent); New Guinea Blind Lizard (Dibamus novaeguineae, CAS-SU 27070). MCZ, Museum of Comparative Zoology,
Harvard; CAS, California Academy of Sciences. All limb drawings by Lily Lu.

In addition, divergence time data among various taxa available
in public databases (e.g. TimeTree [44]) provide useful
information for reconstructing ancestral states. The temporal
data provided by fossils are important in assessing the viability
of potential causal hypotheses of drivers of convergent pheno-
types. Recently extinct taxa may also provide genomic data,
allowing direct incorporation into molecular phylogenies
with extant taxa [45,46].

Museum collections, and the wealth of phenotypic data
that they provide, are an excellent source of natural history
knowledge [47,48]. Museum specimens are critical for verifying
species” identities, claims of specific phenotypes published in
the scientific literature, are the primary source for scoring

characters not yet explored for many species [49], and docu-
ment diverse aspects of organismal phenotypes including
anatomy, environmental context and various types of nano-
structures and chemical profiles. For instance, thorough
phenotypic revisions of museum specimens have confirmed
the existence of taxonomic misidentifications leading to
the description of new species of Cotinga (Tijuca condita),
previously misidentified as Tijuca atra [50], or a more com-
prehensive understanding of phenotypic diversity and
conservation needs of endemic Neotropical procyonid genus
Bassaricyon [51]. Natural history records also provide vital infor-
mation for interpreting downstream results from the genomic
analysis. Therefore, it is crucial that published genomes
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Figure 3. Numbers of papers on different kinds of evolutionary convergence by authors with or without a museum address (search 1, see below). The goal of the
searches was to determine if scientists with extensive natural history knowledge of organisms were participating in the second wave of studies on convergence
informed by genomics (see text, §2b). We reasoned that museum specialists would constitute an important component of this community of researchers. We
therefore conducted two searches on the Web of Science Core Collection on 23 September 2018 (searches 1 and 2) and two searches on PubMed (searches 3
and 4), on the same date. For each database, we conducted two searches: searches 1 and 3: Topic: ‘convergen* AND ‘evolution” without or with, respectively,
‘genom™ as an additional topic keyword. To determine which papers had authors with museum addresses, we included ‘museum’ OR ‘musee’ or ‘museo’ as
part of the author address. For searches 2 and 4, we used ‘convergent evolution” OR ‘parallel evolution” as topic keywords, again, without or with, respectively,
‘genom™ as an additional topic keyword. Museum addresses were determined as in searches 1 and 3. The graph and associated data (electronic supplementary
material, table S1) suggest that researchers with a museum address publish extensively on general evolutionary convergence, appearing on between 7.0% and
24.2% of papers in this literature depending on the search terms. However, researchers with a museum address appear on only 4.9-7.0% of papers on genomics
of convergence (electronic supplementary material, table S1). These addresses are underrepresented on papers on genomics of convergence by 29—71%, depending
on the analysis. We recognize that our search is likely to miss many individuals with extensive knowledge of organismal diversity who do not work in museums or
have a museum address on their publications. Additionally, our search terms are likely to detect many papers that are tangential to this analysis (see electronic
supplementary material, table S1). Nonetheless, we suspect that the trends indicated reflect the coarse-grained approach to phenotypes that has partly characterized
the second wave of studies on evolutionary convergence informed by genomics. We predict that the actual numbers of authors with extensive natural history
knowledge, irrespective of their work addresses, and who have participated in studies of the genomics of convergence, would change the slopes but not relative

magnitude of the trends seen here.

should, when possible, be based on DNA derived from a trace-
able, documented source, such as a vouchered museum
specimen, known laboratory variant or strain, captive animal
or laboratory colony. In cases where this is not possible (e.g. a
wild-caught individual that is entirely destroyed in the process
of extracting DNA), imaging and documentation of provenance
as well as associating as much additional metadata as possible
are still crucial.

Many good examples of integrative comparative genomics
investigations of convergence come from research teams that
include curators, taxonomists, naturalists or other experts in
organismal diversity in morphology, function and ethology
at universities or other research settings [52]. However, a cur-
sory analysis of keywords and author addresses in the Web of
Science suggests a paradox: whereas museum scientists have
frequently published on the general topic of evolutionary con-
vergence, they now appear underrepresented in the second
wave of convergence studies based on comparative genomics
(figure 3). We recognize that relevant expertise in organismal
phenotypes is also housed in great abundance in diverse uni-
versity settings without affiliated museum collections, and our
simple analysis will not capture and likely grossly underesti-
mates these contributions. Nonetheless, we predict that as
genomic studies of convergence mature, museum scientists,
with their expertise in taxonomy, morphology, ecology and

biogeography will play an increasing role in studies of the
genomics of convergence.

Another way in which natural history knowledge can
inform comparative genomics is through a relatively recent
type of natural history—the natural history of genomes and
physiological and biochemical pathways. We regard any
deep knowledge of organismal function across diverse clades
of organisms as a type of natural history knowledge. A good
example of this type of knowledge is our understanding of
the taxonomic distribution of the ability to synthesize vitamin
C [53]. This case was used to powerfully demonstrate how
comparative genomics can help pinpoint the likely genomic
basis of convergent traits, in this case, the convergent loss
of the ability to synthesize vitamin C. Such biochemical
knowledge was amassed through measurement by diverse lab-
oratories of vitamin C levels in diverse organisms (in this case,
from 20 separate publications spanning 1956—-2003). Another
example is the convergent ability of insects to feed on toxic
plants, which is mediated by convergent substitutions, dupli-
cations and gene expression changes in a gene called ATP«
[54,55]. Such detailed biochemical knowledge has been a
major driver of recent studies of the genomics of convergence.
Such an approach is likely to be a powerful method for under-
standing the genomics of convergence because the association
between genotype and phenotype in such adaptations is likely



to be tight and involve few genes, and in addition had a clearly
defined convergent phenotype. Many studies on the genomics
of colour in mammals and in squamates provide additional
examples of a trait whose molecular basis was aided by knowl-
edge of biochemical pathways across diverse groups of
organisms [56—-58]. Some molecular and biochemical traits,
like genome size [59], proteins and DNA sequences, are orga-
nized into well-curated databases, but many such traits,
such as vitamin C synthesis, are scattered in the literature.
Given what seems like the relative ease of finding the genomic
basis for such traits through comparative genomics, it will be
important in the future to assemble databases of phenotypic
traits that span the gamut from organismal to biochemical
and physiological knowledge, e.g. [60-62]. Such databases
can rapidly accelerate the discovery of the genomic bases of
convergent traits.

3. Genomics of convergence

(a) Outstanding questions in the genomic study of
convergence

Apart from the major aim of identifying the genomic or
molecular basis of convergent traits, a great diversity of ques-
tions also motivate the study of convergent traits. For
instance, how does the frequency of convergence change
across hierarchical levels and does it differ appreciably at the
phenotypic and molecular levels? Does a nonrandom subset
of genomic changes explain most instances of convergent evol-
ution, priming convergent evolution to be more likely in
certain circumstances? Are such genomic changes more likely
to be regulatory or encoded by proteins? Does standing genetic
variation or de novo mutation account for most examples of con-
vergent evolution? Answers to such questions will not only
provide critical information about the genomics of conver-
gence but will also contribute greatly to our understanding
of adaptation and evolution in general.

(b) Building comparative genomics resources to study
convergence

Once the phenotype of interest is defined, the next most impor-
tant experimental step in comparative genomics is producing
an adequate genomic foundation for downstream work
(figure 1). While many questions of interest can be investigated
with publicly available data only, if new genome(s) are essen-
tial for a study, choosing the optimal methods for generating
genomic resources is crucial. Access to high-quality samples
is often a limiting factor for many nascent projects, a difficulty
that can be overcome in part by ensuring that high-quality
tissue collections are prioritized at natural history repositories.
High-molecular-weight DNA is critical for modern genome
sequencing technologies, and in many cases, vouchered
tissue samples stored in ethanol will not suffice. In addition,
proper sampling procedures in the field are the most critical
step to ensure high-quality DNA for building genomic
resources. As an example, immediately flash-freezing tissues
in liquid nitrogen is ideal given that critical molecular
information (namely RNA) is quickly degraded at higher
temperatures, but in many instances, tissues are transferred
to liquid nitrogen after a substantial delay or deep cryofreezing
is logistically not possible. Though not glamorous, more

detailed investigations of tissue preservation practices are n

vital for enabling genomic investigations, and we advocate
that natural history museums should undertake a concerted,
transparent effort to create best-practices recommendations
for tissue samples that mirror practices already in place for
whole-organism preservation [63]. For example, fresh blood
stored unfrozen in Queen’s lysis buffer [64] at 4°C has provided
higher quality DNA from nucleated avian blood cells [65] than
museum-grade frozen tissues and has improved sample collec-
tion practices in the Department of Ornithology at Harvard’s
Museum of Comparative Zoology.

Genome assembly contiguity and gene annotation quality
are also critically important for addressing target questions
and maximizing the utility and availability of data from rare
tissues from natural history collections [66,67]. Chromoso-
mal-level genome assemblies will allow us to understand the
accurate location of genes associated with phenotypic traits
across the genome and give us a better understanding of cis-
and trans-regulatory factors linked to those phenotypes, as
well as ensure near-complete representation of genes in the
assembly [68]. For example, a recent study of 78 bird genomes
found that approximately 15% of avian genes had been over-
looked during genome annotation, mostly owing to the
effects of GC-biased nucleotide composition [69]. By accounting
for these missing genes, the researchers confirmed the expected
positive relationship between rates of protein evolution and
life-history traits like body mass, longevity and age of sexual
maturity that had been previously missed [70,71].

(<) Molecular convergence in protein evolution
Many recent studies of convergence have focused on protein
or codon alignments to identify amino acid positions that
have convergently changed in species that share a convergent
trait [72—-74]. In some circumstances, conflicting placement of
convergent phenotypes between gene trees and species tree
can be used to identify potential genomic convergence
[75,76]. However, phylogenetic clustering of a particular
gene tree can also be a product of other evolutionary or
experimental processes, and further analyses are required to
confirm that parallel selection in distinct taxa has led to mol-
ecular convergence. Indeed, an early study that used the
phylogenetic signal to identify genes convergently evolving
in echolocating mammals [16] was quickly met with sharp
criticism [77,78], because such phylogenetic signal could
arise stochastically from biased mutational spectra rather
than natural selection. Castoe et al. [79], on the other hand,
found that a phylogeny based on whole mitochondrial gen-
omes that clustered snakes with agamid lizards, a
relationship unsupported by nuclear gene sequences or mor-
phological data, was actually owing to strong, convergent
protein evolution in just two mitochondrial genes, producing
an overwhelming, yet incorrect, phylogenetic signal. New
methods such as [80] will help further elucidate the role of
specific amino acid changes in convergent evolution.
Another approach for investigating convergent protein
evolution is examining rates of protein evolution across
branches of a species tree and isolating instances where accel-
erated rates of evolution occur independently on branches

phenotypes
[21,22,81]. Such methods use amino acid distance trees that

leading to organisms with convergent
are normalized by average divergence rates across the

genome for each tree branch and estimate the correlation

8YT08L0T :WLE § 0S Y "supil “iyd  qis/[eusnol/bi0°buiysiigndKianosiedol



Table 1. Examples of studies identifying genomic signals of convergence at different hierarchical levels.

convergent phenotypes
studied

high-altitude adaptation in
hummingbirds

pseudothumb and bamboo
diet in Giant Panda

skin coloration in lizards

voal Iéarning in birds

eusociality in bees

vitamin € synthesis in
mammals

loss of flight in birds

transitions from solitary to
group living

electric organ in fish
eusodiality in insects

evolution of stripe patterns
across cichlid fish

methods used

comparative genetics

comparative genomics

cell-based assays

comparative genomics

comparative transcriptomics

comparative genomics

comparative genomics
comparative genomics

comparative transcriptomics

comparative transcriptomics

CRISPR—Cas9 genome
editing

switches

level of
convergence
main findings identified reference
convergent amino acid substitutions amino acid [103]
convergent amino acid substitutions amino acid [104]
convergent amino acid substitutions amino acid [58]
convergent accelerations in genes gene [105]
convergent accelerated evolution in genes gene expression [26]
gene duplication/loss gene [53]
convergent rate shifts in non-coding DNA regulatory [24]
increase in the potential for gene regulation and regulatory [106]
decrease in a diversity and abundance of
transposable elements
convergence in similar transcription factors, regulatory [107]
developmental and cellular pathways
convergent expression in biological pathways regulatory [108]
regulatory changes of the gene act as molecular regulatory [109]

radiations

between relative evolutionary rates of genes and the evol-
ution of a convergent trait across a phylogeny [21,82,83].
Such rate estimates as well as ancestral reconstructions have
been used to detect classic examples of convergent protein
evolution, such as substitutions in Na®, K*-ATPase enzymes
of herbivorous insects that mediate resistance to toxic,
plant-derived cardenolides [54,84] and substitutions in vol-
tage-gated sodium channel proteins in reptiles, amphibians
and fish that mediate resistance to tetrodotoxin [85,86].
Traditional methods of measuring rates of protein evolution,
such as those employing the ratio of nonsynonymous
to synonymous substitutions per site (dn/ds) [82], are also
useful, but care should be taken to ensure that ds is not
saturated when comparing distantly related species.

(d) Gene family evolution associated with convergence
Gene duplications can provide the raw material for rapid
evolutionary innovation [87], hence analysing the structure
of gene families can provide deeper insights into the evol-
utionary processes underlying convergent traits [88-90].
Phylogenetic approaches are available to estimate the rate
of change in gene family sizes [91,92], and correlated rate
shifts in taxa with convergent phenotypes implicate a gene
family in the process of convergent evolution. For example,
visual opsin and oxygen-binding globin families are known
to vary in composition under varying ecological constraints,
and convergent patterns of opsin and globin family turnover
have occurred in jawed and jawless vertebrates [93,94].
Studies of venom genes across the animal kingdom, which
form complex protein cocktails used for capturing prey and

defense, show that similar protein families are commonly
co-opted into hyper-mutable venom gene arrays [95,96].

(e) Relative importance of requlatory regions in
convergent evolution

Because many studies on convergent evolution have focused
on protein-coding regions, the role of regulatory regions
underlying convergent phenotypes is typically only well
understood in a few model systems, like sticklebacks [97]. It
is plausible that regulatory elements are less constrained,
and thus able to act as important drivers of adaptive molecu-
lar evolution by altering the timing, location or level of
expression of their target gene. Recent studies have indeed
shown that changes in regulatory regions are associated
with the origin of key innovations such as feathers and hair
[98,99], as well as convergent evolution of traits such as
flower pigmentation [100], loss of flight in ratites [24] and
ocular degeneration in mammals [22].

Whereas predicting protein-coding genes in genome
sequences is made easier both by examining homologous
sequence patterns and a wealth of easy-to-generate functional
data (e.g. transcriptomes), de novo identification of regulatory
regions poses a significant challenge. In the era of comparative
genomics, sequence conservation in non-coding regions has
served as a useful starting point to identify at least part of the
suite of non-coding regulatory regions across the genome
[101,102]. Unfortunately, the functional links between regulat-
ory regions and the genes they regulate are often unclear,
especially in enhancers that can act over long genomic dis-
tances. This uncertainty hinders our understanding of the

8YZ08L0T “PLE g 205 Y "subil fiyd  gsi/jeuinol/bio-buiysiigndAiapos|edos H



connections between genotype and phenotype and requires
additional approaches discussed below.

Given a convergent trait of interest, and candidate loci
generated from any number of the genomic investigations
described in the sections above, an additional step in under-
standing the underlying genetic mechanism for a convergent
phenotype is functional validation of such genomic loci
(figure 1). Studies from diverse groups of organisms have
indicated that convergence at the genetic level can result
from shared regulatory, metabolic and developmental path-
ways, protein-coding genes with similar functions or even
identical amino acid substitutions within the same gene
(table 1). These analyses range in complexity and cost and
include experimental embryology and tissue culture work,
and the creation and testing of transgenics.

In recent years, techniques including CRISPR/Cas9 and
massively parallelized reporter assays (MPRAs) have been
added to the toolkits of those researchers interested in creat-
ing transgenic organisms or testing hundreds or thousands of
non-coding variants for enhancer activity [110,111]. Although
we are unaware of any studies of genomic convergence using
MPRAs at the time of writing, the possibility of functionally
assessing thousands of candidate loci in cell lines will almost
certainly prove fruitful. CRISPR/Cas9 and other genome
editing technologies are considered in many cases to be the
gold standard for functional testing, and a recent study on
cavefish (Astyanax mexicanus) metabolism used this technol-
ogy to demonstrate a convergent insulin resistance
phenotype with potential medical relevance across fish and
humans [112]. Populations of river-dwelling Mexican tetra
have repeatedly become isolated in caves, and the resulting
cavefish have convergently evolved pigment, metabolic and
visual adaptations. After analysing candidate genes within
the insulin pathway, researchers uncovered a protein-
coding change in the insulin receptor gene of two indepen-
dent populations of cavefish that both show insulin
resistance and larger body size compared to their surface-
dwelling relatives. This same substitution was also identified
in insulin-resistant humans that suffer from Rabson—Mendel-
hall syndrome, and when placed into a zebrafish background
using CRISPR/Cas9, this amino acid change resulted in insu-
lin-resistant zebrafish that were larger than their wild-type
siblings [112].

In contrast to this transgenic work, another example of
non-model vertebrate convergence in pigeon feather crests
was functionally tested with E. coli and selective media.
Following population genetic analyses that identified a sub-
stitution in the gene EphB2 as a likely candidate for the
reversal of feathers on the head of pigeons, researchers dis-
covered a neighbouring missense mutation in a species of
dove with a convergent crest. In a simple and inexpensive
assay, wild-type and convergently crested EphB2 genes
were transformed into bacteria and plated; based on the
known toxicity of wild-type EphB2 protein to bacteria, it
was possible to determine that both crested EphB2 convergent
mutations negatively altered the protein’s biochemical
function [33].

In the past, there has been considerable debate about
whether the link between genotype and phenotype is explained
by only a few major core genes, or whether it is owing to
accumulation of small-effect changes at multiple loci across
the genome, highlighting the important distinction between
polygenic versus Mendelian phenotypes [113-115]. Similarly,
there has been growing debate about whether most of the gen-
etic variance is hidden as numerous rare variants of large effect
or common variants of small effect [116]. In addition, pleiotropy
(involvement of the same genes in multiple traits) poses
challenges in associating a particular genetic locus with a phe-
notypic change [117]. Existence of pleiotropy in complex traits
has been widely reported in genome-wide association studies
(GWAS) [118], and this observation has been a constant chal-
lenge for evolutionary-development (evo-devo) studies [119].
Patterns of pleiotropic variants may confound linking genoty-
pic signatures to a particular trait and systematic approaches
are required to identify pleiotropic variants and their associ-
ations to infer molecular mechanisms shared by multiple
traits [120]. For example, pigmentation has been a widely
used natural trait to assess the importance of convergent evol-
ution at the genetic level, with Agouti and MCIR being
identified as obvious candidate genes to have a strong effect
on pigmentation in vertebrates [121]. But these convergences
in pigmentation have been identified at multiple levels of
mutations, gene or gene functions [57,109], an example that
highlights the underlying challenge of identifying causal
genetic architecture associated with phenotypic convergence.

Additionally, questions about the relative roles of regulat-
ory versus structural protein-coding variation as the main
drivers of morphological evolution are not new [122,123].
In the past, studies of only a few genetic loci did not provide
enough resolution to indicate a preference for regulatory or
protein coding changes for adaptation, but the rise in large-
scale genomic studies on adaptive evolution in the future
will continue to address this debate. Quantitative measures
of the contribution of protein-coding versus regulatory to
convergent traits are also needed. Even if we had the com-
plete catalogue of mutations underlying a convergent trait,
how would we quantify the relative contributions of these
two mutational sources to the convergent phenotypes? Phy-
logenetic analogues to QTL mapping, which could provide
estimates of the proportion of trait similarity between species
that can be attributed to a given locus, are perhaps a distant
goal, but new perspectives on quantitative genetics in a phy-
logenetic context are already providing glimpses of this
future [41,124].

The future of convergent genomic analyses will make use
of these complementary functional genomics and analytical
techniques for improved resolution of the genetic architecture
underlying trait evolution. Thus far, genomic analyses have
affirmed that convergence does exist at the phenotypic and
molecular levels, with evidence of both protein-coding and
regulatory convergence down to the level of single nucleotide
mutations (table 1). A more pressing question is to what
extent can functional confirmation of the effect of a given
mutation close the explanatory gap between historical scen-
arios and molecular mechanisms? Does the demonstration
of a functional effect of a mutation mean that the historical
sequence of mutational events has been confirmed? Depend-
ing on the experimental and historical context, functional
testing of a given mutation today may or may not confirm
a specific sequence of mutational events in the past.



Renewed interest in the study of evolutionary convergence
abounds and is driven in part by the emergence of genomics.
As anticipated, genomic data have yielded several examples
of convergent genotypic or molecular evolution, many of
which are cited in the sections above. However, excitement
arising from this area of research has unfortunately oversha-
dowed the reality that most trait classifications are quite
broadly defined, resulting in incomplete or potentially biased
interpretations of results. Studies of convergence will benefit
from having multiple replicates of independent convergences
[24] and clear hypotheses and definitions of the phenotypic
traits undergoing convergence [75]. It remains challenging
to identify instances of convergence for which a genomic
perspective will likely lead to significant new insights.

A detailed and nuanced interpretation of phenotypic diver-
sity will be greatly facilitated through the continued support
of natural history investigations and extensive and comprehen-
sive digitization and databasing of phenotypic traits. Although
the natural history literature serves as an important resource,
studies on phenotypic convergence will benefit even more
from direct research on natural history collections, particularly
given the potential of collections worldwide to house an increas-
ing diversity of specimen types. Emerging databases that
catalogue the relationships and natural history characteristics
of organisms, including the Global Biodiversity Information
Facility (GBIF; [125]) and the Encyclopedia of Life [61], are a
promising start towards cataloguing instances of phenotypic
convergence. Moreover, data-rich technologies are emerging
that are capable of quickly generating detailed information on
natural history characteristics, such as gross organism mor-
phology (e.g. computerized tomography; [126,127]) and
environmental preferences (e.g. geographical information sys-
tems [128] and thermal imaging [129]). A concerted initiative,
such as a broadening of platforms like Phenoscape [62,130], is
needed in order to integrate these data with the skills and
knowledge of organismal biologists, physiologists, molecular
biologists, geneticists and other stakeholders to produce
detailed, hierarchical, logically coherent and searchable descrip-
tions of organismal phenotypes. Recent efforts in large-scale
digitization of scientific texts, assembling phylogenomic data
matrices [131] and development of automated text mining
and natural language processing approaches can also facilitate
high-throughput generation of phenomic datasets [132]. In
addition, the development of ontological phenotypic databases
that contain standard terms, definitions and synonyms that can
be used to describe a phenotype is also a key in generating such
phenomic resources [133]. Such integration, and the compu-
tational infrastructure to allow easy access to large datasets
[134], will greatly accelerate the discovery of the degree,
timing and mechanisms of convergence among taxa.

Large, data-driven and taxon-rich phylogenies with com-
prehensive metadata attached to each taxon are a prerequisite
for scaling up of genomic studies of convergence. A principal
use of phylogenies is for testing macroevolutionary models
[14,135] to identify whether a trait of interest is statistically
associated with other phenotypic traits or with broader eco-
logical variables; such associations can be used to support
adaptive scenarios for the evolution of a trait (e.g. [136]).
Numerous analytical frameworks have recently been built to
addpress this aim, allowing increasingly complex adaptive land-
scapes to be modelled and associated with both continuous

and discrete phenotypic traits [135]. However, a long-
recognized shortcoming of model-testing approaches in this
field, and in general, is the possibility that a best-fit model may
still poorly reflect empirical evolution of traits across lineages
[137]. One potential solution has very recently emerged called
phylogenetic natural history, a framework that advocates
combining model hypothesis testing with empirically derived
knowledge to better understand macroevolutionary patterns
and associations [137]. Extensions of this and other approa-
ches will be important for the continued improvement of
phylogenetic comparative methods.

Phylogenies are also important for inferring evolutionary
rates for regions across the genome to identify loci putatively
underlying convergent phenotypes. Such analyses are widely
used for analysing protein-coding regions even before the
genomic era [138], but analogous methods designed for esti-
mating convergent rate variation in non-coding regions, such
as conserved non-exonic elements, are less well developed
and therefore require additional attention [36,101,139,140].
In addition, most phylogenies are only represented as
purely bifurcating and phylogenetic reticulation is often not
considered [141], leaving us unable to discern ‘truly conver-
gent’ versus ‘borrowed’ traits. Moreover, our increasing
ability to amass evolutionary rate estimates for thousands
of genomic loci presents additional challenges of minimizing
type II errors [142]. The rapid pace at which quality genome
assemblies are being produced will be an important foun-
dation for testing all genomic compartments, both coding
and non-coding, for a role in convergent phenotypes.

Although new approaches for phenotyping organisms are
emerging, new functional genomics approaches have yet to be
integrated with comparative genomics approaches [134,143]. A
major challenge for the field moving forward will therefore be
combining these rich forms of species- or even tissue- or cell-
specific data (such as are available for the human genome)
with inferences derived from cross-species genomic comparisons
to functionally evaluate genomic drivers of convergent evol-
ution. Integrating genomics data, cutting-edge laboratory and
computational techniques, and detailed, multi-level understand-
ing of diverse natural history data will help answer fundamental
questions about the propensity for convergent evolution and the
genetic and molecular underpinnings of convergent phenotypes.
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