

1 **Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial**
2 **Topological Constraints**
3

4
5 LIANG ZHAO, George Mason University, USA
6

7 OLGA GKOUNTOUNA, George Mason University, USA
8

9 DIETER PFOSER, George Mason University, USA
10

11 Spatial regression models are widely used in numerous areas, including detecting and predicting traffic volume, air pollution, and
12 housing prices. Unlike conventional regression models, which commonly assume independent and identically distributions among
13 observations, existing spatial regression requires the prior knowledge on spatial dependency among the observations in different spatial
14 locations. Such spatial dependency is typically predefined by domain experts or heuristics. However, without sufficient consideration
15 on the context of the specific prediction task, it is prohibitively difficult for human to pre-define the numerical values of the spatial
16 dependency without bias. More importantly, in many situations, the techniques are insufficient to sense the complete connectivity and
17 topological patterns among spatial locations (e.g., in underground water network and human brain network). Until now, these issues
18 are still extremely difficult to address and little attention has been paid to the automatic optimization of spatial dependency in relation
19 to a prediction task, due to three challenges: 1) necessity and complexity of modeling the spatial topological constraints; 2) incomplete
20 prior spatial knowledge; and 3) difficulty in optimizing under spatial topological constraints which are usually discrete or nonconvex.
21 To address these challenges, this paper proposes a novel convex framework that jointly learns the prediction mapping and spatial
22 dependency automatically based on spatial topological constraints. There are two different scenarios to be addressed. First, when the
23 prior knowledge on existence of conditional independence among spatial locations is known (e.g., via spatial contiguity), we propose
24 the first model named Spatial-Autoregressive Dependency Learning I (SADL-I) to further quantify such spatial dependency. However,
25 when the knowledge on the conditional independence is unknown or incomplete, our second model named Spatial-Autoregressive
26 Dependency Learning II (SADL-II) is proposed to automatically learn the conditional independence pattern as well as quantify the
27 numerical values of the spatial dependency, based on spatial topological constraints. Topological constraints are usually discrete
28 and nonconvex which is extremely difficult to be optimized together with continuous optimization problem of spatial regression. To
29 address this, we propose convex and continuous equivalence of the original discrete topological constraints with theoretical guarantee.
30 The proposed models are then transferred to convex problems which can be iteratively optimized by our new efficient algorithms until
31 convergence to a global optimal solution. Extensive experimentation using several real-world datasets demonstrates the outstanding
32 performance of the proposed models.
33

34 Additional Key Words and Phrases: Spatial auto-regressive, spatial topological constraints, Alternating Direction Method of Multipliers,
35 graphical LASSO
36

37
38
39
40
41
42 Authors' addresses: Liang Zhao, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA, lzha09@gmu.edu; Olga Gkountouna, George
43 Mason University, 4400 University Drive, Fairfax, VA, 22030, USA, beranger@inria.fr; Dieter Pfoser, George Mason University, 4400 University Drive,
44 Fairfax, VA, 22030, USA.
45

46 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
47 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
48 of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
49 redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
50 © 2019 Association for Computing Machinery.
51 Manuscript submitted to ACM
52

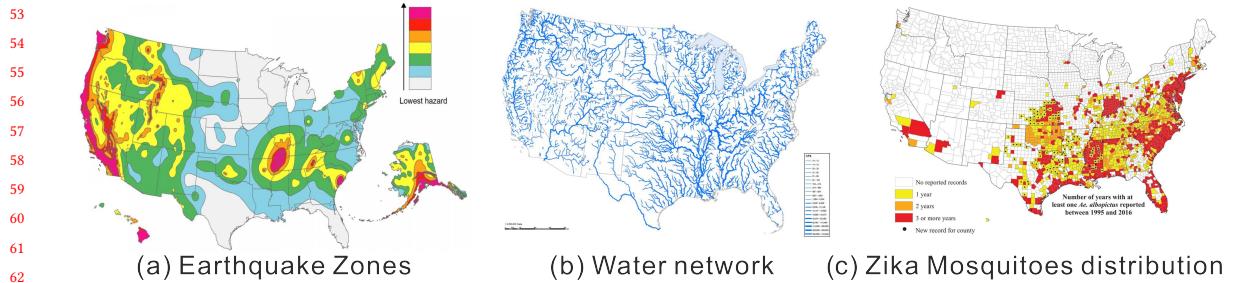


Fig. 1. Spatial dependency varies across different application backgrounds.

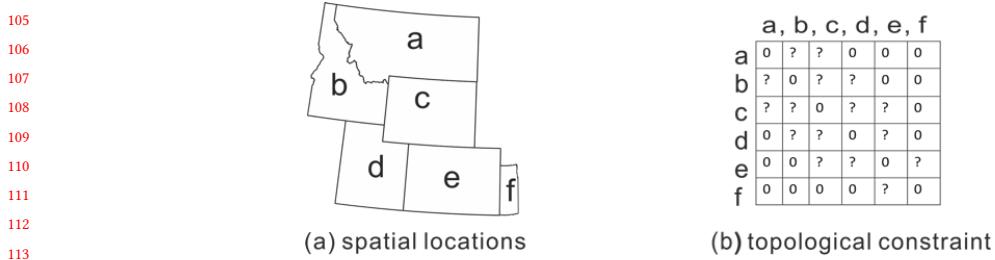
ACM Reference Format:

Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. 1, 1 (May 2019), 27 pages. <https://doi.org/10.1145/nnnnnn.nnnnnn>

1 INTRODUCTION

Spatial regression is an important research area that has applications in domains such as predicting traffic volume, home prices, and the pollution index [38]. A core characteristic of spatial regression relates to Tobler's first law of geography, which states that "Everything is related to everything else, but things that are nearby are more related than distant things" [43]. This aspect is contradicting to the "independent and identically distributed (i.i.d.)" assumption, which is typically applied to conventional regression problems. In spatial data mining and spatio-temporal statistics, various spatial regression models have been proposed to address this type of non-i.i.d. problems. The most-commonly used models tend to be the spatio-autoregressive model and its variants, which enforce the smoothness of data values within geographical neighborhoods. Over the years, numerous spatial autoregressive models have been developed and widely utilized, such as spatial Durbin, geographically weighted models, spatial X, and spatial panel models [38]. All these prediction models require prior knowledge of the spatial dependency, which is usually pre-defined by domain experts or estimated by heuristic distributions [11].

Contiguity matrix [3] is widely used to define the dependency among spatial locations which are considered as nodes and their connections are determined by the existence of contiguity. Contiguity matrix assumes that contiguous locations that share boundaries have the same strength of dependency. Unfortunately, this is usually not the case, as the connectivity strength among locations could be different due to the various lengths of the shared boundary, the distance between different locations, and even the sizes and shapes of the spatial regions. To account for such aspects, some spatial statistics methods consider the boundary length, the distance between locations, or the spatial autocorrelation statistics [11] as heuristics for estimating the actual spatial dependency. However, the actual strength of the spatial dependency for a set of locations can neither be completely determined solely by the boundary length, nor by the distance or autocorrelation statistics, but tends to be a comprehensive combination of all the (explicit and implicit) relevant factors. Two locations can be correlated in various ways, for example by sharing the same earthquake zone or being passed through by the same highway. Two nearby and contiguous locations can also be less correlated if they are separated by mountains or bodies of water. More importantly, the spatial dependency normally comes with context, so the strength of their spatial dependency could vary across different prediction tasks. As shown in Figure 1, the dependency between the states of Louisiana and Arkansas is weak in terms of earthquakes but very strong in terms of their shared water network. Similarly, the correlation between Florida and South Carolina is high in terms of their



157 In order to address all the above challenges, this paper proposes a generic Spatial Autoregressive Dependency
 158 Learning (SADL) framework to solve a general spatial regression problem with incomplete prior knowledge on spatial
 159 connectivity and topological constraints. The SADL framework jointly learns the prediction mapping from inputs to
 160 outputs and the spatial dependency, under various amounts of available prior knowledge. When the spatial conditional
 161 independency is available which provides the binary information on the existence (or not) of connection between
 162 any pair of locations, we propose the model SADL-I that further optimizes the quantitative strength of the spatial
 163 dependency among all the locations. Take Figure 2 as an example, here the six locations are treated as six nodes, two
 164 nodes have connection if they are contiguous. So the connectivity only tells us which values in adjacency matrix are
 165 nonzeros as shown in Figure 2(b). For example, there is no connection between ‘a’ and ‘d’ while there is connection
 166 between ‘a’ and ‘b’. But although we know the existence of such connection, we still do not know the strength of it. For
 167 example, the strength of connectivity between ‘a’ and ‘b’ might be different from that between ‘c’ and ‘d’. Therefore,
 168 instead of using heuristics to define it agnostic to the prediction tasks, SADL-I is developed to optimize the strength
 169 of the connectivity, namely the specific numerical values of those nonzero entries marked by ‘?’ in Figure 2(b). For
 170 the cases where the prior information on conditional independency is incomplete and only the higher-level spatial
 171 topological constraints are available, we propose another convex model, SADL-II, which learns both the conditional
 172 independency as well as the spatial dependency under the given spatial constraints. To make the discrete spatial
 173 constraints computationally feasible to solve, we propose their convex and continuous equivalence with theoretical
 174 proofs. Effective optimization methods based on Alternating Direction Methods of Multipliers (ADMM) are proposed to
 175 obtain the global optimal solutions for both models efficiently with theoretical guarantees. The major contributions of
 176 this paper are as follows:
 177

- 182
 183
 184 • Propose a novel generic convex framework for simultaneous spatial dependency optimization and spatial
 185 regression. To avoid the bias in the existing methods based on predefined spatial dependence, the proposed
 186 framework instead optimizes the spatial dependence strength among locations based on spatial conditional
 187 independency under spatial constraints. The outputs of the framework provide both high performance and
 188 interpretability of the data and locations.
- 189
 190 • Propose two novel models SADL-I and SADL-II that address different types of prior knowledge. The first model
 191 SADL-I optimizes the strength of spatial dependency based on prior knowledge on the existence (or not) of
 192 spatial connections among locations. When such prior knowledge is incomplete or unavailable, the second
 193 model SADL-II further embeds higher-level spatial topological constraints to directly learn the conditional
 194 independency as well as spatial dependency strength.
- 195
 196 • Develop efficient algorithms for optimizing SADL-I and SADL-II. Algorithms based on ADMM are developed to
 197 decompose the large optimization problems into smaller subproblems, which are then solved efficiently using
 198 their closed forms or projected gradient descent. The newly developed algorithms for SADL-I and SADL-II are
 199 theoretically guaranteed to obtain global optimal solutions after convergence.
- 200
 201 • Conduct extensive experiments on three real-world data sets against several state-of-the-art methods. The
 202 proposed SADL-I and SADL-II methods outperform the best competitor methods by around 10% on average.
 203 In-depth discussions on the parameter sensitivity, convergence, and the discovered spatial dependency conclude
 204 the study.

209 **2 RELATED WORK**

210 **Spatial regression based on spatial correlation.** Spatial prediction has long been of interest to academics as a
 211 branch of spatio-temporal statistics [11]. It characterizes the correlation among the patterns in different geo-locations
 212 and requires the removal of the conventional “independent and identically distributed” assumption on the data. One
 213 way to achieve this is through dependency modeling, where the best known models are spatio-autoregressive (SAR)
 214 [8, 34, 38, 41], spatial Durbin [29], geographically weighted [7], and spatial X [18]. Researchers have generally assumed
 215 that the status of each location is not only determined by its own input, but also by the status of other locations through
 216 their spatial auto-correlation patterns. For example, based on the fixed prior knowledge on the spatial dependency such
 217 as spatial contiguity, feature weights and trade-off parameter were estimated in the SAR models [8, 38]. In addition
 218 to modeling the spatial dependency directly, researchers have also added extra regularization terms to enforce a
 219 “smoothing” across different locations. Regularization terms such as spatial entropy [9] and spatial information gain
 220 are typically utilized for such classification problems. One common way for the regularization of spatial regression is
 221 through graph Laplacian approaches [14], which penalizes the divergence among the parameters of the models for
 222 neighboring locations, and thus the spatial correlation of the models for different locations will be enforced. All the
 223 above methods typically require the existence of some prior knowledge as a heuristic surrogate of the true spatial
 224 correlation strength, such as the spatial adjacency relationship and geographical distance between locations. However,
 225 the real spatial correlation strength is typically not the same as the heuristic estimation and will vary across different
 226 prediction tasks [39]. Farber et al. [15] focuses on performing statistical analysis on how much two specific network
 227 properties influence the performance of three existing models: namely logistic regression (LR), spatial autoregressive
 228 (SAR), and Lagrange multiplier spatial lag dependence model (LM-LAG). Most recently, Ziat et al. [46] proposed to
 229 infer the spatial correlation in time series data, but only focus on predicting the endogenous input variables in future
 230 points. Moreover it cannot consider the topological constraints from spatial prior knowledge when learning the spatial
 231 correlation. Qu et al. [36] present model specification and estimation of the SAR model with an endogenous spatial
 232 weight matrix which however requires strong assumption on their probabilistic distribution. Kelejian and Prucha
 233 [22] estimate the spatial disturbance term that is spatially autoregressive while Li et al. [27] develop a new heuristic
 234 to estimate the spatial dependence, as a suitable alternative to Moran’s statistic. Otto and Steinert [33] as well as
 235 Bhattacharjee and Jensen-Butler [4] both propose two-step lasso estimation approaches to estimate spatial weights
 236 matrix, whereas the joint global optimality cannot be guaranteed due to the separate optimization of each step. In
 237 addition, Lam and Souza [24] focus on a spatiotemporal model setup with exogenous regressors, where the spatial
 238 weight matrix has a block diagonal structure. Lam et al. [25] as well as Ahrens and Bhattacharjee [1] both purely use
 239 LASSO for sparsifying spatial dependency matrix without sufficiently utilizing the exogenous information such as the
 240 spatial conditional independency or spatial topological constraints.

241 **Graph structure learning.** There are basically two types of graph structure learning problems. The first seeks
 242 to learn the selection of the nodes in the graph, such as subgraph detection [21], structured feature selection [17],
 243 and subgraph clustering [29]. The other type learns the selection and weights of the edges in the graph in order to
 244 learn the dependency among the variables [2, 44]. A standard approach for this is based on the classic result that
 245 the zeros in the correlation matrix correspond to zero partial correlations among variables. Numerous works have
 246 focused on learning the precision matrix for graphical models; this problem is particularly relevant to graphical LASSO,
 247 proposed by Banerjee et al. [2] and Friedman et al. [16], and a large variety of alternative penalties have been suggested
 248 to extend the priors of graphical LASSO [13, 20, 45]. Loh et al. [28] focused on inferring the graph structure using
 249

261 discrete Markov Random Fields. Instead of learning the precision matrix, other works have directly estimated the
 262 Laplacian matrix or the adjacency matrix. For example, [12] developed a fitness metric as the surrogate for learning the
 263 graph topology, rather than directly optimizing it. To avoid the bias introduced by the surrogate metric and directly
 264 learn the graph topology, Lake et al. [23] proposed learning an adjacency matrix with a regularized Laplacian matrix.
 265 Dong et al. [14] proposed learning a smoothing regularizer for a given signal using a nonconvex problem formulation.
 266 Unlike the above existing work, this paper focuses on the optimization of the contiguity matrix for spatial locations,
 267 where the final output for each location is determined by both the input and the output of other locations. Moreover,
 268 additional constraints required for this spatial regression problem includes symmetric, non-negative, zero-diagonal,
 269 and spatial topological constraints such as a tree-structure (e.g., a watershed network), a grid-structure (e.g., Manhattan
 270 Neighborhood Network), or a connected subgraph (e.g., an electrical grid network).
 271

272 **Traffic flow prediction.** Traffic flow is traditionally measured using stationary sensors such as induction loops.
 273 Their measurements can be used to train models for the short-term prediction at those locations [26, 32, 40]. This work
 274 uses traffic data from various locations to study the spatial correlation of flow and to train auto-regressive dependency
 275 learning models based on spatial topological constraints of the road network. The fundamental traffic flow diagram [19]
 276 could be used to infer traffic volume from speed and density. However, learning these relationships requires a large
 277 amount of training data, which is not always available for all parts of the road network, an important limitation this
 278 work is able to overcome.
 279

283 3 PROBLEM FORMULATION

284 Denote $X = \{X_t\}_t^T$ as the time-ordered collection of **input data**. Each $X_t \in X$ represents the input data, which are
 285 typically observations from sensors, at time t such that $X_t \in \mathbb{R}^{|S| \times |K|}$ is a matrix for all the spatial locations S and all the
 286 input features K . Naturally, denote $X_{t,s}$ as the data vector at time t in the location s , and denote $X_{t,s,k}$ as the data point
 287 for the feature k in the location s at time t . Similarly, denote $Y = \{Y_t\}_t^T$ as the time-ordered collection of **output data**
 288 to be predicted. Each $Y_t \in Y$ denotes the output data at time t such that $Y_t \in \mathbb{R}^{1 \times |S|}$. Therefore, $Y_{t,s} \in \mathbb{R}$ denotes the
 289 prediction output for location s at time t . In conventional prediction problems, the independent and identity distribution
 290 (i.i.d) condition is typically assumed. However, for spatial prediction, i.i.d condition cannot be held according to the
 291 first law of geography where “everything is related to everything else, but near things are more related than distant
 292 things” [42]. For example, if we want to predict the traffic congestion for a road segment, then the traffic condition of
 293 its adjacent road segments is highly important to be considered since they are correlated instead of being independent
 294 from each other.
 295

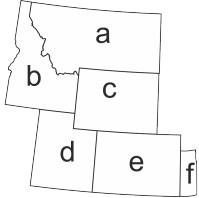
296 Therefore, the problem of spatial prediction can be formulated as follows:
 297

298 **Problem Formulation:** At time τ , given the input signal $X_\tau \in \mathbb{R}^{|S| \times |K|}$ on a set of different locations S with a set of
 299 input features K , we aims at predicting the output Y_t at a future time t by learning a predictive model: $f: X_\tau | D, W \rightarrow Y_t$,
 300 where $W \in \mathbb{R}^{1 \times |K|}$ encodes the weights of the features to the prediction output, and $D \in \mathbb{R}^{|S| \times |S|}$ encodes the spatial
 301 dependencies among all the locations S . For example, $D_{i,s}$ denotes the spatial dependency between locations i and s .
 302 Typically D needs to be non-negative and must follow some reasonable spatial topological constraints (such as road
 303 network and river network). In addition, the lead time is $p = t - \tau$, which means the time span between the current
 304 time τ and future time t .
 305

306 In essence, the prediction of a spatial location is not only determined by the input of this location, but also the output
 307 in other locations: $Y_{t,s} = \sum_{i \in S, i \neq s} \rho \cdot D_{i,s} Y_{t,i} + W \cdot X_{\tau,s} + \varepsilon$, where $D_{i,s}$ denotes the spatial correlation from location i
 308 to location s , ρ is the trade-off parameter balancing the contribution of the input and the location correlation to the
 309 output.
 310

Table 1. Important Notations

Notations	Explanations
S	All the spatial locations
T	All the time intervals
$X_{s,t} \in \mathbb{R}^{1 \times K }$	Input feature vector in location s at time t
$Y_{t,s} \in \mathbb{R}$	Response variable in location s at time t
$D \in \mathbb{R}^{ S \times S }$	Spatial dependency matrix
$W \in \mathbb{R}^{1 \times K }$	feature weights
G	The sets of all the connected components on spatial dependency
$D_g \in \mathbb{R}^{ g \times g }$	The spatial dependency for a connected component g



(a) spatial locations

a, b, c, d, e, f
a 0 1 1 0 0 0
b 1 0 1 1 0 0
c 1 1 0 1 1 0
d 0 1 1 0 1 0
e 0 0 1 1 0 1
f 0 0 0 0 1 0

(b) contiguity relation

a, b, c, d, e, f
a 0 1.3 1.1 0 0 0
b 1.3 0 0.5 0.5 0 0
c 1.1 0.5 0 0.5 0.7 0
d 0 0.5 0.5 0 0.7 0
e 0 0 0.7 0.7 0 0.5
f 0 0 0 0 0.5 0

(c) border length

a, b, c, d, e, f
a 0 0.02 0.02 0 0 0
b 0.2 0 0.15 0.15 0 0
c 0.2 0.15 0 0.05 0.1 0
d 0 0.15 0.05 0 0.1 0
e 0 0 0.1 0.1 0 0.15
f 0 0 0 0 0.15 0

(d) border ratio

a, b, c, d, e, f
a 0 ? ? 0 0 0
b ? 0 ? ? 0 0
c ? ? 0 ? ? 0
d 0 ? ? 0 ? 0
e 0 0 ? ? 0 ?
f 0 0 0 0 ? 0

(e) topological constraint

Fig. 3. The correlation matrix of spatial locations, different conventional heuristics to determine the correlation matrix, and an example of topological constraints leveraged by our method.

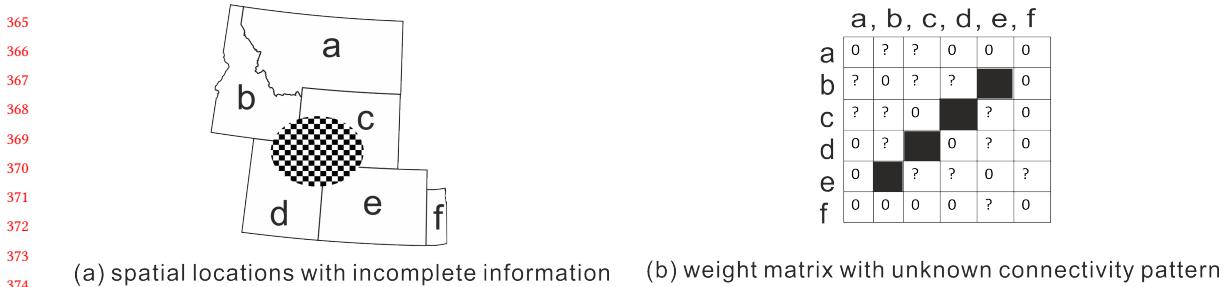
prediction. Using matrix notation, this notion can be concisely rewritten in the following form:

$$Y_t = \rho \cdot D \cdot Y_t + X_t \cdot W^T + \varepsilon, \quad (1)$$

$$\text{where } D \geq 0, \text{diag}(D) = 0$$

which is called *spatial autoregressive model* [23], where $D \geq 0$ denotes that all its elements are nonnegative. $\text{diag}(D) = 0$ means all of its diagonal elements are equal to 0 because a location is not meaningful to be dependent on itself. ε denotes the noise following a Gaussian distribution $\mathcal{N}(0, \sigma)$. The matrix D in the above equation could be further normalized (e.g., row-normalized) to avoid potential the singularity of $I - D$, where I is an identity matrix. However, the framework proposed in this paper can avoid singularity even without row-normalization, which will be introduced in the next section.

Challenges: In the existing works, the spatial dependency matrix D is typically known beforehand. Conventionally, it is determined by external prior knowledge such as the continuity correlation among the locations [29]. These works assume the continuous locations have spatial correlation of “1” if they are contiguous while “0” if they have no contiguity. However, it is prohibitively difficult to accurately determine the spatial dependency only by human prior knowledge and heuristics without bias. Specifically, as shown in Figure 3, there are six spatial locations shown in Figure 3(a) whose spatial contiguity relation is shown by the weight matrix in Figure 3(b). However, it is not reasonable to assume that all the locations share the same strength of spatial correlation. For example, the weight matrix in Figure 3(b) assumes the spatial correlation strengths between locations c and d are equal to that between locations a and b. But obviously the latter has much longer border shared between locations c and d, which cannot be differentiated in Figure 3(b). Figure 3(c), though differentiates the length of the shared border among locations, cannot consider their percentage out of the total lengths. For example, the border between locations c and d, and that between locations e and f are the same in length, but obviously the latter are potentially higher correlated because the percentage of border shared between locations e and f among the total length of all of their borders is much larger than the percentage of border that c and d share. Figure 3(d), though considers the percentage of border, still cannot consider the shapes and other factors that could be critical in determining the spatial correlation strength. **Also, the spatial correlation should differ for**



365 (a) spatial locations with incomplete information (b) weight matrix with unknown connectivity pattern
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375 Fig. 4. The information about the spatial contiguity among locations b, c, d, and e is incomplete (marked by the oval grid mask).
 376 Correspondingly, the absence of spatial dependency between locations c and d, as well as that between locations b and e is unknown,
 377 which is marked as black in the weight matrix D in subfigure (b).

378 **different prediction tasks.** For example, when predicting the air pollution, the contiguous locations are related with
 379 each other. But for predicting the water pollution, the same spatial locations need to correlate under the constraint of
 380 stream networks. **Furthermore, usually the prior knowledge on spatial dependency D is incomplete or only**
 381 **in high-level such as the type of its geographical topology.** For example, in Figure 4, the information about the
 382 spatial contiguity among locations b, c, d, and e is incomplete, which is marked as the oval grid mask in Figure 4(a).
 383 Correspondingly, the existence or absence of spatial connectivity between locations c and d, as well as that between
 384 locations b and e is unknown, which is marked as black in the spatial correlation weight matrix D in Figure 4(b).
 385 Therefore, we need to infer the unknown connectivity among the locations. To achieve this, it is crucial to infer
 386 whether the unknown connectivity exists (nonzero value in the weight matrix) or not (zero value in the weight matrix),
 387 namely to predict whether the black-marked entries in Figure 4(b) is zero or not, and the specific value if nonzero. It is
 388 very challenging to instruct the optimization of D under such partial constraints due to its inherent nature related to
 389 combinatorial and non-convex optimization which will be addressed by our new algorithms elaborated in Section 4.3.
 390
 391
 392
 393

394 4 MODELS

395 In order to address the above challenges, we first propose a generic framework SADL to jointly optimize the spatial
 396 dependency as well as the prediction mapping from the input features. By inserting different prior knowledge on the
 397 spatial topological constraints in SADL, it leads to two different optimization problems. First, when the existence and
 398 absence of connection between any pair of all the spatial locations are known *a priori*, the first model named Spatial
 399 Autoregressive Dependency Learning-I (SADL-I) is proposed to learn the numerical strength of these connections.
 400 Second, when the connectivity among the locations is unknown, the second model named Spatial Autoregressive
 401 Dependency Learning-II (SADL-II) is proposed to automatically learn both the connections and their numerical strength,
 402 following the spatial topological constraint.
 403
 404

4.1 New generic framework for spatial dependency learning

405 The connectivity among different locations commonly exists in reality, such as the connections among the road segments
 406 through a road network, the connections among the segments of rivers among a water network, and the contiguity
 407 relationship among different provinces in a country. Although the binary value on the existence (or not) of connection
 408 is easy to obtain, the strengths of them which are numerical values typically are difficult to be pre-defined accurately.
 409 Specifically, we propose a new framework that is able to learn such numerical values in terms of spatial dependency
 410 during spatial prediction, given the binary-valued existence of connectivity. To avoid the overspecification of spatial
 411

correlation, we propose to leverage topological constraint. Figure 3(e) shows one example of topological constraint, which only specifies which two locations are conditionally independent (shown as “0” in Figure 3(e)) with each other, but empower the model to automatically and adaptively optimizes the values of the strengths of the spatial dependency (namely, the unknown entries with “?” in Figure 3(e)), which is impossible to hand-craft. Our problem is formulated as follows:

This new generic framework can be formulated as the following objective function:

$$\min_{D, W} -\ell\ell(D, W, \sigma^2|Y) + \lambda\mathcal{R}(W), \quad s.t., D \in \mathcal{G} \quad (2)$$

where $-\ell\ell(D, W, \sigma^2|Y)$ is the negative log-likelihood which minimizes the spatial prediction error. $\mathcal{R}(W)$ denotes the regularization term on feature weight W which enforces feature sparsity and ensures model generalizability. And $D \in \mathcal{G}$ is the spatial topological constraints on D based on external prior knowledge. The detailed explanations about all these terms are as follows:

1) The log-likelihood $\ell\ell(D, W, \sigma^2|Y)$.

$\ell\ell(D, W, \sigma^2|Y)$ is the log-likelihood conditioning on the variable Y . The following introduces the deduction of it. According to Equation (1), we have $\varepsilon = (I - \rho \cdot D) \cdot Y_t - X_\tau \cdot W^\top$ which follows the Gaussian distribution $\varepsilon \sim \mathcal{N}(0, \sigma)$, where Y_t denotes the output data at time t . Because we are optimizing D , the scaling factor ρ can be absorbed into D and hence we have $\varepsilon = (I - D) \cdot Y_t - X_\tau \cdot W^\top$. Since it is easy to obtain the likelihood $\ell(\sigma|\varepsilon)$ in terms of the variable ε , we can utilize $\ell(\sigma|\varepsilon)$ to calculate $\ell(D, W, \sigma^2|Y)$ using the well-known Jacobian factor [30]. And finally we can obtain the log-likelihood as shown in the below lemma whose detailed deduction is elaborated in the proof in the appendix section.

LEMMA 1. *The log-likelihood $\ell\ell(D, W, \sigma^2|Y)$ in Equation (2) is calculated as follows:*

$$\begin{aligned} \ell\ell(D, W, \sigma^2|Y) &= \sum_t^\top \frac{1}{2\sigma^2} \|(I - D)Y_t - X_\tau W^\top\|_2^2 \\ &+ \frac{1}{2} \cdot |S||T| \ln(2\pi\sigma^2) - |T| \ln(\det(I - D)) \end{aligned} \quad (3)$$

where $\det(x)$ denotes the determinant of the matrix x . It can be seen that the ρ in Eq. (1) has been absorbed into D . Y is the output data to be predicted and Y_t is the output data for time t .

PROOF. The detailed proof is included in appendix section. \square

2) The regularization on feature weights W .

$\mathcal{R}(W)$ is the regularization term, such as the ℓ_1 -norm for the feature weights W to enforce reasonable sparsity patterns when W has high dimension. The trade-off parameter λ can be selected by cross-validation as detailed in the experimental section.

3) The spatial topological constraint $D \in \mathcal{G}$.

$D \in \mathcal{G}$ is the spatial topological constraint, which needs to be specified according to the prior knowledge that we have on \mathcal{G} . Therefore, in the following two subsections we focus on the two different formulations of \mathcal{G} : 1) **SADL-I Model**: Section 4.2 describes the situation when the complete information of the connectivity among spatial locations is available; and 2) **SADL-II Model**: Section 4.3 elaborates the situation when the connectivity is incomplete or unavailable but the spatial topological constraint is available.

¹For the basics about this equivalence, please refer to [30] and Section 1.2.1 of [5]

469 In addition, it can be seen from Equation (27) that, the aforementioned singularity issue of $I - D$ can be avoided in our
 470 framework, even without doing row-normalization, thanks to the optimization of D . Specifically, as shown in Equations
 471 (27), it minimizes the term of $-|T| \ln(\det(I - D))$, which will avoid $I - D$ to be singular because if it is singular, then the
 472 optimization objective will be positive infinity, which is inherently avoided by our minimization process. Moreover, our
 473 framework is also generic to, and can easily adopt any normalization of matrix D .
 474

475 **Remarks for the novelty of the proposed SADL framework:** The general framework proposed in Equation
 476 2 is new and has never been proposed before, to the best of our knowledge, which is significant and novel in three
 477 specific aspects: 1) *Automatic inference of the weight matrix D* . Existing work typically predefined the matrix D purely
 478 based on human hand-crafting and heuristics. However, as mentioned above, such predefined matrix involves bias and
 479 cannot accurately reflect the true spatial correlation specific to the corresponding prediction task. To address this, our
 480 framework innovatively enables to optimize the matrix D adaptively to minimize the prediction error, based on our
 481 proposed techniques on sparse learning and optimization. 2) *Inclusion of the spatial topological constraints*. Currently,
 482 there is no existing work that has leveraged the spatial topological constraint for the optimization of weight matrix D ,
 483 which is important to many applications as mentioned above but is very challenging to be formulated. This is because
 484 the graph topological related problems are naturally discrete optimization problem typically with discrete constraints,
 485 while the spatial autoregressive is typically continuous optimization problem, and hence it is extremely challenging for
 486 current techniques to jointly address these two types of problem. To address this, we innovatively formulate the original
 487 discrete formulation of spatial topological constraint into its continuous equivalence by our Theorem 1 in Section 5.2. 3)
 488 *Optimization of the new objective with spatial topological constraints*. Specifically, existing spatial autoregressive methods
 489 typically only optimize the scaling factor ρ (see in Equation (1)) and input feature weight W , which can be solved
 490 directly using traditional algorithms such as Expectation-Maximization algorithms. However, the new involvement of
 491 the optimization of the additional matrix D with numerous parameters and nonlinear and nonsmooth constraints on
 492 spatial topologies requires new efficient and effective algorithm to handle this problem. Accordingly, this paper proposes
 493 new optimization methods based on ADMM and proximal operators, which decomposes the original big problem into
 494 equivalent subproblems that are then respectively solved by the new algorithms we designed and presented in Section
 495 5.
 496

502 4.2 SADL-I Model

503 This section present SADL-I Model which can optimize the (numerical) strength of spatial dependency when information
 504 on the existence of connection between any pair of locations is known *a priori*.
 505

506 In many applications, the existence or not of connection among different locations can be prepared accurately without
 507 too much effort. In this situation, it means the sparsity pattern (namely binary information on whether each element is
 508 zero or not) of D can thus be provided *a priori*. And thus the optimization task is to learn the specific weights for those
 509 existing edges (namely those nonzero entries) which represent the corresponding spatial dependency among different
 510 locations. Therefore, we have a constraint $\text{supp}(D) = \mathbb{M}$ where \mathbb{M} denotes the indices of all the existing connections
 511 among the locations based on prior knowledge. Here the function $\text{supp}(x)$ denotes the *support* of a matrix x which is
 512 the set of the indices of all the nonzero elements of x .
 513

514 In addition, spatial dependency is commonly assumed non-negative, namely $D \geq \mathbf{0}$. Also, the concept of spatial
 515 dependency exists only between different locations, which indicates the zero values for the diagonal elements of the
 516 matrix D . Moreover, spatial dependency is typically undirected, which means that if a location A is correlated with
 517 another location B , then B is equally correlated to location A . Therefore, we have $D = D^T$. Thus, the spatial topological
 518

521 constraint can be denoted as:

522

$$523 D \in \mathcal{G}, \text{ where } \mathcal{G} = \{d | d \geq \mathbf{0}, \text{diag}(d) = \mathbf{0}, d \in \mathbb{R}^{|S| \times |S|},$$

524 $d = d^T, \text{supp}(d) = \mathbb{M}\}$ (4)

525

526 And the overall objective function for spatial dependency learning can be written as:

527

528
$$\min_{D, W} \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^T\|_2^2$$

529 $-|T| \ln(\det(I - D)) + \lambda \mathcal{R}(W),$

530

531 $s.t., D \geq \mathbf{0}, \text{diag}(D) = \mathbf{0}, D = D^T, \text{supp}(D) = \mathbb{M}$ (5)

532

533 where the hyper-parameters λ and σ can balance the importance of different terms. These hyper-parameters are
534 determined based on cross-validation in the experimental section.

535

536 LEMMA 2. *The optimization problem in Equation (5) is convex.*

537

538 PROOF. The sufficient condition of the convexity of the first term is that the term $\|DY_t + X_t W^T\|_2^2$ is convex, which
539 is equal to prove the equivalent term $\|\text{mat}(Y_t) \cdot \text{vec}(D) + X_t W^T\|_2^2$, where $\text{vec}(D) \in \mathbb{R}^{|S| \times |S| \times 1}$ is the flattened vector
540 form of the matrix D such that $[\text{vec}(D)]_{(i-1) \cdot |S| + j, 1} = D_{i,j}$, and $\text{mat}(Y_t) \in \mathbb{R}^{|S| \times |S| \cdot |S|}$ is the matrix form of the vector
541 $Y_t \in \mathbb{R}^{|S| \times 1}$ such that $[\text{mat}(Y_t)]_{i, (i-1) \cdot |S| + j} = [Y_t]_{j, 1}$ and all the other elements of $\text{mat}(Y_t)$ are zeros. And it is easy to
542 see that $\text{mat}(Y_t) \cdot \text{vec}(D) = D \cdot Y_t$ and that $\|\text{mat}(Y_t) \cdot \text{vec}(D) + X_t W^T\|_2^2$ is convex due to the fact that the Hessian
543 matrix with respect jointly to $\text{vec}(D)$ and W is positive semi-definite. Therefore, the first term in Equation (5) is convex.
544 Moreover, the logarithm determinant term $|T| \ln(\det(I - D))$ is well-known to be concave. Finally, because in Equation
545 (5), all the equality constraints are affine while all the inequality constraints are convex, the proof is completed. \square

546

547

548 In Section 5, our newly proposed algorithm is able to address this problem with a global optimal solution.

549

550 4.3 SADL-II Model

551 For the situations when the information on the conditional independence among spatial locations is unknown or
552 incomplete where SADL-I cannot apply. To address it, in this subsection, we first present the motivation of the SADL-II
553 model, then propose our new equivalent formulation of spatial topological constraints using Theorem 1, and finally
554 present the concrete mathematical formulation of our SADL-II model in Equation (6).

555

556 In general, a wide variety of applications suffer from the incomplete knowledge on the connectivity among spatial
557 regions, such as in the domains of environment science, epidemiology, sociology, criminology, neuroscience, and
558 chemistry, especially for those open and crucial domains where the spatial patterns have not been completely figured
559 out. For these domains, it is usually technically infeasible or too complex and expensive to investigate the prior knowledge
560 on the fine-grained connectivity among different locations. For example, the connectivity of the underground water
561 network could be expensive and typically prohibitive to be investigated. In most situations, although we do not
562 know the detailed connection structure, it is easy to obtain knowledge on which subset of locations form connected
563 components and what is the topological type of each connected component. In epidemiology domain, the spatial disease-
564 transmissibility correlation among different locations are crucial in determining the spread of epidemics, which, however,
565 is typically too complex to be 100% completely observed and modeled. For example, to comprehensively consider the
566 spatial transmissibility correlation among locations, one needs to consider transportations, flight connections, climates,
567

573 and even the migration of animal species for some pest-borne diseases. In neuroscience, brain connectome is a famous
 574 spatial network which can be considered as a network of voxels (i.e., spatial regions), and different voxels can have
 575 connections if there are fibers between them. However, currently the state-of-the-arts are still far from being able to
 576 figure out all the connectivity between voxels and among all the neurons. However, a spatial topological constraint is
 577 typically known: “the brain network (e.g., structural connectome) should be a connected graph”. In biochemistry, being
 578 determined by protein folding, the spatial structure of protein molecular is crucial for determining the protein function
 579 and hence important for crucial domains such as drug design. This directly motivates the research on protein structure
 580 prediction whose goal is just to predict the unknown spatial proximity among atoms, which is still an open question.
 581 Here a spatial topological constraint is: “a protein must be a connected graph with backbone-chain structure”. Spatial
 582 topological constraints are also available for many other domains. For example, given a set of watersheds where we
 583 want to predict the water quality, we know each watershed it is typically a connected component and tree-structured.
 584 Given a set of streets in areas of different cities, we know each of them is a connected graph under a “street grid” [18].
 585 This type of knowledge is extremely instructive for optimizing the spatial dependency under a correct spatial structure.
 586

587 Therefore, we are given prior knowledge on G which is the list of the location sets in all the different connected
 588 components, where each $g \in G$ is a subset of locations such that $g \subseteq S$. Concretely, this prior knowledge is equivalent
 589 to the joint satisfaction of both the following two properties: **1) Property 1: Locations in each connected components
 590 have path(s) to each other.** For each pair of locations i and j in a connected component $g \in G$, they must have at least
 591 one path to each other. **2) Property 2: No connections among locations from different connected components.** For location
 592 $i \in g$ and location $j \in h$ where $g \in G$ and $h \in G$ are two different connected components, there is no path between
 593 locations i and j .

594 So the crux now is how to embed such prior knowledge into our framework in Equation (2), namely how to
 595 mathematically encode such information of connected components in terms of the constraints upon $D \in \mathcal{G}$. This is a
 596 new and challenging problem. Specifically, the constraints to enforce connected components is inherently discrete. And
 597 enforcing the connectivity for each component is naturally a discrete optimization problem with discrete constraints
 598 which typically requires graph theory discrete algorithm. On the other hand, the spatial autoregressive is typically
 599 continuous optimization problem which relies on maximal likelihood and gradient descent. However, our model requires
 600 the simultaneous optimization of both of them together, and hence it is extremely challenging for current techniques to
 601 jointly address these two types of problem in a unified framework. To address this issue, we innovatively propose a
 602 convex formulation for $D \in \mathcal{G}$ which exactly encodes the prior knowledge on the connected components, as shown in
 603 Theorem 1.

604 **THEOREM 1 (CONNECTED-COMPONENT CONSTRAINTS).** *A graph has a set of connected components G if and only if the
 605 following two conditions are satisfied:*

- 606 • $\text{diagm}(D_g \cdot \mathbf{1}^\top) - D_g + \mathbf{1}^\top \mathbf{1}/|g| > 0, D_g \geq 0, g \in G$, which formulates the above **Property 1**.
- 607 • $D[i, j] = 0, \forall i \in g, j \in h, g \neq h, g, h \in G$, which formulates the above **Property 2**.

608 where $D[i, j]$ denotes the connectivity of locations i and j . D_g is the adjacency matrix only for those locations in g . Thus D_g
 609 is a block matrix of D . $\mathbf{1} \in \mathbb{R}^{1 \times |g|}$ denotes an all-one vector. $\text{diagm}(x)$ denotes the diagonal matrix with elements as the
 610 vector x . The symbol > 0 denotes the positive definite property.

611 **PROOF.** First, if there are $|G|$ connected components, then there must be no connections across different components
 612 such that $D[i, j] = 0, i \in g, j \in h, g \neq h, g, h \in G$. Then in the following, we prove the connectedness of each components.
 613

The proof is based on the property of graph connectedness constraint [42]. Define $Z_g \equiv \text{diagm}(D_g \cdot \mathbf{1}^\top) - D_g + \mathbf{1}^\top \mathbf{1}$. We first prove for any $x \neq 0$, we have $x^\top Z_g x > 0$. This is equivalent to proving $x^\top \cdot Z_g x = \sum_{i \neq j} D_{g,i,j}(x_i - x_j)^2/2 + 1/|g| \cdot (\sum_i^{|g|} x_i)^2 \neq 0$. Assuming $x^\top \cdot Z_g \cdot x = 0$, this means that $\sum_{i=1}^{|g|} x_i = 0$ and $x_i = x_j$ for all i and j such that $D_{g,i,j} > 0$. Then x must be 0 if there is only one component in the components consisting of g . Next, assume the components has at least two components, then we have two sets c and e such that $c \cup e = g$, $c \cap e = \emptyset$ and $\forall (i, j) \in c \times e : D_{g,i,j} = 0$. By setting $x_i = 1/|c|$ and $x_j = -1/|e|$ we have $x^\top \cdot Z_g x = (|c|/|c| - |e|/|e|)^2/|g| = 0$. The proof is completed. \square

When there is only one connected-component, namely all the locations have path(s) two each other, it is easily seen that our Theorem 1 is still valid.

Applying the formulated spatial topological constraint in Theorem 1, we obtain the objective function for SADL-II:

$$\begin{aligned} & \min_{D, W} -\ell\ell(D, W, \sigma^2 | Y_g) + \lambda \mathcal{R}(D), \\ & \text{s.t., } \text{diagm}(D_g \cdot \mathbf{1}^\top)/|g| - D_g + \mathbf{1}^\top \mathbf{1} > 0, D_g \geq \mathbf{0}, \text{supp} \subseteq \mathbb{M}' \\ & D[i, j] = 0, \quad i \in g, j \in h, g \neq h, g, h \in G, \\ & \text{diagm}(D_g) = 0, \quad D_g = D_g^\top \end{aligned} \quad (6)$$

\mathbb{M}' denotes the partial prior knowledge on the connectivity among locations, which can be incomplete. When \mathbb{M}' is all-one matrix, there is not any prior knowledge on connectivity available. To solve Equation (6), a new algorithm is proposed to obtain the global optimal solution for in Section 5.

5 OPTIMIZATION ALGORITHMS

Both of the proposed models SADL-I and SADL-II are not easy to solve efficiently based on existing convex optimization algorithms, due to the existence of the determinant term and several constraints on D . In the following, the two algorithms for SADL-I and SADL-II are proposed and described.

5.1 Algorithm for SADL-I

In the objective function of SADL-I, namely Equation (5), there are two variables with several constraints. In order to optimize it efficiently, Alternating Direction Method of Multipliers (ADMM) [6] has been utilized. First, we transfer the original problem into an equivalent formulation, as follows:

$$\begin{aligned} & \min_{D, W} \sum_t^\top \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^\top\|_2^2 \\ & \quad - |T| \ln(\det(U)) + \lambda \mathcal{R}(V) \\ & \text{s.t., } D \geq \mathbf{0}, \text{diag}(D) = 0, U = I - D, \\ & \quad V = W, D = D^\top, \text{supp}(D) = \mathbb{M} \end{aligned} \quad (7)$$

In ADMM, the constrained optimization problem needs to be formulated in forms of augmented Lagrangian, as follows:

$$\begin{aligned} L_p = & \sum_t^\top \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^\top\|_2^2 - |T| \ln(\det(U)) + \\ & \lambda \mathcal{R}(V) + \frac{\gamma}{2} \|U - I + D + \Gamma_1\|_F^2 + \frac{\gamma}{2} \|V - W + \Gamma_2\|_F^2 \\ & - (\gamma/2)(\|\Gamma_1\|_F^2 + \|\Gamma_2\|_F^2) \end{aligned} \quad (8)$$

where γ is the penalty term which is typically initialized as 1 [6]. And Γ_1 and Γ_2 are dual variables.

Algorithm 1 Parameter Optimization for SADL-I

```

677
678 Require:  $X, Y, \sigma, \lambda$ , and  $\mathbb{M}$ .
679 Ensure: solution  $W, V, U$ , and  $D$ .
680 1: Initialize  $\gamma = 1, W, U, V, D = \mathbf{0}$ .
681 2: Choose  $\varepsilon_P > 0$  and  $\varepsilon_d > 0$ .
682 3: repeat
683 4:    $W \leftarrow$ Equation (10).
684 5:    $V \leftarrow$ Equation (11).
685 6:    $U \leftarrow$ Equation (12).
686 7:   repeat
687 8:      $\Delta D = D - \eta \nabla H$ 
688 9:      $D \leftarrow ((\Delta D/2 + \Delta D^\top/2)_+ \odot D_M)_+$ 
689 10:  until Convergence
690 11:  Calculate the primal residual  $p$  and dual residual  $d$  according to [6].
691 12:  if  $r > 10d$  then
692 13:     $\gamma \leftarrow 2\gamma$  # Update penalty parameter
693 14:  else if  $10r < d$  then
694 15:     $\gamma \leftarrow \gamma/2$  # Update penalty parameter
695 16:  else
696 17:     $\gamma \leftarrow \gamma$  # Update penalty parameter
697 18:  end if
698 19: until  $p < \varepsilon^P$  and  $d < \varepsilon^d$ 

```

Then the variables U, V, W , and D are optimized iteratively until convergence by fixing other variables. In our algorithm, we provide the situation when the regularization term is an ℓ_1 norm such that $\mathcal{R}(V) = \|V\|_1$, but the algorithm is generic for other popular norms. The procedure of the algorithm for SADL-I is illustrated in Algorithm 1. The algorithm is initialized in Lines 1-2. And then the parameters W, V, U , and D are optimized iteratively in Lines 3-10. D is optimized by projected gradient descent where the proximal gradient is calculated in Lines 8-9. Then the primal and dual residuals are calculated [6], which are used to update the γ in Lines 11-18 and determine the termination of the iterations in Line 19. The solutions for the subproblems are described in the following.

1. **Update W .** The update of W amounts to the following subproblem:

$$\min_W \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^\top\|_F^2 + \|W - V + \Gamma_2\|_F^2 \quad (9)$$

The optimization of W has an analytical solution as follows:

$$W = \left[\frac{1}{\sigma^2} \sum_t^T Y_t^\top (I - D)^\top X_t + \gamma (V - \Gamma_2) \right] \cdot \left(\frac{1}{\sigma^2} \sum_t^T X_t^\top X_t + \gamma I \right)^{-1} \quad (10)$$

2. **Update V .** Update V amounts to the following subproblem.

$$\min_V \|W - V + \Gamma_2\|_F^2 + \|V\|_1 \quad (11)$$

which has analytical solution based on soft-thresholding [6].

3. **Update U .** The optimization problem for updating U is:

$$\min_U \frac{\gamma}{2} \|I - D - U + \Gamma_1\|_F^2 - \ln|U| \quad (12)$$

729 Let PQP^T denote the eigendecomposition of $\gamma(I - D - \Lambda_1)$, therefore:

$$730 \quad 731 \quad U = \gamma/2 \cdot P(Q + (QQ + 4\gamma I)^{1/2})P^T \quad (13)$$

732 **4. Update D .** The optimization problem for updating U is:

$$733 \quad 734 \quad \min_D H(D) = \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^T\|_2^2 \\ 735 \quad 736 \quad + \frac{\gamma}{2} \|U - I + D + \Gamma_1\|_F^2 \quad (14)$$

$$737 \quad \text{s.t., } D \geq 0, \text{diag}(D) = 0, D = D^T, \text{supp}(D) = \mathbb{M}$$

740 The above problem can be easily solved by projected gradient descent [10], where for each gradient step we calculate
741 the following projected gradient:

$$742 \quad 743 \quad \text{proj}_0(D - \eta \nabla H), \quad (15)$$

$$744 \quad \text{where } \text{prox}_0(x) = ((x/2 + x^T/2)_+ \odot D^{(M)})_+$$

745 where η is the step size for each iteration of the projected gradient descent. $(x)_+$ denotes an operation on a matrix x which
746 maps those negative elements to 0's while it retains the non-negative elements' values. \odot denotes the element-wise
747 multiplication between two matrices. $D^{(M)}$ is the binary matrix that satisfies both $\text{diag}(D) = 0$ and $\text{supp}(D) = \mathbb{M}$.

748 Since the problem in Equation (5) is convex according to Lemma 2 and the optimal solution for each subproblem
749 can be obtained, the algorithm for SADL-I will converge to global optimal solution based on the ADMM convergence
750 properties for convex problems with simple equality constraints [6].

751 5.2 Algorithm for SADL-II

752 The equivalence form of the original objective function for SADL-II model in Equation (6) is as follows:

$$753 \quad 754 \quad \min_{D, W, V, E, U} \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^T\|_F^2 + \frac{|S|}{2} \ln(2\pi\sigma^2) \\ 755 \quad 756 \quad - \ln|U| + \lambda\|V\|_1 + \|D\|_1 \quad (16)$$

$$757 \quad \text{s.t., } I - D = U, \text{diagm}(D_g \cdot \mathbf{1}) - D_g + \mathbf{1}^T \mathbf{1}/|g| - \epsilon I = E_g$$

$$758 \quad W = V, \text{supp} \in \mathbb{M}', E_g \geq 0, D \geq 0, \text{diag}(D_g) = 0, g \in G$$

759 The augmented Lagrangian of the Equation (16) is as follows.

$$760 \quad 761 \quad L_Y = \frac{1}{T} \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^T\|_F^2 + \frac{|S|}{2} \ln(2\pi\sigma^2) \\ 762 \quad 763 \quad - \ln|U| + \lambda\|V\|_1 + \frac{\gamma}{2} \|I - D - U + \Lambda_1\|_F^2 - (\gamma/2)\|\Lambda_1\|_F^2 \\ 764 \quad 765 \quad + \frac{\gamma}{2} \sum_g^G \|\text{diagm}(D_g \cdot \mathbf{1}) - D_g + \mathbf{1}^T \mathbf{1} - \epsilon I - E_g + \Lambda_2\|_F^2 \\ 766 \quad 767 \quad + \|W - V + \Lambda_3\|_F^2 + \|D\|_1 - (\gamma/2)(\|\Lambda_2\|_F^2 + \|\Lambda_3\|_F^2)$$

768 where Λ_1 , Λ_2 , and Λ_3 are the dual variables. Similar to Section 5.1, the augmented Lagrangian will be solved by
769 alternately solving five subproblems of U , V , W , E , and D until convergence, as summarized in the pseudo-code in
770 Algorithm 2. The subproblems of U , V , and W in Lines 5-7 are the same as those described in Section 5.1 and thus they
771 are omitted in this section. However, the solving of the subproblems of D and E is different from that of SADL-I. Similar
772 to the update of D in SADL-I, the update of D in SADL-II is also solved by projected gradient descent [10].

Algorithm 2 Parameter Optimization for SADL-II

Require: X, Y, σ, λ, G , and \mathbb{M}' .

Ensure: solution W, V, U, E , and D .

1: Initialize $\gamma = 1, W, U, V, D_g = \mathbf{0}, g \in G$.

2: Initialized $E = \text{diagm}(D_g \cdot \mathbf{1}) - D_g + \mathbf{1}^\top \mathbf{1} - \epsilon I$.

3: Choose $\epsilon_P > 0$ and $\epsilon_d > 0$.

4: **repeat**

5: $W \leftarrow$ Equation (10).

6: $V \leftarrow$ Equation (11).

7: $U \leftarrow$ Equation (12).

8: **for** $g \in G$ **do**

9: **repeat**

10: $\Delta D_g = D_g - \eta \nabla H(D_g)$

11: $D_g \leftarrow ((\Delta D_g/2 + \Delta D_g^\top/2)_+ \odot D^{(M)})_+$

12: **until** Convergence

13: **repeat**

14: $\Delta E = \text{diagm}(D_g) \cdot \mathbf{1}^\top - D_g + \mathbf{1}^\top \mathbf{1} - \epsilon \cdot I_g + \Lambda_{2,g}$

15: $D_g \leftarrow \text{prox}_{\geq}(\Delta E)$

16: **until** Convergence

17: **end for**

18: Calculate the primal residual p and dual residual d according to [6].

19: **if** $r > 10d$ **then** # Update penalty parameter

20: $\gamma \leftarrow 2\gamma$

21: **else if** $10r < d$ **then** # Update penalty parameter

22: $\gamma \leftarrow \gamma/2$

23: **else** # Update penalty parameter

24: $\gamma \leftarrow \gamma$

25: **end if**

26: **until** $p < \epsilon^P$ and $d < \epsilon^d$

809

810

811 to Algorithm 1, the update of γ and stop criteria are illustrated in Lines 18-26. Both subproblems of D and E are solved

812 based on projected gradient descent in Lines 9-12 and Lines 13-16, respectively, and are elaborated in the following.

813

814 **1. Update D .** According to Theorem 1, D can be partitioned into several block matrices corresponding to all the different

815 connected components. Thus the optimization of D is broken into the following subproblems on each different block

816 matrix D_g . Similarly, in the following, a symbol with a subscript “ g ” also denotes its block matrix corresponding to that

817 of D_g . For example, U_g denotes the block matrix the original matrix U which corresponds to those locations $g \in G$

818 which forms a connected component. The objective funtion for D_g is as follows.

819

820

$$\min_{D_g \geq \mathbf{0}, D_g = D_g^\top, D_{g,M} = \mathbf{0}} H(D_g) \quad (17)$$

821 where

$$\begin{aligned} H(D_g) = & \frac{\gamma}{2} \|U_g - I_g + D_g + \Lambda_{1,g}\|_F^2 \\ & + \frac{\gamma}{2} \|\text{diagm}(D_g \mathbf{1}^\top) - D_g + \mathbf{1}^\top \mathbf{1} / |g| - \epsilon I_g - E_g + \Lambda_{2,g}\|_F^2 \\ & + \sum_t \frac{1}{2\sigma^2} \|(I_g - D_g)Y_g - X_g W^\top\|_F^2 \end{aligned} \quad (18)$$

833 The above is a convex objective with convex constraint, which can be efficiently solved by projected gradient descent,
 834 where the gradient for each iteration is calculated as follows:
 835

$$\begin{aligned} 836 \nabla_{D_g} H(D_g) &= \gamma \cdot D_g \cdot \mathbf{1}^\top \mathbf{1} + \gamma \cdot \text{diagm}(\text{diag}(C_g)) \cdot \mathbf{1}^\top \mathbf{1} \\ 837 &+ \gamma(U_g - I_g + \Lambda_{1,g}) - \gamma \cdot (\text{diag}(D_g) \mathbf{1}^\top \mathbf{1} + \text{diagm}(D_g \cdot \mathbf{1}^\top)) \\ 838 &+ \frac{1}{\sigma^2} \sum_t^T (D_g Y_{g,t}^\top Y_{g,t} Y_{g,t}^\top Y_{g,t} - X_{g,t} W^\top Y_{g,t}) + 2\gamma D_g - \gamma C_g \end{aligned}$$

841 where $C_g = \mathbf{1}^\top \mathbf{1} / |g| - \epsilon I_g - E_g + \Lambda_2$. Therefore the update of D_g is denoted as follows:
 842

$$843 D_g \leftarrow \text{prox}_0(D_g - \eta \cdot \nabla_{D_g} H(D_g)) \quad (19) \\ 844$$

845 where the projection prox_0 is defined in Equation 15.

846 **2. Update E .** The update of E amounts to the following optimization problem:
 847

$$\begin{aligned} 848 \min_{E_g \geq 0} P(E_g) &= \frac{\gamma}{2} \|\text{diagm}(D_g) \cdot \mathbf{1}^\top - D_g \\ 849 &+ \mathbf{1}^\top \mathbf{1} / |g| - \epsilon I_g - E_g + \Lambda_{2,g}\|_F^2 \end{aligned} \quad (20)$$

852 which can be written as proximal operator:
 853

$$\begin{aligned} 854 E_g &\leftarrow \text{prox}_{\geq}(\text{diagm}(D_g) \cdot \mathbf{1}^\top - D_g \\ 855 &+ \mathbf{1}^\top \mathbf{1} / |g| - \epsilon \cdot I_g + \Lambda_{2,g}) \end{aligned} \quad (21)$$

857 where $\text{prox}_{\geq}(\cdot)$ is the projection of update of E_g denoted:
 858

$$859 \text{prox}_{\geq}(A) = \sum_i^n (\lambda_i)_+ u_i u_i^\top \quad (22)$$

861 where the vector λ_j and u_j are the j th ($j = 1, 2, \dots, n$) eigenvalue and eigenvector such that $A \cdot u_j = \lambda_j \cdot u_j$. And
 862 $A = \sum_j^n \lambda_j u_j \cdot u_j^\top$ is called the eigenvalue decomposition.

863 The optimization problem in Equation 16 is convex because: 1) the optimization objective is convex similar to the
 864 proof of Lemma 2, 2) all the equality constraints are affine, and 3) the inequality constraint $E_g \geq 0$ is well-known
 865 to be convex. Therefore, the proposed algorithm for SADL-II converges to global optimal solution due to ADMM's
 866 convergence properties for convex problems with simple equality constraints [6].
 867

869 6 EXPERIMENTS

870 In this section, the performance of the proposed models SADL-I and SADL-II is evaluated using several real-world
 871 datasets from different domains. In the following, we first introduce the experimental setup. The effectiveness of
 872 the proposed models is then evaluated against several existing methods. Finally, an analysis of the discovered spatial
 873 dependency patterns is presented. All experiments were conducted on a 64-bit machine with Intel(R) core(TM) quad-core
 874 processor (i7CPU@3.40GHz) and 16.0GB memory.
 875

877 6.1 Experimental Settings

878 **6.1.1 Datasets and Metrics.** The experimentation uses three different datasets related to three different domains:
 879 influenza outbreaks, traffic volume, and water quality.
 880

881 **1) Influenza outbreak dataset.** The task for this dataset is to forecast the spatio-temporal influenza outbreaks
 882 based on social media data. The input data consists of a set of tweets from Jan 1, 2011 to May, 2015 for the United States.
 883

Table 2. Datasets Descriptions

Dataset	Time Period	Sample Rate	Locations	Features
Influenza dataset	2011-01-01 to 2015-05-01	weekly	major states in the United States	525 keywords
Traffic flow dataset	2017-01-02 00:00 to 2017-02-01 00:15	quarter-hourly	37 road segments	47 traffic features
Water quality dataset	2016-06-28 to 2018-01-01	daily	36 sites in Georgia	12 water indices

And each location is a state. Each of these tweets must contain at least one of 525 predefined flu-related keywords (e.g., "cold", "fever", "cough") provided by [35]. The data is partitioned into a sequence of week-interval bins for week-wise forecasting. The predictions were validated against the flu statistics reported by the Centers for Disease Control and Prevention (CDC). CDC publishes weekly influenza-like illness (ILI) population size within each state in the United States using the proportion of outpatient visits to healthcare providers for ILI. The task is to predict for each state the size of ILI Population in the next week. An example of a ground truth ILI population size is a tuple: {'State': 'New York', 'Week': '01-09-2013 to 01-15-2013', 'ILI Population Size': 657}. The contiguity relationship among the US is utilized to form the default contiguity matrix for the proposed and the comparison methods.

2) **Traffic volume dataset.** The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. While traditional approaches train regression or ARIMA models for short-term traffic volume prediction of each road segment separately [26, 32, 40], we study the spatial correlation of flow and we train auto-regressive dependency learning models based on the topological constraints of the road network.

3) **Water quality dataset.** Here we want to forecast the spatio-temporal water quality in terms of the "power of hydrogen (pH)" value for the next day based on the input data, which is the historical data of other water measurement indices. The input data consists of daily samples for 36 sites, providing measurements related to pH values in Georgia, USA. The input features consist of 12 common indices including volume of dissolved oxygen, temperature, and specific conductance ². This dataset is published by the United States Geological Survey³. Due to the complexity of the water system, there is no prior knowledge on the specific connections among all the sites through water streams, i.e., spatial connectivity. High-level prior spatial knowledge is provided based on the water system they belong to, including the water system of Atlanta, the watershed of the Savannah River, and the watershed of the Timmons River ².

In the experiments, all the input data in all the datasets has been normalized by zero mean and one standard deviation. All the performance of all the methods are compared under the metrics of Root-Mean-Square Error (RMSE = $\sqrt{\frac{1}{n} \cdot \sum_{t=1}^T (Y_t - \tilde{Y}_t)^2}$), Normalized Root-Mean-Square Error (NRMSE=RMSE/average(Y)), Mean Absolute Error (MAE= $\frac{1}{n} \sum_{t=1}^T |Y_t - \tilde{Y}_t|$), and Normalized Mean Absolute Error (NMAE=RMAE/average(Y)), where \tilde{Y}_t is the set of predictions for all the locations for a future time point t , and Y_t is the corresponding labeled ground truth, average(Y) returns the average value of all the labeled ground truth. For each of all the datasets, the data is evenly split in two time spans, where the data of the first time span is training set while that of the second time span is for testing.

²Refer to: https://waterdata.usgs.gov/nwis/dv/?referred_module=qw

³USGS: <https://www.usgs.gov/>. Accessed Feb, 2018.

937 Table 3. Spatiotemporal prediction performance for all the methods in all the datasets
938

	Flu outbreak				Traffic volume				Water quality			
	RMSE	NRMSE	MAE	NMAE	RMSE	NRMSE	MAE	NMAE	RMSE	NRMSE	MAE	NMAE
MLR	0.0659	0.5050	0.0415	0.3180	0.0454	0.1739	0.0310	0.1188	0.0120	0.0460	0.0072	0.0276
LASSO	0.0540	0.4138	0.0341	0.2614	0.0461	0.1766	0.0312	0.1195	0.0240	0.0092	0.0218	0.0835
SAR	0.0587	0.4498	0.0331	0.2536	0.0492	0.1885	0.0336	0.1287	N/A	N/A	N/A	N/A
SAR L1	0.0560	0.4492	0.0341	0.2614	0.0454	0.1739	0.0309	0.1184	0.0279	0.1069	0.0264	0.1011
GL	0.0608	0.4660	0.0372	0.2850	0.0464	0.1778	0.0317	0.1215	N/A	N/A	N/A	N/A
SADL-I	0.0485	0.3716	0.0305	0.2338	0.0455	0.1743	0.0309	0.1184	N/A	N/A	N/A	N/A
SADL-II	0.0505	0.3870	0.0266	0.2038	0.0448	0.1716	0.0308	0.1180	0.0115	0.0441	0.0068	0.0261

948
949
950 6.1.2 *Comparison Methods.* In the experiment, the performance of the two proposed methods is compared to well-
951 established state-of-the-art methods for spatiotemporal forecasting. For all the methods that have tunable parameter(s),
952 5-fold cross-validation is performed on the training dataset. The parameter combinations with the best performance
953 was adopted in subsequent experimentation.

954 955 **Multivariate Linear Regression (MLR)** [30] learns a linear mapping from each multivariate input to each prediction.
956

957 **LASSO** [6]. LASSO is an MLR with an ℓ_1 regularization over the weights of the input features. The trade-off between
958 the empirical loss and the regularization term is a key parameter. 5-fold cross validation was performed to select the
959 parameter in a large range of 22 candidate values among $2^{-10, -9, \dots, 9, 10}$ and 0.
960

961 **Spatial Autoregressive Model (SAR)** [8, 38]. SAR predicts by jointly considering the input data and the spatial
962 dependency among all the locations. The contiguity matrices of the first and second datasets were utilized as one input
963 of SAR.
964

965 **Graph Laplacian regularized Linear Regression**

966 **(GL)** [14]. GL utilizes the spatial dependency to enforce a smooth pattern of the spatial prediction. The adjacency
967 matrix of GL is designated as the contiguity matrix of each of the first and second datasets. The trade-off parameter
968 between the empirical loss and the regularization term is tuned based on 5-fold cross validation over the range of 22
969 candidate values among $2^{-10, -9, \dots, 9, 10}$ and 0.
970

971 **ℓ_1 -regularized Spatial Autoregressive Model**

972 **(LSAR)** [37] LSAR is the baseline of this paper. Different from the SAR model, LSAR does not utilize a predefined
973 contiguity matrix, but optimizes the contiguity matrix based on the sparsity assumption. The trade-off parameter
974 between the empirical loss and the sparsity regularization term is tuned again based on the 5-fold cross validation over
975 a range of 22 candidate values among $2^{-10, -9, \dots, 9, 10}$ and 0.
976

977 **SADL-I & SADL-II - the proposed methods.** SADL-I utilizes the predefined contiguity matrix as a constraint,
978 while SADL-II does not, but instead only utilizes the grouping information of the different locations. There are two
979 parameters to tune, σ^2 and λ . They were tuned jointly based on 5-fold cross validation over a range of 12 candidate
980 values among $2^{-10, -8, \dots, 8, 10}$ and 0 for each. The parameter sensitivity analyses are provided in Section 6.2.2.
981

982 6.2 Performance and Discussions

983 The following sections discuss the performance comparison, convergence and sensitivity analyses, and the discovered
984 spatial dependency patterns of our methods.
985

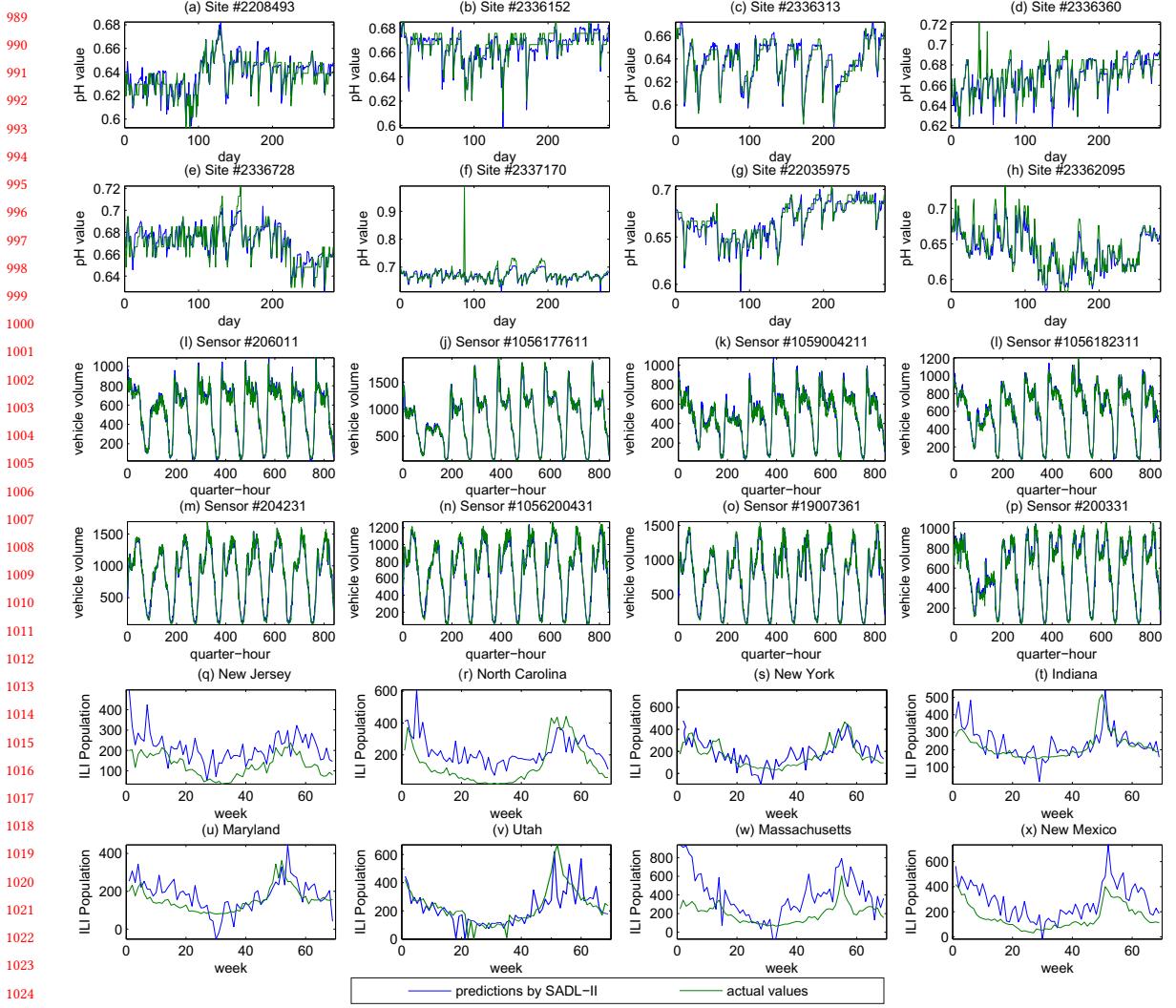


Fig. 5. SADL-II's predictions vs. ground truth for parts of the three datasets. (a)-(h) water quality data; (i)-(p) traffic data; and (q)-(x) flu outbreak data. (Better see in color.)

6.2.1 *Prediction performance.* As shown in Table 3, four different metrics have been utilized to evaluate the performance on three datasets, RMSE tends to highlight the large errors among the predictions while MAE directly shows the average errors of all the predictions. Additionally, as their normalized versions, NRMSE and NMAE enables the comparison of the performance across different datasets with different scales. The performance of both proposed methods SADL-I and SADL-II outperform the comparison methods by an obvious margin, which highlights the effectiveness of spatial dependency inference for event forecasting. Specifically, SADL-I achieves the lowest RMSE and NRMSE in the flu outbreak dataset, about 10% less than the best competing performer, LASSO. However, SADL-II generally achieved the best overall performance for all the datasets, with the best performance for traffic and water datasets as well as second lowest RMSE values for flu dataset. Since no contiguity matrix was available, we do not have results for SADL-I

1041 Table 4. The training runtime of different methods on different datasets.
1042

Methods	Flu outbreak	Traffic volume	Water quality
MLR	8.2577	0.3781	0.0068
LASSO	19.0304	18.6455	0.3454
SAR	35.2545	8.8084	N/A
SAR L1	42.0920	15.0020	0.9460
GL	11.1521	0.7683	N/A
SADL-I	10.9684	5.3734	N/A
SADL-II	4.7294	4.4816	1.2285

1053 as well as SAR and GL for the water quality data. Based on NRMSE and NMAE, all the methods tend to have better
1054 performance on traffic and water datasets than that of flu datasets because the latter one is based on social media data
1055 which is very noisy and thus is a more challenging forecasting task.

1056 In particular, for the flu dataset, SADL-I and SADL-II achieved the best performance in RMSE and MAE, respectively,
1057 indicating that SADL-I's prediction errors were more consistent while there might be some larger errors in the predictions
1058 of SADL-II. Comparing the performance on flu and traffic datasets, it can be seen that the proposed SADL-I and SADL-II
1059 outperformed other methods by roughly 10% and 1%, respectively and thus the advantage looks much larger on flu
1060 datasets. This is because it is relatively more difficult to define a reasonable spatial dependency for flu outbreaks only
1061 based on prior knowledge, compared to the traffic dataset where the road network could be used to provide a reasonably
1062 good spatial dependency among traffic volume. This made the comparison methods also perform reasonably well on
1063 traffic data. For the flu dataset, MLR performed poorly, much worse than LASSO, while it outperformed LASSO for
1064 the other two datasets. This is because only the flu dataset, which has over 500 features, has a serious feature sparsity
1065 issue. This is also the reason for LASSO, SADL-I, and SADL-II, which enforce feature sparsity, to performed well for the
1066 flu data. Since the water quality data do not have prior location connectivity knowledge, the methods requiring this
1067 information, AR, GL, and SADL-I could not be used for it.

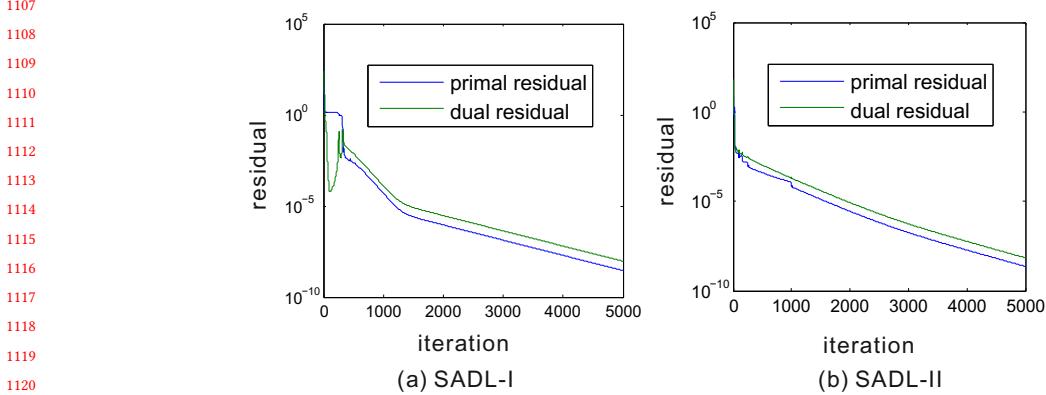
1068 Furthermore, for the water quality data, which cannot provide prior knowledge on the spatial dependency, methods
1069 such as SAR, GL, and SADL-I cannot be directly utilized. The proposed SADL-II clearly outperformed the remaining
1070 methods by around 5% in all the metrics. This is because SADL-II sufficiently utilized the spatial topological constraints
1071 to infer the spatial dependency, which further enforces the dependency among the predictions in different locations,
1072 and thus boosted up the model generalizability. More importantly, the proposed SADL-II is able to infer the spatial
1073 dependency automatically, which is very valuable in analyzing the correlations among different locations toward future
1074 event occurrence. This will be further discussed in Section 6.2.3.

1075 Figure 5 shows the temporal predictions of SADL-II for eight locations of each dataset. The other locations also follow
1076 the same patterns. Specifically, Figures 5(a)-5(h) demonstrate that the water quality data in terms of the pH value for
1077 the eight sites (e.g., Sites # 2198840 and # 2336152) was accurately predicted. This case shows a situation without strong
1078 periodicity and with large and random fluctuation of the respective water indices due to various reasons including
1079 precipitation, seasonal change, and natural disasters. SADL-II can still achieve high-quality results, and precisely predict
1080 all the large fluctuations of indices very close to the actual values.

1081 As shown in Figures 5(i)-5(p), the *traffic data* exhibits a more obvious periodicity, which is successfully predicted by
1082 SADL-II. These commute patterns capture regular traffic between downtown and the suburbs in the Washington D.C.
1083 area. Moreover, all the peaks and valleys were accurately predicted for all eight locations and for the entire two-month
1084

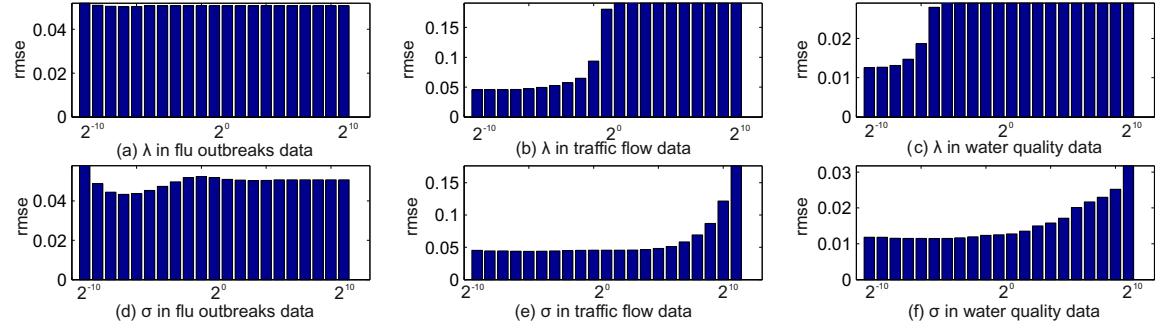
1093 prediction periods. Finally, for the flu data, the predictions and the actual values for eight states such as New York and
 1094 Utah are shown. First, we see a predicted seasonal periodicity of flu outbreaks, which follows the actual values well.
 1095 Second, SADL-II can effectively detect the peaks and valleys of the predictions as shown in Figures 5(q)-5(x).
 1096

1097 Table 4 shows the runtime of all the methods on all the datasets during training phase, each of which is the average
 1098 runtime over 100 runs for each method on each dataset. As can be seen from the table, the runtime of SADL-I and
 1099 SADL-II was relatively fast on larger dataset: SADL-II and SADL-I ranked first and third on flu outbreak dataset which
 1100 is the largest dataset among all the three. For traffic volume dataset the runtime of them is still competitive. On the
 1101 water quality dataset which is the smallest one, the proposed SADL-II requires 1.2 second which is the largest because
 1102 it needs to optimize the spatial connectivity among all the locations. But having a training runtime of around only
 1103 one second still ensures that it is highly efficient and practical in real-world applications. After model training, all the
 1104 models run instantly to get the predictions in test phase.
 1105



1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

Fig. 6. The convergence process of SADL-I and SADL-II



1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

Fig. 7. Sensitivity Analysis. The proposed models are not sensitive in σ^2 . And λ is influenced by feature sparsity.

1145 **6.2.2 Evaluation of the Method Properties.** In this section, both the convergence and the parameter sensitivity are
 1146 analyzed. Figure 6 shows the convergence of both SADL-I and SADL-II for the traffic dataset, which is the largest and
 1147 second largest dataset in terms of data points and number of features, respectively. The convergence for the other
 1148 datasets follows a similar pattern and was not included due to space limitations. As shown in Figure 6, both SADL-I
 1149 and SADL-II converge sublinearly and continuously down to the residual errors of around 10^{-8} after 5000 iterations.
 1150

This verifies the claim on the methods' convergence in Section 5. A residual error of 10^{-8} is more than sufficient for practical applications. Typically, a value below 0.005 would be sufficient for the water quality prediction, which can be achieved with less than 200 iterations. Overall, each iteration is computed efficiently due to the effective utilization of closed form solutions. Figure 7 illustrates the influence of the tunable parameters of SADL-I and SADL-II on the

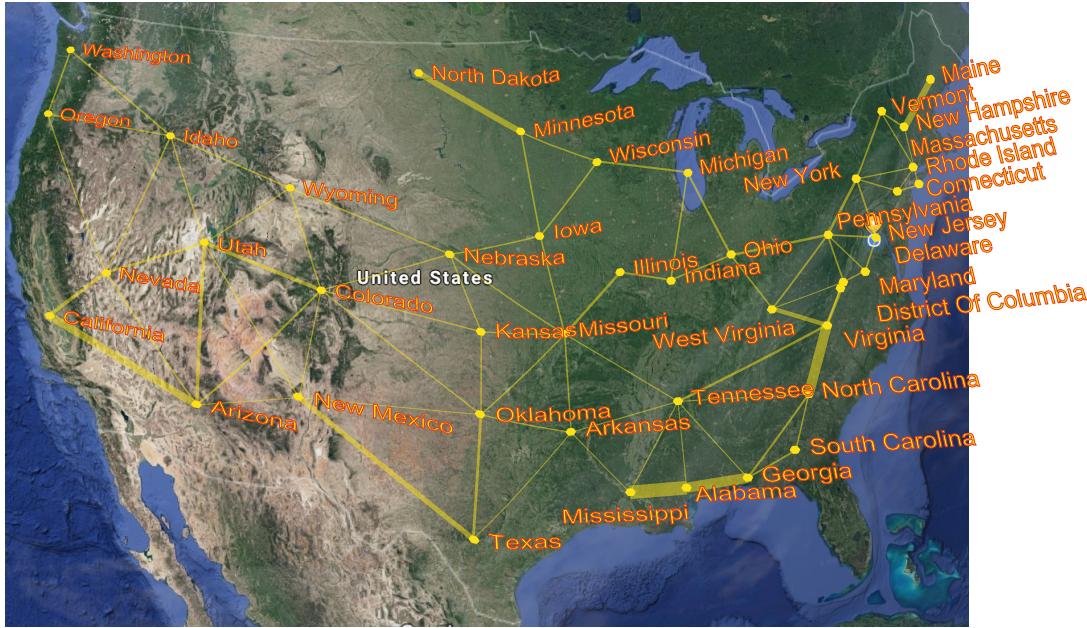


Fig. 8. The discovered spatial dependency towards influenza outbreaks for different states on flu outbreak dataset. (Better see in color)

performance. Figures 7(a), (b), and (c) show the performance changes when λ changes and σ^2 was set to 1. Figures 7(d), (e), and (f) show the performance variations when σ^2 changes and λ was set to 1. It is easy to see that the patterns of the flu dataset differ from those of the other two datasets. This is due to the feature sparsity in our flu data. Also, for the flu data, the best choice of λ , which controls the strength of the regularization on the feature sparsity, is around 2^{-7} . Which is much larger than the choice of λ for the other two datasets. This again shows that the models tend to enforce more feature sparsity to match the actual situation in the dataset. For the traffic and water quality datasets, the model performed best for small λ values. This implies that for datasets without feature sparsity problems (e.g., with few dense features), a relatively small value of λ is preferred. Finally, the performance is not very sensitive to σ^2 over such a large range of candidate values. This applies to all datasets. This shows the stability of the performance in terms of different values of σ^2 .

6.2.3 Spatial Dependency Analysis. This section illustrates the spatial dependency discovered for all the three datasets based on the proposed SADL-I and SADL-II methods.

In contrast to existing work, the proposed methods SADL-I and SADL-II are able to discover the corresponding spatial dependency for the specific prediction tasks by achieving an optimal trade-off between exogenous and endogenous knowledge. Figure 8 and Figures 9(a), (b), (c), all show spatial networks in which a node represents a sensor location,

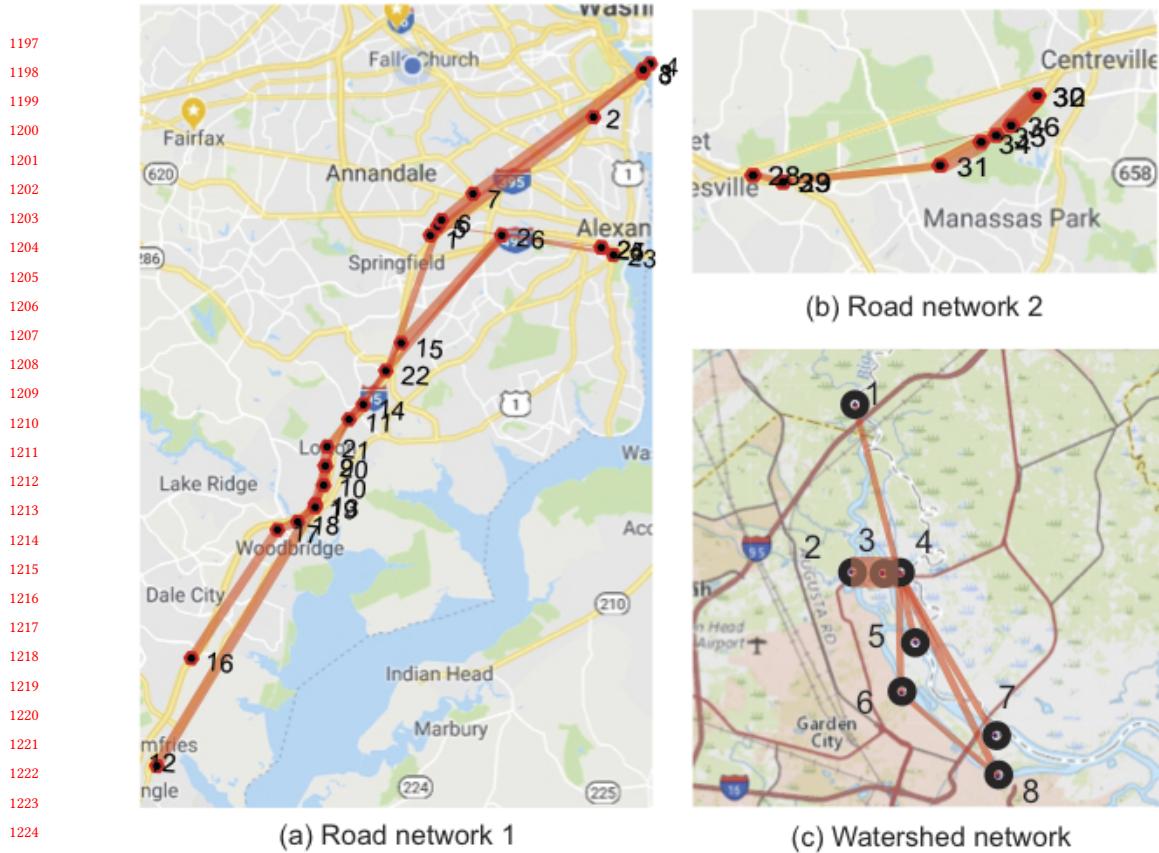


Fig. 9. The discovered spatial dependency for traffic flow prediction and water quality prediction. (a) and (b) are for traffic dataset and (c) is for water quality dataset.

while an edge captures the spatial dependency. The thicker an edge, the higher its weight, which indicates a stronger dependency between the two locations. The weight reflects how much the measurements of a location contribute to a prediction and how much it is affected by its neighbors. Figure 8 illustrates the spatial dependency of the influenza outbreaks. In contrast to the conventional contiguity matrix, which assumes all the spatial locations have identical dependency strength with each other, the proposed methods found that the states of Mississippi, Alabama, and Georgia have relatively strong spatial dependency in influenza outbreaks. This corresponds to the fact that these states are the closest states within Mississippi region and share large, accessible boundaries. Similarly, the state pairs of Virginia and North Carolina, Maine and New Hampshire have strong connections. In contrast, the state of Iowa has a weak connection to Illinois, which is due to the fact that their common boundary is small.

Figures 9(a) and 9(b) shows the spatial dependency learned by SADL-I for the road network. Figure 9(a) shows I-95 and connecting highways, while Figure 9(b) shows I-66. Both roads are outside of Washington, D.C. It is easy to see that the dependency for nearby sensors along the same highway tends to be similar and relatively strong, while the dependency of sensors across different highways is weak. Consider here the example of the existing, but weak connection between Sensors 1 and 26 in Figure 9(a). Moreover, on the same highway, a sensor's spatial dependency to another distant sensor is much smaller than to a neighboring sensor. For example, the dependency between Sensors 29 and 34 is much smaller than the dependency between neighboring sensors. Finally, Figure 9(c) shows the spatial

dependency automatically learned by SADL-II for the unknown watershed network. By verifying the learned spatial dependency using the real-world watershed map as shown in Figure 9(c), the plausibility of the learned dependency is shown. Specifically, the model successfully learned a connected graph of all the nodes in Figure 9(c), which matches an actual watershed network in which all the sites are connected. Second, the identified spatial dependency tends to be stronger for nearby sites, such as 2, 3, 4, but not for distant ones. This is much more reasonable to contiguity correlation used in conventional methods which, for instance, will assume Sites 1 and 4 have the same dependency strength as that between Sites 3 and 4. The inferred spatial dependency is also more reasonable than those based on inverse distance. For example, SADL-II inferred that there is no direct dependency between Sites 5 and 6, which are on the two side of an eyot, while the prior knowledge based only on inverse distance weighting [31] assumes a strong dependency between those in near proximity.

7 CONCLUSIONS

Being widely utilized, spatial regression models typically rely on spatial dependency, which is either manually defined or heuristically estimated. Without tuning these models to the context of specific applications, prediction results would be sub-optimal. In addressing this drawback, this paper develops a novel framework that jointly learns the predictive mapping and the spatial dependency. If the connectivity between locations is known, the SADL-I model learns the strength of the connectivity between locations. If the connectivity is incomplete or unknown, the SADL-II model can automatically learn the spatial connectivity and dependency based on spatial topological constraints. The proposed models are convex and iteratively optimized by our new ADMM-based algorithms, converging to a global optimal solution. Extensive experimentation on three real-world datasets demonstrates that the proposed models significantly outperform existing methods. Moreover, the spatial dependency results show the effectiveness of the proposed methods to automatically discover interpretable correlation patterns between different spatial locations.

Appendices

Appendix A: Proof of Lemma 1

PROOF. Recall that the noise term $\varepsilon = (I - D) \cdot Y_t - X_\tau \cdot W^\top$ follows the Gaussian distribution $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. Hence the likelihood in terms of the variable ε is:

$$\ell(\sigma|\varepsilon) = (1/(2\pi\sigma^2))^{|S||T|/2} \exp(-(\varepsilon^\top \varepsilon/(2\sigma^2))) \quad (23)$$

Recall the correlation between ε and Y :

$$\varepsilon = (I - D) \cdot Y_t - X_\tau \cdot W^\top \quad (24)$$

and leveraging the Jacobian factor theory [5], the likelihood in terms of the variable Y is:

$$\ell(D, W, \sigma^2|Y) = (1/(2\pi\sigma^2))^{|S||T|/2} \cdot J \cdot \exp(-(\varepsilon^\top \varepsilon/(2\sigma^2))) \quad (25)$$

$$\text{where the Jacobian factor is: } J = \left| \frac{\partial \varepsilon}{\partial Y} \right| = |I - D| \quad (26)$$

Combining Equations (24), (25), and (26) and perform logarithm transformation, the log-likelihood $\ell\ell(D, W, \sigma^2 | Y)$ is calculated as below:

$$\begin{aligned} \ell\ell(D, W, \sigma^2 | Y) &= \sum_t^T \frac{1}{2\sigma^2} \|(I - D)Y_t - X_t W^T\|_2^2 \\ &+ \frac{1}{2} \cdot |S||T| \ln(2\pi\sigma^2) - |T| \ln(\det(I - D)) \end{aligned} \quad (27)$$

And hence the lemma is proved. \square

REFERENCES

- [1] Achim Ahrens and Arnab Bhattacharjee. Two-step lasso estimation of the spatial weights matrix. *Econometrics*, 3(1):128–155, 2015.
- [2] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. *Journal of Machine learning research*, 9(Mar):485–516, 2008.
- [3] Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. *Hierarchical modeling and analysis for spatial data*. Crc Press, 2014.
- [4] Arnab Bhattacharjee and Chris Jensen-Butler. Estimation of the spatial weights matrix under structural constraints. *Regional Science and Urban Economics*, 43(4):617–634, 2013.
- [5] Christopher M Bishop. *Pattern recognition and machine learning*. Springer, 2006.
- [6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine Learning*, 3(1):1–122, 2011.
- [7] Chris Brunsdon, A Stewart Fotheringham, and Martin E Charlton. Geographically weighted regression: a method for exploring spatial nonstationarity. *Geographical analysis*, 28(4):281–298, 1996.
- [8] Mete Celik, Baris M Kazar, Shashi Shekhar, and Daniel Boley. Parameter estimation for the spatial autoregression model: a rigorous approach. In *Second NASA Data Mining Workshop: Issues and Applications in Earth Science with the 38th Symposium on the Interface of Computing Science, Statistics and Applications*, 2006.
- [9] Turgay Celik. Spatial entropy-based global and local image contrast enhancement. *IEEE Transactions on Image Processing*, 23(12):5298–5308, 2014.
- [10] Feng Chen, Baojian Zhou, Adil Alim, and Liang Zhao. A generic framework for interesting subspace cluster detection in multi-atributed networks. In *international conference on Data Mining*, pages 41–50. IEEE, 2017.
- [11] Noel Cressie and Christopher K Wikle. *Statistics for spatio-temporal data*. John Wiley & Sons, 2015.
- [12] Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting a graph to vector data. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 201–208. ACM, 2009.
- [13] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse covariance estimation across multiple classes. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(2):373–397, 2014.
- [14] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian matrix in smooth graph signal representations. *IEEE Transactions on Signal Processing*, 64(23):6160–6173, 2016.
- [15] Steven Farber, Antonio Páez, and Erik Volz. Topology and dependency tests in spatial and network autoregressive models. *Geographical Analysis*, 41(2):158–180, 2009.
- [16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008.
- [17] Tian Gao, Ziheng Wang, and Qiang Ji. Structured feature selection. In *ICCV*, pages 4256–4264, 2015.
- [18] Virgilio Gomez-Rubio, Roger S Bivand, and Håvard Rue. Estimating spatial econometrics models with integrated nested laplace approximation. *arXiv preprint arXiv:1703.01273*, 2017.
- [19] BD Greenshields, Ws Channing, Hh Miller, et al. A study of traffic capacity. In *Highway research board proceedings*, volume 1935. National Research Council (USA), Highway Research Board, 1935.
- [20] David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via the time-varying graphical lasso. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 205–213. ACM, 2017.
- [21] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time framework for graph-structured sparsity. In *International Conference on Machine Learning*, pages 928–937, 2015.
- [22] Harry H Kelejian and Ingmar R Prucha. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. *Journal of econometrics*, 157(1):53–67, 2010.
- [23] Brenden Lake and Joshua Tenenbaum. Discovering structure by learning sparse graphs. *CogSci 2010*, 2010.
- [24] Clifford Lam and Pedro CL Souza. Detection and estimation of block structure in spatial weight matrix. *Econometric Reviews*, 35(8-10):1347–1376, 2016.
- [25] Clifford Lam, Pedro CL Souza, et al. *Regularization for spatial panel time series using the adaptive lasso*. LSE, STICERD, 2014.

1353 [26] Sangsoo Lee and Daniel Fambro. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume
 1354 forecasting. *Transportation Research Record: Journal of the Transportation Research Board*, (1678):179–188, 1999.

1355 [27] Hongfei Li, Catherine A Calder, and Noel Cressie. One-step estimation of spatial dependence parameters: Properties and extensions of the apl
 1356 statistic. *Journal of Multivariate Analysis*, 105(1):68–84, 2012.

1357 [28] Po-Ling Loh and Martin J Wainwright. Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses. In
 1358 *Advances in Neural Information Processing Systems*, pages 2087–2095, 2012.

1359 [29] Jesús Mur and Ana Angulo. The spatial durbin model and the common factor tests. *Spatial Economic Analysis*, 1(2):207–226, 2006.

1360 [30] Nasser M Nasrabadi. Pattern recognition and machine learning. *Journal of electronic imaging*, 16(4):049901, 2007.

1361 [31] E. Oktavia, Widyanan, and I. W. Mustika. Inverse distance weighting and kriging spatial interpolation for data center thermal monitoring. In *1st
 1362 International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE)*, pages 69–74, Aug 2016.

1363 [32] Iwao Okutani and Yorgos J Stephanedes. Dynamic prediction of traffic volume through kalman filtering theory. *Transportation Research Part B:
 1364 Methodological*, 18(1):1–11, 1984.

1365 [33] Philipp Otto and Rick Steinert. Estimation of the spatial weighting matrix for spatiotemporal data under the presence of structural breaks. *arXiv
 1366 preprint arXiv:1810.06940*, 2018.

1367 [34] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33(3):291–297, 1997.

1368 [35] Michael J Paul and Mark Dredze. A model for mining public health topics from twitter. *Health*, 11:16–6, 2012.

1369 [36] Xi Qu and Lung-fei Lee. Estimating a spatial autoregressive model with an endogenous spatial weight matrix. *Journal of Econometrics*, 184(2):209–232,
 2015.

1370 [37] Somwrita Sarkar and Sanjay Chawla. Inferring the contiguity matrix for spatial autoregressive analysis with applications to house price prediction.
 1371 *arXiv preprint arXiv:1607.01999*, 2016.

1372 [38] Shashi Shekhar, Zhe Jiang, Reem Y Ali, Emre Eftelioglu, Xun Tang, Venkata Gunturi, and Xun Zhou. Spatiotemporal data mining: a computational
 1373 perspective. *ISPRS International Journal of Geo-Information*, 4(4):2306–2338, 2015.

1374 [39] Wei Shi and Lung-fei Lee. Spatial dynamic panel data models with interactive fixed effects. *Journal of Econometrics*, 197(2):323–347, 2017.

1375 [40] Brian L Smith, Billy M Williams, and R Keith Oswald. Comparison of parametric and nonparametric models for traffic flow forecasting. *Transportation
 1376 Research Part C: Emerging Technologies*, 10(4):303 – 321, 2002.

1377 [41] David S Stoffer. Estimation and identification of space-time armax models in the presence of missing data. *Journal of the American Statistical
 1378 Association*, 81(395):762–772, 1986.

1379 [42] Martin Sundin, Arun Venkitaraman, Magnus Jansson, and Saikat Chatterjee. A connectedness constraint for learning sparse graphs. In *Signal
 1380 Processing Conference (EUSIPCO)*, pages 151–155. IEEE, 2017.

1381 [43] Waldo R Tobler. A computer movie simulating urban growth in the detroit region. *Economic geography*, 46(sup1):234–240, 1970.

1382 [44] Sen Yang, Qian Sun, Shuiwang Ji, Peter Wonka, Ian Davidson, and Jieping Ye. Structural graphical lasso for learning mouse brain connectivity. In
 1383 *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1385–1394. ACM, 2015.

1384 [45] Yao Zhang, Yun Xiong, Xinyue Liu, Xiangnan Kong, and Yangyong Zhu. Meta-path graphical lasso for learning heterogeneous connectivities. In
 1385 *Proceedings of the 2017 SIAM International Conference on Data Mining*, pages 642–650. SIAM, 2017.

1386 [46] Ali Ziat, Edouard Delasalles, Ludovic Denoyer, and Patrick Gallinari. Spatio-temporal neural networks for space-time series forecasting and relations
 1387 discovery. In *Data Mining (ICDM), 2017 IEEE International Conference on*, pages 705–714. IEEE, 2017.

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404