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Abstract—This paper proposesanasymptoticembedding
methodforthedynamicreconstructionofspatiallyvarying
felds.Byassumingthatthespatialfeldisthesolutiontoan
ellipticpartialdifferentialequation,thentheellipticPDEis
embeddedintoaparabolicPDE whichrepresentsthetime-
varyingestimator. Animportantadvantageofthedynamic
estimationschemeisthesignifcantreductionintheuseof
sensingdevicesneededtoreconstructthespatialfeld.Static
estimationschemesimposestringentconditionsontheregular-
ityofaregressionmatrix,whichlinksthebasisfunctionstothe
numberofmeasurements.Tofurtherimprovetheperformance
ofthedynamicestimator,aguidanceschemeisproposedthat
repositions mobilesensors withinthespatialfeld, whichis
linkedtotheperformanceofthedynamicestimator.Extensions
tocollaborativeestimationandoptimizationoftheplacement
ofstaticsensorsarealsosummarizedtoprovideanintegrated
accountonallfacetsofoptimaldynamicestimationofspatial
felds.Numericalsimulationsforspatialfeldsinoneandtwo
spatialdimensionsareincludedalong withacomparisonof
staticreconstructionasquantifedbythenumberofsensing
devicesrequiredandtherelativeerror.

IndexTerms—Distributedparametersystems;spatialfelds;
asymptoticembedding;dynamicestimation; mobilesensors.

I.INTRODUCTION

Thisworkconsidersthedynamicestimationofunknown
spatialfeldsasdescribedbyspatiallyvaryingfunctions.
Thestaticestimationapproachrequiresthatthenumberof
measurementsbeatleastthesameasthedimensionofthe
basisset,i.e.thenumberofbasisfunctions.Eveninthat
case,onemustassumethattheresultingregressormatrixis
notrankdefcient[1].Aleastsquareora minimumnorm
solutionresults whenthenumberof measurementsdiffer
fromthenumberofbasisfunctions. As mentionedinthe
earliereffortontheuseofasymptoticembedding methods
forthedynamicreconstructionofspatialfelds[2],other
approaches wereconsideredfortheestimationofspatial
felds,see[3],[4],[5],[6],[7].

Toremovethisdependenceofthemeasurements(i.e.sens-
ingdevices)totheaccuracyoftheunknownfeldestimates,
adynamicestimationschemeisproposedandwhichembeds
theellipticPDEwhosesolutionistheunknownspatialfeld,
intoaparabolicPDErepresentingthedynamicestimator.
Asymptoticembedding(regularization) methodshavebeen
employedinthepastforparameteridentifcationofelliptic
PDEs[8],[9],[10],[11],butnotforstatereconstructionof
spatialfeldstillrecently,[2].

Thecontributionofthisworkismany-fold;frstitexpands
thedynamicestimatorstructureofaLuenbergerobserver
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presentedin[2]toincludea Kalman-basedflter.Second,
itsummarizesearlierresultsin[12]ontheoptimalsen-
sorlocation,inthecontextofestimationschemes with
asymptoticembedding.Third,itunifestheLyapunov-based
guidancein[13]tothegradient-basedguidancein[14].
Finally,itprovidesaframeworkforcollaborativeestimation
ofdecentralizedflterswithmobilesensorsinthecontextof
dynamicestimationofspatialfelds.

Toprovideaninsightonaspectsoftheproposedasymp-
toticembedding methodsforthedynamicestimationof
spatialfeldswithmobileandstaticsensors,bothan1Dand
2DellipticPDEsareconsidered.

II.PROBLEM MOTIVATION

To motivatetheproposedworkontheuseofstaticand
mobilesensorsforthedynamicreconstructionofstaticfelds,
thatis,spatialfeldsthatarespatiallyvaryingbuttime
invariant,considerthefollowing2Dspatialfunction

x(ξ,ζ)=2sin
πξ

Lξ
sin

πζ

Lζ
,0≤ξ≤Lξ,0≤ζ≤Lζ.(1)

Itisassumedthatthere are m measurements atthe
spatialcoordinates(ξi,ζi),i= 1,...,m,as obtained by
m (pointwise)sensors.Itisdesiredtoestimate(orre-
construct)thespatialfeldin(1). Usingaleast-squares
estimation scheme[1], one can usethe m measure-
mentsto obtainthe staticestimate x(ξ,ζ)of x(ξ,ζ).
Assumingthatthebasisfunctionsare {φ1,φ2,φ3,φ4}=

{sin πξ
Lξ

sin πζ
Lζ

,sin πξ
Lξ

,sin πζ
Lζ

,1}thenthestatices-

timateofx(ξ,ζ)admitsthefollowingexpansion

x(ξ,ζ)=
4

∑
i=1

αiφi(ξ,ζ)=Φ(ξ,ζ)ααα (2)

where ααα= α1α2α3α4
T
,ααα isthestaticestimateof

ααα,andΦ(ξ,ζ)= φ1(ξ,ζ) φ2(ξ,ζ) φ3(ξ,ζ) φ4(ξ,ζ) .
Evaluatingtheexpansionin(2)atthemmeasurements

Ym=






x(ξ1,ζ1)
...

x(ξm,ζm)




, (3)

wehave

Ym=Φmααα,

wheretheregressormatrixΦm={φj}
m
i=1isgivenby

Φm=






φ1(ξ1,ζ1) φ2(ξ1,ζ1) φ3(ξ1,ζ1) φ4(ξ1,ζ1)
...

...
...

...
φ1(ξm,ζm) φ2(ξm,ζm) φ3(ξm,ζm) φ4(ξm,ζm)




.

Uniquenessofthesolutionrequirestheregressormatrixbe
squareandnon-singular.Thenecessaryconditionrequires



thatm≥4andsuffcientconditionisthatrank(Φ)=4.To
ensuretherankcondition,themeasurementpointsmustbeat
spatiallocationsthatresultinlinearlyindependentcolumns
oftheregressor matrix.Anecessaryconditionisthatthey
shouldnotbeplacedatthezerosofthebasisfunctions.
Anestimateofx(ξ,ζ)canbeobtainedevenwhentherank
conditionisnotsatisfed,orwhenm<4.Oneresultsina
leastsquaressolutionandtheotherproducesa minimum
normsolution[1].Theestimateofthecoeffcientvectoris

ααα=(Φm)†Ym, (4)

andtheestimateofthespatialfeldisgivenby(2).The
matrix(Φm)†isthe Moore-PenroseinverseofΦm [15].

Threedifferentsetsofgridpointslocatingthe mea-
surementsinthespatialdomainΩ=[0,Lξ]×[0,Lζ]were
consideredandaregiveninTableI.TableIIsummarizesthe

TABLEI

GRIDPOINTS.

Grid1 Grid2 Grid3
(0.25Lξ,0.25Lζ)
(0.25Lξ,0.75Lζ)
(0.75Lξ,0.25Lζ)
(0.75Lξ,0.75Lζ)

(0.2Lξ,0.2Lζ)
(0.4Lξ,0.4Lζ)
(0.6Lξ,0.6Lζ)
(0.8Lξ,0.8Lζ)

(0.1481Lξ,0.1667Lζ)
(0.2593Lξ,0.2778Lζ)
(0.3704Lξ,0.3889Lζ)
(0.4815Lξ,0.5000Lζ)

staticestimationofthecoeffcientvectorαααandtheestimate
x(ξ,ζ)forthethreegridchoices.Therelativeerroris

100
|x−x|L2

|x|L2

=100

Lξ

0

Lζ

0 x(ξ,ζ)−x(ξ,ζ)
2
dζdξ

Lξ

0

Lζ

0 x2(ξ,ζ)dζdξ

Exactreconstructionofthespatialfeldisachievedinthe
caseofperfect(noise-free) measurementswiththerankof
theregressor matrixbeingequaltothedimensionofthe
basis.Grid1offersthelargestestimationerrorsincethegrid
points(measurementlocations)resultedinrankdefcientΦm.

TABLEII

EFFECTSOF MEASUREMENTSONSOLUTIONACCURACY.

Grid1 Grid2 Grid3
rank(Φm) 1 2 4
rel.error 32.1% 9.34% 0%

ααα






0.2222
0.3143
0.3143
0.4444











1.1989
0.6164
0.6164

−0.4478











2
0
0
0






Itisobviousthatevenintheunlikelycaseofnoise-free
measurements,one maynotbeabletoestimatethetrue
coeffcientvectorαααexactly,unlessthesensorsareplaced
attherightlocations.

III. MAINRESULTS

Usingappropriatecontinuityanddifferentiabilitycondi-
tionsfortheunknownspatialfunctionx(ξξξ)(spatialfeld),
suchastheonein(1),itisassumedthatitisthesolutionto
anellipticPDEwritteninabstractform

0=Ax+f, (5)

anddefnedoveraHilbertspaceH.Suchanassumptioncan
bejustifedfromaprioriqualitativeknowledgeofthespatial

feldinquestion.ThestatespaceH hasinnerproduct ·,·
andcorrespondinginducednorm|·|.LetV bearefexive
Banachspacewithnorm ·V,andassumeVisembedded
denselyandcontinuouslyinH withitsdualdenotedby
V∗andwithnorm ·∗. WehaveV→֒ H →֒ V∗withthe
embeddingsdenseandcontinuousand|φ|≤kφ forφ∈V.

Wecannowcharacterizetheoperator Ain(5). Defne
theellipticoperatorA:V→ V∗ thatsatisfesthebound-
edness(∃ab>0,|Aφ,ψ|≤ab φ ψ forφ,ψ∈V)and
V-coercivity(∃ac>0,Re−Aφ,φ ≥ac φ2forφ∈V).A
possiblythirdconditionmaybeimposed,thatofsymmetry
(Aφ,ψ = φ,Aψ).Assumingthatf∈V∗,then(5)admits
auniquesolution,[16],[17].

Arepresentativeexampleofasystemthathastheabstract
representationin(5)isthePoissonequation(ellipticPDE)

−div(αgradx)=f inΩ, x|∂Ω=0, (6)

wherethespatialdomain Ω isanopenboundedandcon-
nectedsubsetofRn having Lipschitzboundary∂Ω,and
thenon-homogeneoustermf∈H−1(Ω),α∈L∞(Ω). As
mentionedin[2],equation(6)shouldnotberestrictedto
Dirichletboundaryconditions;thisisusedto motivatethe
proposedasymptoticembeddingscheme.Infact,(6)canbe
furnishedwithmixedboundaryconditions,asforexample

x(ξξξ)
Γ1

=0,
∂x(ξξξ)

∂n
=g(ξξξ),inΓ2, ∂Ω=Γ1∪Γ2.

Additionally,(6)isnotnecessarilyrestrictedtoinhomoge-
neousproblemsandthecasef≡0canalsobeconsidered.

Associatedwith(6),oritsabstractrepresentation(5),are
theprocessmeasurementsobtainedbymsensingdevices

y=
Ω

c(ξξξ)x(ξξξ)dξξξ. (7)

Them-dimensionaloutputvectoryisconstantasitobtains
partialstateobservationofthetime-invariantstateof(5).
However,whenmeasurementnoiseisincludedorwhenthe
sensorisattachedtoamobileplatform,thentheoutputvector
ybecomestimevarying.Theobservationsin(7)caninclude
interiorand/orboundarymeasurements.Theabstractformof
(7)iswrittenintermsoftheobservationoperator

y=Cx, C:V∗→ Rm. (8)

Thespatialfunctionc(ξξξ)denotesthesensormodelandde-
scribesthemanneritaverages(spatially)thestatex(ξξξ)over
itsspatialsupport.Inthecaseofpointwise measurements,
thefunctionc(ξξξ)issimplythespatialdeltafunction.
Objective:Theestimationandcontrolobjectiveistoemploy
estimationschemesforthedynamicreconstructionofthe
stateofatimeinvariantequation(5)usingareducednumber
offxedor mobilesensorsthatareindependentofthe
dimensionofthebasisfunctions.

Thevariouscomponentsofthecontributionare
1)Filtergainstructure:LuenbergervsKalmanflter,with

theformerassigningthestructureoftheflterkernel
andinthelattersolvinganOperatorRiccatiEquation
toobtaintheexpressionfortheflterkernel.

2)Estimation structure: centralized vs decentralized
structure;singleestimator withm observationsorm
separateestimatorsutilizingasinglemeasurementand
withaconsensusprotocolineachpenalizingdiffer-



encesintheirstateestimates.
3)Sensorlocationselection:forstaticsensors,fndthe

optimalspatiallocationswithrespecttoaflterperfor-
mancemetric.

4)Mobilesensorguidance: Proposethesensors’spatial
relocation,assumedtobeonboardmobileplatforms.

A.Filtergainstructure

Usingasymptoticembedding methods[2],theestimator
fortheellipticPDE(equiv.timeinvariantequation(5))is

ẋ(t,ξξξ)=div(αgradx(t,ξξξ))+f(ξξξ)

+λ(ξξξ)y(t)−
Ω

c(ξξξ)x(t,ξξξ)dξξξ

x(0,ξξξ)=0.

(9)

Thespatialfunctionλ(ξξξ)isthefltergainkernelandits
computationdependsontheestimatordesign.

1)Luenbergerobserver-basedkerneldesign: Asimple
choiceofλ(ξξξ)whentheLuenbergerobserverdesignisused,
istheweightedadjointoftheobservationoperatorin(8)

λ(ξξξ)=c(ξξξ)Γ, (10)

where0<Γ=ΓT isanm×mgainmatrix.Theestimatoris

ẋ(t,ξξξ)=div(αgradx(t,ξξξ))+f(ξξξ)

+c(ξξξ)Γy(t)−
Ω

c(ξξξ)x(t,ξξξ)dξξξ

x(0,ξξξ)=0.

(11)

Withregardstotheabstractformof(9),theestimatoris

ẋ(t)=Ax(t)+f+L(y(t)−Cx(t)),

x(0)=0.
(12)

2) Kalmanflter-basedkerneldesign:Theflterkernelis
derivedfromthesolutiontoanoperator Riccatiequation
correspondingtotheabstractform(5),(8),Usingthestate
andoutputoperators,andassumingthattheprocessand
measurementnoisecovarianceoperatorsaregivenbyQand
R,respectively,therequisitealgebraicRiccatiequationis

0=AΣ+ΣA∗+ΣC∗R−1CΣ+Q, inD(A∗), (13)

andtheassociatedflteroperatoris

L=ΣC∗R−1. (14)

Thefunctionλ(ξξξ)in(9)isthekernelrepresentationofL∗.

B.Estimationstructure

The m measurementsin(7)canbeusedforasingle
centralizedfltersuchastheonein(12)withthefltergain
basedonKalman(using(12),(14))orLuenbergerobserver
design(using(11)).Thealternative,istousedecentralized
estimationwithcollaboration.Asingleestimatorisassoci-
atedwitheachofthemmeasurementsand(12)nowbecomes

ẋi(t)=Axi(t)+f+Li(yi(t)−Cixi(t))

−Pi∑
j∈Ni

xi(t)−xj(t)

xi(0)=0,

(15)

where Ni denotesthesetofneighborsoftheith sen-
sor/estimatorandtheterm−Pi∑j∈Ni

xi(t)−xj(t) denotes

theconsensusprotocolimplementedbyeachofthedis-
tributedestimatorsin(15).Thedetailsofthederivationof
theconsensusoperatorsPi,i=1,...,maregivenin[18].

C.Sensorlocationselection

Toimprovetheestimationscheme,givenbythecentral-
izedestimatorin(9)or(15),onecanimprovetheperfor-
mancebyoptimizingthesensorlocations.Thebasicidea
behindthisistoparameterizetheflterkernelbycandidate
sensorlocationswithinthespatialdomainandoptimizean
appropriateestimationperformancemetric,see[12].

D. Mobilesensorguidance

Inasimilarfashiontothepreviouslocationoptimization,
toimprovetheestimatorperformance,onecanassumea
signifcantlyreducednumberofsensorsarenowaffxedon
mobileplatformsandcanmovefreelywithinthedomain.

Specifcally,foraphysicalproblemdescribedby(6),it
isassumedthatasingle mobilesensorisusedtoprovide
processmeasurements.Thus,(7)isnowre-writtenas

y(t;ξξξ0(t))=
Ω

c(ξξξ;ξξξ0(t))x(ξξξ)dξξξ (16)

whereξξξ0(t)∈Rnisthemobilesensorcentroidandc(ξξξ;ξξξ0(t))
denotesthecentroid-parameterizedsensordistributionfunc-
tion.Forthecaseofpointwise measurements,thesensor
functionisthespatialDeltafunctionwithc(ξξξ;ξξξ0(t))=δ(ξξξ−
ξξξ0(t))andthemobilesensormeasurement(16)becomes

y(t;ξξξ0(t))=x(ξξξ0(t)). (17)

Therearetwoperformance-basedapproachesforthemo-
bilesensorguidance.ThefrstoneutilizestheLuenberger
designandparameterizestheflterkernelλ(ξξξ)=c(ξξξ0(t))Γ
bythetimevaryingsensorcentroidtoarriveata modifed
versionoftheestimator(11). Whenthesensormodelin(17)
isassumed,thenthestateestimatorin(11)becomes

ẋ(t,ξξξ)=div(αgradx(t,ξξξ))+f(ξξξ)

+δ(ξξξ−ξξξ0(t))Γx(ξξξ0(t))−x(t,ξξξ0(t))

x(0,ξξξ)=0.

(18)

Thesensorguidance,asdescribedbythetimederivative
ofthesensorcentroid,isextractedfromLyapunovdesign
methodsforthestateerrore(t,ξξξ)=x(ξξξ)−x(t,ξξξ).Thestate
error,throughthedifferenceof(6),(18)isgivenby

ė(t,ξξξ)=div(αgrade(t,ξξξ))−δ(ξξξ−ξξξ0(t))Γe(t,ξξξ0(t))

e(0,ξξξ)=x(ξξξ).
(19)

Following[13],the Lyapunov-basedsensor guidanceis
ξ̇ξξ0(t)=e(t,ξξξ0(t))eξξξ(t,ξξξ0(t)).Toincludeaspectsofthe mo-
bileplatforms,itisassumedthatthespeedoftheplatforms
isfxedandonlythedirectionistobeprovidedbythe
estimatorperformance.Inthiscasetheguidancetakesthe
forṁξξξ0(t)=e(t,ξξξ0(t))eξξξ(t,ξξξ0(t))υwhereυistheassumed
constantspeedofthemobileplatform.TolinktheLyapunov-
basedguidancetothegradientbasedguidancein[14],we
provideaunifyingguidancethatcanbeusedregardlessof
theestimatordesignandisgivenby

ξ̇ξξ0(t)=
e(t,ξξξ0(t))

|e(t,ξξξ0(t))|

∇e(t,ξξξ0(t))

|∇et,ξξξ0(t))|
υ, (20)



TABLEIII

INTEGRATEDESTIMATORDESIGNANDMOBILESENSORGUIDANCE.

fltergainstructure observer guidance

Luenberger (18) (20)
Kalman (21),(22),(23) (20)

where∇e(t,ξξξ0(t))isthegradientvector(∈R
n)ofthestate

errorevaluatedatthecurrentlocationofthesensorcentroid.
Equippedwiththeaboveunifyingguidance,wesumma-

rizetheselectionofthefltergainforeachofthetwocases
ofgainstructure.ForLuenbergerobserverwithamobile
sensor,theintegratedestimatorandsensorguidancearegiven
by(18)and(20).ToimplementaKalman-baseddesign,the
estimatoriswritteninabstractform(similarto(12))

ẋ(t)=Ax(t)+f+L(ξξξ0(t))(y(t)−C(ξξξ0(t))x(t))

x(0)=0
(21)

wherethecentroid-dependentflteroperatorL(ξξξ0(t))isgiven
viathesolutiontothedifferentialoperatorRiccatiequation

Σ̇(ξξξ0(t))=AΣ(ξξξ0(t))+Σ(ξξξ0(t))A∗

+Σ(ξξξ0(t))C∗(ξξξ0(t))R−1C(ξξξ0(t))Σ(ξξξ0(t))+Q,
(22)

andtheassociatedflteroperatoris

L(ξξξ0(t))=Σ(ξξξ0(t))C
∗(ξξξ0(t))R

−1. (23)

Theflterkernelλ(ξ0(t))isthekernelrepresentationof
L∗(ξξξ0(t))anditisusedin(9)toimplementtheKalman-
baseddesignwithmobilesensor.Theassociatedstateerror
equationisgovernedby

ė(t)=Ae(t)−L(ξξξ0(t))(y(t)−C(ξξξ0(t))x(t)),

e(0)=x.
(24)

Remark1:Thenonhomogeneoustermfin(5)wasas-
sumedknownandusedin(18)or(21). Whenfisnot
known,thenonecanfollowtheapproachpresentedin[2].
Oneapproachwouldincorporatetheadaptive-likeestimate
ofthenonhomogeneoustermbydefningitas

f(t)=−Ax(t), (25)

whereastheotherapproachwouldignoreitintheestimator
expressions(18)or(21).However,theunknowntermwould
stillappearintheerrorequation(19)or(24).Inthiscase,
onecanstillachieveconvergenceofthestateerrorthatis
polynomialint;i.e.thenormofthestateerrorconvergesto
aresidualstwhoseboundisdictatedbythenormoff[2].

IV.NUMERICALEXAMPLESANDCONCLUSIONS

A.EllipticPDEembeddedinDiffusion-ReactionPDEin1D

ThefollowingellipticPDEinconsidered

0=0.05
∂2x

∂ξ
+0.05π2x(ξ), 0≤ξ≤1, x(0)=x(1)=0,

withsolutionx(ξ)=sin(πξ).Thespatialoperatorin(5)is

Aφ=0.05φ′′+0.05π2φ, φ∈H10(0,1).

Asinglemobilesensorwithcentroidξ0(t)isassumedto
provideprocessinformation

y(t;ξ0(t)) =
1

0
δ(ξ−ξ0(t))x(ξ)dξ

= x(ξ0(t))
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Fig.1. EvolutionoferrorL2norm.

Ifthestatex(ξ)wereknowntotheuser,thenthemobile
sensorwould measurey(t;ξ0(t))=sin(πξ0(t)).Thestate
estimatoris

ẋ(t,ξ)=0.05x′′(t,ξ)+π2x(t,ξ)

+λ(ξ0(t))(y(t;ξ0(t))−x(t,ξ0(t)))

x(t,0)=x(t,1)=0

Theguidance(20)wasusedforbothtypesofthefltergain
structuresummarizedinTableIII.
Tosimulatetheestimator,afnitedimensionalapproxi-
mationoftheabstractform(5)and(12)wasimplemented.
AfniteelementbasedGalerkinschemewith100linear
elementswasusedtoobtainthematrixrepresentationsof
thesystemoperators.Therequisitespatialintegralswere
computed withtheaidofacompositetwo-point Gauss
Legendrequadraturerule[19].Thefniteelementscheme
resultedinasemi-discretesystem(spatialdiscretization)of
differentialequationsthatarenumericallyintegratedinthe
timeinterval[0,3]susingthestiffdifferentialequationsolver
ode23sfromtheMatlab ODEsuiteandwhichisbasedon
the4thorderRunge-Kuttascheme[19].
FortheimplementationoftheKalman-basedfltergain

structure,thefnitedimensionalapproximationofthediffer-
entialRiccatiequation(22)waspropagatedintimeusinga
modifcationofthemethodin[20][ch.4],thatincludedtime
sub-cyclinginthetimeloopofthetimeintegration.
Threedifferentcaseswereconsidered:(a)afxedsensor

placedatξ=0.65usingtheKalman-basedfltergainwith
R=10−4andQ=10I,(b)amovingsensorwithinitial
locationξ0(0)=0.65andaKalman-basedfltergainwith
R=10−4andQ=10I,andfnally,(c)amovingsensorwith
initiallocationξ0(0)=0.65withaLuenberger-basedflter
gainwithλ(ξ)=10δ(ξ−ξ0(t))in(18).Thelasttwocases
usedaspeedofυ=0.25.
TheL2(Ω)normofthestateestimationerrorfortheabove

threecasesisdepictedinFigure1whereitisobservedthat
thecaseofaKalmanflterwithamobilesensorcanperform
betterthantheKalmanflterwithafxedsensor.
Thesensortrajectoryforthetwoflterstructuresisde-
pictedinFigure2andthespatialdistributionofthestate
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Fig.2. Mobilesensortrajectory.
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Fig.3. Spatialdistributionofstateerrore(t,ξ)atfourtimeinstances.

erroratfourtimeinstancesispresentedinFigure3.

B.EllipticPDEembeddedinDiffusion-ReactionPDEin2D

The2DellipticPDEisdefnedoverthespatialdomain
[0,LX]×[0,LY]=[0,1]×[0,1]

0=α
∂2x(ξ,ζ)

∂ξ2
+α
∂x2(ξ,ζ)

∂ζ2
+αγx(ξ,ζ),

where

γ=
π

Lξ

2

+
2π

Lζ

2

, α=10−2, Lξ=Lζ=1.

Theboundaryconditions were Dirichlet BCsx(0,ζ)=
x(Lξ,ζ)=0for0<ζ<Lζ,andx(ξ,0)=x(ξ,Lζ)=0,
0<ξ<Lξ,andthesolutionisx(ξ,ζ)=2sin(πξ)sin(2πζ).
Themodelrepresentingthesensingdevice,isthepointwise
measurementdescribedbythespatialDeltafunctionatthe
sensorcentroidθs(t)=(ξs(t),ζs(t))andthus

y(t;θs(t))=
Lξ

0

Lζ

0
δ(ξ−ξs(t))δ(ζ−ζs(t))x(ξ,ζ)dξdζ.

Thesensorguidance(20)wasusedwith(ξs(0),ζs(0))=
(0.125Lξ,0.875Lζ)andspeedυ=5.Thecorrespondingstate
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Evolution of state error norm
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fixed sensor

Fig.4. EvolutionoferrorL2norm.

estimatorwiththemobilesensorissimilarlygivenby

∂x(t,ξ,ζ)

∂t
=α
∂2x(t,ξ,ζ)

∂ξ2
+α
∂x2(t,ξ,ζ)

∂ζ2
+αγx(t,ξ,ζ)

+λ(ξs(t),ζs(t))y(t)−x(t,ξs(t),ζs(t))

whereonceagainthecentroid-dependentflterkernel
λ(ξs(t),ζs(t))isfoundviathetimepropagationofthe
fnitedimensionalapproximationofthedifferentialRiccati
equationwithR=10−3,Q=100I.

Thesemidiscretesystemofdifferentialequationsforthe
stateestimatorwasderivedusingtheapproximation

x(t,ξ,ζ)=
nx

∑
i=1

ny

∑
j=1

αij(t)φi(ξ)ψj(ζ)

whereφi(ξ),ψj(ζ)arethe1Dlinearfunctions.

Similartothe1Dcase,theevolutionoftheL2(Ω)normof
thestateestimationerrorisdepictedinFigure4forthecase
ofamovingsensorandafxedsensor.Thespatialdistribution
ofthestateestimationerroratthefnaltimeisdepicted
inFigure5whereitisobservedthatthestateerrorwith
amovingsensorconvergestozero(pointwise)fasterthan
thecasewithasinglesensoratfxedspatiallocation.The
trajectoryofthemobilesensorispresentedinFigure6.

Tohaveafurthercomparisonbetweenthestaticestimation
schemesummarizedin(2),(4),wenowusenoisy mea-
surementsofthetruevalueofthespatialfeldx(ξ,ζ)=
2sin(πξ)sin(2πζ)usingthesamenoisestatisticsasforthe
sensormeasurementsforthedynamicestimator,i.e.usea
noisewithcovarianceR=10−3in

yi(t)=x(ξi,ζi)+ni, ni∼N(0,
√
R)

UsingthesametrialfunctionsusedintheGalerkinapprox-
imationforthedynamicestimationscheme,theresulting
100×100regressionmatrixΦmhadarankof64.Thestatic
estimateofthespatialfeldusing100noisymeasurements
iscomparedtothefnalvalueofthedynamicestimate
withasinglemobilesensor.Theresultingstateestimation
errorsforbothcasesarepresentedinFigure7. Whilethe
dynamicestimator(Kalman-based)withthemobilesensor
resultsinsmallerspatiallydistributederrorcomparedtothe
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static estimation scheme, the most important advantage of the
proposed asymptotic embedding method for the estimation
of spatially distributed f elds is the signif cant reduction in
required hardware. That is, the reduction from 100 static
sensors used in the static estimation scheme compared to
a single mobile sensor in the dynamic estimation scheme.
The economic impact on the acquisition and maintenance of
hardware is immediately obvious.
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[20] P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel, Eds.,
Numerical algebra, matrix theory, differential-algebraic equations
and control theory. Springer, 2015, festschrift in honor of Volker
Mehrmann.


