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We derive the evolution equation for the density matrix of a UV- and IR- limited band of comoving

momentum modes of the canonically normalized scalar degree of freedom in two examples of nearly de

Sitter universes. Including the effects of a cubic interaction term from the gravitational action and tracing

out a set of longer wavelength modes, we find that the evolution of the system is non-Hamiltonian and non-

Markovian. We find linear dissipation terms for a few modes with wavelength near the boundary between

system and bath, and nonlinear dissipation terms for all modes. The non-Hamiltonian terms in the evolution

equation persist to late times when the scalar field dynamics is such that the curvature perturbation

continues to evolve on super-Hubble scales.
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I. INTRODUCTION

In cosmological models for the primordial universe,

the unavoidable quantum fluctuations of matter and of

the linearized gravitational field are the original source

of the rich structure of late-time inhomogeneities observed

today as variations in the temperature of the cosmic

microwave background (CMB) [1] and the distribution

of galaxies [2]. Two goals in cosmology are to use the

classical data collected from the CMB and large-scale

structure to pinpoint the particle physics of the primordial

era, and to understand whether signatures of their quantum

origin may remain observable today.

A major focus of inflation model building in the last

decade or so has been the study of how particle interactions

during or just after inflation may generate non-Gaussianity

in the correlation functions of the inhomogeneities.

Optimistically, this interest was fueled by the notion that

information from statistics beyond the power spectrum

could eventually distinguish among the zoo of particle

physics mechanisms for inflation. However, the fact that

our cosmological observations today are limited to a finite

volume of space, leaving sufficiently long wavelength

modes fundamentally unobservable, leads to an interesting

conundrum for studies of inflationary particle physics via

postinflation statistics: if fluctuations with wavelengths

observable to us can be coupled to fluctuations on unob-

servable scales, there is additional non-Gaussian sample

variance [3–12] that affects the precision with which

inferences can be made from the data. In nonsingle clock

inflation scenarios (roughly, models where more than one

light degree of freedom (d.o.f.) contributes to the fluctua-

tions) this cosmic variance uncertainty can be equal to or

larger than current observational uncertainty.

Cosmic variance from mode-coupling is a statistical

phenomena at the level of classical correlators, and can be

calculated on any constant time slice after inflation.

However, within the inflationary paradigm, those statistics

are generated in the course of a dynamical, quantum

mechanical process. Considering the full quantum story

of inflation models that couple modes of different wave-

lengths may lead to additional insight into the nature of

information contained in the inflationary fluctuations.

Here, we use the fact of IR-limited observational cosmol-

ogy and the associated issue of classical non-Gaussian

cosmic variance, as motivation to investigate the quantum

evolution equations of a system of cosmological modes

coupled to a bath of these long wavelength modes, during

an inflationary era. For simplicity, we focus our attention on
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a single cubic interaction term from the Einstein-Hilbert

action that, depending on a choice for the scalar field

dynamics, can support long-short mode-coupling.

The role of gravity in this scenario is three-fold: (1) the

homogeneous, isotropic, time-dependent gravitational

background serves as a zero-momentum pump sourcing

pairs of quanta in two-mode squeezed states; the zero-

momentum nature of the pump ensures a homogeneous and

isotropic amplification of all the momentum modes

k ≤ aH, (2) the inherently nonlinear gravitational action

itself provides the coupling term between system and bath,

and (3) the cosmological horizon of an observer after the

inflationary, quasi-de Sitter era puts a long wavelength limit

to the observable modes and so forces the longer wave-

length modes into the (unobservable) bath.

Our approach is complementary to previous works on

open systems in inflation [13–20] which have so far

considered the opposite case of computing the evolution

for super-Hubble, long wavelength modes in a bath of

sub-Hubble, short wavelength modes. By tracing out the

long-wavelength modes instead, we give a fully quantum

treatment of observables which remains valid even in the

presence of a strong coupling between long- and short-

wavelength modes, i.e., when long wavelength modes

cannot be absorbed by a renormalization of the background

clock. In the semi-classical limit our results should recover

not only the mean late-time curvature correlators that are

usually calculated, but also the full super-cosmic variance

probability distributions for how classical statistics

observed in a single Hubble volume may differ from the

mean statistics of the model [4,5].

The paper is organized as follows. We briefly review the

Hamiltonian for fluctuations in quasi de Sitter space in Sec. II

and describe the evolution equations in the two example

scenarioswe consider (slow-roll and nonattractor) in Sec. III.

These two background evolutions, and the choice of a

particular interaction term, allow us the simplest possible

calculation to examine the difference between models with

and without coupling between modes of very different

wavelengths (system-bath coupling) at late times. We then

describe our open quantum system approach to inflation in

Sec. IV, construct the modified evolution equation for the

reduced density matrix in section V and examine the time-

dependence of the non-Hamiltonian terms in Sec. VI. We

concludewith a discussion in Sec. VII. Variousmathematical

details are relegated to the Appendices.

II. THE MODEL

We work in a quasi-de Sitter space where the expan-

sion is driven by a dynamically evolving scalar field.

The background metric is ds2 ¼ −dt2 þ a2ðtÞdx⃗2 ¼
−a2ðηÞ½dη2 − dx⃗2�, where a is the scale factor, t is

cosmological time, and −∞ ≤ η ≤ 0 is conformal time;

dots (primes) indicate derivatives with respect to t (η).

Since the scalar field evolves, its energy density serves as a

“clock” and provides a preferred choice of time slices. Each

slice is spatially isotropic. In an expanding universe, physical

wavelengths are stretched with time, and it is often conven-

ient to work instead with comoving wavelengths, or comov-

ing momenta k⃗ ¼ aðηÞp⃗, p⃗ being the physical momentum,

that remain invariant as a function of time.

The Hubble parameter H ¼ _a=a and its derivatives

ϵ≡ − _H=H2, δ≡ _ϵ=ðHϵÞ, describe the time-evolution of

the background. Quasi-de Sitter phases have 0 < ϵ < 1, so

a nearly constant Hubble parameter. When H is nearly

constant we can integrate adη ¼ dt to obtain the useful

relation η ≈ −1=ðaHÞ. The quadratic action for the Fourier

modes of the (dimensionless) scalar perturbation, ζ, where

ds2 ¼ −a2ðηÞ½dη2 − ð1þ 2ζÞdx⃗2�, is [21–23]

S ¼ 1

2

Z

dη

Z

d3k

ð2πÞ3 z
2ðζ

k⃗
0ζ0

−k⃗
− c2sk

2ζ
k⃗
ζ
−k⃗
Þ; ð1Þ

with z2 ¼ 2ϵa2M2
p=c

2
s , where the (reduced) Planck mass

Mp is related to Newton’s gravitational constant by M2
p ¼

ð8πGNÞ−1 and 0 < cs ≤ 1 is the sound speed. To solve the

evolution equations it is convenient to work with the

canonical variable χ ¼ zðηÞζ. Introducing creation and

annihilation operators ĉ, ĉ† that satisfy ½ĉ
k⃗
ðηÞ; ĉ†

k⃗
0ðηÞ� ¼

ð2πÞ3δ3ðk⃗ − k⃗
0Þ (and using the k⃗ → −k⃗ symmetry in the

Fourier transform) we can write the Hamiltonian for the

fluctuations [24],

Ĥ ¼ 1

2

Z

d3k

ð2πÞ3
�

cskðĉk⃗ĉ
†

k⃗
þ ĉ

−k⃗
ĉ†
−k⃗
Þ

− i
z0

z
ðĉ

k⃗
ĉ
−k⃗

− ĉ†
k⃗
ĉ†
−k⃗
Þ
�

: ð2Þ

This expression shows that the time-dependent gravita-

tional background acts as a zero-momentum pump sourcing

correlated pairs of χ quanta [25,26]. Notice that for a mode

of fixed momentum k, the second line of the Hamiltonian is

more important for z0=z ≈ a0=a ¼ aH ≫ csk. In other

words, the squeezing interaction term dominates the

evolution when the physical wavelength of a mode is

stretched to a scale larger than the Hubble size, H−1. The

broken time translation invariance ensures both that this

scalar fluctuation cannot be gauged away, and gives an

appropriate axis so that the two-mode squeezing introduced

by the last term in the Hamiltonian is well defined (i.e., the

k⃗ and −k⃗ modes are distinguishable).

III. SLOW-ROLL VERSUS

NONATTRACTOR EVOLUTION

In typical models of inflation (single-field, slow-roll), one

chooses a slowlyvaryingpotential energy for the scalar field so

that ϵ is nearly constant with a value typically of order 0.01 to

0.1. The equation of motion for the evolution of the field

SHANDERA, AGARWAL, and KAMAL PHYS. REV. D 98, 083535 (2018)

083535-2



rapidly becomes independent of any initial velocity. The

second-order differential equation of motion for ζ
k⃗
gives rise

to two different time-dependent pieces in the solution. These

are commonly designated the “growing” and “decaying”

modes, although in the case of standard slow-roll the “grow-

ing” mode actually approaches a constant for k ≪ aH while

thedecayingmode rapidly becomes anegligible component of

the solution. Then ζ
k⃗
can be considered constant (and _ζ

k⃗
≈ 0)

roughly from the time k≲ aH ≡ −1=η⋆ until the end of the

inflationary phase, η ¼ 0. The observed curvature pertu-

rbation, ζ
k⃗
, and its conjugate momentum, π

−k⃗
, sati-

sfy ½limkη→0−ζk⃗ðηÞ; limkη→0−π−k⃗ðηÞ� ¼ 0, making quantum

mechanical effects extremely difficult to observe even in the

absence of any sources of decoherence. Since ϵ is nearly

constant, the canonical field χ satisfies Eq. (2) with z0=z ¼
a0=a to a very good approximation.

A rather different behavior can be found if the potential

for the scalar field has an exactly flat region, but the energy

density is driven to evolve by giving the scalar field an

initial velocity [27]. Such a phase, often called a “non-

attractor phase” would only persist a short time, since the

initial velocity is damped away by Hubble friction. But,

while it lasts, it provides a background metric that is nearly

de Sitter, but with ϵ ∼ a−6ðηÞ far from constant and δ ¼ −6

not a small parameter. Assuming cs is a constant,

z0=z ¼ −2a0=a. Crucially for our purposes, a change in

dynamics affects the solution for ζ
k⃗
, which now has one

contribution that grows as η−3 and a second that is constant,

so that _ζ
k⃗
≠ constant even for k≲ aH.

For either slow-roll or nonattractor dynamics the evolution

of the canonical field χ at quadratic order can be found in

terms of two-mode squeezing and rotation operators. One

first needs to solve for the time-dependence of the ladder

operators using the Heisenberg equation of motion,

dĉ
k⃗

dη
¼ −i½ĉ

k⃗
; Ĥ� ¼ −i

�

cskĉk⃗ þ i
z0

z
ĉ†
−k⃗

�

; ð3Þ

which can in turn be solved by a Bogoliubov transformation

with a choice of initial condition at time η0, ĉ
k⃗
ðηÞ¼

ukðηÞĉk⃗ðη0ÞþvkðηÞĉ†
−k⃗
ðη0Þ, where jukðηÞj2−jvkðηÞj2¼1.

The Bogoliubov transformation can be written as

ukðηÞ ¼ eiθkðηÞ cosh rkðηÞ; ð4aÞ
vkðηÞ ¼ e−iθkðηÞþ2iϕkðηÞ sinh rkðηÞ; ð4bÞ

where rk is the squeezing parameter, ϕk is the squeezing

angle, and θk is an angle rotating the conjugate field and

momenta (which is the same for the k⃗ and −k⃗ modes). The

leading order time-dependence in the exact de Sitter back-

ground approximation for slow-roll inflation, is given by [26]

rSRk ðηÞ ¼ −ArcSinh

�

1

2cskη

�

; ð5aÞ

ϕSR
k ðηÞ ¼ −

π

4
−
1

2
ArcTan

�

1

2cskη

�

; ð5bÞ

θSRk ðηÞ ¼ −kη − ArcTan

�

1

2cskη

�

; ð5cÞ

while for the nonattractor case we find instead

rNAk ðηÞ ¼ −2ArcSinh

�

3

2cskη

�

; ð6aÞ

ϕNA
k ðηÞ ¼ π

4
−
1

2
ArcTan

�

3

2cskη

�

; ð6bÞ

θNAk ðηÞ ¼ −kη − 2
ffiffiffi

2
p

ArcTan

�

3
ffiffiffi

2
p

2cskη

�

: ð6cÞ

For nonattractors the solution is approximate and only valid

when cskη ≪ 1.

Note that the equation of motion for χ is the same

in both, slow-roll and nonattractor models, i.e., χ00
k⃗
þ

ðc2sk2 − 2

η2
Þχ

k⃗
¼ 0. At any instant of time, however, the

position χ
k⃗
and conjugate momentum p

−k⃗
can be different

between the two models, as indicated by the distinct time-

dependence of the squeezing parameters above. The

commutator, ½χ
k⃗
ðηÞ; p

−k⃗
0ðηÞ� ¼ ið2πÞ3δ3ðk⃗ − k⃗

0Þ, remains

preserved at all times, as expected.

IV. DEFINING THE SYSTEM AND BATH

We use bands of comoving momenta to define the

system and bath, and assume that at some initial (con-

formal) time η0 we can factorize the Hilbert space as
1

H ¼ HUV ⊗ HObs ⊗ HNIR ⊗ HIR: ð7Þ

We focus only on how the evolution of modes in HObs,

which satisfy kmin ≤ kObs ≤ kmax, is affected by interactions

with unobservable modes in the near infrared HNIR, which

satisfy kIR < kNIR < kmin. We assume that modes in HUV

can be properly accounted for with usual renormalization

techniques. We also assume that modes far in the infrared,

k ∈ IR, were accounted for in defining the Hamiltonian at

time η0. This organization is shown diagrammatically in

Fig. 1. Note that the comoving Hubble radius decreases as a

function of time.

Further, we consider a cubic interaction term of the

form, S3 ¼ M2
p

R

d3xdηa4ð3ϵ=c2sÞðc2s − 1Þζ _ζ2. Expressed

in terms of the field χ in momentum space this reads

1
If we worked with physical momenta such a factorization

should remain valid at all times, but, since we are using comoving
momenta and the scale factor a is fluctuating, the factorization
would not quite hold. However, this prescription should capture the
dominant features of the scenario (and we can check the physics
using what is known about gauge issues for ζ

k⃗
correlators).
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λðηÞĤI ¼
3ðc2s − 1Þ
8Mpc

2
sa

ffiffiffi

ϵ
p

Z

△

"
ffiffiffiffiffiffiffiffiffi

k2k3

k1

s

ðĉ†
−k⃗1

ĉ†
−k⃗2

ĉ†
−k⃗3

þĉ
k⃗1
ĉ†
−k⃗2

ĉ†
−k⃗3

þ � � �Þ þ perm:

#

; ð8Þ

where
R

△
¼
R

d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3ð2πÞ3δ3ðk⃗1þk⃗2þk⃗3Þ. The Dirac

delta function enforces that the interacting momenta form a

closed triangle, which is useful for categorizing contribu-

tions to the integral. The terms inside the parenthesis

include all possible momentum conserving combinations

of operators, with some terms appearing with a minus sign

since the interaction term couples the field χ and its

conjugate momentum.

We choose this interaction term since it will significantly

couple modes of different wavelengths in the nonattractor

case where _ζ
k⃗
does not become negligible on large scales

[28], but not in the slow-roll case. As with the quadratic

Hamiltonian, the functional form is the same for the

slow-roll and nonattractor cases; the difference is in the

time-dependence of ϵ. The coupling coefficient λðηÞ ¼
3ðc2s − 1Þ=ð8c2saðηÞ

ffiffiffiffiffiffiffiffiffi

ϵðηÞ
p

Þ is dimensionless but time-

dependent (we take cs to be constant for simplicity).

Using the fact that ϵðηÞ is approximately constant for

slow-roll and ∼a−6ðηÞ for nonattractor models, we obtain

the following expressions for the coupling, with all time-

dependence explicitly displayed:

λSRðηÞ ¼ −
3ðc2s − 1Þ
8c2s

ffiffiffi

ϵ
p ηH; ð9aÞ

λNAðηÞ ¼ 3

8

ðc2s − 1Þ
c2s

�

1

Hη

�

2

: ð9bÞ

Under the assumption that λðηÞ is abruptly turned on,

and hence no system-bath coupling exists at η0, the initial

density matrix can be written as

σ̂ðη0Þ ¼ jψNIRðη0ÞijψObsðη0ÞihψObsðη0ÞjhψNIRðη0Þj: ð10Þ

The full time evolution is then given by σ̂ðηÞ ¼
Ûðη; η0Þσ̂ðη0ÞÛ†ðη; η0Þ, where the time evolution operator

depends on the quadratic Hamiltonian for each mode, plus

the relevant interaction term (σ̂ðηÞ is the Schrödinger picture
densitymatrix).We note that both the quadraticHamiltonian,

containing the two-mode squeezing term, and the cubic

interaction are time-dependent. However, for small initial

coupling the full evolution can be approximated as

Ûðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1

Te
−i
R

η

η0
ĤI;iðη1Þdη1

; ð11Þ

where T time-orders the exponentials and ĤI;i is the

interaction Hamiltonian in the interaction picture.

To perform the trace over the near infrared d.o.f., we

introduce two kinds of basis states for the bath modes:

(i) Fock states defined at η0 grouped into ðk⃗;−k⃗Þ pairs, as
jNi ¼

Q

k∈NIRjmk⃗
; n

−k⃗
i. Summing over jNi amounts

to summingover all possible pairs of integer values for

m
k⃗
and n

−k⃗
. These are eigenstates of the quadratic

Hamiltonian without the squeezing term.

(ii) The two-mode squeezed vacuum for the bath

modes, represented by the action of the propagator,

corresponding to the full quadratic Hamiltonian

for the bath, on the vacuum: Û0ðη; η0Þj0k⃗; 0−k⃗i≡
jSQðk; ηÞi ¼

P

nc
sq
n ðk; ηÞjnk⃗; n−k⃗i. Note that, unlike

jNi, the squeezed vacuum is explicitly time-

dependent due to the time-dependence of ðrk;ϕk;
θkÞ in Eqs. (5) and (6).

V. THE EVOLUTION EQUATION

The reduced density matrix for the observable modes, at

any time η ≥ η0, is given by

ρ̂ðηÞ ¼ TrNIRσ̂ðηÞ
¼

X

N

hNjÛðη; η0ÞjψNIRðη0ÞijψObsðη0Þi

× hψObsðη0ÞjhψNIRðη0ÞjÛ†ðη; η0ÞjNi; ð12Þ

where Ûðη; η0Þ is given by Eq. (11). Perturbatively expand-
ing the above equation to second order in the coupling, we

find that (see Appendix A for details)

∂ηρ̂ðηÞ ¼ −i½ĤObs
0 ; ρ̂ðηÞ� − i½Ĥeff ; ρ̂

ð0ÞðηÞ�
þ fÂðηÞ; ρ̂ð0ÞðηÞg þ

X

N

½L̂N1ρ̂
ð0ÞðηÞL̂†

N2

þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1
�; ð13Þ

with
2
Ĥ

ð1Þ
eff ¼ λðηÞhSQðηÞjĤIðη0ÞjSQðηÞi,

FIG. 1. Representation of the system (“observable” modes) and

bath (“near infrared,” NIR, modes) Hilbert space, in terms of

bands of comoving momenta. The comoving Hubble radius

(thick black circle) is larger than all wavelengths of interest at the

initial time η0, but shrinks to be smaller than both bath and system

wavelengths at late times.

SHANDERA, AGARWAL, and KAMAL PHYS. REV. D 98, 083535 (2018)

083535-4



Ĥ
ð2Þ
eff ¼ −

i

2

X

N

ðL̂†
N1
L̂N2 − L̂†

N2
L̂N1Þ; ð14aÞ

ÂðηÞ ¼ −
1

2

X

N

ðL̂†

N1
L̂N2 þ L̂†

N2
L̂N1Þ; ð14bÞ

and the Lindblad operators given by

L̂N1ðηÞ ¼ λðηÞhNjĤIðη0ÞjSQðηÞi; ð15aÞ

L̂N2ðηÞ ¼
Z

η

η0

dη1λðη1ÞhNjĤI;iðη1 − ηÞjSQðηÞi: ð15bÞ

Here jSQðηÞi ¼
Q

k∈NIRjSQðk; ηÞi and ĤObs
0 is defined by

restricting the integral in Eq. (2) to only run over modes

k ∈ Obs. This result in Eqs. (13)-(15) is similar to that

of [31], but with additional structure due to the time-

dependent squeezing term at quadratic order.

VI. EVALUATING THE

NON-HAMILTONIAN EVOLUTION

The separation between system and bath is in momentum

space, so we must work there to find explicit expressions

for the non-Hamiltonian terms in the evolution of ρ̂ðηÞ. As
the first check on the expressions above, suppose all three

momenta are in the NIR bath. Then the L̂Ni are just

numbers and so Ĥ
ð2Þ
eff ¼ 0 and the terms in the last two

lines of Eq. (13) all sum to zero. For momentum configu-

rations containing both system and bath modes, the fact that

all non-Hamiltonian terms in the evolution equation come

with
P

N ensures they will give nonzero contributions only

when the same number of modes are in the NIR in both L̂Ni

and L̂†
Nj. That, in turn, means all terms in the evolution

equation contain an even number of ĉ
k⃗
, ĉ†

k⃗
operators for

modes in the observable band.

The momentum configurations that give nonzero non-

Hamiltonian evolution can be conveniently thought of in

the language familiar from the study of non-Gaussianity in

cosmology. They are either (1) “folded” triangles, where

two bath modes interact with one system mode or

(2) “squeezed” triangles, where two system modes interact

with one bath mode. Only system modes with momenta

kmin < k < 2kmin can receive contributions of the folded

type, and even for these selected modes not many con-

figurations are possible. The fact that the same bath state

jNi appears in both Lindblad operators in terms like

L̂N1ρ̂
ð0ÞðηÞL̂†

N2
, enforces conservation of momentum of

the system modes appearing explicitly in the final result.

In Appendix B, we write out the interaction

Hamiltonian and the two Lindblad operators for folded

and squeezed configurations. After specifying the bath

modes for each case, we evaluate all creation, annihilation,

or squeezing operators acting on bath modes. From the

results for folded and squeezed configurations [Eqs. (B6),

(B9) and Eqs. (B12), (B13) respectively], the sum
P

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2
can be evaluated.

For example, consider a folded trianglewith labels k⃗s, k⃗b1,

k⃗b2 for the momenta in L̂N1 and k⃗
0
s, k⃗

0
b1, k⃗

0
b2 in L̂†

N2
. Then,

X

N
L̂N1ρ̂

ð0ÞðηÞL̂†

N2
j
Folded

¼
X

m
k⃗bi

;n
k⃗bi

λðηÞ
M2

p

Z

△

Z

△0

Y

ki∈NIR;ki≠kb1;kb2

hm
k⃗i
; n

−k⃗i
jSQðki;ηÞi

Y

k0
i
∈NIR;k0

i
≠k0

b1
;k0

b2

hSQðk0i;ηÞjmk⃗
0
i
; n

−k⃗
0
i
i

×
e
þiθk0

b1
ðηÞ

coshrk0
b1
ðηÞ

e
þiθk0

b2
ðηÞ

cosh rk0
b2
ðηÞc

sq
m

k⃗0
b1

ðk0b1;ηÞc
sq
m

k⃗0
b2

ðk0b2;ηÞ
1

ðkb1kb2Þ3=2
1

ðk0b1k0b2Þ3=2

× δm
k⃗0
b1
þ1;n

k⃗0
b1

δm
k⃗0
b2
þ1;n

k⃗0
b2

δm
k⃗b1

þ1;n
k⃗b1

δm
k⃗b2

þ1;n
k⃗b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm
k⃗
0
b1
þ 1Þðm

k⃗
0
b2
þ 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm
k⃗b1

þ 1Þðm
k⃗b2

þ 1Þ
q

×

(

ĉ
k⃗s
ðη0Þ

"
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½csqn
k⃗b1
ðkb1;ηÞcsqnk⃗b2 ðkb2;ηÞ þ c

sq
m

k⃗b1
c
sq
m

k⃗b2
− c

sq
n
k⃗b1
c
sq
m

k⃗b2
− c

sq
m

k⃗b1
c
sq
n
k⃗b2
� þ � � �

#

þ ĉ†
−k⃗s

ðη0Þ
"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½þþ−−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½−þþ−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1

kb2

s

½−þ−þ�
#)

ρ̂ð0ÞðηÞŜk0sðηÞR̂k0sðηÞ

×

(

ĉ†
k⃗
0
s

ðη0ÞR̂†

k0s
ðηÞŜ†

k0s
ðηÞ

Z

η

η0

dη1λðη1Þ
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

k0b1k
0
b2

k0s

s

½u�
k0s
ðη1Þðv�k0

b1

ðη1Þv�k0
b2

ðη1Þ þ uu− v�u− uv�Þ

þ vðk0s;η1Þðþþ−−Þ� þ � � �
)

þ ĉ
−k⃗

0
s
ðη0ÞR̂†

k0s
ðηÞŜ†

k0s
ðηÞ

×

Z

η

η0

dη1λðη1Þ
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

k0b1k
0
b2

k0s

s

½v�
k0s
ðη1Þðþþ−−Þ þ uk0sðη1Þðþþ−−Þ� þ � � �

))

; ð16Þ
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where subscripts “s” denote systemmodes, subscripts “b” denote bathmodes, and ŜkðηÞ and R̂kðηÞ are the two-mode squeezing

and rotation operators constructed from ðrk;ϕk; θkÞ in Eqs. (5) and (6). Since the same bath state jNi appears in both Lindblad
operators [Eq. (15)], themomenta appearing in either operatormust also be the same (e.g., k⃗

0
b1 ¼ k⃗b1, where theDirac deltas for

the triangle modes enforce the relative sign in this equality). Using this fact (and replacing the integrals by symmetrized

products ð1=3ÞPi;jk
3
i k

3
j to maintain the correct dimensionality) gives

X

N
L̂N1ρ̂

ð0ÞðηÞL̂†

N2
j
Folded

¼
X

m
k⃗bi

;n
k⃗bi

λðηÞ
M2

p

Z

△

Y

ki∈NIR;ki≠kb1;kb2

jhm
k⃗i
;n

−k⃗i
jSQðki;ηÞij2δm

k⃗b1
þ1;n

k⃗b1

δm
k⃗b2

þ1;n
k⃗b2

×

�

k3b1k
3

b2þk3sk
3

b1þk3sk
3

b2

3k3b1k
3

b2

�

eþiθkb1 ðηÞ

coshrkb1ðηÞ
eþiθkb2 ðηÞ

coshrkb2ðηÞ
ðm

k⃗b1
þ1Þðm

k⃗b2
þ1Þcsq�m

k⃗b1
ðkb1;ηÞcsq�m

k⃗b2
ðkb2;ηÞ

×

�

ĉ
k⃗s
ðη0Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½csqn
k⃗b1
ðkb1;ηÞcsqnk⃗b2 ðkb2;ηÞþc

sq
m

k⃗b1
c
sq
m

k⃗b2
−c

sq
n
k⃗b1
c
sq
m

k⃗b2
−c

sq
m

k⃗b1
c
sq
n
k⃗b2
�þ � � �

�

þ ĉ†
−k⃗s

ðη0Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½þþ−−�þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½−þþ−�þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1

kb2

s

½−þ−þ�
��

ρ̂ð0ÞðηÞŜksðηÞR̂ks
ðηÞ

×

�

ĉ†
k⃗s
ðη0ÞR̂†

ks
ðηÞŜ†ksðηÞ

Z

η

η0

dη1λðη1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½u�ksðη1Þðv
�
kb1
ðη1Þv�kb2ðη1Þþuu−v�u−uv�Þ

þvksðη1Þðþþ−−Þ�þ �� �
�

þ ĉ
−k⃗s

ðη0ÞR̂†

ks
ðηÞŜ†ksðηÞ

×

Z

η

η0

dη1λðη1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½v�ksðη1Þðþþ−−Þþuksðη1Þðþþ−−Þ�þ �� �
��

: ð17Þ

This result contains a sum over the bath modes participating in the interaction, whose structure depends on the fact that

the bath is squeezed. (To illustrate how this bath structure is relevant, the left hand panel of Fig. 2 below will contrast the

actual dissipation compared to what results from considering just the ground state of the bath.) In the various terms of the

interaction Hamiltonian, there are several versions of the mode sum that must be performed, but they all have the same form.

For example, the third line of the right-hand side in the previous equation (making use of the Dirac deltas from the first line)

can be simplified using

(a) (b)

FIG. 2. Example contribution to
P

NL̂N1ðηÞL̂†

N2
ðηÞ from a folded triangle configuration with momenta [in units of ðH=csÞ] of ks ¼ 1,

kb1 ¼ 0.5 and kb2 ¼ 0.54 and bath modes in (a) the quantum ground state, i.e., m
k⃗b1

¼ m
k⃗b2

¼ 0, and (b) an arbitrary superposition of

Fock states, i.e., summing over all possible values of m
k⃗b1

and m
k⃗b2
. For both slow-roll (SR) and nonattractor (NA) dynamics we extract

the dimensionless parameter γlin;1 from f1 in Eq. (22), but the nonattractor case is shown in units of H−6 so as not to obscure the

dependence of the amplitude on this physical number. As seen from Eq. (14), both the real and imaginary parts of this quantity enter the

evolution equation.
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X

∞

m
k⃗b1

¼0

X

∞

m
k⃗b2

¼0

ðm
k⃗b1

þ 1Þðm
k⃗b2

þ 1Þcsq �m
k⃗b1
ðkb1; ηÞcsq �m

k⃗b2
ðkb2; ηÞ

h

c
sq
m

k⃗b1
þ1
ðkb1; ηÞcsqm

k⃗b2
þ1
ðkb2; ηÞ þ c

sq
m

k⃗b1
c
sq
m

k⃗b2

− c
sq
m

k⃗b1
þ1
c
sq
m

k⃗b2
− c

sq
m

k⃗b1
c
sq
m

k⃗b2
þ1

i

¼ cosh3rkb1cosh
3rkb2 ½c

sq
0
ðkb1; ηÞ − c

sq
1
ðkb1; ηÞ�½csq0 ðkb2; ηÞ − c

sq
1
ðkb2; ηÞ� ð18Þ

The sums in other terms give similar results, but with varying signs in front of the c
sq
0
, c

sq
1

terms.

Thus, folded triangles lead to terms in
P

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2
that, in terms of operators for system modes only, are of the

form

Z

d3ks

ð2πÞ3 ĉk⃗sðη0Þρ̂
ð0ÞðηÞŜksðηÞR̂ks

ðηÞ½ĉ†
k⃗s
ðη0Þf1ðki; ηÞ þ ĉ

−k⃗s
ðη0Þf2ð; ki; ηÞ�R̂†

ks
ðηÞŜ†ksðηÞðplus twomore similar termsÞ ð19Þ

where the functions fi have mass dimension 1. To define a dimensionless quantity γlin;i, signifying a “dissipation factor” for

each momentum configuration, the integral over the triangle configuration can be simplified, leaving

fSRi ≡ 2π
H2

M2
p

Z

kmin

kIR

dkb

Z

1

−1

duθHðk2min − k̃2bÞ
��

3ðc2s − 1Þ
8c2s

ffiffiffi

ϵ
p

��

2

γSRlin;i;

fNAi ≡ 2π
H2

M2
p

Z

kmin

kIR

dkb

Z

1

−1

duθHðk2min − k̃2Þ
�

3ðc2s − 1Þ
8c2s

�

2

γNAlin;i: ð20Þ

Repeating the analysis for squeezed configurations leads to dimensionless nonlinear dissipation factors defined by

qSRi ¼ 2π
H2

M2
p

Z

1

−1

duθHðk2min − k2bÞ
�

−

�

3ðc2s − 1Þ
8c2s

ffiffiffi

ϵ
p

��

2
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
p

γSRNL;i;

qNAi ¼ 2π
H2

M2
p

Z

1

−1

duθHðk2min − k2bÞ
�

−

�

3ðc2s − 1Þ
8c2s

��

2
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
p

γNANL;i: ð21Þ

Then, the general result for the form of terms in
P

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2
originating from a cubic interaction between system

and bath modes is

X

N

L̂N1ρ̂
ð0ÞðηÞL̂†

N2
jFolded ⊃

Z

d3ks

ð2πÞ3 ĉk⃗sðη0Þρ̂
ð0ÞðηÞŜksðηÞR̂ks

ðηÞ½ĉ†
k⃗s
ðη0Þf1ðki; ηÞ þ ĉ

−k⃗s
ðη0Þf2ðki; ηÞ�R̂†

ks
ðηÞŜ†ksðηÞ; ð22Þ

X

N

L̂N1ρ̂
ð0ÞðηÞL̂†

N2
jSqueezed ⊃

Z

d3ks1

ð2πÞ3
Z

dks2k
2

s2ĉk⃗s1
ðη0Þĉk⃗s2ðη0Þρ̂

ð0ÞðηÞŜks1ðηÞR̂ks1
ðηÞŜks2ðηÞR̂ks2

ðηÞ

× ½ĉ†
k⃗s1
ðη0Þĉ†k⃗s2ðη0Þq1ðki; ηÞ þ � � ��R̂†

ks2
ðηÞŜ†ks2ðηÞR̂

†

ks1
ðηÞŜ†ks1ðηÞ; ð23Þ

where (…) denotes all possible momentum-conserving operator pairs. Besides the time-dependence of the dissipation

factors coming from the interaction Hamiltonian and time-dependent squeezing of the bath modes, the non-Hamiltonian

evolution terms for the density matrix of the system also have time-dependence from the squeezing of the system modes

[the R̂ks
ðηÞ, ŜksðηÞ operators in the equations above].

As evident from the explicit structure of the non-Hamiltonian terms, folded configurations lead to linear (single-mode)

dissipation terms, while squeezed configurations lead to nonlinear (two-mode) dissipation terms. Further in each of the

configurations, there are two classes of terms: ðĈkρ̂Ĉ
†

k; Ĉ
†

kρ̂ĈkÞ and ðĈkρ̂Ĉk; Ĉ
†

kρ̂Ĉ
†

kÞ (here Ĉk ≡ ĉks for folded and Ĉk ≡

ĉks1 ĉks2 for squeezed configurations). While the former correspond to single/two-photon exchange with thermally

distributed bath modes, the latter terms indicate that these bath modes are squeezed [32].

We show a more quantitative comparison of the time-dependence of these non-Hamiltonian terms between slow-roll and

nonattractor models of inflation in Figs. 2 and 3 for particular choices of the momentum configuration. Figure 2 shows the

time-dependence of γlin;1 for both slow-roll and nonattractor inflation when the bath modes are in (a) the quantum ground
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state, i.e., m
k⃗b1

¼ m
k⃗b2

¼ 0, and (b) an arbitrary super-

position of Fock states, i.e., summing over all occupation

numbers. Figure 3 similarly shows the time-dependence of

γNL;1 when the bath modes are in the quantum ground state,

i.e., m
k⃗b
¼ 0, or summed over.

In all of the dissipation terms, there is an η1 integral, which

can be performed analytically for slow-roll squeezing

parameters and numerically for the nonattractor solution.

For the slow-roll case the result is that thedissipativefi andqi
terms for both the folded and squeezed configurations scale

like ratios of physical (not comoving) quantities times one

factor that goes like the comoving momentum. The non-

attractor result, however, has an additional dependence on

time in the interaction strength,whichmakes the implications

of a straightforward comparison of the numerical values

between the two scenarios unclear. Rather than choose an

arbitrary numerical value, we plot the quantity H6γ. The

relative qualitative time-dependence of the two cases is not

affected by this choice: As the figure shows, both the linear

and nonlinear dissipation terms decay with time in the slow-

roll case, but increase in the nonattractor case, when bath

modes are summed over, as η → 0−. Since the nonattractor

phase cannot last for more than a few e-folds, this increase at

late times does not pose a problem. Further, the real parts of

both the linear and nonlinear dissipation terms generically

change sign as a function of time indicating that the evolution

is non-Markovian [33].

VII. DISCUSSION

In this paper, we have presented a fully quantum frame-

work to study the open systemdynamics of inflation,with the

short-long mode coupling providing the effective system-

bath interaction. Our goal was to go beyond the question of

standard observables and understand the full dynamics of

quantum systems that have mode-coupling sample variance

in their classical statistics. The results we presented take a

gravitational system that has a horizon, is not static, and

includes well-understood classes of interactions, and pro-

vides a bridge to less-studied quantum aspects of fields in

nontrivial gravitational backgrounds. For any cubic inter-

action, the non-Hamiltonian terms in the evolution of modes

with wavelength below some infrared scale will be of the

form shown in Eq. (22) for folded (two bath modes, one

systemmode) configurations, and Eq. (23) for squeezed (one

bath mode, two system modes) configurations. The linear

and nonlinear dissipation coefficients will depend on the

weighted sum of triangle configurations of each type.

The time-dependence for the two cases we considered,

slow-roll and nonattractor inflation, is shown in Figs. 2 and 3,

where we find a late-time growth particular to the non-

attractor scenario. However, several aspects of our results are

quite general: (i) for a system coupled to a long wavelength

bath, folded configurations of the three-point function in

momentum space lead to linear dissipation terms while

squeezed configurations lead to nonlinear dissipation;

(ii) since there are far fewer folded triangles with two modes

in the NIR (restricting system modes in kmin < ks < 2kmin)

compared to squeezed triangles with one mode in the NIR,

nonlinear dissipation is likelymore significant for observable

modes than linear dissipation is; (iii) “dissipation” does not

necessarily imply the loss of coherence; indeed we find the

evolution of system modes to be non-Markovian in general,

irrespective of whether the bath modes are in the quantum

ground state or allowed to occupy any state. Under such an

evolution the system-bath interaction can lead to an exchange

and even bath-mediated amplification of quantum coher-

ences in the system.

(a) (b)

FIG. 3. Example contribution to
P

NL̂N1ðηÞL̂†

N2
ðηÞ from a squeezed triangle configuration with momenta [in units of ðH=csÞ] of

ks1 ¼ 0.1, ks2 ¼ 0.101, and kb ¼ 0.01 and bath modes in (a) the quantum ground state, i.e., m
k⃗b
¼ 0, and (b) an arbitrary superposition

of Fock states, i.e., summing over all possible values of m
k⃗b
. For both slow-roll (SR) and nonattractor (NA) dynamics we extract the

dimensionless parameter γNL;1 from q1 in Eq. (23).
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For the interaction we studied, the quantum environment

dynamics lead to a non-Markovian system dynamics in

both single-clock and nonsingle clock models. This implies

that quantum memory of modes outside the horizon may

lead to additional time-dependence of observable correla-

tors, beyond what is uncovered in the usual semiclassical

treatment. While this is not likely to be observable, we

suspect the non-Markovian behavior may be especially

conceptually important in understanding the quantum

dynamics for nonsingle-clock models.

The framework presented here is appropriate for any

cosmological scenario of the primordial universe where

curvature modes evolve outside the horizon (or, where there

is non-Gaussianity that couples modes of different wave-

lengths). It should facilitate a quantum open systems

analysis, and decoherence studies, in the large number

of non-Gaussian scenarios for which ζ-correlations have

already been computed, but is particularly relevant for any

model with long-short mode coupling. This includes all

inflation beyond single-clock, as well as contracting uni-

verse scenarios. Eventually, it may be possible to move

beyond the lessons of particular models: the evolution

equation we have presented here is a first step toward the

appropriate effective theory [31,34–37] for observables in a

large class of cosmological scenarios consistent with the

current understanding of our universe. Finally, although it

is unlikely that any inflationary model consistent with the

classical data we have already collected will support the

presence of significant late-time quantum information, this

work will also facilitate exploration of whether or not such

a universe is even theoretically possible.
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APPENDIX A: CONSTRUCTING THE

EVOLUTION EQUATION

In this Appendix we provide a few details in the derivation

of Eqs. (13)–(15), which give the general form of the

evolution equation for the system of “observable” modes

coupled to a bath of longer wavelength, “near infrared”

modes. The full time evolution of the system is given by

σ̂ðηÞ ¼ Ûðη; η0Þσ̂ðη0ÞÛ†ðη; η0Þ; ðA1Þ

where the time evolution operator depends on the quadratic

Hamiltonian for each mode, plus any interaction term. At

least for small coupling and short times, we can approx-

imately factor out the quadratic evolution and use

Ûðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1

Te
−i
R

η

η0
λðη1ÞĤI;iðη1Þdη1

; ðA2aÞ

Û†ðη; η0Þ ¼ T̄e
i
R

η

η0
λðη1ÞĤI;iðη1Þdη1

T̄e
i
R

η

η0
Ĥ0ðη1Þdη1

; ðA2bÞ

where (T̄) T will (anti-) time-order the factors in the

exponential. The operators in the interaction term are in

the interaction picture, defined, for example, by

ĉ
k⃗;i
ðηÞ ¼ Û†

0
ðη; η0Þĉk⃗ðη0ÞÛ0ðη; η0Þ; ðA3Þ

where Û0ðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1

is the propagator corre-

sponding to the quadratic Hamiltonian. It is useful to divide

the integral over momentum modes in the Fourier-space

quadratic Hamiltonian at the point k ¼ kmin (separating the

observable systemmodes from the near infrared bathmodes)

and write

Ĥ0ðηÞ ¼ ĤObs
0 ðηÞ þ ĤNIR

0 ðηÞ: ðA4Þ

We can write the states in terms of the number of excitations

for each wave number, using the basis of Fock states defined

at η0 for each k⃗mode andgrouped into ðk⃗;−k⃗Þpairs. Then the
states of all modes in the near infrared band, for example, can

be written as jNi ¼ Q

k∈NIRjmk⃗
; n

−k⃗
i. We assume that all

modes start out in the vacuum defined at the time η0 and

denote the initial state of the set of near infrared modes as

jψNIRðη0Þi ¼ jNIRi. Furthermore, since the quadratic

Hamiltonian is itself time-dependent due to the presence

of the two-mode squeezing term, the action of the corre-

sponding propagator on the NIR vacuum leads to

Û0ðη; η0Þj0k⃗; 0−k⃗i ¼ ŜkðηÞR̂kðηÞj0k⃗; 0−k⃗i

¼ 1

cosh rk

X

∞

n¼0

e−2inϕk tanhnrkjnk⃗; n−k⃗i

≡ jSQðk; ηÞi
¼

X

n

c
sq
n ðk; ηÞjnk⃗; n−k⃗i; ðA5Þ

where ŜkðηÞ and R̂kðηÞ are the two-mode squeezing and

rotationoperators respectively, built from the time-dependent

functions rk, ϕk, and θk. There are some different conven-

tions for the phase ϕ in the literature, but notice that

ϕ → −ϕ − π=2 corresponds to the same squeezing angle

in the quadrature plane (while changing the form of the

equation above to include ð−1Þne2inϕk). The squeezed state

of the full bath at any given time η can then be defined

as jSQðηÞi ¼
Q

k∈NIRjSQðk; ηÞi.
To find the evolution equation of observable modes we

trace over the bath, comprising near infrared modes, in

Eq. (A1) and resolve the time evolution of the reduced

density matrix ρ̂ðηÞ ¼ TrNIRσ̂ðηÞ at different orders of the
system-bath interaction strength λðηÞ [introduced in Eq. (8)],
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ρ̂ðηÞ ¼ ρ̂ð0ÞðηÞ þ λðηÞρ̂ð1ÞðηÞ þ λ2ðηÞρ̂ð2ÞðηÞ þ � � � : ðA6Þ

Collecting terms at the lowest three orders we obtain:

(i) At lowest order

∂ηρ̂
ð0ÞðηÞ ¼ −i½HObs

0
; ρ̂ð0ÞðηÞ�

X

N

jhNjTe−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRij2

þ ρ̂ð0ÞðηÞ
X

N

½hNjHNIR
0

Te
−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRihNIRjT̄ei

R

η

η0
HNIR

0
ðη1Þdη1 jNi

− hNjTe−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRihNIRjT̄ei

R

η

η0
HNIR

0
ðη1Þdη1

HNIR
0

jNi�: ðA7Þ

The sum in the first line is equal to one, since the evolved vacuum state is normalized, and the second term,

proportional to ρ̂ð0Þ, is zero because the matrix elements are Hermitian. Then, as expected, Eq. (A7) simply reduces to

∂ηρ̂
ð0ÞðηÞ ¼ −i½ĤObs

0 ðηÞ; ρ̂ð0ÞðηÞ�; ðA8Þ

where ρ̂ð0ÞðηÞ ¼ Te
−i
R

η

η0
ĤObs

0
ðη1Þdη1

ρ̂ð0Þðη0ÞT̄e
i
R

η

η0
ĤObs

0
ðη1Þdη1

.

(ii) At first order

∂ηρ̂
ð1ÞðηÞ ¼ −i

X

N

hNj½Ĥ0ðηÞ; σ̂ð1ÞðtÞ�jNi − i½hSQðηÞjλðηÞĤIðη0ÞjSQðηÞi; ρ̂ð0ÞðηÞ�

¼ −i
X

N

hNj½ĤNIR
0 ðηÞ; σ̂ð1ÞðηÞ�jNi − i½Ĥobs

0 ðηÞ; ρ̂ð1ÞðηÞ� − i½hSQðηÞjλðηÞHIðη0ÞjSQðηÞi; ρ̂ð0ÞðηÞ�: ðA9Þ

Since the states jNi are eigenstates of only the nonsqueezed part of the quadratic Hamiltonian, it may not be

immediately clear that the first term in the last line vanishes. However, denoting Ĥ0jNi ¼ ðEN þ Ĥ
sq
0
ÞjNi ¼

EN jNi þ jNsqi where EN is an energy, we can rewrite this term as

X

N

hNj½ĤNIR
0 ðηÞ; σ̂ð1ÞðηÞ�jNi ¼

X

N

hNj½ĤNIR;sq
0

ðηÞ; σ̂ð1ÞðηÞ�jNi ¼
X

N

½hNsqjσ̂ð1ÞðηÞjNi − hNjσ̂ð1ÞðηÞjNsqi�; ðA10Þ

which vanishes since the matrix element hNsqjσ̂ð1ÞðηÞjNi is Hermitian. (This is most easily seen by inserting a

complete set of states for all NIR modes,
P

N0 jN0ihN0j ¼ 1, in hNjĤNIR
0 ðηÞσ̂ð1ÞðηÞjNi, and then using the fact that the

Hamiltonian and density matrix are both Hermitian at all times.) Then, the remaining terms define an effective

Hamiltonian, Ĥ
ð1Þ
eff ¼ λðηÞhSQðηÞjĤIðη0ÞjSQðηÞi.

(iii) At second order

We introduce the Lindblad operators,

L̂N1ðηÞ ¼ hNjλðηÞĤIðη0ÞjSQðηÞi; ðA11aÞ

L̂N2ðηÞ ¼
Z

η

η0

dη1λðη1ÞhNjĤI;iðη1 − ηÞjSQðηÞi; ðA11bÞ

which allow us to write

∂ηρ̂
ð2ÞðηÞ ¼

X

N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2
þ L̂N2ρ̂

ð0ÞðηÞL̂†

N1
− L̂†

N1
L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†

N2
L̂N1g

þ i
X

N

�

hNjĤ0ðηÞTe
−i
R

η

η0
Ĥ0ðη1Þdη1

Z

η

η0

dη1

Z

η1

η0

dη2ĤI;iðη1ÞĤI;iðη2Þσ̂ð0Þðη0ÞT̄e
i
R

η

η0
Ĥ0ðη1Þdη1 jNi

þ hNjĤ0ðηÞTe
−i
R

η

η0
Ĥ0ðη1Þdη1

σ̂ð0Þðη0Þ
Z

η

η0

dη1

Z

η1

η0

dη2ĤI;iðη2ÞĤI;iðη1ÞT̄e
i
R

η

η0
Ĥ0ðη1Þdη1 jNi

−hNjĤ0ðηÞTe
−i
R

η

η0
Ĥ0ðη1Þdη1

Z

η

η0

dη1ĤI;iðη1Þσ̂ð0Þðη0Þ
Z

η

η0

dη2ĤI;iðη2ÞT̄e
i
R

η

η0
Ĥ0ðη1Þdη1 jNi þ H:c:

�

: ðA12Þ
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On splitting the last term in fg brackets into two pieces, η2 < η1 and η2 > η1 (and exchanging the dummy labels in

the second case), it is clear that this entire term just depends on the second order density matrix,

∂ηρ̂
ð2ÞðηÞ ¼

X

N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2
þ L̂N2ρ̂

ð0ÞðηÞL̂†

N1
− L̂†

N1
L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†

N2
L̂N1g

− i
X

N

hNj½Ĥ0ðηÞ; σ̂ð2ÞðηÞ�jNi

¼
X

N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2
þ L̂N2ρ̂

ð0ÞðηÞL̂†

N1
− L̂†

N1
L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†

N2
L̂N1g

− i
X

N

hNj½ĤObs
0 ðηÞ; ρ̂ð2ÞðηÞ�jNi − i

X

N

hNj½ĤNIR
0 ðηÞ; σ̂ð2ÞðηÞ�jNi; ðA13Þ

where again the very last term is zero since the matrix element hNsqjσ̂ð2ÞðηÞjNi must be Hermitian. The term

containing the product of Lindblad operators can further be resolved into imaginary and real contributions,

−
X

N

L̂†
N1
L̂N2ρ̂

ð0ÞðηÞ ¼
X

N

h

1

2
ðL̂†

N2
L̂N1 − L̂†

N1
L̂N2Þ −

1

2
ðL̂†

N1
L̂N2 þ L̂†

N2
L̂N1Þ

i

ρ̂ð0ÞðηÞ

≡

h

−iĤ
ð2Þ
eff þ ÂðηÞ

i

ρ̂ð0ÞðηÞ; ðA14Þ

by identifying the following Hermitian operators,

Ĥ
ð2Þ
eff ¼ −

i

2

X

N

ðL̂†

N1
L̂N2 − L̂†

N2
L̂N1Þ; ðA15aÞ

ÂðηÞ ¼ −
1

2

X

N

ðL̂†

N1
L̂N2 þ L̂†

N2
L̂N1Þ: ðA15bÞ

Combining Eqs. (A8), (A9), and (A13), we find the

evolution equation reported in Eq. (13),

∂ηρ̂
ð0ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð0ÞðηÞ�; ðA16aÞ

∂ηρ̂
ð1ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð1ÞðηÞ� − i½Ĥð1Þ
eff ; ρ̂

ð0ÞðηÞ�; ðA16bÞ

∂ηρ̂
ð2ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð2ÞðηÞ� − i½Ĥð2Þ
eff ; ρ̂

ð0ÞðηÞ�
þ fÂðηÞ; ρ̂ð0ÞðηÞg
þ
X

N

½L̂N1ρ̂
ð0ÞðηÞL̂†

N2
þ L̂N2ρ̂

ð0ÞðηÞL̂†

N1
�:

ðA16cÞ

APPENDIX B: LINDBLAD TERMS

FROM A ζ _ζ
2
INTERACTION

In this Appendix we show how we evaluate terms in the

Lindbladian, such as
P

NL̂N1ðηÞρ̂ð0ÞðηÞL̂†

N2
ðηÞ, given a

system-bath interaction. The specific interaction we con-

sider is the cubic action for the curvature perturbation,

S3 ¼ M2
p

R

d3xdηa4ð3ϵ=c2sÞðc2s − 1Þζ _ζ2. In Fourier space

and in terms of creation and annihilation operators of the

canonical field χ, this leads to the interaction Hamiltonian

written in Eq. (8),

λðηÞĤI ¼
3ðc2s − 1Þ
8Mpc

2
sa

ffiffiffi

ϵ
p

Z

△

"
ffiffiffiffiffiffiffiffiffi

k2k3

k1

s

	

ĉ†
−k⃗1

ĉ†
−k⃗2

ĉ†
−k⃗3

þ ĉ
k⃗1
ĉ†
−k⃗2

ĉ†
−k⃗3

þ…




þ perm:

#

; ðB1Þ

where we have used the shorthand
R

△
¼

R

d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3 ð2πÞ3δ3ðk⃗1 þ k⃗2 þ k⃗3Þ. The terms inside

the parenthesis include all possible momentum conserving

combinations of operators, with some terms appearing with

a minus sign since the interaction term couples the field χ

and its conjugate momentum. The prefactors of the integral

define a dimensionless, but time-dependent coupling coef-

ficient λðηÞ ¼ 3ðc2s − 1Þ=ð8c2saðηÞ
ffiffiffiffiffiffiffiffiffi

ϵðηÞ
p

Þ. Using the fact

that ϵðηÞ is approximately constant for slow-roll and

∼a−6ðηÞ for nonattractor models, we obtain the following

expressions for the coupling,

λSRðηÞ ¼ −
3ðc2s − 1Þ
8c2s

ffiffiffi

ϵ
p ηH; ðB2aÞ

λNAðηÞ ¼ 3

8

ðc2s − 1Þ
c2s

�

1

Hη

�

2

: ðB2bÞ

For the cubic interaction, we consider cases where one,

two, or three of the momenta are bath modes, i.e., they
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belong to the NIR band. Notice that since the terms

that depend on L̂Ni always come with
P

N , they will

give nonzero contributions only when the same number

of modes are in the NIR in both L̂Ni and L̂†
Nj. That, in

turn, means that there will always be an even number

of ĉ
k⃗
, ĉ†

k⃗
operators for modes in the observable band.

As the first, trivial case, suppose all three momenta

are in the NIR. Then the L̂Ni are just numbers and so

Ĥ
ð2Þ
eff ¼ 0 and the terms in the last line of Eq. (A16) all sum

to zero.

It is helpful to write the interaction Hamiltonian for the

two other cases:

(i) “folded” triangles with two NIR modes and one

observable mode, and

(ii) “squeezed” triangles with one NIR mode and two

observable modes.

Writing

λðηÞĤI ¼
λðηÞ
Mp

Z

△

F̂ðk1; k2; k3Þ; ðB3Þ

we can write the function F̂ for the folded triangle case as

F̂fold ¼ ĉ
k⃗s

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

h

ĉ
k⃗b1
ĉ
k⃗b2

þ ĉ†
−k⃗b1

ĉ†
−k⃗b2

− ĉ
k⃗b1
ĉ†
−k⃗b2

− ĉ†
−k⃗b1

ĉ
k⃗b2

i

þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½þ − −þ� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1

kb2

s

½þ −þ−�
)

þ ĉ†
−k⃗s

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½þ þ −−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½−þþ−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1

kb2

s

½−þ −þ�
)

; ðB4Þ

where k1 ≡ ks and kb1, kb2 denote the momenta associated with the system (observable modes) and NIR modes

respectively. Hereþ,− are a shorthand for the appropriately signed sum of the same combinations of operators as in the first

set of square brackets.

Similarly, for squeezed triangles,

F̂sq ¼ ĉ
k⃗s1
ĉ
k⃗s2

"
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

ðĉ
k⃗b
þ ĉ†

−k⃗b
Þ þ

ffiffiffiffiffiffiffiffiffiffiffi

kbks2

ks1

s

ðþ−Þ þ
ffiffiffiffiffiffiffiffiffiffiffi

ks1kb

ks2

s

ðþ−Þ
#

þ ĉ†
−k⃗s1

ĉ†
−k⃗s2

"
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

ðþþÞ þ
ffiffiffiffiffiffiffiffiffiffiffi

kbks2

ks1

s

ð−þÞ þ
ffiffiffiffiffiffiffiffiffiffiffi

ks1kb

ks2

s

ð−þÞ
#

þ ĉ
k⃗s1
ĉ†
−k⃗s2

"
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

ð−−Þ þ
ffiffiffiffiffiffiffiffiffiffiffi

kbks2

ks1

s

ð−þÞ þ
ffiffiffiffiffiffiffiffiffiffiffi

ks1kb

ks2

s

ðþ−Þ
#

þ ĉ†
−k⃗s1

ĉ
−k⃗s2

"
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

ð−−Þ þ
ffiffiffiffiffiffiffiffiffiffiffi

kbks2

ks1

s

ðþ−Þ þ
ffiffiffiffiffiffiffiffiffiffiffi

ks1kb

ks2

s

ð−þÞ
#

; ðB5Þ

where momenta ks1, ks2 identify the observable modes, and the momentum kb is associated with the NIR mode.

1. L̂N1, L̂N2 for folded triangles

For folded triangle configurations, involving one system mode, ks, and two bath modes, kb1, kb2, we find that

L̂fold
N1 ðηÞ ¼

λðηÞ
Mp

Z

△

1

ðkb1kb2Þ3=2
Y

ki∈NIR;ki≠kb1;kb2

hm
k⃗i
; n

−k⃗i
jSQðk; ηÞiδm

k⃗b1
þ1;n

k⃗b1

δm
k⃗b2

þ1;n
k⃗b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm
k⃗b1

þ 1Þðm
k⃗b2

þ 1Þ
q

×

(

ĉ
k⃗o
ðη0Þ

"
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

h

c
sq
n
k⃗b1
ðkb1; ηÞcsqnk⃗b2 ðkb2; ηÞ þ c

sq
m

k⃗b1
c
sq
m

k⃗b2
− c

sq
n
k⃗b1
c
sq
m

k⃗b2
− c

sq
m

k⃗b1
c
sq
n
k⃗b2

i

þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½þ − −þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1
kb2

s

½þ −þ−�
#

þ ĉ†
−k⃗o

ðη0Þ
"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s

½þ þ −−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2
kb1

s

½−þþ−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb1
kb2

s

½−þ −þ�
#)

; ðB6Þ

where we have used ĉ
k⃗
ðη0Þjnk⃗i ¼

ffiffi

n
p

k3=2
jðn − 1Þ

k⃗
i; the factor of k−3=2 here is consistent with the commutation relation that

tells us that our ladder operators have dimensions of k−3=2.
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To evaluate L̂N2, we use the interaction picture representation of operators from Eq. (A3),

ĉ
k⃗;i
ðηÞ ¼ Û†

0
ðη; η0Þĉk⃗ðη0ÞÛ0ðη; η0Þ ¼

Y

k0
e
i
R

η

η0
Ĥ0ðk⃗0;η1Þdη1

ĉ
k⃗
ðη0Þ

Y

k00
e
−i
R

η

η0
Ĥ0ðk⃗00;η1Þdη1 ¼ e

i
R

η

η0
Ĥ0ðk⃗;η1Þdη1

ĉ
k⃗
ðη0Þe

−i
R

η

η0
Ĥ0ðk⃗;η1Þdη1

¼ R̂†

kðηÞŜ†kðηÞĉk⃗ðη0ÞŜkðηÞR̂kðηÞ ¼ ukðηÞĉk⃗ðη0Þ þ vkðηÞĉ†
−k⃗
ðη0Þ; ðB7Þ

and we denote

ĉ
k⃗;i
ðη1 − ηÞ ¼ Û0ðη; η0ÞÛ†

0
ðη1; η0Þĉk⃗ðη0ÞÛ0ðη1; η0ÞÛ†

0
ðη; η0Þ

¼ ŜkðηÞR̂kðηÞR̂†

kðη1ÞŜ†kðη1Þĉk⃗ðη0ÞŜkðη1ÞR̂kðη1ÞR̂†

kðηÞŜ†kðηÞ
¼ ŜkðηÞR̂kðηÞ½ukðη1Þĉk⃗ðη0Þ þ vkðη1Þĉ†

−k⃗
ðη0Þ�R̂†

kðηÞŜ†kðηÞ; ðB8aÞ

ĉ†
−k⃗;i

ðη1 − ηÞ ¼ ŜkðηÞR̂kðηÞ½u�kðη1Þĉ†−k⃗ðη0Þ þ v�kðη1Þĉk⃗ðη0Þ�R̂
†

kðηÞŜ†kðηÞ; ðB8bÞ

where u and v are the complex functions described in Sec. III. Substituting the interaction picture operators in the

expression for L̂N2 [Eq. (A11)], we obtain

L̂fold
N2 ðηÞ¼

1

Mp

Z

△

1

ðkb1kb2Þ3=2
Y

ki∈NIR;ki≠kb1;kb2

hm
k⃗i
;n

−k⃗i
jSQðk;ηÞiδm

k⃗b1
þ1;n

k⃗b1

δm
k⃗b2

þ1;n
k⃗b2

× ŜksðηÞR̂ks
ðηÞ e−iθkb1 ðηÞ

coshrkb1ðηÞ
e−iθkb2 ðηÞ

coshrkb2ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm
k⃗b1

þ1Þðm
k⃗b2

þ1Þ
q

c
sq
m

k⃗b1
ðkb1;ηÞcsqmk⃗b2

ðkb2;ηÞ

×

"

ĉ
k⃗s
ðη0ÞR̂†

ks
ðηÞŜ†ksðηÞ

Z

η

η0

dη1λðη1Þ
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½uksðη1Þðvkb1ðη1Þvkb2ðη1Þþu�u�−vu�−u�vÞþv�ksðη1Þðþþ−−Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½uksðη1Þðþ−−þÞþv�ksðη1Þð−þþ−Þ�þ
ffiffiffiffiffiffiffiffiffiffiffi

kb1ks

kb2

s

½uksðη1Þðþ−þ−Þþv�ksðη1Þð−þ−þÞ�
)

þ ĉ†
−k⃗s

ðη0ÞR̂†

ks
ðηÞŜ†ksðηÞ

Z

η

η0

dη1λðη1Þ
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2

ks

s

½vksðη1Þðþþ−−Þþu�ksðη1Þðþþ−−Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi

kskb2

kb1

s

½vksðη1Þðþ−−þÞþu�ksðη1Þð−þþ−Þ�þ
ffiffiffiffiffiffiffiffiffiffiffi

kb1ks

kb2

s

½vksðη1Þðþ−þ−Þþu�ksðη1Þð−þ−þÞ�
)#

; ðB9Þ

where we have also used the results

ŜkðηÞR̂kðηÞj0k⃗; 0−k⃗i ¼ jSQðk; ηÞi ¼
X

n

c
sq
n ðk; ηÞjnk⃗; n−k⃗i; ðB10Þ

ŜkðηÞR̂kðηÞj0k⃗; 1−k⃗i ¼
e−iθkðηÞ

cosh rkðηÞ
X

n

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

c
sq
n ðk; ηÞjnk⃗; ðnþ 1Þ

−k⃗
i: ðB11Þ

2. L̂N1, L̂N2 for squeezed triangles

Following similar steps as in the folded case, we obtain the following expressions for the Lindblad operators for the

squeezed configuration of two system modes, ks1, ks2, and one bath mode, kb,
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L̂
sq
N1
ðηÞ ¼ λðηÞ

Mp

Z

△

1

ðkbÞ3=2
Y

ki∈NIR;ki≠kb

hm
k⃗i
; n

−k⃗i
jSQðk; ηÞiδm

k⃗b
þ1;n

k⃗b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
k⃗b
þ 1

q

×

(

ĉ
k⃗s1
ðη0Þĉk⃗s2ðη0Þ

"
ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

½csqn
k⃗b
ðkb; ηÞ þ c

sq
m

k⃗b
ðkb; ηÞ� þ

ffiffiffiffiffiffiffiffiffiffiffi

kbks2

ks1

s

½þ−� þ
ffiffiffiffiffiffiffiffiffiffiffi

kbks1

ks2

s

½þ−�
#

þ ĉ†
−k⃗s1

ðη0Þĉ†
−k⃗s2

ðη0Þ
"

ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2

kb

s

½þþ� þ
ffiffiffiffiffiffiffiffiffiffiffi
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k⃗s1
ðη0Þĉ†
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