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de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France

‖Theoretical and Computational Biophysics Group, Beckman Institute for Advanced

Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews

Avenue, Urbana, Illinois 61801

⊥Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green

Street, Urbana, Illinois 61801

E-mail: yiwang@cuhk.edu.hk; chipot@ks.uiuc.edu

1



Abstract

Determination of membrane permeability to small molecules from first principles

represents a promising approach for screening lead compounds according to their per-

meation properties upstream in the drug discovery process and prior to their synthesis.

Theoretical investigation of permeation events requires, at its core, a molecular model

of the membrane, and the choice of this model impacts not only the predicted perme-

ability, but also its relation to the experimental measurements commonly performed

in pharmaceutical settings with a variety of cell lines capable of mimicking intestinal

passive permeation. Homogeneous single-lipid bilayers have traditionally been uti-

lized in computer simulations of membrane permeability predictions due to the ease

of sampling all the relevant configurations, as well as the availability of parameters

for a range of components of the biological membrane. To assess the influence of

the membrane heterogeneity on the permeability to small molecules, we have exam-

ined the permeation of ethanol in six different single-lipid bilayers, and compared the

computed free-energy and diffusivity profiles with those obtained using a mammalian

membrane model consisting of 26 components. Our results suggest that the membrane

permeability only mildly depends on the lipid composition, spanning only one order

of magnitude between the small phosphoethanolamine and the large phosphocholine

head groups, or the short, saturated lauryl and the long, unsaturated oleyl acyl chains,

that is, nearly as close as current theoretical estimates can get to experiment. The

staggering computer time required to obtain an accurate free-energy profile, devoid of

hysteresis between the upper and the lower leaflets of the lipid bilayer, in excess of

several microseconds, provides an impetus for the development of approximate routes

for membrane permeability predictions. Here, we have modeled the free-energy profile

underlying permeation by means of a series of free-energy perturbation calculations,

whereby the substrate is reversibly coupled to its environment at fixed values in the

direction normal to the lipid bilayer. The diffusivity profile is modeled based on the

bulk self-diffusion of the permeant and the membrane permeability is recovered with-

out significant loss of accuracy. The proposed numerical approach can be seamlessly
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extended to the determination of the relative membrane permeability to alternate sub-

strates, thereby allowing large sets of permeants to be screened at a fraction of the

computational cost of a rigorous determination of their respective free-energy profile.

1 Introduction

Lipid membranes are responsible for maintaining controlled chemical environments within

all living cells and within their intracellular compartments. The hydrophobic core of these

membranes acts as a free-energy barrier to many water-soluble species. Transport of most

molecules and ions necessary for life is, therefore, tightly controlled by proteins integral to

the membrane, such as channels and transporters. Nonetheless, passive diffusion is the

dominant mechanism for membrane permeation of metabolic gases, e.g., dioxygen1 and

carbon dioxide,2 signaling gases, e.g., nitric oxide3 and hydrogen sulfide,4 and endogenous

steroids.5 Small-molecule drugs and other exogenous substances may also enter cells by

passive permeation. The relative importance of passive diffusion versus protein-facilitated

transport remains, however, unclear in the general case, and, in all likelihood, stringently

depends on the physicochemical properties of the molecule and the proteins present in the

relevant membrane.6–8 Hence, passive membrane permeability can be a crucial factor in the

ability of drug candidates to reach intracellular targets, as well as for the determination of

their intestinal absorption, and, to some extent, their oral availability. Recognizing poor

membrane permeability early in the drug design process has the potential to reduce costs,

especially if it can be achieved by means of computational methods, thereby, obviating the

need to synthesize unpromising compounds.9

Molecular dynamics (MD) simulations can be used to accurately predict passive mem-

brane permeability from the chemical structure of the permeant alone, while simultaneously

revealing the mechanisms of permeation at the atomic scale.10,11 The MD route to the es-

timation of membrane permeability was pioneered by Marrink and Berendsen,12 leaning on

the so-called solubility–diffusion model, whereby the free energy underlying permeation and
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the diffusivity are hypothesized to continuously depend on the position of the permeant

along a coordinate transverse to the membrane.13

In a nutshell, the reversible work incurred in the permeation process is calculated from

the simulation as a function of the z–direction of Cartesian space, using one of the sev-

eral importance-sampling algorithms available.14,15 Some measure of the diffusion kinetics

is estimated either from the same set of simulations used to evaluate the free energy, or

from independent simulations. Conventionally, this measure is the position-dependent dif-

fusion coefficient. However, we have recently developed a subdiffusion model based on a

time-fractional diffusion equation, which appears to offer a better representation of the tra-

jectories of the permeant derived from simulations.16,17 It ought to be emphasized that the

subdiffusive regime observed in our simulations stems in all likelihood from our rudimentary,

however geometrically intuitive, description of the reaction coordinate by means of a simple

projected Euclidean distance, evidently unable to capture the slowest degrees of freedom of

the lipid bilayer known to contribute to the permeation events.16

To estimate the membrane permeability from first principles, employing numerical simu-

lations, a molecular model must be chosen for the membrane. For simplicity, most theoretical

investigations resort to bilayers composed of a single type of phospholipid. For instance, di-

palmitoylphosphatidylcholine (DPPC) has been used in simulations aimed at determining

the permeability of membranes to oxygen, ammonia and hydrogen sulfide,18,19 as well as

several small organic compounds.20 In contrast to the fully saturated acyl chains of DPPC,

a large proportion of lipids in mammalian membranes include one mono-unsaturated and one

fully saturated tail,21 e.g., 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). A number

of computational studies have, therefore, used POPC to estimate membrane permeabilities

to a variety of chemical species, like water,22 oxygen,23 short-chain alcohols,16,17,24,25 nu-

cleosides,26 an arginine side-chain analogue,27 as well as large pharmaceutical drugs.28–30

Permeation of a capped tryptophan amino acid was studied in a 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) membrane,31 which includes two unsaturations.
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In recent years, more complex membrane models have emerged at an increasing pace in

the pursuit of greater realism. Mammalian cell membranes typically include sizable concen-

trations of cholesterol, rationalizing the choice of mixtures of phospholipids and cholesterol in

the earliest MD simulations of multicomponent bilayers.32,33 On the other hand, atomic-scale

models of the inner membranes of bacteria have been constructed based on mixtures of phos-

phatidylethanolamine and negatively charged phosphatidylglycerol lipids,34 while a model

of the stratum corneum incorporated ceramide lipids, cholesterol and free fatty acids.35 The

seminal work of Ingólfsson et al.36 involved the construction of a coarse-grained model of a

eukaryotic cell membrane consisting of 63 different lipid species and embodying a significant

asymmetry in the compositions of the outer and inner leaflets. It is noteworthy that a web-

based software, namely the CHARMM-GUI Membrane Builder, has been developed to allow

atomistic membrane models composed of many components to be constructed easily.37

In the context of membrane permeability calculations, we recently determined the effect of

cholesterol on the permeation of three drug-like molecules.11 Although two of the compounds

exhibited little change in their rates of permeation between a pure POPC bilayer and a

POPC:cholesterol (2:1 mole ratio) bilayer, the permeability of the pure POPC membrane to

the third compound, hydrocortisone, was more than two orders of magnitude higher than

that of the POPC:cholesterol membrane. In another very recent investigation, permeation

of cisplatin through a four-component model of a cancer-cell lipid bilayer was compared to

that measured through a normal membrane.38 Of particular interest, the model cancer cell

membrane lacked the asymmetry between the inner and outer leaflet characteristic of the

normal membrane, which translated to a significant decrease in permeability to cisplatin.

One important take-home lesson learned from over twenty years of theoretical investiga-

tions of permeation events is the necessity of sufficiently long MD simulations to average over

fluctuations in the structure of the lipid bilayer, and, thus, obtain reliable results. Compared

to bilayers consisting of a single type of lipid, multicomponent bilayers require far more sim-

ulation time to sample all thermodynamically favorable configurations. Enhanced sampling
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techniques, including replica exchange,? can accelerate transitions between different lipid

configurations.39 Relaxation and sampling of multicomponent atomic-resolution membrane

models remain, however, challenging. In the context of membrane permeability calcula-

tions, the situation is even more difficult, given that the internal degrees of freedom of the

permeant25,40 and the different positions of the permeant relative to the membrane must

simultaneously be sampled. While many early computational studies were limited to multi-

nanosecond simulations, obtaining convergence of the free-energy calculation to a precision

significantly below the thermal energy, kBT (where kB is the Boltzmann constant and T , the

temperature), requires sampling in excess of microseconds,30 which currently corresponds to

several days of continuous simulation on a modern workstation featuring graphics cards. In

line with an earlier investigation, whereby tumbling of the permeant was considered explic-

itly in addition to the translation along the normal to the lipid bilayer,25 the recent work

by Sun et al. has demonstrated that multidimensional enhanced sampling can improve con-

vergence.30 However, rigorous MD–based calculations of permeability remain prohibitively

expensive in terms of computational time to be used routinely in drug discovery.

In the present contribution, we seek to elucidate the influence of membrane composition

on the permeation of a short-chain alcohol, while simultaneously demonstrating the applica-

bility of a faster, more efficient and affordable approach to estimate membrane permeability

from MD simulations. Toward this end, we apply MD and free-energy calculation tech-

niques to six pure-lipid membranes, each consisting of a different lipid species, and a seventh

asymmetric model of a mammalian membrane. We compare the free-energy and fractional

diffusivity profiles produced with the different computational assays, and assess the effect of

the membrane composition on its permeability. Earlier simulations have clearly shown that

only small intervals of the the free-energy profile dominate the solubility–diffusion integral,12

namely those regions of the highest free energy. In many cases,28 it should, therefore, be

possible to estimate with the suitable accuracy the membrane permeability without the need

to determine the complete free-energy and diffusivity profiles. Here, we evaluate the ability
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of free-energy perturbation41,42 to supply the free energy at selected discrete points along

the direction transverse to the membrane, and recover through interpolation the free-energy

profile underlying permeation.

2 Methods

2.1 Theoretical Underpinnings

In this contribution, we focus on the estimation of the permeability of membrane models

to a small molecule, which can be viewed as the evaluation of the net flux of the permeant

across the membrane through integration over its thickness, i.e., −L/2 ≤ z ≤ +L/2, which

forms the basis of the solubility–diffusion model for permeation. In the steady state, the

resistance against permeation writes,

R :=
1

Pm

=

∫ +L/2

−L/2

dz
exp[+βw(z)]

D(z)
(1)

where β = 1/(kBT ), and kB is the Boltzmann constant and T , the temperature. w(z) is

the potential of mean force (PMF) underlying permeation, i.e., the reversible work incurred

to translocate the substrate between the aqueous phases on each side of a lipid bilayer

along z. D(z) is the position-dependent classical diffusivity. As was demonstrated in an

earlier contribution,16 however, the non-Markovian behavior of permeation monitored along

the naive reaction-coordinate model consisting of the z direction of Cartesian space, i.e., the

normal to the lipid bilayer, cannot be adequately described by the solubility–diffusion model,

which justifies turning to a fractional variation of the latter, i.e., replacing D(z) by Kα(z),

the position-dependent fractional diffusivity of fractional order α. Kα(z) is determined using

a variant16 of the Bayesian-inference scheme developed for Markovian models,22,43,44 and

implemented in the program DiffusionFusion.44,45 While Kα(z) possesses different units than

D(z), Pm determined via Eq 1 with the former is numerically identical to that obtained via
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solving the Smoluchowski equation with a concentration imbalance enforced between the two

sides of the membrane.16,17 Additionally, it is noteworthy that the membrane permeability,

Pm, has no explicit dependence on the fractional order.

The trajectory of the permeant, Z(t), and the PMF underlying permeation are readily

obtained from a free-energy calculation with a time-dependent bias, as is the case with the

ABF algorithm.46 Starting with an initial guess of Kα(z) and α(z), the likelihood of the

observed trajectory is given by,

P [Z(t)|Kα(z), α(z)] =
∏

j

P [Z(tj +∆t)|Z(tj), Kα(z), α(z)] (2)

where ∆t is the time interval in the discretization scheme utilized for the trajectory of

the permeant along z. The likelihood of the observed trajectory is the product of all the

conditional probabilities of a displacement at time tj, given the current estimate of Kα(z)

and α(z). The objective of the Bayesian approach is to find Kα(z) and α(z) that maximize

the posterior probability, P [Kα(z), α(z)|Z(t)], which is connected to the likelihood through

the Bayes theorem,16

P [Kα(z), α(z)|Z(t)] = P [Z(t)|Kα(z), α(z)]Pprior[Kα(z)] (3)

This model introduces a prior, Pprior, which is the product of priors assuming scale invari-

ance and smoothness of the diffusivity.16 In the present fractional solubility-diffusion model,

P [Z(tj+∆t)|Z(tj), Kα(z), α(z)] is determined employing the Crank–Nicolson finite-difference

algorithm,47–49 and a first-order approximation of the fractional derivative.

2.2 Computational assays

Six single-lipid bilayers were investigated, using 1,2–dilauroyl–sn–glycero–3–phosphocholine

(DLPC), 1,2–dilauroyl–sn–glycero–3–phosphoethanolamine (DLPE), 1,2–dimyristoyl–sn–gly-

cero–3–phosphocholine (DMPC), DOPC, 1,2–dioleoyl–sn–glycero–3–phospho–L–serine (DOPS),
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and 1–palmitoyl–2–oleoyl–sn–glycero–3–phosphoethanolamine (POPE). These lipids cover a

variety of head groups and acyl-chain lengths, as listed in Table 1. Phosphatidylcholine (PC)

and phosphatidylethanolamine (PE) lipids are electrically neutral, whereas phosphatidylser-

ine (PS) is negatively charged. Figure S1 depicts the chemical structures of the six lipid

species utilized in this work.

The mammalian membrane model features 26 components, comprising 25 lipid types,

which includes phosphatidic acid (PA), PC, PE, PS and phosphatidylinositol (PI) lipids,

as well as cholesterol (Table S1 and Figure S2). It is highly heterogeneous and asymmet-

ric, owing to the distinct compositions in the upper and lower leaflets. Using the model

of Ingólfsson, et al.36 as a reference, we built the all-atom mammalian membrane with the

CHARMM-GUI Membrane Builder.37 The dimensions of the simulation box were approx-

imately 80 Å×80 Å×100 Å. Lipids and cholesterol were distributed asymmetrically across

this membrane, with a slightly different density for cholesterol between the two leaflets. The

mammalian membrane model was equilibrated for 500 ns before an ethanol molecule was in-

troduced into the simulation box. Overall, this asymmetric membrane revealed no apparent

curvature arising from the compositional asymmetry.

Table 1: Details of the six single-species lipid bilayers studied in this work.

Bilayer Headgroup Tail length Tail saturation
DLPC phosphocholine 12:0 saturated
DLPE phosphoethanolamine 12:0 saturated
DMPC phosphocholine 14:0 saturated
DOPC phosphocholine 18:1 unsaturated
DOPS phosphoserine 18:1 unsaturated
POPE phosphoethanolamine 16:0/18:1 mono-unsaturated

The six single-lipid bilayers were built using the CHARMM-GUI membrane builder.37

The pure-lipid bilayers consisted of 50 lipid molecules per leaflet, in equilibrium with a water

layer, about 22 Å thick. The final computational assays had an area in the x, y–plane of

about 60 × 60 Å2, and a dimension along the z–direction of Cartesian space ranging between

100 and 120 Å, which corresponds to 5,843–8,221 water molecules. In the case of the DOPS
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bilayer, sodium ions were added to obtain electric neutrality.

For the mammalian membrane, the outer leaflet contained 89 lipid units and 38 cholesterol

molecules, whereas the inner leaflet contained 86 lipid units and 43 cholesterol molecules.

The initial dimensions of the mammalian membrane computational assay model were equal

to 85 × 85 × 94 Å3 after hydration. Sodium and chloride ions were added to obtain electric

neutrality and yield a 0.15 M ionic concentration.

2.3 Molecular dynamics simulations

All the MD simulations reported in this study were performed using NAMD 2.12,50 using the

CHARMM generalized force field (CGenFF) for the short-chain alcohols, the CHARMM36

force field for lipids51 and the TIP3P water model.52 A Langevin thermostat with a damping

coefficient of 1 ps−1 maintained the temperature at 308 K. The Langevin piston method53

was used to keep the computational assays at a nominal pressure of 1 atm. Covalent bonds

involving hydrogen atoms were constrained to their equilibrium length with the Rattle al-

gorithm.54 The Settle algorithm was utilized to constrain water molecules to their equilib-

rium geometry.55 Long-range electrostatic forces were evaluated employing the particle–mesh

Ewald algorithm with a grid spacing of 1.2 Å, while a smoothed 9-Å spherical cutoff was

applied to truncate short-range van der Waals and electrostatic interactions. The r–RESPA

multiple time-stepping algorithm was employed to integrate the equations of motion with an

effective time step of 2 fs for short-range interaction and 4 fs for long-range interactions.56

2.4 Free-energy calculations

To determine the PMF, w(z), underlying the translocation of ethanol across the different

lipid bilayers, the importance-sampling ABF algorithm46 was employed. The free-energy

profiles were determined by integration of the average force exerted along the transition

coordinate,57–59 defined as the projection onto the z–direction of Cartesian space, i.e., the

normal to the membrane, of the Euclidean distance separating the center of mass of ethanol
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from that of the lipid bilayer. The total permeation pathway spanned 90 Å, i.e., −45 ≤ z ≤

+45 Å. To enhance computational efficiency, the permeation pathway was broken down into

nine windows, each 10 to 15 Å wide, and overlapping sequentially over 5 Å. In each window,

the transition coordinate was discretized into bins 0.1 Å wide, in which samples of the local

force acting along z were accumulated.46

As a preamble to each PMF calculation, an initial 100-ps equilibration in the isobaric–

isothermal ensemble was performed prior to steered molecular dynamics (SMD) simulations,

in which ethanol was pulled irreversibly from z = −35 to +35 Å across the lipid bilayer

at a speed of 5 Å/ns, resulting in a total simulation time of 100 ns. From each SMD

trajectory, nine configurations were extracted, corresponding to the nine initial positions of

the permeant, i.e., z =−35, −30, −20, −10, 0, +10, +20, +30 and +35 Å. Each configuration

was subject to a long equilibration of up to 100 ns (Table S1).

The uncertainty in w(z) was estimated by considering the deviation of the gradients

between the two halves of the trajectory in each window,16 denoted as g1s(z) and g2s(z), re-

spectively. The error of the final gradient is denoted as Err[g(z)] =
∣

∣g1sym(z)− g2sym(z)
∣

∣ /2,

where g1sym(z) and g2sym(z) were obtained through anti-symmetrizing the gradients g1s(z) and

g2s(z). The uncertainty at the edge of the simulation box was set to zero, i.e., Err[w(a)]=0,

where a = ±45 Å. The uncertainty of w(z) originates from the integration of uncertain gra-

dient values from the edge of the simulation box. Taking the assumption that the gradients

at each value of z are statistically independent, the error associated to the PMF, Err[w(z)],

was calculated from Err[g(z)] as:

Err[w(z)] =

∣

∣

∣

∣

∫ z

a

dz′ Err[g(z′)]2
∣

∣

∣

∣

1

2

(4)

2.5 Modeling the free-energy landscape

As an alternative to the computationally intensive determination of the PMF underlying

permeation, we modeled the latter by means of alchemical transformations, whereby the
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permeant is reversibly coupled to its environment at fixed values of the transition coordinate.

Creation and annihilation of ethanol were performed with the POPC computational assay,

employing free-energy perturbation41,42 (FEP) at five distinct positions along half of the

permeation pathway, namely z = 0, 4, 13, 22 and 30 Å. Reversible coupling at each point

was broken down into 20 strata, i.e., ∆λ = 0.05, and the simulation time per stratum was

10 ns, including 0.5 ns of equilibration. The model PMF was recovered by interpolating the

five free-energy values using a piecewise cubic Hermite interpolating polynomial.

To reduce further the cost incurred in membrane permeability estimation through map-

ping of the free-energy landscape that underlies permeation, we turned to the calculation of

relative quantities, using FEP. The PMF for 1-propanol and 1-butanol was modeled through

a sequence of point mutations, whereby ethanol was transformed into 1-propanol, and 1-

propanol into 1-butanol. The thermodynamic cycle describing the series of mutations is

depicted in Figure S3. Leaning on the PMF characterizing ethanol permeation through the

POPC bilayer, we performed the alchemical transformations in both the bulk water and

membrane environments. The PMF underlying 1-propanol permeation at a given value z,

denoted as wB(z), as illustrated in Figure S3, can be recovered from the knowledge of the

PMF underlying ethanol permeation, wA(z), at the same value of the transition coordinate:

wB(z) = wA(z) + ∆G3
alch −∆G1

alch (5)

In turn, the PMF underlying 1–butanol permeation, wC(z), was inferred from the muta-

tion of 1–propanol into 1–butanol in the aqueous and lipid environments, using FEP calcu-

lations:

wC(z) = wB(z) + ∆G2
alch −∆G4

alch (6)
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2.6 Kinetic modeling

The position-dependent fractional diffusivity estimation, Kα(z), and the fractional order,

α(z), were inferred from the ABF trajectories. For each of the nine windows forming the

permeation pathway and the seven computational assays, we simultaneously optimizedKα(z)

and α(z), using a Bayesian-inference scheme, whereby the trajectory of the permeant is

discretized into sets of displacements over appropriate lag times, ∆t. The lag time, ∆t

must be chosen long enough, so that the motion of the permeant is diffusional rather than

ballistic.16

In this work, concomitantly with the computationally efficient approach put forth to in-

terpolate the PMF based on a limited set of FEP calculations, we propose to approximate

Kα(z). Five points are carefully chosen to represent the characteristic features of the frac-

tional diffusivity profile, most notably the diffusivity plateau in the tail region and the bump

at the center of the lipid bilayer. Additional points are included in the aqueous phase and

in the hydrophobic core of the lipid bilayer using our knowledge of Kα(z) for a given type

of lipid. The complete fractional diffusivity profile was then recovered by interpolating the

estimate of Kα at the different values of z, employing a piecewise cubic Hermite interpolating

polynomial.

3 Results and Discussion

3.1 Translocation free energy, diffusivity and permeability of single-

lipid bilayers to ethanol

Using the ABF algorithm, we determined the free-energy profiles underlying permeation

of ethanol through six single-lipid bilayers, namely, DLPC, DLPE, DMPC, DOPC, DOPS,

and POPE. The aggregate simulation time for each system, shown in Table 2, spans the

multi–µs timescale — roughly 2.4–4.5 µs. Convergence of our calculations was assessed
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based on the free-energy difference between the aqueous phases above and below the lipid

bilayer (z = ±45 Å), i.e., the hysteresis. All simulations were pursued until the hysteresis

fell below kBT . Given that the two leaflets are identical in single-lipid bilayers, their free-

energy profiles were then symmetrized by anti-symmetrizing the gradients (Figure 1). In the

following analysis, we focus on three regions of the PMFs, namely the barrier region centered

at z = 0, the interfacial peak around z = ±20 Å, and the interfacial valley around z = ±10 Å.

The latter two regions reside above and below the lipid-water interface, corresponding to

the local free-energy maxima and minima in the PMFs, respectively, i.e., the stationary

points. The observation that the most favorable location for ethanol is near the water–

lipid interface, most notably for PC lipids, is congruent with magic-angle spinning nuclear

Overhauser enhancement spectroscopy data.60

Table 2: Simulation time (t) of the ABF calculations and the free-energy values (w(z), unit:
kcal/mol) at the peak and valley regions in each lipid bilayer. The width of the free-energy
barrier is also provided, defined as the distance along z between the two points with half the
peak w(z) on the PMFs.

Bilayer t (µs) peak w(z) valley w(z) barrier width (Å)
DLPC 3.2 2.5 −0.2 6.2
DMPC 4.5 2.7 −0.3 9.1
DOPC 2.7 2.6 −0.4 14.7
DLPE 2.5 3.0 0.4 15.9
DOPS 3.6 2.9 −0.3 18.3
POPE 4.5 3.0 0.2 20.1
Mammalian 3.6 3.5 −0.2 23.8
Aggregate simulate time (µs) 18.9

The free-energy barriers against ethanol permeation range from 2.5 to 3.0 kcal/mol among

the six single-lipid bilayers examined here. Consistent with previous findings,17,24 these

values indicate that lipid bilayers do not present a huge barrier against the permeation of

this short-chain alcohol. Overall, while the PMFs share similar features, both the height

of the barrier and the width of its plateau are markedly different among the different lipid

bilayers considered here. For instance, DLPC, which has the shortest (12-carbon) acyl chain

and a relatively bulky head group, corresponds to the narrowest barrier, namely 6.2 Å wide

14







to water of the lipid bilayers utilized in the present work were also found by Mathai et al.62

to span an order of magnitude, DLPE being the least permeable and DOPC, the most per-

meable. At the computational level, following a strategy akin to ours, albeit with a distinct

force field, Ghaemi et al.24 estimated the permeability of a POPC bilayer to ethanol to be

equal to 0.085 cm/s, i.e., an order of magnitude lower than ours. In general, Pm depends on

both the lipid head group and tail structures. We discuss this dependence in more detail in

the following section.

Table 3: Calculated membrane permeability, Pm, of various lipid bilayers to ethanol. The
Pm value for POPC is taken from Comer and Chipot.17

.

Lipid Bilayer Pm (cm/s)
DLPC 1.31 ± 0.08
POPC 0.81
DMPC 0.66 ± 0.05
DOPC 0.59 ± 0.03
DLPE 0.32 ± 0.02
DOPS 0.31 ± 0.01
POPE 0.29 ± 0.04
Mammalian 0.12 ± 0.01

3.2 Ethanol permeation across a mammalian membrane model

In addition to the six single-lipid bilayers described above, we examined the permeability to

ethanol of a mammalian membrane model containing 25 lipid species and cholesterol. An

all-atom system was constructed based on the coarse-grained (CG) mammalian membrane of

Ingólfsson et al.36 Given the limited size of our patch (≈ 80 ×80 Å2), not all lipid species from

their CG membrane (in excess of 60) were included in our model. The resulting lipid mixture

represents, to the best of our knowledge, the most sophisticated membrane model employed

in atomistic permeability calculations to date. Following the same protocol followed for

the single-lipid bilayers, we determined the PMF of ethanol permeation across the entire

membrane, while keeping track of the free-energy difference between the two bulk water
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regions as a measure of convergence. Given the heterogeneous, asymmetric nature of the

membrane, its PMF was not symmetrized a posteriori, although the residual free-energy

difference (∼0.3 kcal/mol) between the two bulk water regions was evenly spread over the

final PMF.

The height of the free-energy barrier against ethanol permeation is 3.5 kcal/mol in the

mammalian membrane. While this barrier is only slightly higher than that for the six single-

lipid bilayers (2.5–3.0 kcal/mol), its width (23.8 Å) is significantly larger than that of the

other bilayers. Overall, the mammalian membrane exhibits the greatest resistance to ethanol

permeation among all systems studied here (Table 3). Its Pm value of 0.12 cm/s is approxi-

mately an order of magnitude smaller than that of the most permeable DLPC bilayer. Out

of the six single-lipid bilayers, Pm for the POPE bilayer best mimics that of the mammalian

membrane, with the former representing an approximately two-fold overestimation of the

latter. This result is explained by the fact that the form of the PMF of the POPE bi-

layer most closely mimics that of the mammalian membrane, both in terms of the barrier

height and width, as well as the amplitudes of the interfacial peaks and valleys. Interestingly

enough, the value of Pm reported previously for the POPC bilayer17 (0.81 cm/s) deviates sig-

nificantly from that of the POPE bilayer and the mammalian membrane. Considering that

PC lipids are the most abundant phospholipid species in a mammalian membrane65 and

POPC is routinely used to construct model plasma membranes, this deviation may come as

a surprise. Further analysis of lipid structural properties, as detailed below, indicates that

this result can be largely explained by the presence of cholesterol, as well as various charged

lipid species, which produce a more densely packed mammalian membrane, compared with

a pure POPC bilayer.

3.3 Effect of the lipid structure on ethanol permeation

Despite the similarities in shape of the free-energy and diffusivity profiles for the six single-

lipid bilayers studied here, our results underscore the influence of lipid structure on membrane
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in Figure 4, the head group EDP of a PE lipid has a smaller peak compared to PC and PS

lipids, consistent with the less bulky head group structure of the former than the latter two.

On top of such a size difference, hydrogen bonding capabilities clearly differ among the three

head groups (Table 4), with PE and the negatively charged PS forming, on average, an order

of magnitude more hydrogen bonds than the PC lipids. The smaller head group of PE along

with its greater hydrogen-bonding capability contributes to a significantly smaller APL than

the corresponding PC lipids (Table 4), which, in effect, “squeezes out” the free volume within

the tail region of a PE bilayer, thereby, widening its PMF barrier, while increasing its height.

This difference may also explain the more pronounced interfacial valley in the PMFs for the

PC bilayers. Among the six single-lipid bilayers studied here, the influence of the head group

is perhaps the most dramatic in the comparison of DLPC versus DLPE, where the carbon

EDP of the former bilayer is only half the value of that of the latter (Figure 4). Consistent

with such discrepant EDPs, DLPC also exhibits less order than DLPE across the entire acyl

chain. The relatively low carbon density in the interfacial region of DLPC facilitates the

penetration of water into the lipid bilayer, which may also contribute to lowering the work

incurred in ethanol permeation in this region.

Comparing the mammalian membrane with the single-lipid bilayers discussed previously

reveals intriguing structural features. For instance, analysis of the average number of hydro-

gen bonds involving any single lipid in a given configuration indicates that compared with a

PC bilayer, the components of the mammalian membrane form much stronger interactions

both with one another and with water. Just like in single-lipid bilayers, strong head group

interactions tend to produce a densely packed membrane. Indeed, with the exception of

DLPE, all six single-lipid bilayers examined here have APL values above 60 Å2, while that

of the mammalian membrane is only 50.2 Å2, in line with 51.3 Å2 found using the CG model

by Ingólfsson et al.36 We note, however, that the APL value of the mammalian membrane

ought to be interpreted with caution, since its lipid components vary considerably in size.

Nonetheless, its carbon EDP shown in Figure 4 reveals that the mammalian membrane is
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Table 4: Average number of hydrogen bonds (H-bond) between lipid and water (L-W) and
between lipid molecules (L-L), as well as the area per lipid (APL) of various bilayers studied
in this work. Average H-bond number was obtained by first dividing the total L-W or L-L
H-bond numbers at a given simulation frame by the number of lipids and then averaging
over a given simulation trajectory.

Bilayer H-bond (L-W) H-bond (L-L) APL (Å2)
DLPC 4.1×10−2 1.2×10−2 66.8
DMPC 4.0×10−2 1.7×10−2 65.4
DOPC 3.9×10−2 1.5×10−2 72.1
DLPE 52.0×10−2 17.3×10−2 58.1
DOPS 41.0×10−2 23.0×10−2 67.9
POPE 52.1×10−2 15.8×10−2 61.1
Mammalian 25.0×10−2 10.3×10−2 50.2

can be recovered using FEP calculations and interpolation. The computational cost for each

assay, as shown in Table S3, is significantly reduced, while the estimate of the membrane

permeability deviates by no more than 25% from the reference PMF obtained using the ABF

algorithm.

The free-energy profile of ethanol permeation inferred from FEP calculations and interpo-

lation, hereon referred to as the low-resolution result, is shown Figure 5 and compared with

the PMF from reference 17. The PMF obtained via ABF from reference 17, hereon referred

to as the high-resolution result, features a minimum of the free energy around ±13 Å, which

corresponds with ethanol molecule being oriented so that its hydroxyl group lies near the

lipid head-groups while its hydrophobic ethyl moiety makes contact with the lipid tails.17 It

is worth noting that the value of z at which the FEP calculations were carried out (marked

as circle) were intentionally chosen to match the stationary points of the PMF, so that the

interpolation can recover its key features with utmost accuracy. The values of z at the bar-

rier and in the valley correspond to a free energy remarkably close to the one obtained using

ABF, with a deviation of about 5%. The free energy is, however, somewhat underestimated

by 20% at the peak in the head-group region.

The PMF describing 1-propanol permeation was determined by measuring the free-energy

difference associated with the mutation of ethanol at the aforementioned five stationary
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points. Similarly, the PMF for 1-butanol permeation was obtained through mutation of

1-propanol at each point. Both PMFs are shown in Figure 5. Interestingly enough, the

position of the minimum shifted slightly away from the interfacial region as the acyl chain

length of the alcohol increased, evolving from 14 Å for ethanol to 12 Å for 1-butanol. It is

also noteworthy that although we performed extensive sampling to ensure the quality of the

FEP calculations (200 ns at a given value of z), convergence was in fact well achieved within

40 ns (Figure S4).

The approximated diffusivity profiles describing short-chain alcohols are shown in the

bottom row of Figure 5, which reveals a good agreement with the fractional diffusivity profiles

obtained in reference 17. The calculated permeability values, using the PMFs obtained via

FEP and the approximate diffusivity profiles, are shown in Table 5. For ethanol, the Pm value

obtained by the above approximate, low-resolution method (Pm (Low-resolution) in Table 5)

shows the least deviation from that obtained with the ABF and fractional diffusivity profiles

(Pm (High-resolution) in Table 5), with a difference of 13%. 1-propanol, on the other hand,

shows a larger deviation of 25%. The estimated permeability does not appear to be overly

sensitive to the choice of the sampling points used in the FEP calculation. For instance,

shifting the FEP sampling point at the valley region of the PMF from 13 Å to 15 Å, results

in permeability values (Pm (Low-resolution, shifted) in Table 5) that differ by roughly 5%

from the Pm (Low-resolution) result.

Table 5: Calculated permeability Pm (unit: cm/s) of ethanol, propanol and butanol in
POPC using ABF (“High-resolution”) and FEP (“Low-resolution”). FEP calculations were
performed at z = 15 Å instead of z = 13 Å for the “Low-resolution, shifted” result.

Alcohol Pm (High-resolution) Pm (Low-resolution) Pm (Low-resolution, shifted)
Ethanol 0.81 0.71 0.68
Propanol 2.31 1.73 1.69
Butanol 7.30 5.84 5.60
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be avoided. At a quantitative level, the free-energy landscapes can be markedly different

from two distinct standpoints. On the one hand, short-tail lipids yield a narrow barrier in

the hydrophobic region. On the other hand, the bulkier head groups of PC and PS lipids

result in a more pronounced free-energy dip beneath the interfacial region.

Among the six single-lipid bilayers examined here, the membrane permeability estimate

provided by POPE provides the best agreement with the reference mammalian membrane. In

contrast, the membrane permeability obtained previously in POPC17 is over six times greater

than that of the mammalian membrane. Thus, for the membrane permeability estimation of

small alcohols, the mammalian membrane is in fact best mimicked by a single-species bilayer

with a relatively small lipid head group. Given that PC lipids constitute the most abundant

phospholipid species in a mammalian membrane,65 this behavior is somewhat surprising. It

is likely explained by the presence of cholesterol as well as various charged lipid species, which

effectively “condense” the mammalian membrane, rendering it in closer resemblance to a PE

bilayer with relatively small lipid head groups. Therefore, while a mixed, heterogeneous

membrane still provides the best approximation to a mammalian membrane, if a single-

lipid bilayer has to be adopted in permeability estimation, a POPE bilayer appears to be a

better candidate than the more commonly used POPC. One legitimate question that arises

from the investigation of permeation events, most notably with a mammalian membrane

model, is the convergence of the free-energy calculation. In particular, it remains unclear

whether the permeant interacted with all the components of the membrane on the timescale

of our simulation. Inspection of the trajectory shows diffusion throughout x, y–plane that

over the range of z values explored within the allotted time of 3.6 µs, though satisfying

this necessary condition may not be sufficient to guarantee the correct reproduction of the

membrane permeability to the short-chain alcohol. In the context of modeling permeation

events, it is of paramount importance to correctly describe the membrane structure, which

can be partially characterized by the average area per lipid. The area per lipid has been

recognized to correlate with the membrane permeability66 — a criterion that in light of the
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data of Ingólfsson et al.36 appears to be met in our simulations.

At the core of theoretical predictions of the membrane permeability to small molecules,

evaluation of the potential of mean force that underlies the permeation event represents

the bulk of the computational investment. Imposing a maximum hysteresis of about kBT

across the entire reaction pathway, i.e., 90 Å, results in simulation times ranging from 2.5

to 4.5 µs, which roughly corresponds to 3–5 days of computation on a commodity cluster

equipped with latest-generation graphics cards. These staggering wall-clock times preclude

high-throughput screening of large sets of permeants, and are, therefore, incompatible with

the requirements of drug discovery in nonacademic environments, thus, providing a ratio-

nale for turning to approximate approaches. The similar features of the position-dependent

diffusivity profiles and potentials of mean force obtained for a congeneric series of substrates

permeating the same homogeneous, single-lipid bilayer further suggest that these curves can

be modeled from the knowledge of their stationary points. Here, we have shown that the

potential of mean force characterizing permeation can be described without perceptible loss

of resolution by five points corresponding to distinct values of z, whereby the substrate is

coupled reversibly to its environment, employing bidirectional FEP calculations. Hence, with

a very modest computational investment of 40 ns per point, that is 0.2 µs per permeant, the

effective cost of a potential of mean force is reduced by an order of magnitude compared to

a conventional computation of the full potential of mean force. Moreover, we have modeled

the position-dependent diffusivity profiles by means of a simple sigmoid function, leaning on

the theoretical estimate of the self-diffusion of the permeant in a bulk aqueous environment.

Investigation of ethanol permeation indicates that the membrane permeability determined

following an approximate strategy falls within 25% from the reference quantity obtained from

ABF simulations and Bayesian inferences. Deviation from the reference membrane perme-

ability stems primarily from offset maxima and minima in the fitted potential of mean force

compared with the ABF free-energy profile, but can be reduced at the price of introducing

additional points along the transition coordinate, z, and running FEP calculations at these
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points. Although compromising between cost and accuracy is necessary to reconcile the

modeled free-energy profile with that supplied by a full-fledged ABF calculation, a modest

computational investment appears to be sufficient for the purpose of ranking substrates with

respect to their membrane permeability. Reliability of the approximate strategy remains,

however, contingent on presumptive knowledge of the stationary points of the free-energy

landscape, which, to a large extent, constitute a signature of the lipid bilayer.

In pharmaceutical development, one is generally more interested in ranking drug candi-

dates according to specific properties, e.g., their binding affinity towards a target protein,

than in absolute quantities, which rationalizes the popularity of relative free-energy calcula-

tions in drug discovery. Under these premises, we have proposed a natural extension of the

FEP-based approximate strategy to determine the relative membrane permeability between

different permeants. At the stationary points of the free-energy landscape, instead of cou-

pling it reversibly from the environment, the substrate is transformed alchemically into an

alternate one by means of FEP calculations. Mapping the potential of mean force underlying

permeation of a reference substrate is recommended for proper estimation of the values of

z at which point mutations will be performed, because the latter will be utilized to recover

the free-energy profile of the alternate substrate. Successive alchemical transformation of

ethanol into 1-propanol and 1-butanol underscores that while the membrane permeability

departs somewhat from the reference quantity determined from first principles, its increase

with the length of the alkyl chain is suitably reproduced, which should be appropriate for

drug-ranking purposes. Moreover, the present approximate strategy may prove advantageous

for bulky substrates that only differ by one functional group, in which event calculation of

the potential of mean force underlying permeation constitutes an insuperable obstacle for

the study of large sets of permeants. Considering the affordable computational investment of

40 ns per point, that is 0.2 µs per permeant, it represents an appealing, viable alternative to

a rigorous approach resting on explicit mapping of the PMF coupled with Bayesian inference

of the diffusivity.
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(4) Mathai, J. C.; Missner, A.; Kügler, P.; Saparov, S. M.; Zeidel, M. L.; Lee, J. K.; Pohl, P.

No facilitator required for membrane transport of hydrogen sulfide. Proceedings of the

National Academy of Sciences 2009, 106, 16633–16638.

28



(5) Giorgi, E.; Stein, W. The transport of steroids into animal cells in culture. Endocrinol-

ogy 1981, 108, 688–697.

(6) Dobson, P. D.; Kell, D. B. Carrier-mediated cellular uptake of pharmaceutical drugs:

an exception or the rule? Nature reviews Drug Discovery 2008, 7, 205.

(7) Kell, D. B.; Dobson, P. D.; Oliver, S. G. Pharmaceutical drug transport: the issues

and the implications that it is essentially carrier-mediated only. Drug Discovery Today

2011, 16, 704–714.

(8) Matsson, P.; Fenu, L. A.; Lundquist, P.; Wísniewski, J. R.; Kansy, M.; Artursson, P.
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Supporting Information

Table S1: Equilibration time of systems initiated from different snapshots of the SMD tra-
jectory. z refers to the Euclidean distance between center of mass of the permeant to the
center of a lipid bilayer projected along the membrane normal.

z (Å) Equilibration time (ns)
±35 10
±30 25
±20 50
±10 100

0 100

1



Table S2: Composition of the mammalian membrane model simulated in this work. The
membrane contains altogether 26 types of components, with 127 and 129 molecules in its
upper and lower leaflet, respectively. Lipid names correspond to residue names used by the
CHARMM36 force field.

Lipid No. (upper leaflet) No. (lower leaflet)
ASM 1 2
CER241 0 1
CHL1 38 43
DAPE 6 1
DOPC 1 1
DOPE 3 1
LSM 2 3
NSM 6 12
OSM 0 1
PLPC 12 26
PLPE 7 2
PLPS 2 0
POPA 1 0
POPC 8 17
POPE 8 2
POPI14 1 0
POPI2A 1 0
POPI33 1 0
POPS 3 0
PSM 4 9
SAPC 2 4
SAPE 7 2
SAPS 7 0
SDPC 0 1
SDPE 3 1
SDPS 3 0

2



Table S3: Computation time for FEP calculations of short-chain alcohols. Each FEP cal-
culation was performed in 20 windows, during which the coupling parameter λ was varied
from 0 to 1. We simulated each window for 10 ns, resulting in a total of 200 ns for the FEP
calculation at a given z.

z (Å) Total simulation time (ns)
0 200
4 200
13 200
22 200
30 200

Aggregate simulate time (µs) 1
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Figure S1: Chemical structures of molecules from six single-species lipid bilayers studied in
this work.
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Figure S2: Top (top) and side (bottom) views of the all-atom mammalian membrane model.
For clarity, water and ions were not shown.
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Figure S3: Thermodynamic cycle of short-chain alcohol mutation. The subscripts ‘aq’ and
‘memb’ stand for the aqueous solution and the lipid membrane, respectively.
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