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Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial
Topological Constraints
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Spatial regression models are widely used in numerous areas, including detecting and predicting traffic volume, air pollution, and

housing prices. Unlike conventional regression models, which commonly assume independent and identically distributions among

observations, existing spatial regression requires the prior knowledge on spatial dependency among the observations in different spatial

locations. Such spatial dependency is typically predefined by domain experts or heuristics. However, without sufficient consideration

on the context of the specific prediction task, it is prohibitively difficult for human to pre-define the numerical values of the spatial

dependency without bias. More importantly, in many situations, the techniques are insufficient to sense the complete connectivity and

topological patterns among spatial locations (e.g., in underground water network and human brain network). Until now, these issues

are still extremely difficult to address and little attention has been paid to the automatic optimization of spatial dependency in relation

to a prediction task, due to three challenges: 1) necessity and complexity of modeling the spatial topological constraints; 2) incomplete

prior spatial knowledge; and 3) difficulty in optimizing under spatial topological constraints which are usually discrete or nonconvex.

To address these challenges, this paper proposes a novel convex framework that jointly learns the prediction mapping and spatial

dependency automatically based on spatial topological constraints. There are two different scenarios to be addressed. First, when the

prior knowledge on existence of conditional independence among spatial locations is known (e.g., via spatial contiguity), we propose

the first model named Spatial-Autoregressive Dependency Learning I (SADL-I) to further quantify such spatial dependency. However,

when the knowledge on the conditional independence is unknown or incomplete, our second model named Spatial-Autoregressive

Dependency Learning II (SADL-II) is proposed to automatically learn the conditional independence pattern as well as quantify the

numerical values of the spatial dependency, based on spatial topological constraints. Topological constraints are usually discrete

and nonconvex which is extremely difficult to be optimized together with continuous optimization problem of spatial regression. To

address this, we propose convex and continuous equivalence of the original discrete topological constraints with theoretical guarantee.

The proposed models are then transferred to convex problems which can be iteratively optimized by our new efficient algorithms until

convergence to a global optimal solution. Extensive experimentation using several real-world datasets demonstrates the outstanding

performance of the proposed models.
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Fig. 1. Spatial dependency varies across different application backgrounds.
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1 INTRODUCTION

Spatial regression is an important research area that has applications in domains such as predicting traffic volume,

home prices, and the pollution index [38]. A core characteristic of spatial regression relates to Tobler’s first law of

geography, which states that “Everything is related to everything else, but things that are nearby are more related than

distant things” [43]. This aspect is contradicting to the “independent and identically distributed (i.i.d.)” assumption,

which is typically applied to conventional regression problems. In spatial data mining and spatio-temporal statistics,

various spatial regression models have been proposed to address this type of non-i.i.d. problems. The most-commonly

used models tend to be the spatio-autoregressive model and its variants, which enforce the smoothness of data values

within geographical neighborhoods. Over the years, numerous spatial autoregressive models have been developed and

widely utilized, such as spatial Durbin, geographically weighted models, spatial X, and spatial panel models [38]. All

these prediction models require prior knowledge of the spatial dependency, which is usually pre-defined by domain

experts or estimated by heuristic distributions [11].

Contiguity matrix [3] is widely used to define the dependency among spatial locations which are considered as

nodes and their connections are determined by the existence of contiguity. Contiguity matrix assumes that contiguous

locations that share boundaries have the same strength of dependency. Unfortunately, this is usually not the case, as the

connectivity strength among locations could be different due to the various lengths of the shared boundary, the distance

between different locations, and even the sizes and shapes of the spatial regions. To account for such aspects, some

spatial statistics methods consider the boundary length, the distance between locations, or the spatial autocorrelation

statistics [11] as heuristics for estimating the actual spatial dependency. However, the actual strength of the spatial

dependency for a set of locations can neither be completely determined solely by the boundary length, nor by the

distance or autocorrelation statistics, but tends to be a comprehensive combination of all the (explicit and implicit)

relevant factors. Two locations can be correlated in various ways, for example by sharing the same earthquake zone

or being passed through by the same highway. Two nearby and contiguous locations can also be less correlated if

they are separated by mountains or bodies of water. More importantly, the spatial dependency normally comes with

context, so the strength of their spatial dependency could vary across different prediction tasks. As shown in Figure 1,

the dependency between the states of Louisiana and Arkansas is weak in terms of earthquakes but very strong in terms

of their shared water network. Similarly, the correlation between Florida and South Carolina is high in terms of their
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Fig. 2. Example of prior knowledge on the spatial conditional independency via contiguity correlation

risk of Zika virus outbreaks, but low in terms of earthquake risk. Therefore, it could be prohibitive for the conventional

expertise and heuristics to comprehensively consider and precisely quantify the context-based dependencies.

In order to address the above problem, it is preferable to learn the numerical strength of spatial dependency from a

given application context. However, up until now there has been little work reported on this issue due to the serious

technical challenges. 1) Incomplete prior knowledge on the conditional independency among spatial regions.
The conditional independency among spatial locations signifies whether there exists or not connectivity between any

pairs of them. However, due to the limitation of sensing techniques, in many important domains, it is too complex

and expensive to investigate the prior knowledge on the fine-grained connectivity among different locations. Such

domains include environment science, epidemiology, sociology, criminology, neuroscience, and chemistry, especially

for those open and crucial domains where the spatial patterns have not yet been completely figured out. For example,

the connectivity of the underground water network could be expensive and typically prohibitive to be investigated. In

epidemiology, it is prohibitively difficult to comprehensively figure out the spatial transmissibility correlation among all

the locations, as one needs to consider transportations, flight connections, climates, and even the migration of animal

species for some pest-borne diseases. In neuroscience, the specific fiber connections among different voxels have not yet

been fully determined. Hence, it is very common that the prior knowledge on the existence (or absence) of connections

may only be available for a portion or even none among all the locations. 2) the difficulty in optimizing under
spatial topological constraints. Typically, although the detailed knowledge on the spatial connectivity among all

the locations is not fully provided, the higher lever spatial topological prior knowledge could be available. For example,

although we do not know the detailed connection structure for underground water network, it is relatively easy to

obtain knowledge on which subset of locations form connected components and the topological type of each connected

component is typically tree structured. This requires us to automatically learn the spatial dependency among all the

locations under the spatial topological constraints, which are typically discrete or nonconvex. So adding such discrete

constraints over the spatial autoregressive which is typically continuous optimization problem leads to the simultaneous

optimization of both continuous and discrete variables, which is extremely challenging for current techniques in a

unified framework. A solution that is scalable to large number of locations with theoretical guarantee on the optimality

of the solution is highly imperative . 3) the difficulty in balancing the amount of exogenous and endogenous
information. Although too much exogenous information and constraints will make a model rigid and far from being

optimal, optimizing spatial dependency based solely on endogenous information on the observation data itself without

enough prior knowledge could also cause over-fitting. This is because the number of parameters involved in determining

the spatial dependency is quadratic to the number of locations. Thus, the model parameters could easily overwhelm the

historical data for even a modest number of locations (e.g., 30). The model needs to find an optimal balance between

being “over-constrained” and “under-constrained” by the prior knowledge.
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4 Liang Zhao, Olga Gkountouna, and Dieter Pfoser

In order to address all the above challenges, this paper proposes a generic Spatial Autoregressive Dependency

Learning (SADL) framework to solve a general spatial regression problem with incomplete prior knowledge on spatial

connectivity and topological constraints. The SADL framework jointly learns the prediction mapping from inputs to

outputs and the spatial dependency, under various amounts of available prior knowledge. When the spatial conditional

independency is available which provides the binary information on the existence (or not) of connection between

any pair of locations, we propose the model SADL-I that further optimizes the quantitative strength of the spatial

dependency among all the locations. Take Figure 2 as an example, here the six locations are treated as six nodes, two

nodes have connection if they are contiguous. So the connectivity only tells us which values in adjacency matrix are

nonzeros as shown in Figure 2(b). For example, there is no connection between ‘a’ and ‘d’ while there is connection

between ‘a’ and ‘b’. But although we know the existence of such connection, we still do not know the strength of it. For

example, the strength of connectivity between ‘a’ and ‘b’ might be different from that between ‘c’ and ‘d’. Therefore,

instead of using heuristics to define it agnostic to the prediction tasks, SADL-I is developed to optimize the strength

of the connectivity, namely the specific numerical values of those nonzero entries marked by ‘?’ in Figure 2(b). For

the cases where the prior information on conditional independency is incomplete and only the higher-level spatial

topological constraints are available, we propose another convex model, SADL-II, which learns both the conditional

independency as well as the spatial dependency under the given spatial constraints. To make the discrete spatial

constraints computationally feasible to solve, we propose their convex and continuous equivalence with theoretical

proofs. Effective optimization methods based on Alternating Direction Methods of Multipliers (ADMM) are proposed to

obtain the global optimal solutions for both models efficiently with theoretical guarantees. The major contributions of

this paper are as follows:

• Propose a novel generic convex framework for simultaneous spatial dependency optimization and spatial

regression. To avoid the bias in the existing methods based on predefined spatial dependence, the proposed

framework instead optimizes the spatial dependence strength among locations based on spatial conditional

independency under spatial constraints. The outputs of the framework provide both high performance and

interpretability of the data and locations.

• Propose two novel models SADL-I and SADL-II that address different types of prior knowledge. The first model

SADL-I optimizes the strength of spatial dependency based on prior knowledge on the existence (or not) of

spatial connections among locations. When such prior knowledge is incomplete or unavailable, the second

model SADL-II further embeds higher-level spatial topological constraints to directly learn the conditional

independency as well as spatial dependency strength.

• Develop efficient algorithms for optimizing SADL-I and SADL-II. Algorithms based on ADMM are developed to

decompose the large optimization problems into smaller subproblems, which are then solved efficiently using

their closed forms or projected gradient descent. The newly developed algorithms for SADL-I and SADL-II are

theoretically guaranteed to obtain global optimal solutions after convergence.

• Conduct extensive experiments on three real-world data sets against several state-of-the-art methods. The

proposed SADL-I and SADL-II methods outperform the best competitor methods by around 10% on average.

In-depth discussions on the parameter sensitivity, convergence, and the discovered spatial dependency conclude

the study.
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2 RELATEDWORK

Spatial regression based on spatial correlation. Spatial prediction has long been of interest to academics as a

branch of spatio-temporal statistics [11]. It characterizes the correlation among the patterns in different geo-locations

and requires the removal of the conventional “independent and identically distributed” assumption on the data. One

way to achieve this is through dependency modeling, where the best known models are spatio-autoregressive (SAR)

[8, 34, 38, 41], spatial Durbin [29], geographically weighted [7], and spatial X [18]. Researchers have generally assumed

that the status of each location is not only determined by its own input, but also by the status of other locations through

their spatial auto-correlation patterns. For example, based on the fixed prior knowledge on the spatial dependency such

as spatial contiguity, feature weights and trade-off parameter were estimated in the SAR models [8, 38]. In addition

to modeling the spatial dependency directly, researchers have also added extra regularization terms to enforce a

“smoothing” across different locations. Regularization terms such as spatial entropy [9] and spatial information gain

are typically utilized for such classification problems. One common way for the regularization of spatial regression is

through graph Laplacian approaches [14], which penalizes the divergence among the parameters of the models for

neighboring locations, and thus the spatial correlation of the models for different locations will be enforced. All the

above methods typically require the existence of some prior knowledge as a heuristic surrogate of the true spatial

correlation strength, such as the spatial adjacency relationship and geographical distance between locations. However,

the real spatial correlation strength is typically not the same as the heuristic estimation and will vary across different

prediction tasks [39]. Farber et al. [15] focuses on performing statistical analysis on how much two specific network

properties influence the performance of three existing models: namely logistic regression (LR), spatial autoregressive

(SAR), and Lagrange multiplier spatial lag dependence model (LM-LAG). Most recently, Ziat et al. [46] proposed to

infer the spatial correlation in time series data, but only focus on predicting the endogenous input variables in future

points. Moreover it cannot consider the topological constraints from spatial prior knowledge when learning the spatial

correlation. Qu et al. [36] present model specification and estimation of the SAR model with an endogenous spatial

weight matrix which however requires strong assumption on their probabilistic distribution. Kelejian and Prucha

[22] estimate the spatial disturbance term that is spatially autoregressive while Li et al. [27] develop a new heuristic

to estimate the spatial dependence, as a suitable alternative to Moran’s statistic. Otto and Steinert [33] as well as

Bhattacharjee and Jensen-Butler [4] both propose two-step lasso estimation approaches to estimate spatial weights

matrix, whereas the joint global optimality cannot be guaranteed due to the separate optimization of each step. In

addition, Lam and Souza [24] focus on a spatiotemporal model setup with exogenous regressors, where the spatial

weight matrix has a block diagonal structure. Lam et al. [25] as well as Ahrens and Bhattacharjee [1] both purely use

LASSO for sparsifying spatial dependency matrix without sufficiently utilizing the exogenous information such as the

spatial conditional independency or spatial topological constraints.

Graph structure learning. There are basically two types of graph structure learning problems. The first seeks

to learn the selection of the nodes in the graph, such as subgraph detection [21], structured feature selection [17],

and subgraph clustering [29]. The other type learns the selection and weights of the edges in the graph in order to

learn the dependency among the variables [2, 44]. A standard approach for this is based on the classic result that

the zeros in the correlation matrix correspond to zero partial correlations among variables. Numerous works have

focused on learning the precision matrix for graphical models; this problem is particularly relevant to graphical LASSO,

proposed by Banerjee et al. [2] and Friedman et al. [16], and a large variety of alternative penalties have been suggested

to extend the priors of graphical LASSO [13, 20, 45]. Loh et al. [28] focused on inferring the graph structure using
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discrete Markov Random Fields. Instead of learning the precision matrix, other works have directly estimated the

Laplacian matrix or the adjacency matrix. For example, [12] developed a fitness metric as the surrogate for learning the

graph topology, rather than directly optimizing it. To avoid the bias introduced by the surrogate metric and directly

learn the graph topology, Lake et al. [23] proposed learning an adjacency matrix with a regularized Laplacian matrix.

Dong et al. [14] proposed learning a smoothing regularizer for a given signal using a nonconvex problem formulation.

Unlike the above existing work, this paper focuses on the optimization of the contiguity matrix for spatial locations,

where the final output for each location is determined by both the input and the output of other locations. Moreover,

additional constraints required for this spatial regression problem includes symmetric, non-negative, zero-diagonal,

and spatial topological constraints such as a tree-structure (e.g., a watershed network), a grid-structure (e.g., Manhattan

Neighborhood Network), or a connected subgraph (e.g., an electrical grid network).

Traffic flow prediction. Traffic flow is traditionally measured using stationary sensors such as induction loops.

Their measurements can be used to train models for the short-term prediction at those locations [26, 32, 40]. This work

uses traffic data from various locations to study the spatial correlation of flow and to train auto-regressive dependency

learning models based on spatial topological constraints of the road network. The fundamental traffic flow diagram [19]

could be used to infer traffic volume from speed and density. However, learning these relationships requires a large

amount of training data, which is not always available for all parts of the road network, an important limitation this

work is able to overcome.

3 PROBLEM FORMULATION

Denote X = {Xt }
T
t as the time-ordered collection of input data. Each Xt ∈ X represents the input data, which are

typically observations from sensors, at time t such thatXt ∈ R
|S |× |K |

is a matrix for all the spatial locations S and all the

input features K . Naturally, denote Xt,s as the data vector at time t in the location s , and denote Xt,s,k as the data point

for the feature k in the location s at time t . Similarly, denote Y = {Yt }
T
t as the time-ordered collection of output data

to be predicted. Each Yt ∈ Y denotes the output data at time t such that Yt ∈ R
1×|S |

. Therefore, Yt,s ∈ R denotes the

prediction output for location s at time t . In conventional prediction problems, the independent and identity distribution

(i.i.d) condition is typically assumed. However, for spatial prediction, i.i.d condition cannot be held according to the

first law of geography where “everything is related to everything else, but near things are more related than distant

things” [42]. For example, if we want to predict the traffic congestion for a road segment, then the traffic condition of

its adjacent road segments is highly important to be considered since they are correlated instead of being independent

from each other.

Therefore, the problem of spatial prediction can be formulated as follows:

Problem Formulation: At time τ , given the input signal Xτ ∈ R
|S |× |K |

on a set of different locations S with a set of

input featuresK , we aims at predicting the outputYt at a future time t by learning a predictive model: f : Xτ |D,W → Yt ,

whereW ∈ R1×|K | encodes the weights of the features to the prediction output, and D ∈ R |S |× |S | encodes the spatial

dependencies among all the locations S . For example, Di,s denotes the spatial dependency between locations i and s .

Typically D needs to be non-negative and must follow some reasonable spatial topological constraints (such as road

network and river network). In addition, the lead time is p = t − τ , which means the time span between the current

time τ and future time t .

In essence, the prediction of a spatial location is not only determined by the input of this location, but also the output

in other locations: Yt,s =
∑
i ∈S,i,s ρ · Di,sYt,i+W · Xτ ,s + ε , where Di,s denotes the spatial correlation from location i

to location s , ρ is the trade-off parameter balancing the contribution of the input and the location correlation to the
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Table 1. Important Notations

Notations Explanations

S All the spatial locations

T All the time intervals

Xs,t ∈ R1×|K | Input feature vector in location s at time t
Yt,s ∈ R Response variable in location s at time t
D ∈ R|S |×|S | Spatial dependency matrix

W ∈ R1×|K | feature weights

G The sets of all the connected components

on spatial dependency

Dд ∈ R|д |×|д | The spatial dependency for a connected

component д

Fig. 3. The correlation matrix of spatial locations, different conventional heuristics to determine the correlation matrix, and an
example of topological constraints leveraged by our method.

prediction. Using matrix notation, this notion can be concisely rewritten in the following form:

Yt = ρ · D · Yt + Xτ ·W
T + ε, (1)

where D ≥ 0, diag(D) = 0

which is called spatial autoregressive model [23], where D ≥ 0 denotes that all its elements are nonnegative. diag(D) = 0

means all of its diagonal elements are equal to 0 because a location is not meaningful to be dependent on itself. ε denotes

the noise following a Gaussian distribution N(0,σ ). The matrix D in the above equation could be further normalized

(e.g., row-normalized) to avoid potential the singularity of I −D, where I is an identity matrix. However, the framework

proposed in this paper can avoid singularity even without row-normalization, which will be introduced in the next

section.

Challenges: In the existing works, the spatial dependency matrix D is typically known beforehand. Conventionally,

it is determined by external prior knowledge such as the continuity correlation among the locations [29]. These works

assume the continuous locations have spatial correlation of “1” if they are contiguous while “0” if they have no contiguity.

However, it is prohibitively difficult to accurately determine the spatial dependency only by human prior knowledge

and heurstics without bias. Specifically, as shown in Figure 3, there are six spatial locations shown in Figure 3(a) whose

spatial contiguity relation is shown by the weight matrix in Figure 3(b). However, it is not reasonable to assume that all

the locations share the same strength of spatial correlation. For example, the weight matrix in Figure 3(b) assumes the

spatial correlation strengths between locations c and d are equal to that between locations a and b. But obviously the

latter has much longer border shared between locations c and d, which cannot be differentiated in Figure 3(b). Figure

3(c), though differentiates the length of the shared border among locations, cannot consider their percentage out of

the total lengths. For example, the border between locations c and d, and that between locations e and f are the same

in length, but obviously the latter are potentially higher correlated because the percentage of border shared between

locations e and f among the total length of all of their borders is much larger than the percentage of border that c

and d share. Figure 3(d), though considers the percentage of border, still cannot consider the shapes and other factors

that could be critical in determining the spatial correlation strength. Also, the spatial correlation should differ for
Manuscript submitted to ACM
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Fig. 4. The information about the spatial contiguity among locations b, c, d, and e is incomplete (marked by the oval grid mask).
Correspondingly, the absence of spatial dependency between locations c and d, as well as that between locations b and e is unknown,
which is marked as black in the weight matrix D in subfigure (b).

different prediction tasks. For example, when predicting the air pollution, the contiguous locations are related with

each other. But for predicting the water pollution, the same spatial locations need to correlate under the constraint of

stream networks. Furthermore, usually the prior knowledge on spatial dependency D is incomplete or only
in high-level such as the type of its geographical topology. For example, in Figure 4, the information about the

spatial contiguity among locations b, c, d, and e is incomplete, which is marked as the oval grid mask in Figure 4(a).

Correspondingly, the existence or absence of spatial connectivity between locations c and d, as well as that between

locations b and e is unknown, which is marked as black in the spatial correlation weight matrix D in Figure 4(b).

Therefore, we need to infer the unknown connectivity among the locations. To achieve this, it is crucial to infer

whether the unknown connectivity exists (nonzero value in the weight matrix) or not (zero value in the weight matrix),

namely to predict whether the black-marked entries in Figure 4(b) is zero or not, and the specific value if nonzero. It is

very challenging to instruct the optimization of D under such partial constraints due to its inherent nature related to

combinatorial and non-convex optimization which will be addressed by our new algorithms elaborated in Section 4.3.

4 MODELS

In order to address the above challenges, we first propose a generic framework SADL to jointly optimize the spatial

dependency as well as the prediction mapping from the input features. By inserting different prior knowledge on the

spatial topological constraints in SADL, it leads to two different optimization problems. First, when the existence and

absence of connection between any pair of all the spatial locations are known a priori, the first model named Spatial

Autoregressive Dependency Learning-I (SADL-I) is proposed to learn the numerical strength of these connections.

Second, when the connectivity among the locations is unknown, the second model named Spatial Autoregressive

Dependency Learning-II (SADL-II) is proposed to automatically learn both the connections and their numerical strength,

following the spatial topological constraint.

4.1 New generic framework for spatial dependency learning

The connectivity among different locations commonly exists in reality, such as the connections among the road segments

through a road network, the connections among the segments of rivers among a water network, and the contiguity

relationship among different provinces in a country. Although the binary value on the existence (or not) of connection

is easy to obtain, the strengths of them which are numerical values typically are difficult to be pre-defined accurately.

Specifically, we propose a new framework that is able to learn such numerical values in terms of spatial dependency

during spatial prediction, given the binary-valued existence of connectivity. To avoid the overspecification of spatial
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Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints 9

correlation, we propose to leverage topological constraint. Figure 3(e) shows one example of topological constraint,

which only specifies which two locations are conditionally independent (shown as “0” in Figure 3(e)) with each other,

but empower the model to automatically and adaptively optimizes the values of the strengths of the spatial dependency

(namely, the unknown entries with “?” in Figure 3(e)), which is impossible to hand-craft. Our problem is formulated as

follows:

This new generic framework can be formulated as the following objective function:

minD,W −ℓℓ(D,W ,σ
2 |Y ) + λR(W ), s .t .,D ∈ G (2)

where −ℓℓ(D,W ,σ 2 |Y ) is the negative log-likelihood which minimizes the spatial prediction error. R(W ) denotes the

regularization term on feature weightW which enforces feature sparsity and ensures model generalizability. And D ∈ G

is the spatial topological constraints on D based on external prior knowledge. The detailed explanations about all these

terms are as follows:

1) The log-likelihood ℓℓ(D,W ,σ 2 |Y ).
ℓℓ(D,W ,σ 2 |Y ) is the log-likelihood conditioning on the variable Y . The following introduces the deduction of it.

According to Equation (1), we have ε = (I − ρ · D) · Yt − Xτ ·W
T
which follows the Gaussian distribution ε ∼ N(0,σ ),

where Yt denotes the output data at time t . Because we are optimizing D, the scaling factor ρ can be absorbed into D

and hence we have ε = (I − D) · Yt − Xτ ·W
T
. Since it is easy to obtain the likelihood ℓ(σ |ε) in terms of the variable ε ,

we can utilize ℓ(σ |ε) to calculate ℓ(D,W ,σ 2 |Y ) using the well-known Jacobian factor [30]. And finally we can obtain

the log-likelihood as shown in the below lemma whose detailed deduction is elaborated in the proof in the appendix

section.

Lemma 1. The log-likelihood ℓℓ(D,W ,σ 2 |Y ) in Equation (2) is calculated as follows:

ℓℓ(D,W ,σ 2 |Y ) =
∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
) (3)

+
1

2

· |S | |T | ln(2πσ 2) − |T | ln(det(I − D))

where det(x) denotes the determinant of the matrix x . It can be seen that the ρ in Eq. (1) has been absorbed into D. Y is the

output data to be predicted and Yt is the output data for time t .

Proof. The detailed proof is included in appendix section. □

2) The regularization on feature weightsW .
R(W ) is the regularization term, such as the ℓ1-norm for the feature weightsW to enforce reasonable sparsity

patterns whenW has high dimension. The trade-off parameter λ can be selected by cross-validation as detailed in the

experimental section.

3) The spatial topological constraint D ∈ G.
D ∈ G is the spatial topological constraint, which needs to be specified according to the prior knowledge that we

have on G. Therefore, in the following two subsections we focus on the two different formulations of G: 1) SADL-I
Model: Section 4.2 describes the situation when the complete information of the connectivity among spatial locations is

available; and 2) SADL-IIModel: Section 4.3 elaborates the situation when the connectivity is incomplete or unavailable

but the spatial topological constraint is available.

1
For the basics about this equivalence, please refer to [30] and Section 1.2.1 of [5]
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10 Liang Zhao, Olga Gkountouna, and Dieter Pfoser

In addition, it can be seen from Equation (27) that, the aforementioned singularity issue of I −D can be avoided in our

framework, even without doing row-normalization, thanks to the optimization of D. Specifically, as shown in Equations

(27), it minimizes the term of −|T | ln(det(I − D)), which will avoid I − D to be singular because if it is singular, then the

optimization objective will be positive infinity, which is inherently avoided by our minimization process. Moreover, our

framework is also generic to, and can easily adopt any normalization of matrix D.

Remarks for the novelty of the proposed SADL framework: The general framework proposed in Equation

2 is new and has never been proposed before, to the best of our knowledge, which is significant and novel in three

specific aspects: 1) Automatic inference of the weight matrix D. Existing work typically predefined the matrix D purely

based on human hand-crafting and heuristics. However, as mentioned above, such predefined matrix involves bias and

cannot accurately reflect the true spatial correlation specific to the corresponding prediction task. To address this, our

framework innovatively enables to optimize the matrix D adaptively to minimize the prediction error, based on our

proposed techniques on sparse learning and optimization. 2) Inclusion of the spatial topological constraints. Currently,

there is no existing work that has leveraged the spatial topological constraint for the optimization of weight matrix D,

which is important to many applications as mentioned above but is very challenging to be formulated. This is because

the graph topological related problems are naturally discrete optimization problem typically with discrete constraints,

while the spatial autoregressive is typically continuous optimization problem, and hence it is extremely challenging for

current techniques to jointly address these two types of problem. To address this, we innovatively formulate the original

discrete formulation of spatial topological constraint into its continuous equivalence by our Theorem 1 in Section 5.2. 3)

Optimization of the new objective with spatial topological constraints. Specifically, existing spatial autoregressive methods

typically only optimize the scaling factor ρ (see in Equation (1)) and input feature weightW , which can be solved

directly using traditional algorithms such as Expectation-Maximization algorithms. However, the new involvement of

the optimization of the additional matrix D with numerous parameters and nonlinear and nonsmooth constraints on

spatial topologies requires new efficient and effective algorithm to handle this problem. Accordingly, this paper proposes

new optimization methods based on ADMM and proximal operators, which decomposes the original big problem into

equivalent subproblems that are then respectively solved by the new algorithms we designed and presented in Section

5.

4.2 SADL-I Model

This section present SADL-I Model which can optimize the (numerical) strength of spatial dependency when information

on the existence of connection between any pair of locations is known a priori.

In many applications, the existence or not of connection among different locations can be prepared accurately without

too much effort. In this situation, it means the sparsity pattern (namely binary information on whether each element is

zero or not) of D can thus be provided a priori. And thus the optimization task is to learn the specific weights for those

existing edges (namely those nonzero entries) which represent the corresponding spatial dependency among different

locations. Therefore, we have a constraint supp(D) = M whereM denotes the indices of all the existing connections

among the locations based on prior knowledge. Here the function supp(x) denotes the support of a matrix x which is

the set of the indices of all the nonzero elements of x .

In addition, spatial dependency is commonly assumed non-negative, namely D ≥ 0. Also, the concept of spatial
dependency exists only between different locations, which indicates the zero values for the diagonal elements of the

matrix D. Moreover, spatial dependency is typically undirected, which means that if a location A is correlated with

another location B, then B is equally correlated to location A. Therefore, we have D = DT
. Thus, the spatial topological
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Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints 11

constraint can be denoted as:

D ∈ G, where G = {d |d ≥ 0, diag(d) = 0,d ∈ R |S |× |S | ,

d = dT, supp(d) = M} (4)

And the overall objective function for spatial dependency learning can be written as:

min

D,W

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
)

−|T | ln(det(I − D)) + λR(W ),

s .t .,D ≥ 0, diag(D) = 0,D = DT, supp(D) = M (5)

where the hyper-parameters λ and σ can balance the importance of different terms. These hyper-parameters are

determined based on cross-validation in the experimental section.

Lemma 2. The optimization problem in Equation (5) is convex.

Proof. The sufficient condition of the convexity of the first term is that the term ∥DYt + XτW
T∥2

2
is convex, which

is equal to prove the equivalent term ∥mat(Yt ) · vec(D) + XτW
T∥2

2
, where vec(D) ∈ R |S | · |S |×1 is the flattened vector

form of the matrix D such that [vec(D)](i−1)· |S |+j,1 = Di, j , andmat(Yt ) ∈ R
|S |× |S | · |S |

is the matrix form of the vector

Yt ∈ R
|S |×1

such that [mat(Yt )]i,(i−1)· |S |+j = [Yt ]j,1 and all the other elements ofmat(Yt ) are zeros. And it is easy to

see thatmat(Yt ) · vec(D) = D · Yt and that ∥mat(Yt ) · vec(D) + XτW
T∥2

2
is convex due to the fact that the Hessian

matrix with respect jointly to vec(D) andW is positive semi-definite. Therefore, the first term in Equation (5) is convex.

Moreover, the logarithm determinant term |T | ln(det(I − D)) is well-known to be concave. Finally, because in Equation

(5), all the equality constraints are affine while all the inequality constraints are convex, the proof is completed. □

In Section 5, our newly proposed algorithm is able to address this problem with a global optimal solution.

4.3 SADL-II Model

For the situations when the information on the conditional independence among spatial locations is unknown or

incomplete where SADL-I cannot apply. To address it, in this subsection, we first present the motivation of the SADL-II

model, then propose our new equivalent formulation of spatial topological constraints using Theorem 1, and finally

present the concrete mathematical formulation of our SADL-II model in Equation (6).

In general, a wide variety of applications suffer from the incomplete knowledge on the connectivity among spatial

regions, such as in the domains of environment science, epidemiology, sociology, criminology, neuroscience, and

chemistry, especially for those open and crucial domains where the spatial patterns have not been completely figured

out. For these domains, it is usually technically infeasible or too complex and expensive to investigate the prior knowledge

on the fine-grained connectivity among different locations. For example, the connectivity of the underground water

network could be expensive and typically prohibitive to be investigated. In most situations, although we do not

know the detailed connection structure, it is easy to obtain knowledge on which subset of locations form connected

components and what is the topological type of each connected component. In epidemiology domain, the spatial disease-

transmissibility correlation among different locations are crucial in determining the spread of epidemics, which, however,

is typically too complex to be 100% completely observed and modeled. For example, to comprehensively consider the

spatial transmissibility correlation among locations, one needs to consider transportations, flight connections, climates,
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12 Liang Zhao, Olga Gkountouna, and Dieter Pfoser

and even the migration of animal species for some pest-borne diseases. In neuroscience, brain connectome is a famous

spatial network which can be considered as a network of voxels (i.e., spatial regions), and different voxels can have

connections if there are fibers between them. However, currently the state-of-the-arts are still far from being able to

figure out all the connectivity between voxels and among all the neurons. However, a spatial topological constraint is

typically known: “the brain network (e.g., structural connectome) should be a connected graph)”. In biochemistry, being

determined by protein folding, the spatial structure of protein molecular is crucial for determining the protein function

and hence important for crucial domains such as drug design. This directly motivates the research on protein structure

prediction whose goal is just to predict the unknown spatial proximity among atoms, which is still an open question.

Here a spatial topological constraint is: “a protein must be a connected graph with backbone-chain structure”. Spatial

topological constraints are also available for many other domains. For example, given a set of watersheds where we

want to predict the water quality, we know each watershed it is typically a connected component and tree-structured.

Given a set of streets in areas of different cities, we know each of them is a connected graph under a “street grid” [18].

This type of knowledge is extremely instructive for optimizing the spatial dependency under a correct spatial structure.

Therefore, we are given prior knowledge on G which is the list of the location sets in all the different connected

components, where each д ∈ G is a subset of locations such that д ⊆ S . Concretely, this prior knowledge is equivalent

to the joint satisfaction of both the following two properties: 1) Property 1: Locations in each connected components

have path(s) to each other. For each pair of locations i and j in a connected component д ∈ G, they must have at least

one path to each other. 2) Property 2: No connections among locations from different connected components. For location

i ∈ д and location j ∈ h where д ∈ G and h ∈ G are two different connected components, there is no path between

locations i and j.

So the crux now is how to embed such prior knowledge into our framework in Equation (2), namely how to

mathematically encode such information of connected components in terms of the constraints upon D ∈ G. This is a

new and challenging problem. Specifically, the constraints to enforce connected components is inherently discrete. And

enforcing the connectivity for each component is naturally a discrete optimization problem with discrete constraints

which typically requires graph theory discrete algorithm. On the other hand, the spatial autoregressive is typically

continuous optimization problem which relies on maximal likelihood and gradient descent. However, our model requires

the simultaneous optimization of both of them together, and hence it is extremely challenging for current techniques to

jointly address these two types of problem in a unified framework. To address this issue, we innovatively propose a

convex formulation for D ∈ G which exactly encodes the prior knowledge on the connected components, as shown in

Theorem 1.

Theorem 1 (connected-component constraints). A graph has a set of connected components G if and only if the

following two conditions are satisfied:

• diagm(Dд · 1T) − Dд + 1T1/|д | ≻ 0,Dд ≥ 0, д ∈ G, which formulates the above Property 1.
• D[i, j] = 0,∀ i ∈ д, j ∈ h,д , h,д,h ∈ G, which formulates the above Property 2.

where D[i, j] denotes the connectivity of locations i and j . Dд is the adjacency matrix only for those locations in д. Thus Dд

is a block matrix of D. 1 ∈ R1×|д | denotes an all-one vector. diagm(x) denotes the diagonal matrix with elements as the

vector x . The symbol ≻ 0 denotes the positive definite property.

Proof. First, if there are |G | connected components, then there must be no connections across different components

such thatD[i, j] = 0, i ∈ д, j ∈ h,д , h,д,h ∈ G . Then in the following, we prove the connectedness of each components.
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Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints 13

The proof is based on the property of graph connectedness constraint [42]. Define Zд ≡ diagm(Dд · 1T) −Dд + 1T1. We

first prove for any x , 0, we have xTZдx > 0. This is equivalent to proving xT · Zдx =
∑
i,j Dд,i, j (xi − x j )

2/2 + 1/|д | ·

(
∑ |д |
i xi )

2 , 0. Assuming xT · Zд · x = 0, this means that

∑
i=1 xi = 0 and xi = x j for all i and j such that Dд,i, j > 0.

Then x must be 0 if there is only one component in the components consisting of д. Next, assume the components has

at least two components, then we have two sets c and e such that c ∪ e = д, c ∩ e = ∅ and ∀(i, j) ∈ c × e : Dд,i, j = 0. By

setting xi = 1/|c | and x j = −1/|e | we have x
T · Zдx = (|c |/|c | − |e |/|e |)

2/|д | = 0. The proof is completed. □

When there is only one connected-component, namely all the locations have path(s) two each other, it is easily seen

that our Theorem 1 is still valid.

Applying the formulated spatial topological constraint in Theorem 1, we obtain the objective function for SADL-II:

minD,W − ℓℓ(D,W ,σ
2 |Yд) + λR(D), (6)

s .t ., diagm(Dд · 1T)/|д | − Dд + 1T1 ≻ 0,Dд ≥ 0, supp ⊆ M′

D[i, j] = 0, i ∈ д, j ∈ h,д , h,д,h ∈ G,

diagm(Dд) = 0, Dд = DT
д

M′ denotes the partial prior knowledge on the connectivity among locations, which can be incomplete. WhenM′ is

all-one matrix, there is not any prior knowledge on connectivity available. To solve Equation (6), a new algorithm is

proposed to obtain the global optimal solution for in Section 5.

5 OPTIMIZATION ALGORITHMS

Both of the proposed models SADL-I and SADL-II are not easy to solve efficiently based on existing convex optimization

algorithms, due to the existence of the determinant term and several constraints on D. In the following, the two

algorithms for SADL-I and SADL-II are proposed and described.

5.1 Algorithm for SADL-I

In the objective function of SADL-I, namely Equation (5), there are two variables with several constraints. In order to

optimize it efficiently, Alternating Direction Method of Multipliers (ADMM) [6] has been utilized. First, we transfer the

original problem into an equivalent formulation, as follows:

min

D,W

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
)

− |T | ln(det(U )) + λR(V ) (7)

s .t .,D ≥ 0, diag(D) = 0,U = I − D,

V =W ,D = DT, supp(D) = M

In ADMM, the constrained optimization problem needs to be formulated in forms of augmented Lagrangian, as follows:

Lp =
∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
) − |T | ln(det(U ))+

λR(V ) +
γ

2

∥U − I + D + Γ1∥
2

F +
γ

2

∥V −W + Γ2∥
2

F (8)

− (γ/2)(∥Γ1∥
2

F + ∥Γ2∥
2

F )

where γ is the penalty term which is typically initialized as 1 [6]. And Γ1 and Γ2 are dual variables.
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Algorithm 1 Parameter Optimization for SADL-I

Require: X , Y , σ , λ, andM.

Ensure: solutionW , V , U , and D .

1: Initialize γ = 1,W , U , V , D = 0.
2: Choose εp > 0 and εd > 0.

3: repeat
4: W ←Equation (10).

5: V ←Equation (11).

6: U ←Equation (12).

7: repeat
8: ∆D = D − η∇H
9: D ← ((∆D/2 + ∆DT/2)+ ⊙ DM )+
10: until Convergence
11: Calculate the primal residual p and dual residual d according to [6].

12: if r > 10d then
13: γ ← 2γ # Update penalty parameter

14: else if 10r < d then
15: γ ← γ /2 # Update penalty parameter

16: else
17: γ ← γ # Update penalty parameter

18: end if
19: until p < εp and d < εd

Then the variables U , V ,W , and D are optimized iteratively until convergence by fixing other variables. In our

algorithm, we provide the situation when the regularization term is an ℓ1 norm such that R(V ) = ∥V ∥1, but the

algorithm is generic for other popular norms. The procedure of the algorithm for SADL-I is illustrated in Algorithm 1.

The algorithm is initialized in Lines 1-2. And then the parametersW ,V ,U , and D are optimized iteratively in Lines 3-10.

D is optimized by projected gradient descent where the proximal gradient is calculated in Lines 8-9. Then the primal

and dual residuals are calculated [6], which are used to update the γ in Lines 11-18 and determine the termination of

the iterations in Line 19. The solutions for the subproblems are described in the following.

1. UpdateW . The update ofW amounts to the following subproblem:

min

W

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2F+

∥W −V + Γ2∥
2

F (9)

The optimization ofW has an analytical solution as follows:

W = [
1

σ 2

∑T

t
YT
t (I − D)

TXt + γ (V − Γ2)]

· (
1

σ 2

∑T

t
XT
t Xt + γ I )

−1
(10)

2. Update V . Update V amounts to the following subproblem.

min

V
∥W −V + Γ2∥

2

F + ∥V ∥1 (11)

which has analytical solution based on soft-thresholding [6].

3. UpdateU . The optimization problem for updating U is:

min

U

γ

2

∥I − D −U + Γ1∥
2

F − ln |U | (12)
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Let PQPT denote the eigendecomposition of γ (I − D − Λ1), therefore:

U = γ/2 · P(Q + (QQ + 4γ I )1/2)PT (13)

4. Update D. The optimization problem for updating U is:

min

D
H (D) =

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
)

+
γ

2

∥U − I + D + Γ1∥
2

F (14)

s .t ., D ≥ 0, diag(D) = 0,D = DT, supp(D) = M

The above problem can be easily solved by projected gradient descent [10], where for each gradient step we calculate

the following projected gradient:

proj
0
(D − η∇H ), (15)

where prox
0
(x) = ((x/2 + xT/2)+ ⊙ D

(M ))+

where η is the step size for each iteration of the projected gradient descent. (x)+ denotes an operation on a matrix x which

maps those negative elements to 0’s while it retains the non-negative elements’ values. ⊙ denotes the element-wise

multiplication between two matrices. D(M ) is the binary matrix that satisfies both diag(D) = 0 and supp(D) = M.

Since the problem in Equation (5) is convex according to Lemma 2 and the optimal solution for each subproblem

can be obtained, the algorithm for SADL-I will converge to global optimal solution based on the ADMM convergence

properties for convex problems with simple equality constraints [6].

5.2 Algorithm for SADL-II

The equivalence form of the original objective function for SADL-II model in Equation (6) is as follows:

min

D,W ,V ,E,U

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2F +
|S |

2

ln(2πσ 2)

− ln |U | + λ∥V ∥1 + ∥D∥1 (16)

s .t ., I − D = U , diagm(Dд · 1) − Dд + 1T1/|д | − ϵI = Eд

W = V , supp ∈ M′,Eд ⪰ 0,D ≥ 0, diag(Dд) = 0,д ∈ G

The augmented Lagrangian of the Equation (16) is as follows.

Lγ =
1

T

∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2F +
|S |

2

ln(2πσ 2)

− ln |U | + λ∥V ∥1 +
γ

2

∥I − D −U + Λ1∥
2

F − (γ/2)∥Λ1∥
2

F

+
γ

2

∑G

д
∥diagm(Dд · 1) − Dд + 1T1 − ϵI − Eд + Λ2∥

2

F

+ ∥W −V + Λ3∥
2

F + ∥D∥1 − (γ/2)(∥Λ2∥
2

F + ∥Λ3∥
2

F )

where Λ1, Λ2, and Λ3 are the dual variables. Similar to Section 5.1, the augmented Lagrangian will be solved by

alternately solving five subproblems of U , V ,W , E, and D until convergence, as summerized in the pseudo-code in

Algorithm 2. The subproblems ofU , V , andW in Lines 5-7 are the same as those described in Section 5.1 and thus they

are omitted in this section. However, the solving of the subproblems of D and E is different from that of SADL-I. Similar
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Algorithm 2 Parameter Optimization for SADL-II

Require: X , Y , σ , λ, G , andM′.

Ensure: solutionW , V , U , E , and D .

1: Initialize γ = 1,W , U , V , Dд = 0, д ∈ G .

2: Initialized E = diagm(Dд · 1) − Dд + 1T1 − ϵ I .
3: Choose εp > 0 and εd > 0.

4: repeat
5: W ←Equation (10).

6: V ←Equation (11).

7: U ←Equation (12).

8: for д ∈ G do
9: repeat
10: ∆Dд = Dд − η∇H (Dд )

11: Dд ← ((∆Dд/2 + ∆DT
д/2)+ ⊙ D

(M ))+
12: until Convergence
13: repeat
14: ∆E = diagm(Dд ) · 1T − Dд + 1T1 − ϵ · Iд + Λ2,д
15: Dд ← prox⪰(∆E)
16: until Convergence
17: end for
18: Calculate the primal residual p and dual residual d according to [6].

19: if r > 10d then
20: γ ← 2γ # Update penalty parameter

21: else if 10r < d then
22: γ ← γ /2 # Update penalty parameter

23: else
24: γ ← γ # Update penalty parameter

25: end if
26: until p < εp and d < εd

to Algorithm 1, the update of γ and stop criteria are illustrated in Lines 18-26. Both subproblems of D and E are solved

based on projected gradient descent in Lines 9-12 and Lines 13-16, respectively, and are elaborated in the following.

1. UpdateD. According to Theorem 1,D can be partitioned into several block matrices corresponding to all the different

connected components. Thus the optimization of D is broken into the following subproblems on each different block

matrix Dд . Similarly, in the following, a symbol with a subscript “д” also denotes its block matrix corresponding to that

of Dд . For example, Uд denotes the block matrix the original matrix U which corresponds to those locations д ∈ G

which forms a connected component. The objective funtion for Dд is as follows.

min

Dд ≥0,Dд=DT
д,Dд,M=0

H (Dд) (17)

where

H (Dд) =
γ

2

∥Uд − Iд + Dд + Λ1,д ∥
2

F

+
γ

2

∥diagm(Dд1T) − Dд + 1T1/|д | − ϵIд − Eд + Λ2,д ∥
2

F

+
∑T

t

1

2σ 2
∥(Iд − Dд)Yд − XдW

T∥2F (18)
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The above is a convex objective with convex constraint, which can be efficiently solved by projected gradient descent,

where the gradient for each iteration is calculated as follows:

∇DдH (Dд) = γ ·Dд · 1T1 + γ · diagm(diag(Cд)) · 1T1

+γ (Uд − Iд + Λ1,д) − γ · (diag(Dд)1T1 + diagm(Dд · 1T))

+
1

σ 2

∑T

t
(DдY

T
д,tYд,tY

T
д,tYд,t − Xд,tW

TYд,t ) + 2γDд − γCд

where Cд = 1T1/|д | − ϵIд − Eд + Λ2. Therefore the update of Dд is denoted as follows:

Dд ← prox
0
(Dд − η · ∇DдH (Dд)) (19)

where the projection prox
0
is defined in Equation 15.

2. Update E. The update of E amounts to the following optimization problem:

min

Eд ≥0
P(Eд) =

γ

2

∥diagm(Dд) · 1T − Dд

+ 1T1/|д | − ϵIд − Eд + Λ2,д ∥
2

F (20)

which can be written as proximal operator:

Eд ←prox⪰(diagm(Dд) · 1T − Dд

+ 1T1/|д | − ϵ · Iд + Λ2,д) (21)

where prox⪰(·) is the projection of update of Eд denoted:

prox⪰(A) =
∑n

i
(λi )+uiu

T
i (22)

where the vector λj and uj are the jth (j = 1, 2, · · · ,n) eigenvalue and eigenvector such that A · uj = λj · uj . And

A =
∑n
j λjuj · u

T
j is called the eigenvalue decomposition.

The optimization problem in Equation 16 is convex because: 1) the optimization objective is convex similar to the

proof of Lemma 2, 2) all the equality constraints are affine, and 3) the inequality constraint Eд ⪰ 0 is well-known

to be convex. Therefore, the proposed algorithm for SADL-II converges to global optimal solution due to ADMM’s

convergence properties for convex problems with simple equality constraints [6].

6 EXPERIMENTS

In this section, the performance of the proposed models SADL-I and SADL-II is evaluated using several real-world

datasets from different domains. In the following, we first introduce the experimental setup. The effectiveness of

the proposed models is then evaluated against several existing methods. Finally, an analysis of the discovered spatial

dependency patterns is presented. All experiments were conducted on a 64-bit machine with Intel(R) core(TM) quad-core

processor (i7CPU@3.40GHz) and 16.0GB memory.

6.1 Experimental Settings

6.1.1 Datasets and Metrics. The experimentation uses three different datasets related to three different domains:

influenza outbreaks, traffic volume, and water quality.

1) Influenza outbreak dataset. The task for this dataset is to forecast the spatio-temporal influenza outbreaks

based on social media data. The input data consists of a set of tweets from Jan 1, 2011 to May, 2015 for the United States.
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Table 2. Datasets Descriptions

Dataset Time Period Sample Rate Locations Features

Influenza dataset 2011-01-01 to 2015-05-01 weekly major states in the United States 525 keywords

Traffic flow dataset 2017-01-02 00:00 to 2017-02-01 00:15 quarter-hourly 37 road segments 47 traffic features

Water quality dataset 2016-06-28 to 2018-01-01 daily 36 sites in Georgia 12 water indices

And each location is a state. Each of these tweets must contain at least one of 525 predefined flu-related keywords (e.g.,

“cold", “fever", “cough") provided by [35]. The data is partitioned into a sequence of week-interval bins for week-wise

forecasting. The predictions were validated against the flu statistics reported by the Centers for Disease Control and

Prevention (CDC). CDC publishes weekly influenza-like illness (ILI) population size within each state in the United

States using the proportion of outpatient visits to healthcare providers for ILI. The task is to predict for each state the

size of ILI Population in the next week. An example of a ground truth ILI population size is a tuple: {’State’: ’New York’,

’Week’: ’01-09-2013 to 01-15-2013’,’ILI Population Size’: 657}. The contiguity relationship among the US is utilized to

form the default contiguity matrix for the proposed and the comparison methods.

2) Traffic volume dataset. The task for this dataset is to forecast the spatio-temporal traffic volume based on the

historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every

15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The

47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10

features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1

feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for

all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. While

traditional approaches train regression or ARIMA models for short-term traffic volume prediction of each road segment

separately [26, 32, 40], we study the spatial correlation of flow and we train auto-regressive dependency learning models

based on the topological constraints of the road network.

3) Water quality dataset. Here we want to forecast the spatio-temporal water quality in terms of the “power of

hydrogen (pH)” value for the next day based on the input data, which is the historical data of other water measurement

indices. The input data consists of daily samples for 36 sites, providing measurements related to pH values in Georgia,

USA. The input features consist of 12 common indices including volume of dissolved oxygen, temperature, and specific

conductance
2
. This dataset is published by the United States Geological Survey

3
. Due to the complexity of the water

system, there is no prior knowledge on the specific connections among all the sites through water streams, i.e., spatial

connectivity. High-level prior spatial knowledge is provided based on the water system they belong to, including the

water system of Atlanta, the watershed of the Savannah River, and the watershed of the Timmons River
2
.

In the experiments, all the input data in all the datasets has been normalized by zero mean and one standard devia-

tion. All the performance of all the methods are compared under the metrics of Root-Mean-Square Error (RMSE

=

√
1

n ·
∑T
t=1(Yt − Ỹt )

2
), Normalized Root-Mean-Square Error (NRMSE=RMSE/averaдe(Y )), Mean Absolute Error

(MAE=
1

n
∑T
t=1 |Yt − Ỹt |), and Normalized Mean Absolute Error (NMAE=RMAE/averaдe(Y )), where Ỹt is the set of

predictions for all the locations for a future time point t , and Yt is the corresponding labeled ground truth, averaдe(Y )

returns the average value of all the labeled ground truth. For each of all the datasets, the data is evenly split in two time

spans, where the data of the first time span is training set while that of the second time span is for testing.

2
Refer to: https://waterdata.usgs.gov/nwis/dv/?referred_module=qw

3
USGS: https://www.usgs.gov/. Accessed Feb, 2018.
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Table 3. Spatiotemporal prediction performance for all the methods in all the datasets

Flu outbreak Traffic volume Water quality

RMSE NRMSE MAE NMAE RMSE NRMSE MAE NMAE RMSE NRMSE MAE NMAE

MLR 0.0659 0.5050 0.0415 0.3180 0.0454 0.1739 0.0310 0.1188 0.0120 0.0460 0.0072 0.0276

LASSO 0.0540 0.4138 0.0341 0.2614 0.0461 0.1766 0.0312 0.1195 0.0240 0.0092 0.0218 0.0835

SAR 0.0587 0.4498 0.0331 0.2536 0.0492 0.1885 0.0336 0.1287 N/A N/A N/A N/A

SAR L1 0.0560 0.4492 0.0341 0.2614 0.0454 0.1739 0.0309 0.1184 0.0279 0.1069 0.0264 0.1011

GL 0.0608 0.4660 0.0372 0.2850 0.0464 0.1778 0.0317 0.1215 N/A N/A N/A N/A

SADL-I 0.0485 0.3716 0.0305 0.2338 0.0455 0.1743 0.0309 0.1184 N/A N/A N/A N/A

SADL-II 0.0505 0.3870 0.0266 0.2038 0.0448 0.1716 0.0308 0.1180 0.0115 0.0441 0.0068 0.0261

6.1.2 Comparison Methods. In the experiment, the performance of the two proposed methods is compared to well-

established state-of-the-art methods for spatiotemporal forecasting. For all the methods that have tunable parameter(s),

5-fold cross-validation is performed on the training dataset. The parameter combinations with the best performance

was adopted in subsequent experimentation.

Multivariate Linear Regression (MLR) [30] learns a linear mapping from each multivariate input to each predic-

tion.

LASSO [6]. LASSO is an MLR with an ℓ1 regularization over the weights of the input features. The trade-off between

the empirical loss and the regularization term is a key parameter. 5-fold cross validation was performed to select the

parameter in a large range of 22 candidate values among 2
−10,−9, · · · ,9,10

and 0.

Spatial Autoregressive Model (SAR) [8, 38]. SAR predicts by jointly considering the input data and the spatial

dependency among all the locations. The contiguity matrices of the first and second datasets were utilized as one input

of SAR.

Graph Laplacian regularized Linear Regression
(GL) [14]. GL utilizes the spatial dependency to enforce a smooth pattern of the spatial prediction. The adjacency

matrix of GL is designated as the contiguity matrix of each of the first and second datasets. The trade-off parameter

between the empirical loss and the regularization term is tuned based on 5-fold cross validation over the range of 22

candidate values among 2
−10,−9, · · · ,9,10

and 0.

ℓ1-regularized Spatial Autoregressive Model
(LSAR) [37] LSAR is the baseline of this paper. Different from the SAR model, LSAR does not utilize a predefined

contiguity matrix, but optimizes the contiguity matrix based on the sparsity assumption. The trade-off parameter

between the empirical loss and the sparsity regularization term is tuned again based on the 5-fold cross validation over

a range of 22 candidate values among 2
−10,−9, · · · ,9,10

and 0.

SADL-I & SADL-II - the proposed methods. SADL-I utilizes the predefined contiguity matrix as a constraint,

while SADL-II does not, but instead only utilizes the grouping information of the different locations. There are two

parameters to tune, σ 2
and λ. They were tuned jointly based on 5-fold cross validation over a range of 12 candidate

values among 2
−10,−8, · · · ,8,10

and 0 for each. The parameter sensitivity analyses are provided in Section 6.2.2.

6.2 Performance and Discussions

The following sections discuss the performance comparison, convergence and sensitivity analyses, and the discovered

spatial dependency patterns of our methods.
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Fig. 5. SADL-II’s predictions vs. ground truth for parts of the three datasets. (a)-(h) water quality data; (i)-(p) traffic data; and (q)-(x)
flu outbreak data. (Better see in color.)

6.2.1 Prediction performance. As shown in Table 3, four different metrics have been utilized to evaluate the performance

on three datasets, RMSE tends to highlight the large errors among the predictions while MAE directly shows the average

errors of all the predictions. Additionally, as their normalized versions, NRMSE and NMAE enables the comparison of

the performance across different datasets with different scales. The performance of both proposed methods SADL-I

and SADL-II outperform the comparison methods by an obvious margin, which highlights the effectiveness of spatial

dependency inference for event forecasting. Specifically, SADL-I achieves the lowest RMSE and NRMSE in the flu

outbreak dataset, about 10% less than the best competing performer, LASSO. However, SADL-II generally achieved

the best overall performance for all the datasets, with the best performance for traffic and water datasets as well as

second lowest RMSE values for flu dataset. Since no contiguity matrix was available, we do not have results for SADL-I
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Table 4. The training runtime of different methods on different datasets.

Methods Flu outbreak Traffic volume Water quality

MLR 8.2577 0.3781 0.0068

LASSO 19.0304 18.6455 0.3454

SAR 35.2545 8.8084 N/A

SAR L1 42.0920 15.0020 0.9460

GL 11.1521 0.7683 N/A

SADL-I 10.9684 5.3734 N/A

SADL-II 4.7294 4.4816 1.2285

as well as SAR and GL for the water quality data. Based on NRMSE and NMAE, all the methods tend to have better

performance on traffic and water datasets than that of flu datasets because the latter one is based on social media data

which is very noisy and thus is a more challenging forecasting task.

In particular, for the flu dataset, SADL-I and SADL-II achieved the best performance in RMSE and MAE, respectively,

indicating that SADL-I’s prediction errors weremore consistent while theremight be some larger errors in the predictions

of SADL-II. Comparing the performance on flu and traffic datasets, it can be seen that the proposed SADL-I and SADL-II

outperformed other methods by roughly 10% and 1%, respectively and thus the advantage looks much larger on flu

datasets. This is because it is relatively more difficult to define a reasonable spatial dependency for flu outbreaks only

based on prior knowledge, compared to the traffic dataset where the road network could be used to provide a reasonably

good spatial dependency among traffic volume. This made the comparison methods also perform reasonably well on

traffic data. For the flu dataset, MLR performed poorly, much worse than LASSO, while it outperformed LASSO for

the other two datasets. This is because only the flu dataset, which has over 500 features, has a serious feature sparsity

issue. This is also the reason for LASSO, SADL-I, and SADL-II, which enforce feature sparsity, to performed well for the

flu data. Since the water quality data do not have prior location connectivity knowledge, the methods requiring this

information, AR, GL, and SADL-I could not be used for it.

Furthermore, for the water quality data, which cannot provide prior knowledge on the spatial dependency, methods

such as SAR, GL, and SADL-I cannot be directly utilized. The proposed SADL-II clearly outperformed the remaining

methods by around 5% in all the metrics. This is because SADL-II sufficiently utilized the spatial topological constraints

to infer the spatial dependency, which further enforces the dependency among the predictions in different locations,

and thus boosted up the model generalizability. More importantly, the proposed SADL-II is able to infer the spatial

dependency automatically, which is very valuable in analyzing the correlations among different locations toward future

event occurrence. This will be further discussed in Section 6.2.3.

Figure 5 shows the temporal predictions of SADL-II for eight locations of each dataset. The other locations also follow

the same patterns. Specifically, Figures 5(a)-5(h) demonstrate that the water quality data in terms of the pH value for

the eight sites (e.g., Sites # 2198840 and # 2336152) was accurately predicted. This case shows a situation without strong

periodicity and with large and random fluctuation of the respective water indices due to various reasons including

precipitation, seasonal change, and natural disasters. SADL-II can still achieve high-quality results, and precisely predict

all the large fluctuations of indices very close to the actual values.

As shown in Figures 5(i)-5(p), the traffic data exhibits a more obvious periodicity, which is successfully predicted by

SADL-II. These commute patterns capture regular traffic between downtown and the suburbs in the Washington D.C.

area. Moreover, all the peaks and valleys were accurately predicted for all eight locations and for the entire two-month
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prediction periods. Finally, for the flu data, the predictions and the actual values for eight states such as New York and

Utah are shown. First, we see a predicted seasonal periodicity of flu outbreaks, which follows the actual values well.

Second, SADL-II can effectively detect the peaks and valleys of the predictions as shown in Figures 5(q)-5(x).

Table 4 shows the runtime of all the methods on all the datasets during training phase, each of which is the average

runtime over 100 runs for each method on each dataset. As can be seen from the table, the runtime of SADL-I and

SADL-II was relatively fast on larger dataset: SADL-II and SADL-I ranked first and third on flu outbreak dataset which

is the largest dataset among all the three. For traffic volume dataset the runtime of them is still competitive. On the

water quality dataset which is the smallest one, the proposed SADL-II requires 1.2 second which is the largest because

it needs to optimize the spatial connectivity among all the locations. But having a training runtime of around only

one second still ensures that it is highly efficient and practical in real-world applications. After model training, all the

models run instantly to get the predictions in test phase.
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Fig. 6. The convergence process of SADL-I and SADL-II
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Fig. 7. Sensitivity Analysis. The proposed models are not sensitive in σ 2. And λ is influenced by feature sparsity.

6.2.2 Evaluation of the Method Properties. In this section, both the convergence and the parameter sensitivity are

analyzed. Figure 6 shows the convergence of both SADL-I and SADL-II for the traffic dataset, which is the largest and

second largest dataset in terms of data points and number of features, respectively. The convergence for the other

datasets follows a similar pattern and was not included due to space limitations. As shown in Figure 6, both SADL-I

and SADL-II converge sublinearly and continuously down to the residual errors of around 10
−8

after 5000 iterations.
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This verifies the claim on the methods’ convergence in Section 5. A residual error of 10
−8

is more than sufficient for

practical applications. Typically, a value below 0.005 would be sufficient for the water quality prediction, which can be

achieved with less than 200 iterations. Overall, each iteration is computed efficiently due to the effective utilization

of closed form solutions. Figure 7 illustrates the influence of the tunable parameters of SADL-I and SADL-II on the

Fig. 8. The discovered spatial dependency towards influenza outbreaks for different states on flu outbreak dataset. (Better see in
color)

performance. Figures 7(a), (b), and (c) show the performance changes when λ changes and σ 2
was set to 1. Figures 7(d),

(e), and (f) show the performance variations when σ 2
changes and λ was set to 1. It is easy to see that the patterns of

the flu dataset differ from those of the other two datasets. This is due to the feature sparsity in our flu data. Also, for the

flu data, the best choice of λ, which controls the strength of the regularization on the feature sparsity, is around 2
−7
.

Which is much larger than the choice of λ for the other two datasets. This again shows that the models tend to enforce

more feature sparsity to match the actual situation in the dataset. For the traffic and water quality datasets, the model

performed be for small λ values. This implies that for datasets without feature sparsity problems (e.g., with few dense

features), a relatively small value of λ is preferred. Finally, the performance is not very sensitive to σ 2
over such a large

range of candidate values. This applies to all datasets. This shows the stability of the performance in terms of different

values of σ 2
.

6.2.3 Spatial Dependency Analysis. This section illustrates the spatial dependency discovered for all the three datasets

based on the proposed SADL-I and SADL-II methods.

In contrast to existing work, the proposed methods SADL-I and SADL-II are able to discover the corresponding spatial

dependency for the specific prediction tasks by achieving an optimal trade-off between exogenous and endogenous

knowledge. Figure 8 and Figures 9(a), (b), (c), all show spatial networks in which a node represents a sensor location,
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Fig. 9. The discovered spatial dependency for traffic flow prediction and water quality prediction. (a) and (b) are for traffic dataset
and (c) is for water quality dataset.

while an edge captures the spatial dependency. The thicker and edge, the higher its weight, which indicates a stronger

dependency between the two locations. The weight reflects how much the measurements of a location contribute to a

prediction and how much it is affected by its neighbors. Figure 8 illustrates the spatial dependency of the influenza

outbreaks. In contrast to the conventional contiguity matrix, which assumes all the spatial locations have identical

dependency strength with each other, the proposed methods found that the states of Mississippi, Alabama, and Georgia

have relatively strong spatial dependency in influenza outbreaks. This corresponds to the fact that these states are the

closest states within Mississippi region and share large, accessible boundaries. Similarly, the state pairs of Virginia

and North Carolina, Maine and New Hampshire have strong connections. In contrast, the state of Iowa has a weak

connection to Illinois, which is due to the fact that their common boundary is small.

Figures 9(a) and 9(b) shows the spatial dependency learned by SADL-I for the road network. Figure 9(a) shows

I-95 and connecting highways, while Figure 9(b) shows I-66. Both roads are outside of Washington, D.C. It is easy to

see that the dependency for nearby sensors along the same highway tends to be similar and relatively strong, while

the dependency of sensors across different highways is weak. Consider here the example of the existing, but weak

connection between Sensors 1 and 26 in Figure 9(a). Moreover, on the same highway, a sensor’s spatial dependency to

another distant sensor is much smaller than to a neighboring sensor. For example, the dependency between Sensors

29 and 34 is much smaller than the dependency between neighboring sensors. Finally, Figure 9(c) shows the spatial
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dependency automatically learned by SADL-II for the unknown watershed network. By verifying the learned spatial

dependency using the real-world watershed map as shown in Figure 9(c), the plausibility of the learned dependency is

shown. Specifically, the model successfully learned a connected graph of all the nodes in Figure 9(c), which matches an

actual watershed network in which all the sites are connected. Second, the identified spatial dependency tends to be

stronger for nearby sites, such as 2, 3, 4, but not for distant ones. This is much more reasonable to contiguity correlation

used in conventional methods which, for instance, will assume Sites 1 and 4 have the same dependency strength as that

between Sites 3 and 4. The inferred spatial dependency is also more reasonable than those based on inverse distance.

For example, SADL-II inferred that there is no direct dependency between Sites 5 and 6, which are on the two side of an

eyot, while the prior knowledge based only on inverse distance weighting [31] assumes a strong dependency between

those in near proximity.

7 CONCLUSIONS

Being widely utilized, spatial regression models typically rely on spatial dependency, which is either manually defined

or heuristically estimated. Without tuning these models to the context of specific applications, prediction results would

be sub-optimal. In addressing this drawback, this paper develops a novel framework that jointly learns the predictive

mapping and the spatial dependency. If the connectivity between locations is known, the SADL-I model learns the

strength of the connectivity between locations. If the connectivity is incomplete or unknown, the SADL-II model can

automatically learn the spatial connectivity and dependency based on spatial topological constraints. The proposed

models are convex and iteratively optimized by our new ADMM-based algorithms, converging to a global optimal

solution. Extensive experimentation on three real-world datasets demonstrates that the proposed models significantly

outperform existing methods. Moreover, the spatial dependency results show the effectiveness of the proposed methods

to automatically discover interpretable correlation patterns between different spatial locations.

Appendices

Appendix A: Proof of Lemma 1

Proof. Recall that the noise term ε = (I − D) · Yt − Xτ ·W
T
follows the Gaussian distribution ε ∼ N(0,σ ). Hence

the likelihood in terms of the variable ε is:

ℓ(σ |ε) = (1/(2πσ 2)) |S | |T |/2 exp(−(εTε/(2σ 2))) (23)

Recall the correlation between ε and Y :

ε = (I − D) · Yt − Xτ ·W
T

(24)

and leveraging the Jocabian factor theory [5], the likelihood in terms of the variable Y is:

ℓ(D,W ,σ 2 |Y ) = (1/(2πσ 2)) |S | |T |/2 · J · exp(−(εTε/(2σ 2))) (25)

where the Jacobian factor is: J = |
∂ε

∂Y
| = |I − D | (26)

.
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Combining Equations (24), (25), and (26) and perform logarithm transformation, the log-likelihood ℓℓ(D,W ,σ 2 |Y ) is

calculated as below:

ℓℓ(D,W ,σ 2 |Y ) =
∑T

t

1

2σ 2
∥(I − D)Yt − XτW

T∥2
2
) (27)

+
1

2

· |S | |T | ln(2πσ 2) − |T | ln(det(I − D))

And hence the lemma is proved. □
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