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Abstract

Modeling time-since-last-infection (TSLI) provides a means of formulating epidemiological models with 
fewer state variables (or epidemiological classes) and more flexible descriptions of infectivity after infection 
and susceptibility after recovery than usual. The model considered here has two time variables: chrono-
logical time (t) and the TSLI (τ ), and it has only two classes: never infected (N ) and infected at least 
once (i). Unlike most age-structured epidemiological models, in which the i equation is formulated using (

∂
∂τ

+ ∂
∂t

)
i(τ, t), ours uses a more general differential operator. This allows weaker conditions for the 

infectivity and susceptibility functions, and thus, is more generally applicable. We reformulate the model 
as an age dependent population problem for analysis, so that published results for these types of problems 
can be applied, including the existence and regularity of model solutions. We also show how other coupled 
models having two types of time variables can be stated as age dependent population problems.
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1. Introduction

In many diseases with temporary immunity to reinfection, the infectivity of infected individu-
als and the susceptibility of recovered ones depends on their times since last infection. Ordinary 
differential equation systems can model such diseases by adding multiple state variables. Mod-
els structured by time-since-last-infection, considered in [1,2], can instead reduce the number of 
variables (or compartments) by using a single time variable for everyone who has been infected 
at least once. This approach differs from models structured by age or age-of-infection (see, e.g., 
[3–14]. See also the review in [2]).

The TSLI model considered by Alfaro-Murillo, et al. [2] is a two-dimensional system includ-
ing only two variables: N (t) for the number of never infected people at time t , and i(τ, t) for the 
density of those who have been infected at least once, with τ representing their times since last 
infection. Let D denote the differentiation operator defined as:

D�(τ, t) = lim
h→0+

�(τ + h, t + h) − �(τ, t)

h
, (1)

for any function � that is defined on a subset of R+ ×R+ (where R+ is the set of non-negative 
real numbers) and has its range defined in a Banach space. We show in Section 2.1 how the 

operator D�(τ, t) is a generalization of the partial derivatives 
(

∂
∂τ

+ ∂
∂t

)
�(τ, t). The model reads:

d

dt
N (t) = −

⎡
⎣ ∞∫

0

T (υ)
i(υ, t)

P(t)
dυ

⎤
⎦N (t) − μN (t) + μP(t),

Di(τ, t) = −
⎡
⎣ ∞∫

0

T (υ)
i(υ, t)

P(t)
dυ

⎤
⎦k(τ )i(τ, t) − μi(τ, t),

i(0, t) =
⎡
⎣ ∞∫

0

T (υ)
i(υ, t)

P(t)
dυ

⎤
⎦
⎡
⎣N (t) +

∞∫
0

k(τ )i(τ, t) dτ

⎤
⎦ ,

N (0) = N0, i(τ,0) = i0(τ ), P(t) =N (t) +
∞∫

0

i(τ, t) dτ.

(2)

There are two time variables in System (2). The first is t , representing chronological time (or 
simply time), whereas the second is τ , representing the amount of time that has elapsed since a 
person’s most recent infection, referred to as time since last infection (TSLI). N (t) denotes the 
total number of individuals in the never-infected class at time t and i(τ, t) denotes the density of 
individuals who have been infected at least once and have TSLI τ at time t . Thus, the quantity ∫ u2
u1

i(τ, t) dτ is the number of individuals at time t whose last infection was between u1 and u2
units of time ago, and P(t) denotes the total population at time t . The only parameters consid-
ered in the model are the per capita natural death rate (μ) and those for the transmission rate 
(T (τ)) and infectivity (k(τ )) functions, the latter of which represents a factor of reduction in the 
probability of being infected as a function of TSLI.
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A solution of System (2) is a pair of functions, (N , i) with N : R+ → R+ being differen-
tiable and i : R+ → L1+(R) being continuous (where L1+ is the space of non-negative Lebesgue 
integrable functions, see Definition 3), that solve the equations in System (2) for all t ≥ 0 and 
almost everywhere (a.e.) for τ ∈ (0, ∞).

The analysis presented in [2] is for the case when the parameter functions T (τ) and k(τ )

satisfy stronger conditions than here so that i(τ, t) has continuous partial derivatives and satisfies 
a partial differential equation. Specifically, the following system is considered in [2]:

d

dt
N (t) = −

⎡
⎣ ∞∫

0

T (u)
i(u, t)

P
du

⎤
⎦N (t) − μN (t) + μP,

(
∂

∂τ
+ ∂

∂t

)
i(τ, t) = −

⎡
⎣ ∞∫

0

T (u)
i(u, t)

P
du

⎤
⎦k(τ )i(τ, t) − μi(τ, t),

(3a)

with conditions:

i(0, t) =
⎡
⎣ ∞∫

0

T (u)
i(u, t)

P
du

⎤
⎦
⎡
⎣N (t) +

∞∫
0

k(τ )i(τ, t) dτ

⎤
⎦ ,

N (0) = N0, i(τ,0) = i0(τ ), where P =N (t) +
∞∫

0

i(τ, t) dτ.

(3b)

In this paper, we present an analysis of the general model (System (2)) with weaker conditions 
on T and k, under which the solution i(τ, t) may not be have continuous partial derivatives (see 
Theorem 4). This may allow the model to have broader applications. The approach used to study 
the general model is to formulate the system as an age dependent population (ADP) problem. 
We use the term “ADP problem” to refer to a particular model formulation for age-dependent 
populations (specified in Section 2), for which theoretical results are available, including the ex-
istence, uniqueness, positivity, and regularity of solutions. We first introduce another formulation 
of general model, termed a coupled model, or a model with two time variables (see Section 2.2). 
We illustrate how coupled models can be stated as ADP problems in general, so that all theory 
developed for ADP problems can be applied to coupled models.

The paper is organized as follows. In Section 2, we demonstrate the link between ADP prob-
lems and models with two time variables (or coupled models). Properties of solutions to the 
generic ADP problem are also discussed in this section, and the results are applied to the refor-
mulation of the general model as a coupled model. Example reformulations of other models as 

coupled models, as well as the relation between D�(τ, t) and 
(

∂
∂τ

+ ∂
∂t

)
�(τ, t), are also presented. 

Application of results in Section 2 to the general model is presented in Section 3, including the 
existence and regularity of model solutions. Section 4 includes a discussion of the results.

2. Links between ADP problems and coupled models

In this section, we present solutions to a generic ADP problem and formulate a coupled model 
as an ADP problem. Then solution properties of the coupled model are discussed by applying 
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results for ADP problems. Example reformulations of other models as coupled models are also 
presented.

2.1. The operator D and its relation to a transport equation

Many age-structured epidemic models are stated in terms of a transport partial differential 
equation of the form ( ∂

∂τ
+ ∂

∂t

)
�(τ, t) = f (�), (4)

where f is a given function. The i equation in System (3) is also in this form. Next we explain 
why we state the coupled problem in Section 2.3 with the operator D instead.

Classical solutions of a partial differential equation such as Equation (4) are C1 functions (i.e., 
have continuous partial derivatives). If � ∈ C1, we can show that D�(τ, t) exists and satisfies

D�(τ, t) =
( ∂

∂τ
+ ∂

∂t

)
�(τ, t).

Indeed, suppose that � : R+ × [0, ̄t ) → R2 is a C1 function in a neighborhood of (τ, t). Let 
ε > 0. There exists δ > 0 such that if 0 < h < δ then∣∣∣∣ ∂

∂τ
�(τ, t + h) − ∂

∂τ
�(τ, t)

∣∣∣∣< ε

5
,∣∣∣∣�(τ, t + h) − �(τ, t)

h
− ∂

∂t
�(τ, t)

∣∣∣∣< ε

5
,

and ∂
∂τ

�(τ, t + h) exists. Given any such h > 0, there exists h′ > 0 such that

∣∣∣∣�(τ + h, t + h)

h
− �(τ + h′, t + h)

h′

∣∣∣∣< ε

5
,∣∣∣∣�(τ + h′, t + h) − �(τ, t + h)

h′ − ∂

∂τ
�(τ, t + h)

∣∣∣∣< ε

5
,∣∣∣∣�(τ, t + h)

h′ − �(τ, t + h)

h

∣∣∣∣< ε

5
.

Therefore,∣∣∣∣�(τ + h, t + h) − �(τ, t)

h
−
(

∂

∂τ
�(τ, t) + ∂

∂t
�(τ, t)

)∣∣∣∣
≤

∣∣∣∣�(τ + h, t + h)

h
− �(τ + h′, t + h)

h′

∣∣∣∣+
∣∣∣∣�(τ, t + h) − �(τ, t)

h
− ∂

∂t
�(τ, t)

∣∣∣∣
+
∣∣∣∣�(τ + h′, t + h) − �(τ, t + h)

h′ − ∂

∂τ
�(τ, t + h)

∣∣∣∣+
∣∣∣∣�(τ, t + h)

h′ − �(τ, t + h)

h

∣∣∣∣
+
∣∣∣∣ ∂

∂τ
�(τ, t + h) − ∂

∂τ
�(τ, t)

∣∣∣∣
< ε,
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for any 0 < h < δ. It follows that D�(τ, t) exists and is equal to 
(

∂
∂τ

+ ∂
∂t

)
�(τ, t). Therefore, any 

solution to a transport equation such as Equation (4) will also be a solution to the same equation 
with the operator D.

The solution function i(τ, t) can be C1 if adequate conditions are imposed on T and k (see 
Theorem 4). However under weaker conditions on T and k we can obtain solutions for i that 
are not C1 and still get information about the number of infected individuals with TSLI between 
u1 and u2, as 

∫ u2
u1

i(τ, t) dτ does not change if the i function has different values on a set with 
measure zero in τ . As we do not want to impose extra conditions for T and k to leave the 
application of the general model as broad as possible, we will consider the general operator D
and solution functions i to be a continuous L1-valued function with domain in [0, ∞), that is, 
for each non-negative t the function i(·, t) defined as τ 	→ i(τ, t) is L1.

2.2. The generic ADP problem

We define an ADP problem as described in [15, Chapter 1]. An ADP problem is described by 
the following three equations:

D�(τ, t) = G(�(·, t))(τ ), (5a)

�(0, t) = F(�(·, t)), (5b)

�(τ,0) = φ(τ), (5c)

with G : L1 → L1, F : L1 → Rn, and φ ∈ L1. In ADP problems Equations (5a), (5b) and (5c)
are termed the Balance Law, the Birth Law, and the initial condition, respectively.

For ease of presentation, we introduce the following definition:

Definition 1. For t̄ > 0, let Lt̄ = C([0, ̄t ]; L1) be the Banach space of continuous L1-valued 
functions on [0, ̄t ] with the norm:

‖�‖Lt̄
= sup

0≤t≤t̄

‖�(t)‖,

where � ∈ Lt̄ .

In a natural way, an element of Lt̄ can be identified with an element of L1((0, ∞) ×(0, ̄t ); Rn)

[15, Lemma 2.1], which allows us to use the same symbol for both; i.e.,

�(t)(τ ) = �(·, t)τ = �(τ, t),

where 0 ≤ t ≤ t̄ , and a.e. τ > 0.

Definition 2. Let t̄ > 0. Let F : L1 → Rn, G : L1 → L1, and φ ∈ L1. We say that a function 
� ∈ Lt̄ is a solution of the ADP problem for the initial distribution φ on [0, ̄t ] provided that �
satisfies the equations in System (5) for all t ∈ [0, ̄t ] and a.e. for τ ∈ (0, ∞).
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If we assume that � is a solution of the ADP problem on [0, ̄t ] and c ∈ R, then we can define 
a “cohort function”:

wc(t) = �(t + c, t)

for every tc ≤ t ≤ t̄ , where tc = max{−c, 0}. Using Equation (5a), we can show that the right 
derivative of this function exists and satisfies

w′
c(t+) = lim

h→0+
wc(t + h) − wc(t)

h
= G(�(·, t))(t + c) (6)

a.e. for t ∈ (tc, ̄t). If G is Lipschitz on norm-balls of L1, the function G(�(·, t))(τ ) is integrable 
as a function from (0, ∞) × (0, ̄t ) to Rn [15, Lemma 2.2], and so w′

c(t+) is also integrable in 
[0, ̄t ]. Therefore, we have that any function of the form,

t 	→ C +
t∫

tc

w′
c(s+)ds,

has a derivative equal to w′
c(t+) a.e. t ∈ (tc, ̄t) [16, Chapter 5, Theorem 10]. So, we can integrate 

Equation (6) and obtain

wc(t) =
{

wc(t − τ) + ∫ t

t−τ
G(�(·, s))(s + c)ds a.e. τ ∈ (0, t),

wc(0) + ∫ t

0 G(�(·, s))(s + c)ds a.e. τ ∈ (t,∞).

Substituting c = τ − t , and using Equation (5b), we obtain the integral equation:

�(τ, t) =
{

F(�(·, t − τ)) + ∫ t

t−τ
G(�(·, s))(s + τ − t)ds a.e. τ ∈ (0, t),

φ(τ − t) + ∫ t

0 G(�(·, s))(s + τ − t)ds a.e. τ ∈ (t,∞).
(7)

In conclusion, if G is Lipschitz on norm-balls of L1, every solution of the ADP problem sat-
isfies Equation (7). Clearly, not every solution of Equation (7) is a solution of the ADP problem, 
because the function � in Equation (7) need not be differentiable in the sense of the operator D. 
The converse is true under certain conditions (see Theorem 2.9 in [15] and Theorem 2.3 in [17]), 
a fact that we will use later.

If both functions F and G are Lipschitz on norm-balls of L1, then a function � satisfies Equa-
tion (7), for t ∈ [0, ̄t ], if and only if � is a mild solution of the ADP problem (See Theorem 2.2 
in [15]) according to Definitions 4–6 in the Appendix.

We define an equilibrium solution for the ADP problem in Definition 7 of the Appendix. 
A very important result in the theory of ADP problems is that, if F : L1+ → Rn+ and G : L1+ → L1

are Lipschitz on norm-balls of L1 and there exists a function c3 that satisfies (ii) in the proof of 
part (c) for Proposition 2, then φ is an equilibrium solution of the ADP problem if and only if 
φ is absolutely continuous with the properties that φ′ ∈ L1, φ′ = G(φ), and φ(0) = F(φ) [15, 
Proposition 4.1]. We will make use of this result later.
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2.3. General formulation of coupled models

In this section, we focus on models consisting of both equations that depend only on time t
and variables that depend on both time t and τ (System (2) is an example). For ease of refer-
ence, we refer to this type of model as a coupled model. Several other examples are provided in 
Section 2.6. A general formulation for such a system is given below.

Let X(t) denote the vector of functions that depend only on t , and let y(τ, t) denote the vector 
of functions that depend on both t and τ . The general coupled model has the following form:

dX(t)

dt
= Fx(X(t), y(·, t)) + Mx(X(t), y(·, t))X(t),

Dy(τ, t) = Gy(X(t), y(·, t))(τ ),

(8a)

with boundary and initial conditions

y(0, t) = Fy(X(t), y(·, t)), X(0) = X0, y(·,0) = φy, (8b)

where Fx : Rm × L1(Rk) → Rm, Mx : Rm × L1(Rk) → B(Rm, Rm), Gy : Rm × L1(Rk) →
L1(Rk), Fy : Rm × L1(Rk) → Rk , X0 ∈ Rm and φy ∈ L1(Rk). The operator D is defined in 
Equation (1).

A solution to System (8) is a set of functions X(t) and y(τ, t) that satisfy the equations for 
time t ∈ [0, ̄t ] for some t̄ > 0 and a.e. for τ ∈ (0, ∞). An equilibrium of the system is a solution 
that is constant on time t .

2.4. From coupled models to ADP problems and solution properties

We can reformulate the coupled model (System (8)) as an ADP problem described in Sys-
tem (5) by defining the functions F : L1(Rm+k) → Rm+k and G : L1(Rm+k) → L1(Rm+k) as

F

(
φx

φy

)
=
(

Fx

(∫∞
0 φx(τ)dτ,φy

)
Fy

(∫∞
0 φx(τ)dτ,φy

)
)

, (9a)

G

(
φx

φy

)
(τ ) =

(
Mx

(∫∞
0 φx(υ)dυ,φy

)
φx(τ)

Gy

(∫∞
0 φx(υ)dυ,φy

)
(τ )

)
, (9b)

where φ =
(

φx

φy

)
with φx ∈ L1(Rm) and 

∫∞
0 φx(τ)dτ = X0.

Let π(m) and π(−k) denote the projection functions in Definition 8 of the Appendix. Then the 
following result holds:

Theorem 1. Consider System (8) as an ADP problem (System (5)) with F and G being defined 
as in System (9). Assume that F and G are Lipschitz on norm-balls of L1. If the ADP problem 
has a solution � ∈ Lt̄ for the functions F and G and the initial condition φ, then System (8) has 
a solution X(t), y(τ, t) for t ∈ [0, ̄t ] and a.e. for τ ∈ (0, ∞), given by
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X(t) = π(m)

⎛
⎝ ∞∫

0

�(τ, t)dτ

⎞
⎠ and y(·, t) = π(−k) (�(·, t)) .

Proof. Let t̄ > 0 such that � ∈ Lt̄ is a solution of the ADP problem on [0, ̄t ] for the functions F , 
G and the initial condition φ. Define

X(t) = π(m)

⎛
⎝ ∞∫

0

�(τ, t)dτ

⎞
⎠ and y(·, t) = π(−k) (�(·, t)) .

Applying π(m) to Equation (5c), we have

π(m) (�(τ,0)) = φx(τ);

integrating, we obtain Equation (8b). Applying π(−k) to Equation (5a) and using the definition of 
G in Equation (9b), we obtain the y(τ, t) in Equation (8a). In the same way, from Equation (5b)
and the definition of F in Equation (9a), we obtain the y(0, t) in Equation (8b). Also, applying 
π(−k) to Equation (5c) yields the y(·, 0) in Equation (8b).

It remains to show that X satisfies Equation (8a). Notice that

π(m)

⎛
⎝F(�(·, t)) +

∞∫
0

G(�(·, t))(τ )dτ

⎞
⎠= Fx (X(t), y(·, t)) + Mx (X(t), y(·, t))X(t).

Thus, it suffices to show that

d

dt
X(t) = π(m)

⎛
⎝F(�(·, t)) +

∞∫
0

G(�(·, t))(τ )dτ

⎞
⎠ .

Recall from Section 2.2 that, if F and G are Lipschitz on norm-balls of L1, a solution of the 
ADP problem is also a mild solution of the ADP problem. Hence, if h > 0, then

∣∣∣∣∣∣h−1 [X(t + h) − X(t)] − π(m)

⎛
⎝F(�(·, t)) +

∞∫
0

G(�(·, t))(τ )dτ

⎞
⎠
∣∣∣∣∣∣

=
∣∣∣∣h−1π(m)

⎛
⎝ ∞∫

0

�(τ, t + h)dτ −
∞∫

0

�(τ, t)dτ

⎞
⎠− π(m)

⎛
⎝F(�(·, t)) −

∞∫
0

G(�(·, t))(τ )dτ

⎞
⎠∣∣∣∣

≤
∣∣∣∣∣∣h−1π(m)

⎛
⎝ h∫

�(τ, t + h) − F(�(·, t))dτ

⎞
⎠
∣∣∣∣∣∣
0
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+
∣∣∣∣∣∣π(m)

⎛
⎝ ∞∫

0

h−1 [�(τ + h, t + h) − �(τ, t)] − G(�(·, t))(τ )dτ

⎞
⎠
∣∣∣∣∣∣

≤ h−1

h∫
0

|�(τ, t + h) − F(�(·, t))| dτ +
∞∫

0

∣∣∣h−1 [�(τ + h, t + h) − �(τ, t)] − G(�(·, t))(τ )

∣∣∣ dτ,

which tends to zero as h → 0+ by the limit equations in Definition 4 of the Appendix. This shows 
that the right derivative of X exists and is equal to

π(m)

⎛
⎝F(�(·, t)) +

∞∫
0

G(�(·, t))(τ ) dτ

⎞
⎠ for t ∈ [0, t̄ ].

For the left derivative, let h > 0. Using similar estimates as for the right derivative, we obtain

∣∣∣∣∣∣h−1[X(t) − X(t − h)
]− π(m)

⎛
⎝F(�(·, t)) +

∞∫
0

G(�(·, t))(τ )dτ

⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣∣h−1

h∫
0

�(τ, t)dτ − F(�(·, t))
∣∣∣∣∣∣

+
∣∣∣∣∣∣h−1

⎡
⎣ ∞∫

h

�(τ, t)dτ −
∞∫

0

�(τ, t − h)dτ

⎤
⎦−

∞∫
0

G(�(·, t))(τ )dτ

∣∣∣∣∣∣ .

The first factor in the last sum goes to zero as h → 0+ by the Fundamental Theorem of Calculus 
and the fact that � is a solution of the ADP problem (in particular Equation (5b)):

lim
h→0+ h−1

h∫
0

�(τ, t)dτ = �(0, t) = F(�(·, t)).

For the second factor, recall that, if F and G are Lipschitz on norm-balls of L1, then � is a 
mild solution of the ADP problem if and only if it satisfies the integral equation of the problem, 
Equation (7) [15, Theorem 2.2]. Using Equation (7), for any 0 < h < min {τ, t}, we have

�(τ, t) − �(τ − h, t − h) =
t∫

t−h

G(�(·, s))(s + τ − t)ds,

and for h < t ,
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∣∣∣∣∣∣h−1

[ ∞∫
h

�(τ, t)dτ −
∞∫

0

�(τ, t − h)dτ
]
−

∞∫
0

G(�(·, t))(τ )dτ

∣∣∣∣∣∣
=
∣∣∣∣∣∣h−1

[ ∞∫
h

�(τ, t) − �(τ − h, t − h)dτ
]
−

∞∫
0

G(�(·, t))(τ )dτ

∣∣∣∣∣∣
=
∣∣∣∣∣∣h−1

[ ∞∫
h

t∫
t−h

G(�(·, s))(s + τ − t)ds dτ
]
−

∞∫
0

G(�(·, t))(τ )dτ

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∞∫
0

h−1
[ t∫
t−h

G(�(·, s))(s + τ + h − t) − G(�(·, t))(τ )ds
]

dτ

∣∣∣∣∣∣
≤

∞∫
0

∣∣∣∣∣∣h−1
[ t∫
t−h

(
G(�(·, s))(s + τ + h − t) − G(�(·, t))(τ )

)
ds
]∣∣∣∣∣∣ dτ

≤ h−1

t∫
t−h

∞∫
0

|G(�(·, s))(s + τ + h − t) − G(�(·, t))(s + τ + h − t)| dτ ds

+ h−1

t∫
t−h

∞∫
0

|G(�(·, t))(s + τ + h − t) − G(�(·, t))(τ )| dτ ds

≤ sup
t−h≤s≤t

‖G(�(·, s)) − G(�(·, t))‖ + sup
t−h≤s≤t

∞∫
0

|G(�(·, t))(s + τ + h − t) − G(�(·, t))(τ )| dτ.

In the last inequality, the first factor in the sum tends to zero as h → 0+ because the function 
t 	→ G(�(·, t)) is continuous [15, Lemma 2.2]. The second factor tends to zero by the continuity 
of the translation in L1. �
2.5. Equilibrium solutions of the coupled model and ADP problem

For any coupled model where Theorem 1 can be applied, an equilibrium solution of the re-
spective ADP problem translates into an equilibrium solution of the coupled model by applying 
the projection π(m) and integrating to obtain the equilibrium for X or applying the projection 
π(−k) to obtain the equilibrium for y. In some cases, those are the only equilibrium solutions of 
the coupled model, as stated in the following theorem.

Theorem 2. Consider System (8) as an ADP problem (System (5)) by letting F and G be as 
defined in System (9). Assume that F and G are Lipschitz on norm-balls of L1. If the ADP 
problem has an equilibrium solution φ, then
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X0 = π(m)

⎛
⎝ ∞∫

0

φ(τ) dτ

⎞
⎠ , φy(τ ) = π(−k) (φ(τ))

is an equilibrium solution of the System (8).
Conversely, suppose that X0, φy is an equilibrium solution of System (8) such that

(i) φy is absolutely continuous,
(ii) φ′

y ∈ L1, and
(iii) all eigenvalues of Mx(X0, φy) have negative real parts.

Then,

φ(τ) =
(

eMx(X0,φy)τ Fx(X0, φy)

φy(t)

)

is an equilibrium solution of the ADP problem.

Proof. Under the assumptions of the theorem, if the ADP problem has an equilibrium solution 
φ, then we can apply Theorem 1 to obtain a solution of the coupled model (System (8)). Because 
the equilibrium solution of the ADP problem does not depend on t , neither will the solution of 
the coupled model.

On the other hand, let (X0, φy) be an equilibrium solution of the coupled model (System (8)) 
that satisfies (i), (ii) and (iii). Define

φ(τ) =
(

φx(τ)

φy(τ )

)
=
(

eMx(X0,φy)τFx(X0, φy)

φy(τ )

)
.

Then

τ̄∫
0

φx(τ) dτ = (Mx(X0, φy))
−1eMx(X0,φy)τ̄ Fx(X0, φy) − (Mx(X0, φy))

−1Fx(X0, φy).

The inverse (Mx(X0, φy))
−1 exists because we are assuming that all eigenvalues of the matrix 

Mx(X0, φy) have negative real parts. Moreover, if all eigenvalues of a square matrix A have 
negative real parts, then limτ→∞ eAτ x0 = 0 for any vector x0 of the same dimension as A [18, 
Chapter 1, Theorem 2]. Thus,

∞∫
0

φx(τ) dτ = −(Mx(X0, φy))
−1Fx(X0, φy).

By Equation (8a) and the fact that, if (X0, φy) is an equilibrium solution of the coupled model, 
then it satisfies X′(t) = 0, we have

−(Mx(X0, φy))
−1Fx(X0, φy) = X0.

Hence, 
∫∞

φx(τ) dτ = X0.
0
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From the definition of φx and the fact that φy is absolutely continuous, φ is absolutely con-
tinuous. Moreover,

φ′
x(x) = Mx(X0, φy)φx(τ ),

so φ′
x ∈ L1. Also, from the assumption that φy ∈ L1, we have that φ′ ∈ L1.

Now we can show that φ is indeed a solution of the ADP problem:

φ(0) =
(

Fx(X0, φy)

φy(0)

)
=
(

Fx(X0, φy)

Fy(X0, φy)

)
= F(φ)

and

Dφ(τ) = φ′(τ ) =
(

Mx(X0, φy)φx(τ )

φ′
y(τ )

)
= G(φ)(τ),

where F and G are as in System (9). �
2.6. Other examples of coupled models

Example 1. Brauer, et al. [4] studied a model of cholera that has three epidemiological classes: 
susceptible individuals (S(t), only dependent on time), infected individuals (i(t, ·), structured by 
time since infection), and contaminated water (p(t, ·), structured by the time that the pathogen 
has been in the water). Let

X(t) = S(t), y(·, t) =
(

i(·, t)
p(·, t)

)
.

Then the functions corresponding to those in System (8) are:

Fx(X(t), y(·, t)) = A,

Mx(X(t), y(·, t)) = −μ −
∞∫

0

(
βdk(τ ) βiq(τ )

)
y(·, t) dτ,

Gy(X(t), y(·, t))(τ ) = −
(

θ(τ ) 0
0 δ(τ )

)
y(·, t),

Fy(X(t), y(·, t)) = X(t)

∞∫
0

(
βdk(τ ) βiq(τ )

ξ(τ ) 0

)
y(τ, t) dτ,

with the initial conditions:

X0 = S0, φy =
(

i0
p0

)
.

Example 2. Bhattacharya and Adler [19] describe an SIRS model in which the susceptible S(t)

and infected I (t) classes depend only on time, whereas the recovered class R(·, t) is structured 
by time since recovery. Their model can be formulated in the form of System (8). Let

X(t) =
(

S(t)

I (t)

)
, y(·, t) = R(·, t).
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The corresponding functions are

Fx(X(t), y(·, t)) =

⎛
⎜⎜⎝

∞∫
0

ρ(τ)y(τ, t) dτ

0

⎞
⎟⎟⎠ ,

Mx(X(t), y(·, t)) =
(−βπ2(X(t)) 0

βπ2(X(t)) −γ

)
,

Gy(X(t), y(·, t))(τ ) = −ρ(τ)y(τ, t),

Fy(X(t), y(·, t)) = γπ2(X(t)),

where π2 is the projection defined as πi(x1, x2, · · · , xn) = xi , with the initial conditions

X0 =
(

S0
I0

)
, φy = 0.

Example 3. Magal and McCluskey [20] describe a two-group SIR model in which there are two 
susceptible classes (S1 and S2) and two recovered classes (R1 and R2) that depend only on time, 
and two infected classes (i1(·, t) and i2(·, t)) that are structured by the time since infection. Their 
model can be formulated in the form of System (8) by letting

X(t) =

⎛
⎜⎜⎝

S1(t)

S2(t)

R1(t)

R2(t)

⎞
⎟⎟⎠ , y(·, t) =

(
i1(·, t)
i2(·, t)

)
.

The corresponding functions are

Fx(X(t), y(·, t)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

� − π(2)(X(t)) •
∞∫

0

B(τ)y(τ, t) dτ

∞∫
0

M(τ)y(τ, t) dτ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Mx(X(t), y(·, t)) = −
(

D 0
0 D

)
,

Gy(X(t), y(·, t))(τ ) = −(M(τ) + D)y(τ, t),

Fy(X(t), y(·, t)) = π(2)(X(t)) •
∞∫

0

B(τ)y(τ, t) dτ

∞∫
0

M(τ)y(τ, t) dτ,

where • represents the dot product of vectors, π(2) is the projection defined as

π(m)(x1, x2, · · · , xn) = (x1, x2, · · · , xm),

with 0 < m < n, and with the notation
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� =
(

λ1
λ2

)
, B(τ) =

(
0 β2(τ )

β1(τ ) 0

)
,

M(τ) =
(

m1(τ ) 0
0 m2(τ )

)
, D =

(
d1 0
0 d2

)
.

The initial conditions are

X0 =
(

S0
R0

)
, φy = i0.

3. Solution properties of the general model

We first simplify the general model (System (2)) by showing that the total population size 
P(t) remains constant for all t ≥ 0 and then analyze it by reformulating it as a coupled model.

3.1. Simplification of the general model

Let N0 ∈ R+ and i0 ∈ L1+(R) be such that N0 + ∫∞
0 i0(τ ) dτ > 0. A solution of the general 

model (System (2)) is a pair of functions, N (t) : R+ → R+ differentiable and i(·, t) : R+ →
L1+(R) continuous, that solve the equations in System (8a) for all t ≥ 0 and a.e. for τ ∈ (0, ∞).

Assumption 1. Let T , k : R+ →R+ be bounded functions such that 

∞∫
0

T (τ)dτ > 0 and

(i)

∞∫
0

T (τ)dτ < ∞ or

(ii) k(τ ) = 0 a.e for τ > 0.

(10)

Proposition 1. Let T , k satisfy Assumption 1. For any solution (N (t), i(τ, t)) of System (2), the 
total population remains constant; i.e., P(t) = P , where

P = N0 +
∞∫

0

i0(τ ) dτ. (11)

Proof. Suppose that (N , i) is a solution of System (2). To simplify the notation, define

B(t) =
∞∫

0

T (υ)
i(υ, t)

P(t)
dυ

and wc(t) = i(t + c, t) for any c ∈ R and t ≥ tc , where tc = max {−c,0}. Note that

lim
h→0+

wc(t + h) − wc(t)

h
= lim

h→0+
i(t + c + h, t + h) − i(t + c, t)

h

= Di(t + c, t)

= −B(t)k(t + c)wc(t) − μwc(t).
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Thus, the right derivative of w′
c(t+) exists a.e. From Assumption 1, we know that B(t)k(t + c)

is either bounded by 
∫∞

0 T (τ) dτ × supτ {k(τ )} or is zero a.e. Therefore, w′
c(t+) is integrable in 

[0, ̄t ] for any t̄ > 0, whenever wc(t) is integrable in [0, ̄t ]. Because i : R+ → L1+(R) is continu-
ous, this is the case for any t̄ > 0. So, we can integrate w′

c(t+) to obtain that wc satisfies a.e. the 
integral equation:

wc(t) = −
t∫

tc

[
B(s)k(s + c)wc(s) + μwc(s)

]
ds + wc(tc);

that is,

wc(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wc(0) −
t∫

0

[
B(s)k(s + c)wc(s) + μwc(s)

]
ds if c > 0,

wc(−c) −
t∫

−c

[
B(s)k(s + c)wc(s) + μwc(s)

]
ds if c < 0.

Letting τ = t + c and using the i(0, t) and i(τ, 0) equations in System (2), we obtain:

i(τ, t) = i0(τ − t) −
t∫

0

[
B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)

]
ds,

a.e. for τ < t , and

i(τ, t) = B(t − τ)

⎡
⎣N (t − τ) +

∞∫
0

k(υ)i(υ, t − τ) dυ

⎤
⎦

−
t∫

t−τ

[
B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)

]
ds,

a.e. for τ > t . Integrating, we have
∞∫

0

i(τ, t) dτ =
t∫

0

B(t − τ)

⎡
⎣N (t − τ) +

∞∫
0

k(υ)i(υ, t − τ) dυ

⎤
⎦ dτ

−
t∫

0

t∫
t−τ

[
B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)

]
dsdτ

+
∞∫
t

i0(τ − t) dτ

−
∞∫ t∫ [

B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)
]
dsdτ.

(12)
t 0
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Changing the limits of integration and making the change of variable υ = τ − t + s yields

t∫
0

t∫
t−τ

[
B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)

]
dsdτ

=
t∫

0

s∫
0

[
B(υ)k(υ)i(υ, s) + μi(υ, s)

]
dυ ds,

and

∞∫
t

t∫
0

[
B(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)

]
dsdτ

=
t∫

0

∞∫
s

[
B(υ)k(υ)i(υ, s) + μi(υ, s)

]
dυ ds.

Using s = t − τ and υ = τ − t in the other two integrals of Equation (12), we get

∞∫
0

i(τ, t) dτ =
t∫

0

B(s)N (s) ds − μ

t∫
0

‖i(·, s)‖ds +
∞∫

0

i0(υ) dυ. (13)

Integrating the N equation in System (2), we obtain

N (t) = −
t∫

0

B(s)N (s) ds + μ

t∫
0

‖i(·, s)‖ds + N0. (14)

Finally, adding Equation (13) and Equation (14), we complete the proof. �
3.2. The general model as an ADP problem

Proposition 1 allows us to reduce System (2) to the following simpler system (i.e., replacing 
the function P(t) by the constant P ):

d

dt
N (t) = −

⎡
⎣ ∞∫

0

T (υ)
i(υ, t)

P
dυ

⎤
⎦N (t) − μN (t) + μP,

Di(τ, t) = −
⎡
⎣ ∞∫

T (υ)
i(υ, t)

P
dυ

⎤
⎦k(τ )i(τ, t) − μi(τ, t),
0
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i(0, t) =
⎡
⎣ ∞∫

0

T (υ)
i(υ, t)

P
dυ

⎤
⎦
⎡
⎣N (t) +

∞∫
0

k(τ )i(τ, t) dτ

⎤
⎦ , (15)

N (0) = N0, i(τ,0) = i0(τ ),

P = N0 +
∞∫

0

i0(τ )dτ.

We can then rewrite System (15) as a coupled model as in System (8), which can be studied as 
an ADP problem. Let

Fx(X,φy) = μX + μ

∞∫
0

φy(τ) dτ,

Mx(X,φy) = −
∞∫

0

T (τ)
φy(τ )

P
dτ − μ,

Gy(X,φy) = −
⎡
⎣ ∞∫

0

T (τ)
φy(τ, t)

P
dτ

⎤
⎦k(τ )φy(τ, t) − μφy(τ),

Fy(X,φy) =
⎡
⎣ ∞∫

0

T (τ)
φy(τ )

P
dτ

⎤
⎦
⎡
⎣X +

∞∫
0

k(τ )φy(τ ) dτ

⎤
⎦ ,

(16)

with X0 = N0, φy = i0.
For ease of presentation, we introduce the following notation and functions:

(i) For 0 < t̄ ≤ ∞ and φ ∈ L1((0, ̄t ), R2), let

φn = π1 ◦ φ, φi = π2 ◦ φ,

where π1, π2 are the projections to the first and second entries as in Definition 8. Thus, φn

and φi are the never-infected part of φ and the infected-at-least-once part of φ, respectively.
(ii) Let F : L1 →R denote the function

F(φ) =
∞∫

0

T (τ)
φi(τ )

P
dτ. (17)

(iii) Let W : L1 → R denote the weighted function

W(φ) =
∞∫

0

[
φn(τ ) + k(τ )φi(τ )

]
dτ. (18)
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(iv) Let W : L1 → R denote the non-weighted function

W(φ) =
∞∫

0

[
φn(τ ) + φi(τ )

]
dτ. (19)

Notice that W(φ) = ‖φ‖ if φ ∈ L1+.

Let

F

(
φn

φi

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

∞∫
0

[
φn(τ ) + φi(τ )

]
dτ

⎡
⎣ ∞∫

0

T (υ)
φi(υ)

P
dυ

⎤
⎦ ∞∫

0

[
φn(τ ) + k(τ )φi(τ )

]
dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

μW(φ)

F(φ)W(φ)

)
,

(20a)

G

(
φn

φi

)
(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
⎡
⎣ ∞∫

0

T (υ)
φi(υ)

P
dυ

⎤
⎦φn(τ ) − μφn(τ )

−
⎡
⎣ ∞∫

0

T (υ)
φi(υ)

P
dυ

⎤
⎦k(τ )φi(τ ) − μφi(τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
( −F(φ)φn(τ ) − μφn(τ )

−F(φ)S(τ)φi(τ ) − μφi(τ )

)
.

(20b)

Using the F and G functions defined in System (20), we can translate System (15) into an ADP 
problem (see System (5) and System (9)). Thus, to apply the results in Section 2 to describe 
solution properties of System (15), we focus in the following section on the properties of the 
functions F and G given in System (20).

3.3. Basic results for the ADP version of the general model

For ease of presentation, we state in this section some preliminary results that we will use in 
the next section to obtain our main results.

Proposition 2. Let P > 0, μ ≥ 0, and T , k : R+ →R+ be bounded. The following results hold:

(a) The functions F, W and W defined in Equations (17)–(19) are bounded linear operators. 
Moreover,

‖F‖op ≤ supτ {T (τ)}
, ‖W‖op ≤ sup{k(τ )}, ‖W‖op = 1.
P τ
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(b) If φ ∈ L1, then there exists 0 < t̄ ≤ ∞ and � ∈ Lt̄ such that � is the unique mild solution 
of the ADP problem on [0, ̄t ] for the functions F, G given in System (20) and the initial 
distribution φ.

(c) If φ ∈ L1+, then the mild solution � of the ADP problem on [0, ̄tφ) for the functions F, G
given in System (20), the initial distribution φ and t̄φ is as in Definition 5, has the property 
that �(·, t) ∈ L1+ for 0 ≤ t < t̄φ .

The proof can be found in Appendix B.1.

Proposition 3. Let P > 0, μ ≥ 0, T , k : R+ → R+ be bounded, and φ ∈ L1. Let � be the mild 
solution of the ADP problem on [0, ̄tφ) for the functions F, G given in System (20) and the 
initial condition φ, where t̄φ is as in Definition 5. Then W(�(·, t)) is constant for all 0 ≤ t < t̄φ . 
Additionally, if φ ∈ L1+, then ‖�(·, t)‖ = ‖φ‖ for all 0 < t < t̄φ .

The proof can be found in Appendix B.2.

Proposition 4. Let P > 0, μ ≥ 0, T , k : R+ → R+ be bounded, and φ ∈ L1+. Let � be the mild 
solution of the ADP problem on [0, ̄tφ) for the functions F, G given in System (20) and the initial 
condition φ, where t̄φ is as in Definition 5. Then t̄φ = ∞.

The proof can be found in Appendix B.3.

3.4. Existence and regularity of the model solution

Based on the results stated in the previous section, we describe the properties of the solu-
tions to the general model (System (15)). Definitions for some of the terms can be found in 
Appendix A. For example, a function being globally Lipschitz (Definition 9) and F-differentiable
(Definition 10).

Proposition 5. Let P > 0, μ ≥ 0. Let T : R+ → R+ be a bounded function, and let k : R+ →
R+ be a bounded globally Lipschitz function. Let φ ∈ L1+ be a continuous function such that 
φ(0) = F(φ). Then there exists a unique continuous function � : R+ → L1+ that is the solution 
of the ADP problem for the functions F and G given in System (20) and the initial condition φ.

The proof can be found in Appendix B.4.
The results described in Proposition 5 can be translated back to our original problem to obtain 

the first theorem of existence (and regularity) of solutions:

Theorem 3. Let μ ≥ 0. Let T : R+ → R+ be a function and k : R+ → R+ a globally Lipschitz 
function satisfying Assumption 1. Let N0 > 0 and let i0 : R+ → R+ be a continuous function 
such that i0 ∈ L1+ and

i0(0) =
⎡
⎣ ∞∫

0

T (υ)
i0(υ)

N0 + ∫∞
0 i0(τ ) dτ

dυ

⎤
⎦
⎡
⎣N0 +

∞∫
0

k(τ )i0(τ ) dτ

⎤
⎦ . (21)

Then there exists a differentiable function N : R+ → R+ and a continuous function i : R+ →
L1+(R) that solve System (15).



JID:YJDEQ AID:9868 /FLA [m1+; v1.300; Prn:12/06/2019; 9:46] P.20 (1-31)

20 J.A. Alfaro-Murillo et al. / J. Differential Equations ••• (••••) •••–•••
Proof. Let φn be any continuous function from R+ to R+ such that

φn(0) = μP,

∞∫
0

φn(τ )dτ = N0.

Because we showed in Proposition 2 that F and G given in System (20) are Lipschitz on 
norm-balls of L1, we can use Theorem 1 to translate results of a solution of the ADP problem 
for the functions F and G and initial condition

φ =
(

φn

i0

)

to results for solutions of the System (15), and by Proposition 1, of the general model (Sys-
tem (2)).

The first result is existence of a solution. We know that φ ∈ L1+ is continuous, and by the 
definition of φ and Equation (21), we have

φ(0) =
(

φn(0)

i0(0)

)
=
(

μP

F(φ)
[
N0 + ∫∞

0 k(τ )i0(τ ) dτ
])= F(φ).

So, given the hypothesis of Proposition 5, we can conclude that there is a solution for Sys-
tem (15). Moreover, this solution is defined for all t ∈R+, and satisfies

N (t) = π1

⎛
⎝ ∞∫

0

�(τ, t) dτ

⎞
⎠ ,

i(τ, t) = π2 (�(τ, t))

where � is the solution of the ADP problem.
By Part (c) of Proposition 2, �(·, t) ∈ L1+ for all t ∈ R+, so N (t) ≥ 0 and i(·, t) ∈ L1+ as 

required. �
This result is not very restrictive in the conditions imposed on the initial distribution. We only 

require it to be continuous, L1 and to satisfy the non-local boundary condition. However, we are 
imposing an additional restriction on the susceptibility function, k, namely for it to be globally 
Lipschitz. We can dispense with this so long as we impose a stronger condition on the initial 
distribution. Our regularity results will then be stronger for the solution of the ADP problem. For 
this, we first need to show that our functions F and G are continuously F-differentiable.

Proposition 6. Let P > 0, μ ≥ 0. Let T , k : R+ →R+ be bounded functions. Then

1. The function F : L1 → R2 defined by Equation (20a) is a continuously F-differentiable func-
tion relative to L1. Its F-derivative is given by

F ′(φ0)(φ) =
(

μW(φ)

F(φ0)W(φ) +F(φ)W(φ0)

)
.
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2. The function G : L1 → L1 defined by Equation (20b) is a continuously F-differentiable func-
tion relative to L1. Its F-derivative is given by

G′(φ0)(φ)(τ ) = −
(

F(φ0)φ
n(τ ) +F(φ)φn

0 (τ ) + μφn(τ )

F(φ0)k(τ )φi(τ ) +F(φ)k(τ )φi
0(τ ) + μφi(τ )

)
.

The proof can be found in Appendix B.5.

Proposition 7. Let P > 0, μ ≥ 0, and let T , k :R+ → R+ be bounded. Let φ ∈ L1+ be absolutely 
continuous such that φ′ ∈ L1 and φ(0) = F(φ). Then there exists a unique solution, �, of the ADP 
problem for the F, G given in System (20) and the initial condition φ, such that

(a) �(·, t) is absolutely continuous for any t ∈ R+.
(b) For every t ∈ R+, the function τ 	→ �(τ, t) is differentiable and its derivative is in ∈ L1.
(c) The function t 	→ �(·, t) is continuously differentiable from R+ to L1.

(d) � also satisfies 
(

∂
∂τ

+ ∂
∂t

)
�(τ, t) = G(�(·, t))(τ ) for every t ∈ R+ and a.e. for τ ∈ (0, ∞).

The proof can be found in Appendix B.6.
Finally, we can translate this into a result for the general model (System (2)), as stated below:

Theorem 4. Let μ ≥ 0. Let T , k : R+ → R+ be functions that satisfy Assumption 1. Let N0 > 0, 
and let i0 :R+ → R+ be an absolutely continuous function such that i0 ∈ L1+, i′0 ∈ L1, and

i0(0) =
⎡
⎣ ∞∫

0

T (υ)
i0(υ)

N0 + ∫∞
0 i0(τ ) dτ

dυ

⎤
⎦
⎡
⎣N0 +

∞∫
0

k(τ )i0(τ ) dτ

⎤
⎦ .

Then there exist a continuously differentiable function N :R+ → R+ and a continuous function 
i : R+ → L1+(R) that solve System (2). Moreover, i(·, t) is absolutely continuous for any t ∈R+
and

D(i(τ, t)) =
( ∂

∂τ
+ ∂

∂t

)
i(τ, t)

for every t ∈ R+ and a.e. for τ ∈ (0, ∞).

Proof. Let φx ∈ L1+ be any absolutely continuous function such that φ′
x ∈ L1, φx(0) = μP and ∫∞

0 φx(τ) dτ = N0. As in the proof of Theorem 3, the result follows by applying Theorem 1 and 
Proposition 7. �
4. Discussion

We present a novel approach for epidemiological models by using two time variables, chrono-
logical time t and time-since-last infection (TSLI). One advantage of this approach is that fewer 
state variables are needed; in the general model (System (2)) considered, there are only two: 
N (t), the number of never infected people at time t , and i(τ, t), the density of people at time t
who were infected at least once with their last infections occurring τ units of time ago.
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In most models with age-of-infection τ , the infected state variable, such as i(τ, t), denotes the 
density of those who are either latently infected or infectious, and the equation is written using 

partial derivatives, 
(

∂
∂τ

+ ∂
∂t

)
i(τ, t). This requires stronger conditions on the model parameter 

functions (e.g., T (τ), k(τ ) and i0(τ )) for the solution i(τ, t) to be in C1. In our model, individuals 
in the i(τ, t) class include not only latently infected and infectious, but also recovered, who 
may or may not have immunity; i.e., everyone except those who have never been infected. In 
addition, the equation for i(τ, t) is described using the differential operator D, which allows 

weaker conditions on the parameter functions. We show that if i ∈ C1 then Di(τ, t) =
(

∂
∂τ

+
∂
∂t

)
i(τ, t).

To analyze the existence and regularity of solutions to the general model (System (2)), we 
apply published results for ADP problems, a term that refers to age-dependent populations as 
specified in Section 2.2 (see, e.g., [15,17]). For ease of framing the general model (System (2)) 
as an ADP problem, we first reformulate it as a coupled model as shown in Section 2.3. We 
also reformulate several published models to illustrate how readily age-structured models can be 
formulated as coupled models (see Section 2.6). In turn, coupled models can be formulated as 
ADP problems (System (5)), in which case results for those problems can be applied.

The general model (System (2)) can be used to study the dynamics of transmission and control 
of many infectious diseases. The special feature of the class i(τ, t), together with the parame-
ter functions T (τ) and k(τ ) for infectivity and susceptibility based on TSLI, permits multiple 
scenarios, including: (i) complete immunity from natural infections (k(τ ) = 0); (ii) partial or 
temporary immunity from infections (0 < k(τ) < 1); and (iii) enhanced susceptibility due to in-
fections (supk(τ ) > 1). For example, one might make the following assumptions on T and k: 
(i) there exists a finite period during which individuals are infectious; (ii) immunity eventually 
wanes (i.e., k increases); and (iii) once-infected individuals become as susceptible as they ever 
would be. In other words, there exists τ0 and τ1 with 0 < τ0 < τ1 such that T (τ) = 0 for τ > τ0, 
k(τ ) = 0 for τ < τ0, and k(τ ) = supk for τ > τ1. Applications of the general model (System (2)) 
under these conditions to study diseases such as tuberculosis and influenza will be presented 
elsewhere.
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Appendix A. Definitions

This appendix includes definitions and terminology mentioned in the main text.

Definition 3. L1+ = L1+(Rn) = {φ ∈ L1 : φ(τ) ∈ Rn+ a.e. τ > 0}.
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Definition 4. Let t̄ > 0, � ∈ Lt̄ , F : L1 →Rn, G : L1 → L1, and φ ∈ L1. We say that � is a mild 
solution of the ADP problem on [0, ̄t ] for the initial distribution φ provided that � satisfies:

lim
h→0+

∞∫
0

|h−1[�(τ + h, t + h) − �(τ, t)] − G(�(·, t))(τ )|dτ = 0, (A.1)

lim
h→0+ h−1

h∫
0

|�(τ, t + h) − F(�(·, t))|dτ = 0, (A.2)

and

�(·,0) = φ, 0 ≤ t ≤ t̄ . (A.3)

Definition 5. For 0 < t̂ ≤ ∞, we say that � is the solution (respectively mild solution) of the ADP 
problem on [0, ̂t ) for the initial distribution φ, provided that, for all t̄ < t̂ , � restricted to [0, ̄t ] is 
the solution (respectively mild solution) of the ADP problem on [0, ̄t ] for the initial condition φ
restricted to [0, ̄t ].

Definition 6. If there exists a mild solution of the ADP problem on [0, ̄t ] for some t̄ > 0, we 
denote by t̄φ , the maximal t̂ > 0, such that there exists a mild solution of the ADP problem in 
[0, ̂t ).

Definition 7. Given φ ∈ L1, F : L1(Rn) → Rn and G : L1(Rn) → L1(Rn), we define an equi-
librium solution of the ADP problem for the functions F , G and initial condition φ as a solution 
of the ADP problem for the same functions on [0, ∞) such that �(·, t) = φ for all t ≥ 0.

Definition 8. We define the projection function to the i-th entry πi : Rn →R as

πi(x1, . . . , xn) = xi;
for m ∈ N , 0 < m < n, the projection to the first m entries π(m) : Rn →Rm as

π(m)(x1, . . . , xn) = (x1, . . . , xm);
and, for k ∈N , 0 < k < n, the projection to the last k entries π(−k) : Rn →Rk as

π(−k)(x1, . . . , xn) = (xn−k+1, . . . , xn).

Definition 9. Let X and Y be normed spaces with norms ‖ ·‖X and ‖ ·‖Y , respectively, and let 
H : X → Y . We say that H is Lipschitz on norm-balls of X if, for all r > 0, there exists c(r) > 0
such that

‖H(x1) −H(x2)‖Y ≤ c(r)‖x1 − x2‖X

for all x1, x2 ∈ X such that ‖x1‖X, ‖x2‖X ≤ r . If c(r) can be chosen to be the same constant for 
all r > 0, then H is said to be globally Lipschitz.
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Definition 10. Let X and Y be normed spaces with norms ‖ ·‖X and ‖ ·‖Y , respectively, and let 
D ⊂ X. We say that H : D → Y is F-differentiable relative to D at x0 ∈ D if there exists H′(x0) ∈
B(X, Y), such that, given any ε > 0, there exists δ > 0 such that, if x ∈ D and ‖x − x0‖X < δ, 
then

‖H(x) −H(x0) −H′(x0)(x − x0)‖Y ≤ ε‖x − x0‖X.

H is said to be continuously F-differentiable relative to D on A ⊂ D if it is F-differentiable 
relative to D at each x ∈ A and if the map x 	→ H′(x) is continuous from A to B(X, Y). H′(x)

is called the F-derivative of H at x.

Appendix B. Proofs

B.1. Proof of Proposition 2

Proof. To simplify notation, let T̂ = supτ {T (τ)} and k̂ = supτ {k(τ )}
Part (a). The linearity follows by the definition of the functions and fact that integration is a 

linear operator.

For φ ∈ L1, we have |F(φ)| ≤ ∫∞
0 T (τ)|φo(τ)|/P dτ ≤ T̂ ‖φ‖/P , |W(φ)| ≤ ∫∞

0

[
|φn(τ )| +

k(τ )|φi(τ )|
]
dτ ≤ k̂‖φ‖, and |W(φ)| ≤ ∫∞

0

[
|φn(τ )| + |φi(τ )|

]
τ = ‖φ‖. In addition, |W(φ)| =

‖φ‖ if φ ∈ L1+.
Part (b). Existence and uniqueness of the mild solution of the ADP problem is guaranteed if 

F and G are Lipschitz on norm-balls of L1 [15, Theorem 2.1]. In other words, we need to show 
that there exist functions c1, c2 : R+ → R+ such that |F(φ1) − F(φ2)| ≤ c1(r)‖φ1 − φ2‖ and 
‖G(φ1) − G(φ2)‖ ≤ c2(r)‖φ1 − φ2‖ for all φ1, φ2 ∈ L1 with ‖φ1‖, ‖φ2‖ ≤ r .

If ‖φ1‖, ‖φ2‖ ≤ r , using Part (a), we have

|F(φ1) − F(φ2)| = |μW(φ1) − μW(φ2)| + |F(φ1)W(φ1) −F(φ2)W(φ2)|
= μ|W(φ1 − φ2)| + |F(φ1)W(φ1) −F(φ1)W(φ2) +F(φ1)W(φ2) −F(φ2)W(φ2)|
≤ μ‖φ1 − φ2‖ + |F(φ1)||W(φ1 − φ2)| + |W(φ2)||F(φ1 − φ2)|

≤ μ‖φ1 − φ2‖ + T̂

P
‖φ1‖|W(φ1 − φ2)| + k̂‖φ2‖|F(φ1 − φ2)|

≤ μ‖φ1 − φ2‖ + T̂

P
‖φ1‖k̂‖φ1 − φ2‖ + k̂‖φ2‖ T̂

P
‖φ1 − φ2‖

≤ μ‖φ1 − φ2‖ + 2r
T̂

P
k̂‖φ1 − φ2‖.

Thus, we can choose

c1(r) = 2k̂T̂ r + μ.

P
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Similarly, if ‖φ1‖, ‖φ2‖ ≤ r , then

‖G(φ1) − G(φ2)‖ =
∞∫

0

∣∣−F(φ1)φ
n
1 (τ ) +F(φ2)φ

n(τ ) − μφn
1 (τ ) + μφn

2 (τ )
∣∣ dτ

+
∞∫

0

∣∣∣−F(φ1)S(τ )φi
1(τ ) +F(φ2)k(τ )φi(τ ) − μφi

1(τ ) + μφi
2(τ )

∣∣∣ dτ

≤
∞∫

0

|F(φ1)φ
n
1 (τ ) −F(φ2)φ

n
2 (τ )|dτ + μ

∞∫
0

|φn(τ ) − φn(τ )|dτ

+
∞∫

0

|F(φ1)k(τ )φi
1(τ ) −F(φ2)k(τ )φi

2(τ )|dτ + μ

∞∫
0

|φi(τ ) − φi(τ )|dτ

≤
∞∫

0

|F(φ1)φ
n
1 (τ ) −F(φ1)φ

n
2 (τ ) + |F(φ1)φ

n
2 (τ ) −F(φ2)φ

n
2 (τ )|dτ

+
∞∫

0

|F(φ1)k(τ )φi
1(τ ) −F(φ1)k(τ )φi

2(τ )| + |F(φ1)k(τ )φi
2(τ )

−F(φ2)k(τ )φi
2(τ )|dτ + μ‖φ1 − φ2‖

≤ |F(φ1)|k̂‖φ1 − φ2‖ + |F(φ1 − φ2)|k̂‖φ2‖ + μ‖φ1 − φ2‖

≤ 2
T̂

P
k̂r‖φ1 − φ2‖ + μ‖φ1 − φ2‖.

Thus, we can also take

c2(r) = 2k̂T̂ r

P
+ μ.

Part (c). We can guarantee that �(·, t) ∈ L1+ if we have the following two conditions [15, 
Theorem 2.4]:

(i) F(L1+) ⊆ R2+, and
(ii) there exists an increasing function c3 :R+ → R+ such that

G(φ) + c3(r)φ ∈ L1+

whenever r > 0, φ ∈ L1+, and ‖φ‖ ≤ r .

Clearly F(L1+) ⊆ R2+, so we only need to show that there exists a suitable function c3.
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If ‖φ‖ ≤ r , using Part (a), we have

−G(φ)(τ) =
(

F(φ)φn(τ ) + μφn(τ )

F(φ)k(τ )φi(τ ) + μφi(τ )

)
≤
(
k̂F(φ) + μ

)
φ(τ)

≤
(

k̂
T̂

P
‖φ‖ + μ

)
φ(τ) ≤

(
k̂
T̂

P
r + μ

)
φ(τ).

Therefore, we can take

c3(r) = k̂T̂ r

P
+ μ. �

B.2. Proof of Proposition 3

Proof. For 0 < t < t̄φ and h > 0, we have

h−1

∞∫
0

[
�(τ, t + h) − �(τ, t)

]
dτ

= h−1

h∫
0

�(τ, t + h)dτ + h−1

∞∫
h

�(τ, t + h)dτ − h−1

∞∫
0

�(τ, t)dτ

= h−1

h∫
0

�(τ, t + h)dτ +
∞∫

0

h−1[�(τ + h, t + h) − �(τ, t)]dτ,

which converges to F(�(·, t)) + ∫∞
0 G(�(·, t))(τ ) dτ as h → 0+ because of Equations (A.1) and 

(A.2).
Adding the entries of vectors h−1

∫∞
0 �(τ, t + h) − �(τ, t) dτ and F(�(·, t)) + ∫∞

0 G(�(·, t))
(τ ) dτ , we obtain

W(�(·, t + h)) −W(�(·, t))
h

→ 0

as h → 0+. In other words, t 	→ W(�(·, t)) is differentiable from the right in (0, ̄tφ), and its right 
derivative is 0.

Given 0 < t̄ < t̄φ , � ∈ Lt̄ , so the restriction of the solution � to [0, ̄t ] is a continuous function 
of t from [0, ̄t ] to L1; therefore, W(�(·, t)) is also continuous in [0, ̄t ]. Any continuous function 
in [0, ̄t ] that has non-negative right derivative everywhere in (0, ̄t ) is non-decreasing in [0, ̄t ]
[16, Chapter 5, Proposition 2]. Because both W(�(·, t)) and −W(�(·, t)) have non-negative right 
derivatives, we can conclude that W(�(·, t)) is constant in [0, ̄t ] for any 0 < t̄ < t̄φ .

Finally, if φ ∈ L1+, because of Equation (A.3),

W(�(·,0)) =W(φ) =
∞∫ [

φn(τ ) + φi(τ )
]
dτ = ‖φ‖,
0
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so W(�(·, t)) = ‖φ‖ for all 0 ≤ t < t̄φ . Additionally, from Part (c) of Proposition 2, we know 
that, if φ ∈ L1+, �(·, t) ∈ L1+, then W(�(·, t)) = ‖�(·, t)‖ for all 0 ≤ t < t̄φ . �
B.3. Proof of Proposition 4

Proof. If t̄φ < ∞, then lim supt>0 ‖�(·, t)‖ = ∞ [15, Theorem 2.3]. By Proposition 3, we know 
that ‖�(·, t)‖ remains bounded (actually it is constant) for all t ∈ [0, ̄tφ) if φ ∈ L1+. So, we can 
conclude that t̄φ = ∞. �
B.4. Proof of Proposition 5

Proof. The existence and uniqueness of a mild solution � of the ADP problem is guaranteed 
by Part (b) of Proposition 2. Also tφ = ∞ because of Proposition 4 and �(·, t) ∈ L1+ for every 
t ∈ R+ because of Part (c) of Proposition 2.

Note that

G(φ)(τ) = −M(τ,φ)φ

for all τ > 0, where M : R+ × L1 → B(R2, R2) is defined as

M(τ,φ) =
(
F(φ) + μ 0

0 k(τ )F(φ) + μ

)
.

For G of this form, the mild solution of the ADP problem in [0, ̄tφ) is a continuous solution 
of the ADP problem in [0, ̄tφ) [15, Theorem 2.9] if

(i) φ ∈ L1 is continuous and φ(0) = F(φ),
(ii) F is Lipschitz on norm-balls of L1, and

(iii) there exist increasing functions c4, c5, c6 : R+ → R+ such that, for all φ1, φ2 ∈ L1, τ1,

τ2 ≥ 0:
(a) ‖M(τ1, φ1) − M(τ2, φ1)‖op ≤ c4(‖φ1‖)|τ1 − τ2|
(b) ‖M(τ1, φ1)‖op ≤ c5(‖φ1‖)
(c) ‖M(τ1, φ1) − M(τ1, φ2)‖op ≤ c6(r)‖φ1 − φ2‖ if ‖φ1‖, ‖φ2‖ ≤ r .

(i) is part of the hypothesis and we already showed (ii) in the proof of Proposition 2, so we 
proceed to prove (iii).

Define T̂ = supτ {T (τ)} and k̂ = supτ {k(τ )}. Let φ1, φ2 ∈ L1, τ1, τ2 ≥ 0. Using the fact that k
is globally Lipschitz, let K be a constant such that

|k(τ ) − k(τ ′)| ≤ K|τ − τ ′|

for all τ, τ ′ ≥ 0. We have

‖M(τ1, φ1) − M(τ2, φ1)‖op = |k(τ1) − k(τ2)| |F(φ1)|

≤ KT̂ ‖φ1‖|τ1 − τ2|,

P



JID:YJDEQ AID:9868 /FLA [m1+; v1.300; Prn:12/06/2019; 9:46] P.28 (1-31)

28 J.A. Alfaro-Murillo et al. / J. Differential Equations ••• (••••) •••–•••
and can take c4(r) = KT̂ r
P

.
On the other hand,

‖M(τ1, φ1)‖op = sup
|x1|+|x2|=1

{|F(φ1)x1 + μx1| + |k(τ1)F(φ1)x2 + μx2|}

≤ sup
|x1|+|x2|=1

{|F(φ1)||x1| + μ|x1| + |k(τ1)||F(φ1)||x2| + μ|x2|}

≤ sup
|x1|+|x2|=1

{
k̂|F(φ1)| + μ

}

≤ k̂T̂

P
‖φ1‖ + μ,

and we can take c5(r) = k̂T̂ r
P

+ μ.
Finally,

‖M(τ1, φ1) − M(τ1, φ2)‖op = sup
|x1|+|x2|=1

{|F(φ1 − φ2)x1| + |k(τ1)F(φ1 − φ2)x2|}

≤ sup
|x1|+|x2|=1

{
k̂|F(φ1 − φ2)|(|x1| + |x2|)

}

≤ k̂T̂

P
‖φ1 − φ2‖,

and we can take c6(r) = k̂T̂
P

. �
B.5. Proof of Proposition 6

Proof. Let φ0 ∈ L1. Define T̂ = supτ {T (τ)} and k̂ = supτ {k(τ )}. Note that both F ′(φ0) and 
G′(φ0) defined above are linear operators from L1 to R2 and from L1 to L1, respectively. They 
are bounded linear operators because

|F ′(φ0)(φ)| =|μW(φ)| + |F(φ0)W(φ) +F(φ)W(φ0)|

≤
(

μ + |F(φ0)|k̂ + T̂

P
|W(φ0)|

)
‖φ‖,

and

‖G′(φ0)(φ)‖ =
∞∫

0

|F(φ0)φ
n(τ ) +F(φ)φn

0 (τ ) + μφn(τ )|dτ

+
∞∫

0

|F(φ0)k(τ )φi(τ ) +F(φ)k(τ )φi
0(τ ) + μφi(τ )|dτ

≤
(

|F(φ0)|k̂ + T̂

P
k̂‖φ0‖ + μ

)
‖φ‖,
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for any φ ∈ L1.
Now, let ε > 0 and φ ∈ L1. We have

|F(φ) − F(φ0) − F ′(φ0)(φ − φ0)|
= |F(φ)W(φ) −F(φ0)W(φ0) −F(φ0)W(φ − φ0) −F(φ − φ0)W(φ0)|
= |F(φ)W(φ − φ0) −F(φ0)W(φ − φ0)|
= |F(φ − φ0)W(φ − φ0)|

≤ T̂

P
k̂‖φ − φ0‖2

≤ ε‖φ − φ0‖,

if T̂ = 0, k̂ = 0, or if ‖φ − φ0‖ < δ = min
{

1, P ε

T̂ k̂

}
when T̂ �= 0 and k̂ �= 0.

Likewise, we have

‖G(φ0) − G(φ) − G′(φ0)(φ − φ0)‖

=
∞∫

0

|F(φ − φ0)φ
n(τ ) −F(φ − φ0)φ

n
0 (τ )|dτ

+
∞∫

0

|F(φ − φ0)k(τ )φi(τ ) −F(φ − φ0)k(τ )φi
0(τ )|dτ

≤ k̂|F(φ − φ0)|
∞∫

0

|φn(τ ) − φn(τ ) + |φ0(τ ) − φi
0(τ )|dτ

= k̂|F(φ − φ0)|‖φ − φ0‖

≤ k̂
T̂

P
‖φ − φ0‖2,

which again is smaller than ε if T̂ = 0, k̂ = 0, or if ‖φ − φ0‖ < δ = min
{

1, P ε

T̂ k̂

}
when T̂ �= 0

and k̂ �= 0.
Now, let φ1, φ2 ∈ L1. We have

‖F ′(φ1) − F ′(φ2)‖op = sup
‖φ‖=1

|F(φ1 − φ2)W(φ) +F(φ)W(φ1 − φ2)|

≤ sup
‖φ‖=1

{
T̂

P
‖φ1 − φ2‖k̂‖φ‖ + T̂

P
‖φ‖k̂‖φ1 − φ2‖

}

= 2
T̂

P
k̂‖φ1 − φ2‖.

Thus, φ 	→ F ′(φ) is a continuous function from L1 to B(L1, R2).
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On the other hand,

‖G′(φ1) − G′(φ2)‖op = sup
‖φ‖=1

{ ∞∫
0

|F(φ1 − φ2)φ
n(τ ) +F(φ)(φn

1 (τ ) − φn
2 (τ ))|dτ

+
∞∫

0

|F(φ1 − φ2)k(τ )φi(τ ) +F(φ)k(τ (φi
1(τ ) − φi

2(τ ))|dτ

}

≤ sup
‖φ‖=1

{
|F(φ1 − φ2)|k̂‖φ‖ +F(φ)k̂‖φ1 − φ2‖

}

≤ 2
T̂

P
k̂‖φ1 − φ2‖.

Thus, φ 	→ G′(φ) is also continuous as a function from L1 to B(L1, L1). �
B.6. Proof of Proposition 7

Proof. A mild solution of the ADP problem on [0, ̄tφ) is a solution of the ADP problem and 
satisfies conditions (a)–(d) for any t ∈ [0, ̄tφ) as long as the following conditions hold [17, The-
orem 2.3]:

(i) The functions F and G are Lipschitz on norm-balls of L1+,
(ii) There exists a function c3 that satisfies (ii) in the proof of Proposition 2, Part (c).

(iii) The functions F and G are continuously F-differentiable relative to L1+.
(iv) The initial condition φ has the properties: φ ∈ L1+ and is absolutely continuous, φ′ ∈ L1, 

and φ(0) = F(φ).

The existence and uniqueness of the mild solution of the ADP problem can be guaranteed by 
Proposition 2. Conditions (i) and (ii) are shown in the proofs of Parts (b) and (c) of Proposition 2, 
respectively. Condition (iii) is Proposition 6, whereas (iv) is part of the hypothesis. Finally, the 
fact that t̄φ = ∞ was the result of Proposition 4. �
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