Using asymptotic embedding methods for dynamic estimation of spatial
f elds with mobile sensors

Michael A. Demetriou

Abstract—This paper proposes an asymptotic embedding
method for the dynamic reconstruction of spatially varying
felds. By assuming that the spatial feld is the solution to an
elliptic partial differential equation, then the elliptic PDE is
embedded into a parabolic PDE which represents the time-
varying estimator. An important advantage of the dynamic
estimation scheme is the signif cant reduction in the use of
sensing devices needed to recomstruct the spatial feld. Static
estimation schemes impose stringent conditions on the regular-
ity of a regression matrix, which links the basis functions to the
number of measurements. To further improve the performance
of the dynamic estimator, a guidance scheme is proposed that
repositions mobile sensors within the spatial feld, which is
linked to the performance of the dynamic estimator. Extensions
to collaborative estimation and optimization of the placement
of static sensors are also summarized to provide an integrated
account on all facets of optimal dynamic estimation of spatial
f elds. Numerical simulations for spatial felds in one and two
spatial dimensions are included along with a comparison of
static reconstruction as quantifed by the number of sensing
devices required and the relative error.

Index Terms— Distributed parameter systems; spatial f elds;
asymptotic embedding; dynamic estimation; mobile sensors.

I. INTRODUCTION

This work considers the dynamic estimation of unknown
spatial felds as described by spatially varying functions.
The static estimation approach requires that the number of
measurements be at least the same as the dimension of the
basis set, i.e. the number of basis functions. Even in that
case, one must assume that the resulting regressor matrix is
not rank defcient [1]. A least square or a minimum norm
solution results when the number of measurements differ
from the number of basis functions. As mentioned in the
earlier effort on the use of asymptotic embedding methods
for the dynamic reconstruction of spatial felds [2]. other
approaches were considered for the estimation of spatial
felds, see [3], [4]. [5]. [6], [7].

To remove this dependence of the measurements (i.e. sens-
ing devices) to the accuracy of the unknown feld estimates,
a dynamic estimation scheme is proposed and which embeds
the elliptic PDE whose solution is the unknown spatial feld.
into a parabolic PDE representing the dynamic estimator.
Asymptotic embedding (regularization) methods have been
employed in the past for parameter identif cation of elliptic
PDEs [8]. [9]. [10]. [11]. but not for state reconstruction of

spatial felds till recently, [2].
The contribution of this work is many-fold; frst it expands

the dynamic estimator structure of a Luenberger observer
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presented in [2] to include a Kalman-based flter. Second,
it summarizes earlier results in [12] on the optimal sen-
sor location, in the context of estimation schemes with
asymptotic embedding. Third, it unifes the Lyapunov-based
guidance in [13] to the gradient-based guidance in [14].
Finally, it provides a framework for collaborative estimation
of decentralized flters with mobile sensors in the context of
dynamic estimation of spatial felds.

To provide an insight on aspects of the proposed asymp-
totic embedding methods for the dynamic estimation of
spatial felds with mobile and static sensors, both an 1D and
2D elliptic PDEs are considered.

II. PROBLEM MOTIVATION

To motivate the proposed work on the use of static and
mobile sensors for the dynamic reconstruction of static f elds,
that is, spatial felds that are spatially varying but time
invariant, consider the following 2D spatial function

. (mEN . /mL
x(ﬁ,C)-Zsm(Lé)sm(Lg): 0<E<L, 0<{<ILg. (1)
It is assumed that there are m measurements at the
spatial coordinates (&;,(;), i = 1,...,m, as obtained by
m (pointwise) sensors. It is desired to estimate (or re-
consfruct) the spatial feld in (1). Using a least-squares
estimation scheme [1]. one can use the m measure-
ments to obtain the stafic estimate X(§,L) of x(&,C).
Assuming that the basis functions are {0,02,03,04} =
{sin (%) sin G—E),sin (%):sm(%),l} then the static es-

timate of x(&,(C) admits the following expansion

4
i=1
where & = [ 0 0 03 04 ]T, 0, is the static estimate of

a, and (D(é C) = [ q)l (g C) ¢’2(§: C) ¢’3(§: C) ¢'4(§: C) ]

Evaluating the expansion in (2) at the m measurements

X (&1 1 Cl )
Y= 1 (3)
X(EmCm)
we have

%, = @0,

where the regressor matrix ®,, = {¢;}/, is given by

01(61,81)  0261,8)  03(61,81)  04(E1,81)
Cp=| 5 5 5
01Em:Cm)  02EmCn)  03Gm,Gn)  04(EmsCm)
Uniqueness of the solution requires the regressor matrix be
square and non-singular. The necessary condition requires



that m > 4 and suff cient condition is that rank(®) =4. To
ensure the rank condition, the measurement points must be at
spatial locations that result in linearly independent columns
of the regressor matrix. A necessary condition is that they
should not be placed at the zeros of the basis functions.
An estimate of x(&,£) can be obtained even when the rank
condition is not satisfed, or when m < 4. One results in a
least squares solution and the other produces a minimum
norm solution [1]. The estimate of the coeff cient vector is
o= ((Dm)T Y, 4)
and the estimate of the spatial feld is given by (2). The
matrix ((Dm)lr is the Moore-Penrose inverse of @, [15].
Three different sets of grid points locating the mea-
surements in the spatial domain Q = [0,Lg] x [0,L¢] were
considered and are given in Table I. Table II summarizes the

TABLE I
GRID POINTS.
Grid 1 Grid 2 Grid 3
(0.25L;,0.25L;) (0.2L;,0.2L;) (0.1481L ,0.1667L;)

(0.25L¢,0.75L; )
(0.75L¢,0.25L; )
(0.75L;,0.75L;)

(0.4L;,0.4L;)
(0.6L¢,0.6L;)
(0.8L;,0.8L;)

(0.2593L¢,0.2778L;)
(0.3704L,0.3889L; )
(0.4815L,0.5000L; )

static estimation of the coeff cient vector @ and the estimate
X(E,C) for the three grid choices. The relative error is

LoolT =R _ 00 | Jo° o (8,0 —%(5,0))"dtds
F¥lz, Jo& e (8, Q) dgde

Exact reconstruction of the spatial feld is achieved in the
case of perfect (noise-free) measurements with the rank of
the regressor matrix being equal to the dimension of the
basis. Grid 1 offers the largest estimation error since the grid
points (measurement locations) resulted in rank def cient @,,.

TABLE I
EFFECTS OF MEASUREMENTS ON SOLUTION ACCURACY.

Gnd 1 Grid 2 Gnd 3
rank(®,,) 1 2 ]
rel. error 32.1% 9.34% 0%
0.2222 1.1989 2
a ( 0.3143 ) ( 0.6164 ) ( 0 )
0.3143 0.6164 0
0.4444 —0.4478 0

It is obvious that even in the unlikely case of noise-free
measurements, one may not be able to estimate the true
coeff cient vector @ exactly, unless the sensors are placed
at the right locations.

ITI. MAIN RESULTS
Using appropriate continuity and differentiability condi-
tions for the unknown spatial function x() (spatial feld),
such as the one in (1). it is assumed that it is the solution to
an elliptic PDE written in abstract form
0=Aax+f, (5)
and defned over a Hilbert space H. Such an assumption can
be justif ed from a priori qualitative knowledge of the spatial

feld in question. The state space A has inner product (-,-)
and corresponding induced norm |-|. Let ¥ be a refexive
Banach space with norm || - ||y, and assume ¥V is embedded
densely and continuously in A with its dual denoted by
V* and with norm || -||.. We have V — H < V* with the

embeddings dense and continuous and || < k|¢|| for p € V.
We can now characterize the operator 4 in (5). Defne
the elliptic operator A4 : ¥V — V" that satisfes the bound-
edness (Gap > 0. |(40,W)] < a5 0l[[[ ]| for ¢,y € 7) and
V-coercivity (Ja, > 0, Re(—A40,0) > a.||¢||> for p € V). A
possibly third condition may be imposed, that of symmetry
((Ad,y) = (0, Ay)). Assuming that f € V*, then (5) admits
a unique solution, [16]. [17].
A representative example of a system that has the abstract
representation in (5) is the Poisson equation (elliptic PDE)
—div(ogradx) = f in Q, X[3a =0, (6)
where the spatial domain Q is an open bounded and con-
nected subset of R" having Lipschitz boundary 0, and
the non-homogeneous term f € H~1(Q), o € L~(Q). As
mentioned in [2], equation (6) should not be restricted to
Dirichlet boundary conditions: this is used to motivate the
proposed asymptotic embedding scheme. In fact, (6) can be
furnished with mixed boundary conditions, as for example

®), =0 & _gg), imr, s0=riurn

Additionally, (6) is not necessarily restricted to inhomoge-

neous problems and the case /=0 can also be considered.
Associated with (6), or its abstract representation (5). are
the process measurements obtained by m sensing devices

y= [ c®®)E. ™

The m-dimensional output vector y is constant as it obtains
partial state observation of the time-invariant state of (5).
However, when measurement noise is included or when the
sensor is attached to a mobile platform, then the output vector
v becomes time varying. The observations in (7) can include
interior and/or boundary measurements. The abstract form of
(7) is written in terms of the observation operator

y=_Cx, C:V"—=R" (8
The spatial function ¢(§) denotes the sensor model and de-
scribes the manner it averages (spatially) the state x(§) over
its spatial support. In the case of pointwise measurements,

the function ¢(§) is simply the spatial delta function.
Objective: The estimation and control objective is to employ

estimation schemes for the dynamic reconstruction of the
state of a time invariant equation (5) using a reduced number
of fxed or mobile sensors that are independent of the

dimension of the basis functions.
The various components of the contribution are

1) Filter gain structure: Luenberger vs Kalman f Iter, with
the former assigning the structure of the flter kernel
and in the latter solving an Operator Riccati Equation
to obtain the expression for the flter kemnel.

2) Estimation structure: centralized vs decentralized
structure; single estimator with m observations or m
separate estimators utilizing a single measurement and
with a consensus protocol in each penalizing differ-



ences in their state estimates.

3) Sensor location selection: for static sensors, fnd the
optimal spatial locations with respect to a fIter perfor-
mance metric.

4) Mobile sensor guidance: Propose the sensors’ spatial
relocation, assumed to be onboard mobile platforms.

A. Filter gain structure

Using asymptotic embedding methods [2]. the estimator
for the elliptic PDE (equiv. time invariant equation (5)) is

X(t,&) = div (augrad(1,E)) + (&)
M0~ [ CBRLEE) ()

X(0,8) =0.
The spatial function A(§) is the flter gain kernel and its
computation depends on the estimator design.
1) Luenberger observer-based kernel design: A simple
choice of A(§) when the Luenberger observer design is used,
is the weighted adjoint of the observation operator in (8)

AE) =c(@)T, (10)

where 0 < T=T7 is an m x m gain matrix. The estimator is

x(t,&) = div (0.grad=(1,8)) + f(§)
+e @)~ [ cE)F1.8)d)
70.8) =0

With regards to the abstract form of (9). the estimator is
2(r) = A%(1) +f+ L (0(1) — CX(1)), W

X(0)=0.

2) Kalman flter-based kernel design: The flter kernel is
derived from the solution to an operator Riccati equation
corresponding to the abstract form (5). (8), Using the state
and output operators, and assuming that the process and
measurement noise covariance operators are given by Q and
R, respectively, the requisite algebraic Riccati equation is

(11)

0=AT+3IA*+XC'RICZ+Q, inD(A*), (13)
and the associated flter operator is
L=3XC'R. (14)

The function A(§) in (9) is the kernel representation of L*.

B. Estimation structure

The m measurements in (7) can be used for a single
centralized flter such as the one in (12) with the flter gain
based on Kalman (using (12). (14)) or Luenberger observer
design (using (11)). The alternative, is to use decentralized
estimation with collaboration. A single estimator is associ-
ated with each of the » measurements and (12) now becomes

N(t) = A% (t) + f+ L (:(t) — GRi(t))
—B Y (®(1)—%(0))

& (15)
%(0) =0,

where N; denotes the set of neighbors of the 7/ sen-

sor/estimator and the term —%; ¥, (%(f) —X;(r)) denotes

the consensus protocol implemented by each of the dis-
tributed estimators in (15). The details of the derivation of
the consensus operators %, i=1,...,m are given in [18].

C. Sensor location selection

To improve the estimation scheme, given by the central-
ized estimator in (9) or (15), one can improve the perfor-
mance by optimizing the sensor locations. The basic idea
behind this is to parameterize the flter kernel by candidate
sensor locations within the spatial domain and optimize an
appropriate estimation performance mefric, see [12].

D. Mobile sensor guidance

In a similar fashion to the previous location optimization,
to improve the estimator performance, one can assume a
signif cantly reduced number of sensors are now aff xed on
mobile platforms and can move freely within the domain.

Specif cally, for a physical problem described by (6). it
is assumed that a single mobile sensor is used to provide
process measurements. Thus, (7) is now re-written as

HEEo) = [[cEB1®E a6

where o (#) € R" is the mobile sensor centroid and c(E:Ey (7))
denotes the centroid-parameterized sensor distribution func-
tion. For the case of pointwise measurements, the sensor
function is the spatial Delta function with c(&:&q(7)) = 8(§ —
&€o(7)) and the mobile sensor measurement (16) becomes
W(t:8o(1)) = x(Eo(1))- (17)
There are two performance-based approaches for the mo-
bile sensor guidance. The frst one utilizes the Luenberger
design and parameterizes the flter kernel A(§) = c(&o(1))T
by the time varying sensor centroid to arrive at a modifed
version of the estimator (11). When the sensor model in (17)
is assumed, then the state estimator in (11) becomes

X(t,€) = div (oLgrad(1,€)) + f(€)
+8(& —&o(1))T(x(8o (1)) —(1,80(1)))
7(0,E) =0.

The sensor guidance, as described by the time derivative
of the sensor centroid, is extracted from Lyapunov design
methods for the state error e(z,€) = x(§) —¥(¢,§). The state
error, through the difference of (6). (18) is given by

é(1,§) = div (a.grade(t,§)) — 8(§ —&o(1))Te(t,80 (1)) (19)
e(0,§) =x(&).

Following [13]. the Lyapunov-based sensor guidance is
Eo(t) = e(t,80(t))ex(#,Eo()). To include aspects of the mo-
bile platforms, it is assumed that the speed of the platforms
is fxed and only the direction is to be provided by the
estimator performance. In this case the guidance takes the
form & (t) = e(t,80(t))eg (7,&o(f))v where v is the assumed
constant speed of the mobile platform. To link the Lyapunov-
based guidance to the gradient based guidance in [14], we
provide a unifying guidance that can be used regardless of
the estimator design and is given by

T B) VelEl)
%) = (e &) Ver,Eo()]

(18)

(20)




TABLE I
INTEGRATED ESTIMATOR DESIGN AND MOBILE SENSOR GUIDANCE.

flter gain structure

Luenberger
Kalman

observer guidance
(18) (20)
(21), (22), (23) (20)
where Ve(t,Eo(t)) is the gradient vector (€ R") of the state
error evaluated at the current location of the sensor centroid.
Equipped with the above unifying guidance, we summa-
rize the selection of the flter gain for each of the two cases
of gain structure. For Luenberger observer with a mobile
sensor, the integrated estimator and sensor guidance are given
by (18) and (20). To implement a Kalman-based design, the
estimator is written in abstract form (similar to (12))

x(t) =A%) + f + Lo (1)) (1(1) — C(&o(1))(1))
X(0)=0
where the centroid-dependent f lter operator L(E(7)) is given
via the solution to the differential operator Riccati equation

2(&o(1)) = AZ(Eo(1)) +Z(Eo(1)) A"

€2y

22)
+Z(Eo (1)) C*(Eo(1))R C(&o(1))Z (8o (1)) + O,
and the associated flter operator is
L(&o(1)) = Z(&o(1)) C* Bo(1))R . (23)

The flter kernel A(y(7)) is the kernel representation of
L*(Ey(t)) and it is used in (9) to implement the Kalman-
based design with mobile sensor. The associated state error
equation is governed by

é(r) = Ae(t) — L(&o()) (1) — C&o(1)X(1)) ,

e(0) =x.

Remark 1: The nonhomogeneous term f in (5) was as-
sumed known and used in (18) or (21). When f is not
known, then one can follow the approach presented in [2].
One approach would incorporate the adaptive-like estimate
of the nonhomogeneous term by def ning it as

f(t) = —Ax1), (25)
whereas the other approach would ignore it in the estimator
expressions (18) or (21). However, the unknown term would
still appear in the error equation (19) or (24). In this case,
one can still achieve convergence of the state error that is
polynomial in #; i.e. the norm of the state error converges to
a residual st whose bound is dictated by the norm of f [2].
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IV. NUMERICAL EXAMPLES AND CONCLUSIONS
A. Elliptic PDE embedded in Diffiision-Reaction PDE in 1D
The following elliptic PDE in considered
0= o.osaaz—g +0.05mx(E), 0<E<1, x(0)=x(1)=0,

with solution x(§) = sin(n&). The spatial operator in (5) is
A9 =0.05¢" +0.051%0, e H,(0,1).

A single mobile sensor with centroid &p(#) is assumed to

provide process information

s = [ 86— L@
&(0)

Evolution of state error norm
o8 T T T T T
= moving sensor w. Kalman
=s+=—— mioving sensor w. Luenberger
fixed sensor

[l

. .
0 05 1 15 2 25 3
Time (sec)

Fig. 1.
If the state x(&) were known to the user, then the mobile
sensor would measure y(1:Eg(t)) = sin(n€g(r)). The state
estimator is

2U1,8) = 0.05 (¥7(1,8) +125(1,£))

Evolution of error Ly norm.

+A(Go(7)) (#:80(1)) — X(2,80(1)))

X(t,0) =x(t,1)=0
The guidance (20) was used for both types of the flter gain
structure summarized in Table III.

To simulate the estimator, a fnite dimensional approxi-
mation of the abstract form (5) and (12) was implemented.
A fnite element based Galerkin scheme with 100 linear
elements was used fo obtain the matrix representations of
the system operators. The requisite spatial integrals were
computed with the aid of a composite two-point Gauss
Legendre quadrature rule [19]. The fnite element scheme
resulted in a semi-discrete system (spatial discretization) of
differential equations that are numerically integrated in the
time interval [0, 3]s using the stiff differential equation solver
ode23s from the Matlab® ODE suite and which is based on

the 4™ order Runge-Kutta scheme [19].

For the implementation of the Kalman-based flter gain
structure, the fnite dimensional approximation of the differ-
ential Riccati equation (22) was propagated in time using a
modif cation of the method in [20][ch. 4]. that included time
sub-cycling in the time loop of the time integration.

Three different cases were considered: (a) a fxed sensor
placed at & = 0.65 using the Kalman-based flter gain with
R=10"% and O = 107, (b) a moving sensor with initial
location &(0) = 0.65 and a Kalman-based flter gain with
R=10"*and O =101, and fnally, (c) a moving sensor with
initial location &p(0) = 0.65 with a Luenberger-based flter
gain with A(§) = 108(§ —&p(7)) in (18). The last two cases
used a speed of v=0.25.

The L,(£2) norm of the state estimation error for the above
three cases is depicted in Figure 1 where it is observed that
the case of a Kalman f lter with a mobile sensor can perform

better than the Kalman flter with a fxed sensor.
The sensor trajectory for the two flter structures is de-

picted in Figure 2 and the spatial distribution of the state
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Fig. 2. Mobile sensor trajectory.
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Fig. 3. Spatial distribution of state error e(t,£) at four time instances.
error at four time instances is presented in Figure 3.

B. Elliptic PDE embedded in Diffiision-Reaction PDE in 2D

The 2D elliptic PDE is defned over the spatial domain
[OvLX] X [O:LY] = [03 l] X [01 1]

PxEL) |, ED)

0=0—Fg="to—7p +ox(§,0),

where

n\2 21\ 2 2
Y_(E) +(L_§)’ oa=10"", Lg_L,;_l.

The boundary conditions were Dirichlet BCs x(0,() =
x(Lg,§) = 0 for 0 < { < Lg, and x(§,0) = x(§,Ly) = O,
0 <& < Lg, and the solution is x(§,() = 2sin(n&) sin(2nL).
The model representing the sensing device, is the pointwise

measurement described by the spatial Delta function at the
sensor centroid 6,(t) = (§(¢),{;(¢)) and thus

ye:00) = [ [ 8- 8036 L(E D,

The sensor guidance (20) was used with (&;(0),L:(0)) =
(0.125L§, 0.8 TSLQ) and speed v = 5. The corresponding state

Evolution of state error norm
25 T T T T T

Time (sec)

Fig. 4 Evolution of error L norm.
estimator with the mobile sensor is similarly given by

2
LD _(FTLY waﬁgéza, D s ot

FE(1), G(1)) ((0) =300, (1), () )
where once again the centroid-dependent flter kernel
A(Es(1),Cs(2)) is found via the time propagation of the
fnite dimensional approximation of the differential Riccati
equation with R =10—3, O = 1001

The semidiscrete system of differential equations for the
state estimator was derived using the approximation

nx My
T(t,6,0) =3 Y 0 (1)0:(§)w;(C)
i=1j=1
where ¢;(§). y;(C) are the 1D linear functions.

Similar to the 1D case, the evolution of the Z;(£2) norm of
the state estimation error is depicted in Figure 4 for the case
of a moving sensor and a fxed sensor. The spatial distribution
of the state estimation error at the fnal time is depicted
in Figure 5 where it is observed that the state error with
a moving sensor converges to zero (pointwise) faster than
the case with a single sensor at fxed spatial location. The
trajectory of the mobile sensor is presented in Figure 6.

To have a further comparison between the static estimation
scheme summarized in (2). (4). we now use noisy mea-
surements of the true value of the spatial feld x(&,() =
2sin(mé) sin(2nl) using the same noise statistics as for the
sensor measurements for the dynamic estimator, i.e. use a
noise with covariance R = 10> in

yi(t) =x(&, &) +m,  m~N(O,VR)
Using the same trial functions used in the Galerkin approx-
imation for the dynamic estimation scheme, the resulting
100 x 100 regression matrix ®,, had a rank of 64. The static
estimate of the spatial feld using 100 noisy measurements
is compared to the fnal value of the dynamic estimate
with a single mobile sensor. The resulting state estimation
errors for both cases are presented in Figure 7. While the
dynamic estimator (Kalman-based) with the mobile sensor
results in smaller spatially distributed error compared to the
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Fig. 5. Error distribution at the fnal time.
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Fig. 7. Mobile sensor trajectory.

static estimation scheme, the most important advantage of the
proposed asymptotic embedding method for the estimation
of spatially distributed felds is the signif cant reduction in
required hardware. That is, the reduction from 100 static
sensors used in the static estimation scheme compared to
a single mobile sensor in the dynamic estimation scheme.
The economic impact on the acquisition and maintenance of
hardware is immediately obvious.
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