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Abstract

Modeling time-since-last-infection (TSLI) provides a means of formulating epidemiological models with
fewer state variables (or epidemiological classes) and more flexible descriptions of infectivity after infection
and susceptibility after recovery than usual. The model considered here has two time variables: chrono-
logical time (¢) and the TSLI (), and it has only two classes: never infected (A) and infected at least
once (i). Unlike most age-structured epidemiological models, in which the i equation is formulated using
<33—T + %)i(r, t), ours uses a more general differential operator. This allows weaker conditions for the
infectivity and susceptibility functions, and thus, is more generally applicable. We reformulate the model
as an age dependent population problem for analysis, so that published results for these types of problems
can be applied, including the existence and regularity of model solutions. We also show how other coupled
models having two types of time variables can be stated as age dependent population problems.
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1. Introduction

In many diseases with temporary immunity to reinfection, the infectivity of infected individu-
als and the susceptibility of recovered ones depends on their times since last infection. Ordinary
differential equation systems can model such diseases by adding multiple state variables. Mod-
els structured by time-since-last-infection, considered in [1,2], can instead reduce the number of
variables (or compartments) by using a single time variable for everyone who has been infected
at least once. This approach differs from models structured by age or age-of-infection (see, e.g.,
[3—14]. See also the review in [2]).

The TSLI model considered by Alfaro-Murillo, et al. [2] is a two-dimensional system includ-
ing only two variables: A/ (¢) for the number of never infected people at time ¢, and i (z, ¢) for the
density of those who have been infected at least once, with T representing their times since last
infection. Let D denote the differentiation operator defined as:

Lt +h,t+h)—L(,1)
h b

(1)

De(z, 1) = lim
h—0t

for any function £ that is defined on a subset of R x R, (where R is the set of non-negative
real numbers) and has its range defined in a Banach space. We show in Section 2.1 how the

operator D{(t, t) is a generalization of the partial derivatives (% + %)Z(T, t). The model reads:

d _ r i(v,1) B
EN(”_ /T(v) 0 dv | N(t) — pN (@) + P (1),
Lo i
o i
Di(t,t) = /T(v) o) dv | k(D)i(t,t) — pi(r,t),
- . N )
. _ i(v,1) .
i(0,¢) = /T(v) 0 dv N(t)+/k(t)l(t, Hdr |,
0 0
N@©O) =Ny, i(r,0)=io(1), P(l)ZN(t)+/i(T,t)dt.
0

There are two time variables in System (2). The first is ¢, representing chronological time (or
simply time), whereas the second is 7, representing the amount of time that has elapsed since a
person’s most recent infection, referred to as time since last infection (TSLI). AV (¢) denotes the
total number of individuals in the never-infected class at time ¢ and i (t, ) denotes the density of
individuals who have been infected at least once and have TSLI t at time 7. Thus, the quantity
fu“f i(t,t)dt is the number of individuals at time # whose last infection was between u and u,
units of time ago, and P(¢) denotes the total population at time . The only parameters consid-
ered in the model are the per capita natural death rate (n) and those for the transmission rate
(T (7)) and infectivity (k(t)) functions, the latter of which represents a factor of reduction in the
probability of being infected as a function of TSLI.
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A solution of System (2) is a pair of functions, (N, i) with N': Ry — R being differen-
tiableand i : Ry — L L(R) being continuous (where Li_ is the space of non-negative Lebesgue
integrable functions, see Definition 3), that solve the equations in System (2) for all + > 0 and
almost everywhere (a.e.) for t € (0, 00).

The analysis presented in [2] is for the case when the parameter functions 7'(7) and k(7)
satisfy stronger conditions than here so that i (t, #) has continuous partial derivatives and satisfies
a partial differential equation. Specifically, the following system is considered in [2]:

o]

i./\/(t):— /T(u)i(u’t) du | N (@) — uN@) +uP,
dt P
0 ~ (3a)
0 0 \. _ i(u,t) . .
(8_r+5>l(r’ 1) = /T(u) P du | k(v)i(r,t) — ni(r, t),
0
with conditions:
i(0,1) = /T(u)i(L;;t) du N(t)—i—/k(t)i(t, t)ydr |,
0 0 50 (3b)
N(@©O)=Ny, i(r,0)=io(r), where P=N(t)+/i(t, tdr.

0

In this paper, we present an analysis of the general model (System (2)) with weaker conditions
on T and k, under which the solution i (z, #) may not be have continuous partial derivatives (see
Theorem 4). This may allow the model to have broader applications. The approach used to study
the general model is to formulate the system as an age dependent population (ADP) problem.
We use the term “ADP problem” to refer to a particular model formulation for age-dependent
populations (specified in Section 2), for which theoretical results are available, including the ex-
istence, uniqueness, positivity, and regularity of solutions. We first introduce another formulation
of general model, termed a coupled model, or a model with two time variables (see Section 2.2).
We illustrate how coupled models can be stated as ADP problems in general, so that all theory
developed for ADP problems can be applied to coupled models.

The paper is organized as follows. In Section 2, we demonstrate the link between ADP prob-
lems and models with two time variables (or coupled models). Properties of solutions to the
generic ADP problem are also discussed in this section, and the results are applied to the refor-
mulation of the general model as a coupled model. Example reformulations of other models as

coupled models, as well as the relation between D€(t, #) and (% + %)E(r, 1), are also presented.

Application of results in Section 2 to the general model is presented in Section 3, including the
existence and regularity of model solutions. Section 4 includes a discussion of the results.

2. Links between ADP problems and coupled models

In this section, we present solutions to a generic ADP problem and formulate a coupled model
as an ADP problem. Then solution properties of the coupled model are discussed by applying
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results for ADP problems. Example reformulations of other models as coupled models are also
presented.

2.1. The operator D and its relation to a transport equation

Many age-structured epidemic models are stated in terms of a transport partial differential
equation of the form

0] a
- —)e T.1) = f0), 4
(5:+35.)e@n=r® *
where f is a given function. The i equation in System (3) is also in this form. Next we explain
why we state the coupled problem in Section 2.3 with the operator D instead.

Classical solutions of a partial differential equation such as Equation (4) are C! functions (i.e.,
have continuous partial derivatives). If £ € C I we can show that D¢(z, r) exists and satisfies

I
De(r, 1) = (E + 5)1&(:, 0.

Indeed, suppose that £ : Ry x [0,7) — R? is a C! function in a neighborhood of (z,?). Let
€ > 0. There exists § > 0 such that if 0 < & < § then

O ity — Lo | <
—{(z, - —Ll.D| <<,
0T 0T 5

Lz, t+h)—L(z, 1) 0
— —L(7,t
‘ h ot (®.1)

<z
5

and Ef—re(r, t + h) exists. Given any such i > 0, there exists 4’ > 0 such that

n h h

L(x+h,t+h) Lx+h,t+h) €
_ <<
h n 5’
L(x+h,t+h) —Lb(t,t+h) 0 €
— —ALl(t,t+h -,
% gr (Tt <3
Lr,t+h) L(t,t+h)| €
— < —.
h h 5
Therefore,
Lt +h,t+h) -, 1) 9 9
— | —4(z,¢ —LU(T,t
‘ 0 (ar (t, )+8t (t, ))‘
Lrx+h,t+h) Lx+W,t+h) Lt ,t+h)—L(T,t) 9
L(t+h,t+h)—L(t,t+h 9
+‘ ( )t )—Eﬁ(r,t—f-h)‘ﬁ-‘

L(t,t+h) E(r,t—}-h)‘

d 9
+|—L(r, t +h)— —L(z,1)
0T 0T

< e,
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for any 0 < h < §. It follows that D€(z, t) exists and is equal to (3% + %)Z(r, t). Therefore, any
solution to a transport equation such as Equation (4) will also be a solution to the same equation
with the operator D.

The solution function i(z, 7) can be C! if adequate conditions are imposed on T and k (see
Theorem 4). However under weaker conditions on 7 and k we can obtain solutions for i that
are not C! and still get information about the number of infected individuals with TSLI between
u1 and uy, as f Mulz i(t,t)dt does not change if the i function has different values on a set with
measure zero in t. As we do not want to impose extra conditions for 7 and k to leave the
application of the general model as broad as possible, we will consider the general operator D
and solution functions i to be a continuous L!-valued function with domain in [0, co), that is,
for each non-negative ¢ the function i (-, #) defined as t — i(7, ¢) is L.

2.2. The generic ADP problem

We define an ADP problem as described in [15, Chapter 1]. An ADP problem is described by
the following three equations:

De(t, 1) = G(L(-, ))(T), (5a)
€0,1) = F((-,1)), (5b)
£(z,0) =¢(2), (S¢)

with G: L' - L', F: L' - R", and ¢ € L'. In ADP problems Equations (52), (5b) and (5¢)
are termed the Balance Law, the Birth Law, and the initial condition, respectively.
For ease of presentation, we introduce the following definition:

Definition 1. For 7 > 0, let L; = C([0,7]; Ll) be the Banach space of continuous L!-valued
functions on [0, ] with the norm:

I€llz; = sup [[€@),

0<t<t
where £ € L;.

In a natural way, an element of L; can be identified with an element of L'((0,00) x (0,7); R™)
[15, Lemma 2.1], which allows us to use the same symbol for both; i.e.,

L) (t) =L(, DT =L(1,1),
where 0 <t <f,and a.e. T > 0.
Definition 2. Let 7 > 0. Let F: L' - R", G: L' — L', and ¢ € L'. We say that a function

£ € L; is a solution of the ADP problem for the initial distribution ¢ on [0, ] provided that ¢
satisfies the equations in System (5) for all € [0,7] and a.e. for T € (0, 00).
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If we assume that £ is a solution of the ADP problem on [0, 7] and ¢ € R, then we can define
a “cohort function’:

we(t) =4L(+c,t)

for every t. <t <, where t. = max{—c, 0}. Using Equation (5a), we can show that the right
derivative of this function exists and satisfies

w4+ = lim D=0 e+ o (©)

a.e. for t € (tc, 7). If G is Lipschitz on norm-balls of L', the function G (£(-, t))(7) is integrable
as a function from (0, co) x (0,7) to R" [15, Lemma 2.2], and so w..(+) is also integrable in
[0, ]. Therefore, we have that any function of the form,

t
t—C+ / w/c(s+) ds,

Ic

has a derivative equal to w..(f+) a.e. t € (t, 1) [16, Chapter 5, Theorem 10]. So, we can integrate
Equation (6) and obtain

o we(t =)+ [1_GEC, (s +e)ds  ae Te(0,0),
we(t) =
we(0) + f5 GE(, $)(s + ) ds ae. T € (t,00).

Substituting ¢ = T — ¢, and using Equation (5b), we obtain the integral equation:

FUCt =)+ [1 GUC )N +T—0ds  ae te(0,1),
O, 1) = , @)
¢(r—t)+f0 GU(G,s)(s+T—1)ds a.e. T € (t,00).

In conclusion, if G is Lipschitz on norm-balls of L', every solution of the ADP problem sat-
isfies Equation (7). Clearly, not every solution of Equation (7) is a solution of the ADP problem,
because the function £ in Equation (7) need not be differentiable in the sense of the operator D.
The converse is true under certain conditions (see Theorem 2.9 in [15] and Theorem 2.3 in [17]),
a fact that we will use later.

If both functions F and G are Lipschitz on norm-balls of L ! then a function ¢ satisfies Equa-
tion (7), for ¢ € [0, 7], if and only if £ is a mild solution of the ADP problem (See Theorem 2.2
in [15]) according to Definitions 4—6 in the Appendix.

We define an equilibrium solution for the ADP problem in Definition 7 of the Appendix.
A very important result in the theory of ADP problems is that, if F : Lﬂr —RiandG: L ﬂr — L!
are Lipschitz on norm-balls of L! and there exists a function c3 that satisfies (ii) in the proof of
part (c) for Proposition 2, then ¢ is an equilibrium solution of the ADP problem if and only if
¢ is absolutely continuous with the properties that ¢’ € L!, ¢’ = G(¢), and ¢(0) = F(¢) [15,
Proposition 4.1]. We will make use of this result later.
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2.3. General formulation of coupled models

In this section, we focus on models consisting of both equations that depend only on time ¢
and variables that depend on both time ¢ and t (System (2) is an example). For ease of refer-
ence, we refer to this type of model as a coupled model. Several other examples are provided in
Section 2.6. A general formulation for such a system is given below.

Let X (¢) denote the vector of functions that depend only on ¢, and let y(t, ) denote the vector
of functions that depend on both 7 and 7. The general coupled model has the following form:

dx(t)—F X(t 1)+ M (X(t X (t
FT x(X(@), (-, 1)) x(X(@), y(, 1)) X(#), 8a)

Dy(z,1) = Gy(X (1), y(-,0))(7),

with boundary and initial conditions

y(0.0) = Fy(X (@), y(.0), X(0)=Xo, y(.0)=0¢,, (8b)

where F, : R” x LY (R¥) - R™, M, : R™ x L'(R¥) - B(R™,R™), Gy :R™ x LY(RF) —
LY (R¥), Fy i R™ x LY'(R¥) —> R¥, Xy € R™ and oy € L' (R¥). The operator D is defined in
Equation (1).

A solution to System (8) is a set of functions X (t) and y(z, ) that satisfy the equations for
time ¢ € [0, 7] for some 7 > 0 and a.e. for T € (0, 00). An equilibrium of the system is a solution
that is constant on time ¢.

2.4. From coupled models to ADP problems and solution properties

We can reformulate the coupled model (System (8)) as an ADP problem described in Sys-
tem (5) by defining the functions F : L' (R”1%) — R”+* and G : L' (R"™ k) — LT(R™+5) as

¢x> Fi (o~ ¢x(0)dt, ¢y)

F = 00 ; (92)

<¢y (Fy (2 po(x)dr, ) a

G (¢x) (1) = M (fo Oo¢x (v)dv, ¢}) ¢« (T) ’ 9b)
by Gy (fo~ ox()dv, ¢y) (1)

éx
Py

Let 7 and 7 (—% denote the projection functions in Definition 8 of the Appendix. Then the
following result holds:

where ¢ = with ¢, € L'(R™) and [;° ¢« (1)dT = X.

Theorem 1. Consider System (8) as an ADP problem (System (5)) with F and G being defined
as in System (9). Assume that F and G are Lipschitz on norm-balls of L'. If the ADP problem
has a solution £ € L; for the functions F and G and the initial condition ¢, then System (8) has
a solution X (1), y(t,t) fort €[0,1] and a.e. for T € (0, 00), given by
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[
X@t)=n™ / Ur,yde | and y(,t)=7"P @, 1).
0

Proof. Let7 > 0 such that £ € L; is a solution of the ADP problem on [0, ] for the functions F,
G and the initial condition ¢. Define

X()=m™ /E(r,t)dt and y(-,0)=7"P @, 1).
0

Applying 7™ to Equation (5c), we have

7™ (U(1,0)) = ¢ (7);

integrating, we obtain Equation (8b). Applying 77~ to Equation (5a) and using the definition of
G in Equation (9b), we obtain the y(z, #) in Equation (8a). In the same way, from Equation (5b)
and the definition of F in Equation (9a), we obtain the y(0, ¢) in Equation (8b). Also, applying
7" to Equation (5c¢) yields the y(-, 0) in Equation (8b).

It remains to show that X satisfies Equation (8a). Notice that

[e.e]

x F(K(-,t))+/G(ﬂ(wt))(f)df = Fo (X(0), y(.0) + My (X (1), y(-, 1)) X (2).
0

Thus, it suffices to show that

%X(t):n(m) F(K(-,t))—i—/G(Z(-,t))(t)dr
0

Recall from Section 2.2 that, if F and G are Lipschitz on norm-balls of L', a solution of the
ADP problem is also a mild solution of the ADP problem. Hence, if & > 0, then

Xt +h) — X)) —x™ F(zc,r))+/G<E(~,r>><r>dr
0
=|h~ g™ /Z(t,t—i—h)dr—/ﬁ(r,t)dt — ™ F(£(~,t))—/G(Z(-,t))(t)dt
0 0 0
h
<|h g /E(r,t+h)—F(€(~,t))dr
0
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+ |z /h—‘ [(t+h,t+h)— L, )] — G- 1)) (t)dT
0

h [e'e)

= h_I/IE(f, t+h)— FC, 1) dt +/‘h_l (t+h,t+h)—Lr,0] - GU( ))(T)| dT,
0 0

which tends to zero as 4 — 07 by the limit equations in Definition 4 of the Appendix. This shows
that the right derivative of X exists and is equal to

7 F(Z(-,t))+/G(Z(~,t))(t)dt fort €[0,7].
0

For the left derivative, let & > 0. Using similar estimates as for the right derivative, we obtain

R X@) - Xt —h)]—=™ F(E(-,t))+/G(E(~,t))(r)dr
0
h
< h—lfar,t)dr — F(L(-, 1))
0
+|n! /ar,t)dr—/z(f,t—h)df —/G(Z(-,t))(r)dr )
h 0 0

The first factor in the last sum goes to zero as & — 0T by the Fundamental Theorem of Calculus
and the fact that £ is a solution of the ADP problem (in particular Equation (5b)):

h

lim h_lff(r,t)dr=E(0,t)=F(€(~,t)).
h—0F
0

For the second factor, recall that, if F and G are Lipschitz on norm-balls of L', then ¢ is a
mild solution of the ADP problem if and only if it satisfies the integral equation of the problem,
Equation (7) [15, Theorem 2.2]. Using Equation (7), for any O < & < min {z, ¢}, we have

t
Z(r,t)—ﬂ(t—h,t—h):/G(E(-,s))(s—i—t—t)ds,
t—h

and for h < ¢,
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B! '/z(r, 1) de —/E(t,t—h)dt] —/G(e(.,r))(r)dr
_h 0 0
= h*l[/e(r, t)—e(r—h,z—h)dr] —/G(Z(-,t))(t)dt
h 0
ot o0
- h—l[/ / G(Z(-,s))(s—i—t—t)dsdt] —/G(e(.,z))(r)dr
h t—h 0
o0 t
- /h_l[/ G(€(~,s))(s+r+h—t)—G(E(-,t))(t)ds]dr
0 t—h

t

5]0}1‘1[/ (G(z(-,s))(s+r+h—t)—G(e(.,t))(r)>ds] dr
0

t—h

t oo
gh*‘f/|G(z(-,s))(s+z+h—t)—G(£(~,t))(s+r+h—t)|drds
—h 0

t

t oo
+h—1//|G(g(.,¢))(s+r+h—t)—G(e(wf))(TNdeS
—h 0

t

t—h<s<t t—h<s<t

< sup [|[G((,5) —GUC D))+ sup /IG(E(',I))(S+r+h—t)—G(Z(',t))(T)Idf~
0

In the last inequality, the first factor in the sum tends to zero as & — 07 because the function
t— G(£(-, 1)) is continuous [15, Lemma 2.2]. The second factor tends to zero by the continuity
of the translationin L'. O

2.5. Equilibrium solutions of the coupled model and ADP problem

For any coupled model where Theorem | can be applied, an equilibrium solution of the re-
spective ADP problem translates into an equilibrium solution of the coupled model by applying
the projection 77 and integrating to obtain the equilibrium for X or applying the projection
70 to obtain the equilibrium for y. In some cases, those are the only equilibrium solutions of
the coupled model, as stated in the following theorem.

Theorem 2. Consider System (8) as an ADP problem (System (5)) by letting F and G be as
defined in System (9). Assume that F and G are Lipschitz on norm-balls of L. If the ADP
problem has an equilibrium solution ¢, then
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00
Xo=r" | [omdr |, 9,0 =7 @)
0

is an equilibrium solution of the System (8).
Conversely, suppose that Xg, ¢y is an equilibrium solution of System (8) such that

(1) @y is absolutely continuous,
(i) ¢, € L', and
(iii) all eigenvalues of My (Xo, ¢y) have negative real parts.

Then, .
_ (e 0-Py TFx(X0,¢y)
b= ()

is an equilibrium solution of the ADP problem.

Proof. Under the assumptions of the theorem, if the ADP problem has an equilibrium solution
¢, then we can apply Theorem 1 to obtain a solution of the coupled model (System (8)). Because
the equilibrium solution of the ADP problem does not depend on ¢, neither will the solution of
the coupled model.

On the other hand, let (X, ¢y) be an equilibrium solution of the coupled model (System (8))
that satisfies (i), (ii) and (iii). Define

(D _ eMx(X0~¢-v>fo<Xo,¢y>>
eo= (o) =(" 06 |

Then
/ dx (T) dT = (My (X0, py)) "M EX0IT B (X0, ¢y) — (My (X0, ¢y)) ™' Fr(Xo, ¢y)-
0

The inverse (M, (X, (;by))_1 exists because we are assuming that all eigenvalues of the matrix
M, (Xo, ¢y) have negative real parts. Moreover, if all eigenvalues of a square matrix A have
negative real parts, then lim;_, o e47xo = 0 for any vector xq of the same dimension as A [18,
Chapter 1, Theorem 2]. Thus,

/qﬁx(f)dt = —(M(X0, $,)) " Fx (X0, ).
0

By Equation (8a) and the fact that, if (Xo, ¢y) is an equilibrium solution of the coupled model,
then it satisfies X’(¢) =0, we have

—(My (X0, y)) " Fx(Xo, ¢y) = Xo.

Hence, [, ¢« (7)dt = X.
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From the definition of ¢, and the fact that ¢, is absolutely continuous, ¢ is absolutely con-
tinuous. Moreover,

(]5;()() = M, (Xo, ¢y)¢x (1),

so ¢, € L'. Also, from the assumption that ¢y € L', we have that ¢’ € L.
Now we can show that ¢ is indeed a solution of the ADP problem:

Fy(Xo, ¢y)> — (FX(XOs ¢y)

pO= < 9(0) Fy<xo,¢y)) =re)

and
My (Xo, ¢y)dx(T)

D¢ (1) =¢'(1r) = ( & (7)
y

>=G(¢)(T),

where F and G are as in System (9). O
2.6. Other examples of coupled models

Example 1. Brauer, et al. [4] studied a model of cholera that has three epidemiological classes:
susceptible individuals (S(¢), only dependent on time), infected individuals (i (¢, ), structured by
time since infection), and contaminated water (p(t, -), structured by the time that the pathogen
has been in the water). Let

_ _ (G0
X(n=58@®), y¢. 1= (p(-,t)) .

Then the functions corresponding to those in System (8) are:

Fe(X(0), y(.0) = A,

Mx(X(t),y(-,t))=—M—/(ﬁdk(T) Bia () y(-, 1) dx,
0

GV\,(X(r),y(-,r))(r):—(9(0” 5(‘1)>y<.,z>,
F(X (@), y(,0) = X () / <ﬁg’(‘f§) ’3""0(’)>y(r,r)dr,

with the initial conditions:

i
Xo = So, ¢>y=<p00>-

Example 2. Bhattacharya and Adler [19] describe an SIRS model in which the susceptible S(¢)
and infected /(¢) classes depend only on time, whereas the recovered class R(-, t) is structured
by time since recovery. Their model can be formulated in the form of System (8). Let

X(0)= (fg;) Y0 = RG,0).
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The corresponding functions are

e¢]

/ p(@)y(z,1)dr

0

Fo(X(1), y(-. 1)) = ,
0

wasnsn=(JE 1)

Gy(X (), y(,0))() = —p(D)y(z,1),
Fy(X (1), y(-, 1)) = yma (X (1)),

where 17 is the projection defined as ; (x1, x2, - - - , X,) = X;, with the initial conditions

_ (S0 _
X0_<IO), ¢y =0.

Example 3. Magal and McCluskey [20] describe a two-group SIR model in which there are two
susceptible classes (S and S7) and two recovered classes (R and R») that depend only on time,
and two infected classes (i1 (-, t) and i» (-, ¢)) that are structured by the time since infection. Their
model can be formulated in the form of System (8) by letting

S1(7)
vo={ 50 |- ven=()
Ry (1)
The corresponding functions are
A —n<2>(X(t)).fooB(r)y(r, 1 dt
Fo(X(0),y(. 1) = 0 0 :

/M(r)y(r, t)ydrt
0

M(X (1), y(, 1) = = (’O) g) ,

Gy(X(), y(, t))(f)——(M(f)+D)y(f 1),

Fy(X (1), y(, 1) =7 @D (X () » / B(t)y(t,t)dt / M(v)y(t, 1) drx,

0

where o represents the dot product of vectors, 7 is the projection defined as

ﬂ(m)()Cl,Xz,"' 7xn): (-x13x27"' 7xm)’

with 0 < m < n, and with the notation
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(m (0 B
A_<?»2)’ B(”_(ﬂm) 0 )

_ m(t) 0 _ d 0
Mm_( 0 mz(t)>’ D—(o dz)'

The initial conditions are
So .
X()_(RO), Py =ip.

3. Solution properties of the general model

We first simplify the general model (System (2)) by showing that the total population size
P(t) remains constant for all # > 0 and then analyze it by reformulating it as a coupled model.

3.1. Simplification of the general model

Let No € R4 and ig € LLF(R) be such that Ny + fooo io(t)dt > 0. A solution of the general
model (System (2)) is a pair of functions, N'(t) : Ry — R differentiable and i(-, ) : Ry —
LLF(IR{) continuous, that solve the equations in System (8a) for all # > 0 and a.e. for T € (0, 00).

9]

Assumption 1. Let T, k : R;. — R be bounded functions such that / T(t)dt > 0 and
0

) /T(‘L’)d‘[ <00 or
o (10)

(ii) k() =0 a.efort > 0.

Proposition 1. Let T, k satisfy Assumption 1. For any solution (N'(¢),i(t,1)) of System (2), the
total population remains constant, i.e., P(t) = P, where
o

P =No+/io(t)dr. (11)
0

Proof. Suppose that (N, i) is a solution of System (2). To simplify the notation, define

_ r i(v,t)
B(t)—b/.T(u) 0 dv

and w.(t) =i(t +c,t) for any ¢ € R and ¢ > 7., where f, = max {—c, 0}. Note that

. we(t+h) —we(t) . it+cH+ht+h)—i(t+c,t)
lim = lim
h—0F h h—0t h
=Di(t+c,t)

=Bkt + )we(t) — pwe(1).

Please cite this article in press as: J.A. Alfaro-Murillo et al., Analysis of an epidemiological model structured by
time-since-last-infection, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.06.002




YJDEQ:9868

J.A. Alfaro-Murillo et al. / J. Differential Equations eee (eeee) eee—see 15

Thus, the right derivative of w/.(f+) exists a.e. From Assumption 1, we know that B(#)k(t + c)
is either bounded by fooo T (t)dt x sup,{k(t)} or is zero a.e. Therefore, w..(¢+) is integrable in
[0, 7] for any 7 > 0, whenever w(t) is integrable in [0, 7 ]. Because i : R, — LL(R) is continu-
ous, this is the case for any 7 > 0. So, we can integrate wé(t+) to obtain that w, satisfies a.e. the
integral equation:

t

we(t) = — / [ B + we(s) + pwe(s) |ds + we(e);

1
that is,

t

we(0) — / [B(s)k(s + Awe(s) + ,uwc(s)]ds if ¢ > 0,
we(t) = 0 '
we(—c) — / [B(s)k(s + c)w(s) + ,uwc(s)]ds if ¢ <O0.

—C

Letting T =t + ¢ and using the i (0, #) and i (7, 0) equations in System (2), we obtain:
13

(1) =ig(t —1) — / [B(s)k(r 4 s)i(T =145, 8)+pi(t—1+s, s)]ds,
0

a.e.fort <t,and
o

i(t,t)=B(t—1) N(t—r)—}-/k(u)i(u,t—t)dv

0

t
— / [B(s)k(r —t+s8)i(t—t+s,s)+pi(t —t —i—s,s)]ds,

t

a.e. for T > t. Integrating, we have

o t o
/i(‘f,t)dl'Z/B(l‘—T) N(t—t)—l—/k(v)i(v,t—r)dv dt
0 0 0

t t
—/f[B(s)k(r—t—{—s)i(r—t—l—s,s)—l—;u'(r—t+s,s)]dsdr

0t—1
e'e]

+/io(r —t)drt

t

12)

oot
—//[B(s)k(t—t+s)i(r—t+s,s)+;u'(r—t+s,s)]dsdr.
t 0
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Changing the limits of integration and making the change of variable v =1 — ¢ 4 s yields
t t
/ / [B(s)k(r —t+s)i(t—t+s,s)+pi(t—t+s, s)]dsdr

0t—1

r s
=/f[B(v)k(v)i(v,s)—l—/u'(u,s)]duds,
00

and

t

// [B(s)k(t —t+8)i(t—t+s,s)+ui(t—t+s, s)]dsdr
0

t

r o0
=/f[B(v)k(v)i(v,s)+;u'(v,s)]duds.
0 s

Using s =t — 7 and v = t — ¢ in the other two integrals of Equation (12), we get

o0 t t e8]
/i(r, t)dt :/B(S)N(s) ds — M/ (-, s)|lds + / iop(v) dv. (13)
0 0 0 0
Integrating the A/ equation in System (2), we obtain
t t
N(t):—/B(s)N(s)ds—i—pL/||i(~,s)|| ds + Nyp. (14)
0 0

Finally, adding Equation (13) and Equation (14), we complete the proof. O
3.2. The general model as an ADP problem

Proposition 1 allows us to reduce System (2) to the following simpler system (i.e., replacing
the function P(¢) by the constant P):

iJ\/(t):— /T(u)i(v’t) dv |N(@) — uN@) + uP,
dt P
L0
. (T iwn . .
Di(tr,t) =— /T(U) P dv | k(r)i(t,t) — ni(r,t),
L0 _
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00
t
i0,1) = /T( )l(” ) v /\/'(t)—i—/k(t)i(r,t)dr , (15)
0 0

N(©0)=No, i(r,0)=io(7),

]

P=No+/io(r)dr.
0

We can then rewrite System (15) as a coupled model as in System (8), which can be studied as
an ADP problem. Let

F (X, (by) =uX +M/¢y(f)dfa
0

0]

Mx(x,qsy):—f . ‘f’ylg”d L

. (16)

¢y<r )

Gy(X.p)=—| [ T(v) dt | k(Dpy (1. 1) — ey (1),

0

7 ¢y<> r

F&ey=| | T2 a | | x+ [ ko)gy@)dr |,

0 0

with Xo = No, ¢y = io.
For ease of presentation, we introduce the following notation and functions:

(i) For0 <7 <ooand ¢ € L'((0,7), R?), let
¢"=miogp, ¢'=mo¢,
where 71, 75 are the projections to the first and second entries as in Definition 8. Thus, ¢"

and ¢ are the never-infected part of ¢ and the infected-at-least-once part of ¢, respectively.
(i) Let F: L! — R denote the function

J—"(¢)=/ z ¢11(f) dr. (17)
0

(iii) Let W: L' — R denote the weighted function

e ¢]

W = [ [s°0 + koo (1)

0
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@iv) Let W: L! = R denote the non-weighted function

o0

W) = [ [¢"©+9'©]ar (19)

0
Notice that W(¢) = |||l if p € LL.

Let

" / 0" + ') |ar
0

"\
F<¢i>_ F i N (20a)
/T(u)"b;“) dv [[¢"(r)+k(t)¢i(r)]dr
0 0
=< PV ($) )
F@OW(e) )’

0]

- f 722 4y [ ¢™0) = uo ()

P
n 0
(o]

_ / Tw? ;”) dv | k(D) (D) — pe' (D)
0

(20b)

:< ~F(@)" (1) — np™(r) )
—F (@S (r) — pno'(xr) )

Using the F and G functions defined in System (20), we can translate System (15) into an ADP
problem (see System (5) and System (9)). Thus, to apply the results in Section 2 to describe
solution properties of System (15), we focus in the following section on the properties of the
functions F and G given in System (20).

3.3. Basic results for the ADP version of the general model

For ease of presentation, we state in this section some preliminary results that we will use in
the next section to obtain our main results.

Proposition 2. Let P >0, £ >0, and T, k : Ry — Ry be bounded. The following results hold:

(a) The functions F,VV and W defined in Equations (17)—(19) are bounded linear operators.
Moreover,

sup {7 (7)}
1 Fllop < — 5

+ Wllop = supfk(z)},  [IWllop =1
T
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(b) If ¢ € L', then there exists 0 < < oo and € € L; such that £ is the unique mild solution
of the ADP problem on [0, ] for the functions F, G given in System (20) and the initial
distribution ¢.

(c) If € LY, then the mild solution £ of the ADP problem on [0, 1) for the functions F,G
given in System (20), the initial distribution ¢ and ty is as in Definition 5, has the property
that L(-,1) € LL for 0 <t < 1.

The proof can be found in Appendix B.1.

Proposition 3. Let P >0, £ >0, T,k : Ry — R be bounded, and ¢ € L. Let ¢ be the mild
solution of the ADP problem on [0, 14) for the functions F,G given in System (20) and the
initial condition ¢, where 14 is as in Definition 5. Then YW(£(-, 1)) is constant for all 0 <t < t4.
Additionally, if ¢ € LY, then |€(-, )| = |¢|| forall 0 <t < 14.

The proof can be found in Appendix B.2.

Proposition 4. Let P >0, u >0, T,k : Ry — R be bounded, and ¢ € L1+. Let £ be the mild
solution of the ADP problem on [0, ty) for the functions F, G given in System (20) and the initial
condition ¢, where 14 is as in Definition 5. Then ty = 00.

The proof can be found in Appendix B.3.
3.4. Existence and regularity of the model solution

Based on the results stated in the previous section, we describe the properties of the solu-
tions to the general model (System (15)). Definitions for some of the terms can be found in
Appendix A. For example, a function being globally Lipschitz (Definition 9) and F-differentiable
(Definition 10).

Proposition 5. Let P >0, u > 0. Let T : Ry — R be a bounded function, and let k : Ry —
R be a bounded globally Lipschitz function. Let ¢ € L# be a continuous function such that
¢ (0) = F(¢). Then there exists a unique continuous function £ : Ry — L}‘_ that is the solution
of the ADP problem for the functions F and G given in System (20) and the initial condition ¢.

The proof can be found in Appendix B.4.
The results described in Proposition 5 can be translated back to our original problem to obtain
the first theorem of existence (and regularity) of solutions:

Theorem 3. Let u > 0. Let T : Ry — R be a function and k : Ry — Ry a globally Lipschitz
Sfunction satisfying Assumption 1. Let No > 0 and let ip : Ry — Ry be a continuous function
such that ig € Ll_ and

. T io(v) ro
= T . 21
i0(0) 0/ O ey | RO O/ k(©io(t) de @

Then there exists a differentiable function N : Ry — R and a continuous function i : Ry —
LL_(IR) that solve System (15).
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Proof. Let ¢" be any continuous function from R to Ry such that

$"(0) = P, /qﬁ"(t)dt _ No.
0

Because we showed in Proposition 2 that F' and G given in System (20) are Lipschitz on
norm-balls of L!, we can use Theorem 1 to translate results of a solution of the ADP problem
for the functions F and G and initial condition

_(¢"
to results for solutions of the System (15), and by Proposition 1, of the general model (Sys-
tem (2)).

The first result is existence of a solution. We know that ¢ € L}|r is continuous, and by the
definition of ¢ and Equation (21), we have

_ uPp

_ (9"
PO = ( ) - (f(¢>) [No + [5° k(v)ig(r) d7]

i0(0) > =F@.

So, given the hypothesis of Proposition 5, we can conclude that there is a solution for Sys-
tem (15). Moreover, this solution is defined for all # € R, and satisfies

oo

N@)=m /E(r,t)dt ,

0
i(t,t) =m (£(t,1))

where £ is the solution of the ADP problem.
By Part (c) of Proposition 2, £(-, 1) € LLF for all t € Ry, so N(t) >0 and i(-,1) € Ll+ as
required. O

This result is not very restrictive in the conditions imposed on the initial distribution. We only
require it to be continuous, L' and to satisfy the non-local boundary condition. However, we are
imposing an additional restriction on the susceptibility function, k, namely for it to be globally
Lipschitz. We can dispense with this so long as we impose a stronger condition on the initial
distribution. Our regularity results will then be stronger for the solution of the ADP problem. For
this, we first need to show that our functions F and G are continuously F-differentiable.

Proposition 6. Let P > 0, u > 0. Let T, k : R — R be bounded functions. Then

1. The function F : L' — R? defined by Equation (20a) is a continuously F-differentiable func-
tion relative to L. Its F-derivative is given by
W(9) )
F' = K .
(@0)(@) (f<¢o>W<¢) T F@Wd)
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2. The function G : L' — L' defined by Equation (20b) is a continuously F-differentiable func-
tion relative to L'. Its F-derivative is given by

G’(qbo)(qﬁ)(r):—( Fo)o™(r) + F(@)o§ (r) + no"(v) >

F(@0k(D)' (1) + F(@)k (TP} (T) + pno'(v)

The proof can be found in Appendix B.5.

Proposition 7. Let P > 0, u > 0, and let T, k : Ry — R be bounded. Let ¢ € L}r be absolutely
continuous such that ¢’ € L' and ¢ (0) = F(¢). Then there exists a unique solution, £, of the ADP
problem for the F, G given in System (20) and the initial condition ¢, such that

(a) £(-, 1) is absolutely continuous for any t € R5.
(b) Foreveryt € Ry, the function t +— £(t, 1) is differentiable and its derivative is in € L'.
(c) The function t > £(-,t) is continuously differentiable from Ry to L',

(d) £ also satisfies (a% + %)E(r, 1) =G(-,1))(t) for everyt € R4 and a.e. for T € (0, 00).

The proof can be found in Appendix B.6.
Finally, we can translate this into a result for the general model (System (2)), as stated below:

Theorem 4. Let > 0. Let T, k : Ry — R be functions that satisfy Assumption 1. Let Ny > 0,
and let ig : Ry — R be an absolutely continuous function such that io € L}, iy € L', and

oo oo

i0(0) = /T(v) fo(v) dv N0+/k(r)io(r)dr
) No+ [y io(t)dt )

Then there exist a continuously differentiable function N : R — R and a continuous function
iRy — LL(R) that solve System (2). Moreover, i (-, t) is absolutely continuous for any t € Ry
and

. Gl 0\,
D(i(z, 1)) = (E + E)l(r, )

foreveryt € Ry and a.e. for T € (0, 00).

Proof. Let ¢, € Lﬂ_ be any absolutely continuous function such that ¢/, € L', ¢.(0) = uP and
fooo ¢x(t)dtr = Np. As in the proof of Theorem 3, the result follows by applying Theorem 1 and
Proposition 7. O

4. Discussion

We present a novel approach for epidemiological models by using two time variables, chrono-
logical time ¢ and time-since-last infection (TSLI). One advantage of this approach is that fewer
state variables are needed; in the general model (System (2)) considered, there are only two:
N (1), the number of never infected people at time 7, and i(t, t), the density of people at time ¢
who were infected at least once with their last infections occurring t units of time ago.
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In most models with age-of-infection 7, the infected state variable, such as i(z, ¢), denotes the
density of those who are either latently infected or infectious, and the equation is written using

partial derivatives, (;—r + %)i (z,1). This requires stronger conditions on the model parameter

functions (e.g., T (1), k(t) and iy (7)) for the solution i (z, ¢) to be in C!. In our model, individuals
in the i(t,t) class include not only latently infected and infectious, but also recovered, who
may or may not have immunity; i.e., everyone except those who have never been infected. In
addition, the equation for i(t,t) is described using the differential operator D, which allows

weaker conditions on the parameter functions. We show that if i € C ! then Di(z, 1) = (% +

)i,

To analyze the existence and regularity of solutions to the general model (System (2)), we
apply published results for ADP problems, a term that refers to age-dependent populations as
specified in Section 2.2 (see, e.g., [15,17]). For ease of framing the general model (System (2))
as an ADP problem, we first reformulate it as a coupled model as shown in Section 2.3. We
also reformulate several published models to illustrate how readily age-structured models can be
formulated as coupled models (see Section 2.6). In turn, coupled models can be formulated as
ADP problems (System (5)), in which case results for those problems can be applied.

The general model (System (2)) can be used to study the dynamics of transmission and control
of many infectious diseases. The special feature of the class i(z, t), together with the parame-
ter functions 7'(t) and k(t) for infectivity and susceptibility based on TSLI, permits multiple
scenarios, including: (i) complete immunity from natural infections (k(7) = 0); (ii) partial or
temporary immunity from infections (0 < k(t) < 1); and (iii) enhanced susceptibility due to in-
fections (supk(t) > 1). For example, one might make the following assumptions on 7 and k:
(1) there exists a finite period during which individuals are infectious; (ii) immunity eventually
wanes (i.e., k increases); and (iii) once-infected individuals become as susceptible as they ever
would be. In other words, there exists 7o and t; with 0 < 19 < 77 such that 7' (r) = 0 for T > 79,
k(t) =0for t < 19, and k(7) = supk for T > 1. Applications of the general model (System (2))
under these conditions to study diseases such as tuberculosis and influenza will be presented
elsewhere.
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Appendix A. Definitions

This appendix includes definitions and terminology mentioned in the main text.

Definition3. L, = L (R") ={¢p e L!: ¢(r) e R ae. 7 >0}
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Definition 4. Let7 > 0,2 € Ly, F : L' R",G:L'—> L' and ¢ € L. We say that £ is a mild
solution of the ADP problem on [0, 7] for the initial distribution ¢ provided that ¢ satisfies:

hlir(r)1+/ |h_l[£(r +h,t+h)—L(t,t)] — GU(, 1)) (t)|dT =0, (A1)
- 0
h
lim A~! /w(t, t+h)— F{(,1))|dr =0, (A2)
h—0t
0
and
0-,00=¢, 0<t<t. (A3)

Definition 5. For 0 < < 0o, we say that £ is the solution (respectively mild solution) of the ADP
problem on [0, f) for the initial distribution ¢, provided that, for all 7 < f, € restricted to [0, 7 ] is
the solution (respectively mild solution) of the ADP problem on [0, 7] for the initial condition ¢
restricted to [0, 7 ].

Definition 6. If there exists a mild solution of the ADP problem on [0, 7] for some f > 0, we
denote by 7y, the maximal f > 0, such that there exists a mild solution of the ADP problem in
[0,7).

Definition 7. Given ¢ € L', F : L'(R") - R” and G : L'(R") — L'(R"), we define an equi-
librium solution of the ADP problem for the functions F, G and initial condition ¢ as a solution
of the ADP problem for the same functions on [0, co) such that £(-,7) = ¢ for all > 0.
Definition 8. We define the projection function to the i-th entry 7; : R” — R as
i (X5 s Xn) = X5
form € N, 0 < m < n, the projection to the first m entries 7 R" > R™ as
n(m)(-xl’ .. -,xn) = (xlv e ’xm);

and, for k € N, 0 < k < n, the projection to the last k entries 7% : R” — R* as

—k
77( )(-xla"'axn) = (Xn—kils--->Xn).

Definition 9. Let X and Y be normed spaces with norms ||-||x and || - ||y, respectively, and let
H : X — Y. We say that H is Lipschitz on norm-balls of X if, for all r > 0, there exists c(r) > 0
such that

IH(x1) —HE) Iy <c@)llx —x2llx

for all x1, xp € X such that ||xq||x, [|[x2]lx <r.If c(r) can be chosen to be the same constant for
all r > 0, then H is said to be globally Lipschitz.
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Definition 10. Let X and Y be normed spaces with norms ||-||x and |- ||y, respectively, and let
D C X. Wesay that H : D — Y is F-differentiable relative to D at xg € D if there exists H'(x) €
B(X,Y), such that, given any € > 0, there exists § > 0 such that, if x € D and ||x — xg||x <6,
then

IH (x) — H(x0) — H'(x0) (x — x0)[ly < e€llx —xollx-

‘H is said to be continuously F-differentiable relative to D on A C D if it is F-differentiable
relative to D at each x € A and if the map x — H'(x) is continuous from A to B(X, Y). H'(x)
is called the F-derivative of # at x.

Appendix B. Proofs
B.1. Proof of Proposition 2

Proof. To simplify notation, let T= sup {7 (r)} and k= sup, {k(7)}
Part (a). The linearity follows by the definition of the functions and fact that integration is a
linear operator.

For ¢ € L', we have |F($)| < [~ T(x)l¢°(0)l/ P dT < TlIgll/ P, IV(@)| < [57 [I¢“(T)| +

KO (@)l |dT < kgl and V@) < [5° [ 16" (@] + 16" (D)1 | £ = 91l In addition, [W(g)| =
lpllifpeLl.

Part (b). Existence and uniqueness of the mild solution of the ADP problem is guaranteed if
F and G are Lipschitz on norm-balls of L! [15, Theorem 2.1]. In other words, we need to show
that there exist functions ¢y, ¢2 : R4+ — R such that |F(¢1) — F(¢2)| < c1(r)]l¢1 — ¢2]| and

IG(@1) — G|l < c2(r)llg1 — ¢l forall ¢y, ¢ € LT with ||y |l, g2l <r.
If ||¢11l, 2]l <r, using Part (a), we have

|F(¢1) — F(92)| = [uW(p1) — uWW($2)| + | F(p1)W(91) — F(d2)W (2]
= uW(d1 — ¢ + | F(9DW(91) — F (@)W (¢2) + F(91)W(¢2) — F(p2)W(é2)|
< uligr = o2l + [F (@D IIW(d1 — p2)[ + IW (@I F (d1 — ¢2)]

T R
= pligr = foll + FllerlIV(G1 — ) + k| dalll 7 (P1 — h2)]

= pligr = e2ll + Flienlikliér — f2ll + Kli2ll 5 llr — ¢2

A

T
<l — @2ll +2r;kll¢1 — ¢l

Thus, we can choose

A A

2kTr
P
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Similarly, if [|¢1]], 2]l <r, then

1G(@1) — G(@)l :/ |=F @07 (7) + F(d2)9" (v) — uof (v) + uop3 (v)| dv
0

+ [ [FFens@elo + Fenk@'@ - uol @)+ niio)| dr
0
< [ 1ot - Fensimldr + u [ 1670 - 4° @)l dr
0 0
+ / IF@Dk(D)} (0) = F($2)k(r)dy(1)|dT + 1o / ¢'(r) = ¢'(0)]dT
0 0
< [ 17 @00t - F@na3 (o + 1F@nes () — Fgaed ol dr
0

+ / |F ()T} () — F(p)k(T)p (T)| + | F(dp1)k(T)3 (7)
0

— F(g)k(T) (D) dt + plld1 — ¢all
< |F(pDlkllgr — pall + 1 F (@1 — p) kNl + el — ¢nll
T.
< 2;krll¢1 —dll + nllgr — @21l

Thus, we can also take

2kTr
P

o(r)=

Part (c). We can guarantee that £(-, 1) € Llr if we have the following two conditions [15,
Theorem 2.4]:

(i) F(LL) CR%,and
(ii) there exists an increasing function c3 : Ry — R such that

G(¢p) +c3(rp e Ll
whenever r >0, ¢ € L}, and ||¢|| <r.

Clearly F (Llr) C RZ, so we only need to show that there exists a suitable function c3.
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If ||¢|| <r, using Part (a), we have

F(@)9"(r) + nep"(r)

—G@® = (f«z))k(r)w(r) b ugi(o)

)§</€f(¢)+u)¢(r)
- (il - (il
< (k5lol+n )o@ = (k5r+u )o@

Therefore, we can take

" kTr N -
r)y=—— .
c3 5 tH
B.2. Proof of Proposition 3
Proof. For 0 <t <14 and h > 0, we have
o0
h! / [¢(r.t +h) —e(z,0)]dT
0
h oo 00
=h_1/£(r,t+h)dr+h_1/£(r,t+h)dr —h—lfar,t)dr
0 h 0
h o0
= h_I/Z(t,t—i-h)dt+/h_1[Z(r+h,t+h)—£(1:, Hldr,

0 0

which converges to F(£(-, 1)) + fooo G(-,1))(r)dt as h — 0T because of Equations (A.1) and
(A2).

Adding the entries of vectors h™! [ £(z, + h) — £(r,1)dt and F(£(-, 1)) + [5° G (-, 1))
(t)dr, we obtain

WEEC, t+m) — WD) |
h

0

as h — 0. In other words, t = W(£(-, t)) is differentiable from the right in (O, 14), and its right
derivative is 0.

Given 0 < 1 < 1y, £ € Lj, so the restriction of the solution £ to [0, 7] is a continuous function
of t from [0, 7] to L!; therefore, W(L(-, 1)) is also continuous in [0, 7 ]. Any continuous function
in [0, 7] that has non-negative right derivative everywhere in (0, f) is non-decreasing in [0, 7]
[16, Chapter 5, Proposition 2]. Because both W(€(-, t)) and —W(€(-, t)) have non-negative right
derivatives, we can conclude that W(€(-, ¢)) is constant in [0, 7] for any 0 < f < #4.

Finally, if ¢ € L1 because of Equation (A.3),

0]

WL, 0)) =W(9) =/[¢"(T) +¢'(0)]dT =9ll,

0
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so W(U(-, 1)) =||¢]| forall 0 <t < t_¢. Additionally, from Part (c) of Proposition 2, we know
that,if ¢ € L1, €(-, 1) € L., then W((-, 1)) = |[€(-,t)|| forall 0 <t <7p. O

B.3. Proof of Proposition 4

Proof. If 75 < oo, then limsup,_ [€(-, )|l = oo [15, Theorem 2.3]. By Proposition 3, we know
that ||£(-, 1)|| remains bounded (actually it is constant) for all # € [0, 74) if ¢ € LL- So, we can
conclude that 7y = co. O

B.4. Proof of Proposition 5

Proof. The existence and uniqueness of a mild solution £ of the ADP problem is guaranteed
by Part (b) of Proposition 2. Also t5 = 0o because of Proposition 4 and £(-,¢) € L ﬂr for every
t € R4 because of Part (c) of Proposition 2.

Note that

G@)(1)=—-M(z,$)¢

for all T > 0, where M : R, x L' — B(R?, R?) is defined as

(F@)tu 0
M(”"’)_( 0 k(t)F(¢)+u>'

For G of this form, the mild solution of the ADP problem in [0, t_¢) is a continuous solution
of the ADP problem in [0, t_¢) [15, Theorem 2.9] if

(i) ¢ € L' is continuous and ¢ (0) = F(¢),
(ii) F is Lipschitz on norm-balls of L', and
(iii) there exist increasing functions cu4, c5, c6 : R4 — R4 such that, for all ¢, ¢ € LY 7,
7 >0:
@ [IM(z1,¢1) — M (72, D) llop < callP1IDIT1 — 72l
() 1M (z1, o) llop < cs(llrll)
©) [IM(z1,¢1) — M(t1, 92 llop < c6(r)l|p1 — G2l if |1l lP2ll < 7.

(1) is part of the hypothesis and we already showed (ii) in the proof of Proposition 2, so we
proceed to prove (iii).

Define 7 = sup {7 (r)} and k= sup, {k(7)}. Let ¢1, 2 € L', 11, 12>0. Using the fact that k
is globally Lipschitz, let K be a constant such that

lk(t) —k(t)| < K|t -7’
for all 7, 7/ > 0. We have
M (z1, d1) — M (T2, 1) llop = lk(T1) — k(T2)| [ F(¢1)]

(b T ],
1 1
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and can take c4(r) = KPfr.
On the other hand,
Mz, dDllop=sup  {|[F(P1)x1 + pxi| + [k(t1) F(P1)x2 + pxz|}
[x1]+]x2|=1
< sup  {|F(@DIlx1] + plxr] + k@OIF (@D)|x2] + plxal}
[x1]+]x2|=1
= s iF@)I+ 1
[x1]+]x2|=1
< e 1]l +
=p 1 M,
and we can take c5(r) = ]glff + .
Finally,
[M(z1, 1) — M(z1, ) llop=sup  {|F(¢d1 — p2)x1] + |[k(t1) F(¢1 — p2)x2]}
[x1]+]x2 =1
= sup {KIF@ = e2l0nl+ 12D
lx1]+lx2]=1
=< kT lé1 — @2l
= 5 lldr =2l

and we can take cg(r) = kTT O
B.5. Proof of Proposition 6

Proof. Let ¢y € L. Define T = sup {7 (7)} and k= sup, {k(7)}. Note that both F’(¢) and
G’(¢o) defined above are linear operators from L' to R? and from L' to L!, respectively. They
are bounded linear operators because

|F'(¢0) (@) =WV ()] + | F (@)W (@) + F ()W (o)

~ T
= <M + | F (o) lk + FIW(%)I) el

and

IG"(¢0) (@) =/ |F(¢0)¢" () + F (g () + no™ (v)ldt
0

+ / |F(@0)k(T)¢ (T) + F(@)k(T)dy(T) + ug' ()| dt
0

~ T
=< (If(¢o)lk + kol + /L) ol
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forany ¢ € L.
Now, lete >0 and ¢ € L'. We have
|F(#) — F(¢0) — F'(¢0) (@ — ¢0)|

= |F(@W(@) — F(do)W(do) — F(Po)W(P — ¢o) — F (¢ — ¢0) W (o)l

= |F(@W($ — ¢0) — F(d0)W(P — ¢o)]

= |F (¢ — do)W (P — o)l

~ulw

kllg — doll*
ellg — goll,

ﬁf:Qﬁ:QoﬁﬂW—¢ﬂ<8=mm{L%}anf#Omﬂi#Q
Likewise, we have

I1G(¢0) = G(#) — G'(¢0) (¢ — ¢o)l

= / |F (@ — $0)¢" (1) — F(¢p — ¢o0)g (v)| dT
+ / |F (@ — do)k(0)¢' (1) — F(p — dpo)k(T)py ()| dT
0

< k|F(¢p — ¢o)l / 19" (1) — ¢"™(7) + [¢°(v) — ¢} ()| dT

=kIF (¢ — ¢0)lll$ — ol

’ﬂ)

k=g — o,

"U

which again is smaller than € if T=0,k=0,orif lp — ol <6 = min{l Pf} when T #0
and k # 0.
Now, let ¢1, ¢ € L'. We have

IF"(¢1) = F'(¢2)llop = “Slllp |F (@1 — ¢2)W(9) + F(@)W(1 — )]

T . T .
< “21”1[:)1 {F”¢l —p2kllpll + FI|¢|IkII¢1 —¢z|l]
—2fé
=25 lp1 — @21l

Thus, ¢ — F'(¢) is a continuous function from L' to B(L!, R?).
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On the other hand,
00
IG'(#1) = G'($2)llop = ”SIHJP1 { / |F(¢1 — ¢2)8" (1) + F (@) (@] () — ¢35 (7)) d7
oll=
0

+ / |F($1 — p2)k(1)'(v) + F(p)k(z (¢} () — pi ()] dr}
0

< swp {1761 g2lkI61 + F@)kIgr — 621 |
T.
<2klg1 = gl

Thus, ¢ — G'(¢) is also continuous as a function from L' to B(L',L"). O
B.6. Proof of Proposition 7

Proof. A mild solution of the ADP problem on [0, ) is a solution of the ADP problem and
satisfies conditions (a)—(d) for any ¢ € [0, t_¢) as long as the following conditions hold [17, The-
orem 2.3]:

(1) The functions F and G are Lipschitz on norm-balls of L,
(i1) There exists a function c3 that satisfies (ii) in the proof of Proposition 2, Part (c).
(iii) The functions F and G are continuously F-differentiable relative to L iL
(iv) The initial condition ¢ has the properties: ¢ € Li_ and is absolutely continuous, ¢’ € L',

and ¢ (0) = F(¢).

The existence and uniqueness of the mild solution of the ADP problem can be guaranteed by
Proposition 2. Conditions (i) and (ii) are shown in the proofs of Parts (b) and (c) of Proposition 2,
respectively. Condition (iii) is Proposition 6, whereas (iv) is part of the hypothesis. Finally, the
fact that 7, = oo was the result of Proposition 4. O
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