
Adaptive Anonymization of Data using b-Edge
Cover

Arif Khan1, Krzysztof Choromanski2, Alex Pothen3, S M Ferdous3, Mahantesh Halappanavar1,
and Antonino Tumeo1

1Pacific Northwest National Laboratory, Richland WA 99354.
{ariful.khan, mahantesh.halappanavar, antonino.tumeo}@pnnl.gov

2 Google Brain Robotics, New York, 76 Ninth Avenue, New York NY 10011. choromanski1@gmail.com
3 Computer Science Department, Purdue University, West Lafayette IN 47907. {apothen, sferdou}@purdue.edu

Abstract—We explore the problem of sharing data that per-
tains to individuals with anonymity guarantees, where each user
requires a desired level of privacy. We propose the first shared-
memory as well as distributed memory parallel algorithms for the
adaptive anonymity problem that achieves this goal, and produces
high quality anonymized datasets.

The new algorithm is based on an optimization procedure
that iteratively computes weights on the edges of a dissimilarity
matrix, and at each iteration computes a minimum weighted
b-Edge Cover in the graph. We describe how a 2-approximation
algorithm for computing the b-Edge Cover can be used to solve
the adaptive anonymity problem in parallel.

We are able to solve adaptive anonymity problems with
hundreds of thousands of instances and hundreds of features
on a supercomputer in under five minutes. Our algorithm scales
up to 8K cores on a distributed memory supercomputer, while
also providing good speedups on shared memory multiprocessors.
On smaller problems where an a Belief Propagation algorithm
is feasible, our algorithm is two orders of magnitude faster.

I. INTRODUCTION

Research agencies in the U.S., Europe, and Canada (e.g.,
NIH; Science Europe, an association of several research fund-
ing and research performing organizations; Canadian Insti-
tutes of Health Research) require research data to be made
publicly, permanently, and freely available. However such
data often contains sensitive information about individuals,
and therefore the engine responsible for data-sharing must be
equipped with mechanisms for providing privacy guarantees
of that data. (The European Union has begun to enforce the
General Data Protection Regulation (GDPR) policies in 2018.)
Simultaneously, some notion of utility must be maintained,
i.e., a significant fraction of the data should be publishable.
Disclosures of sensitive data with insufficient anonymization
have a history of being re-identified when joined with other
publicly available data. For example, a sanitized data set
from a group insurance commission which manages health
insurance for Massachusetts state employees was matched
against the voter list of Cambridge MA, and the health record
of the then Governor of the state was identified. Six such
occurrences are listed in [1]. To address this issue, we describe
a parallel algorithm for solving a privacy problem called
adaptive anonymity, using a variational optimization algorithm
and a b-Edge Cover formulation, implemented on both shared-
memory and distributed-memory multiprocessors.

An example of this problem is shown in Figure 1. The
matrix on the left is the user data, the matrix on the right
is the anonymized data with some values masked with stars.
Privacy requirements of the users are specified in the caption.
A bipartite graph between the users and the keys illustrates
how each user’s data is confused with that of others. In the
Figure, the anonymized data of y0 is the same as that of y1
and y4 if we treat a star as a wild card that matches any value
(0, 1, or ∗). We will consider this example in more detail in
Section III.

A real-life example considered in Section VI uses an Open
Payments data set managed by the U.S. Centers for Medicare
& Medicaid Services (CMS), which is a national disclosure
program created by the Affordable Care Act to help consumers
understand the financial relationships between the pharmaceu-
tical and medical device industries on the one hand, and physi-
cians and teaching hospitals on the other [2]. Each record of
the CMS dataset contains a transaction made to a physician or
a teaching hospital. There are different types of payments, and
we consider only general payments that include identifying in-
formation for the applicable manufacturer or applicable Group
Purchasing Organizations (GPO) who made the payment, and
identifying information for the recipient. For example, among
other features, each record contains: teaching hospital name,
physician’s name, physician’s medical license number, physi-
cian medical specialty, physician’s address, provider’s address,
type of payment (e.g., drug, medical device, consultancy fee),
amount of payment, method of payment, date of payment, etc.
Much useful information can be mined from this dataset that
could help develop new medical technologies, prevent wasteful
health-care spending and inappropriate influences on clinical
decision making, etc. However, it is also possible to misuse
this Open Payment information in conjunction with other
dataset(s). For example, it is possible to identify certain type
of medical needs of a particular area and tie it to the socio-
economic profile of that area using publicly available census
data and then misuse the information for false advertising,
insurance manipulation, etc. Anonymizing some features of
this dataset before making it publicly available could prevent
such abuse. It is not possible to anonymize the CMS dataset
using state of the art anonymization techniques that run on
serial computers, since its memory requirement is more than
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2.5 TB. Using our new distributed memory parallel algorithm
for adaptive anonymity, we are able to anonymize the CMS
dataset with high utility (Section VI).

The main drawback of earlier approaches for privacy is that
they assume a uniform distribution of the desired privacy levels
(value of k) across all the users. However, this condition does
not hold true for real-life applications, since users vary in their
desired level of privacy. Since these methods are not designed
for models where different users may need different levels of
anonymity, applications using these models lead to poor utility.
Recently, some of the first results regarding this heterogeneous
scenario were given [3]. An efficient algorithm creating the
so-called b-matching graph, a core ingredient of the entire
data sharing mechanism, was proposed. Unfortunately, this
algorithm is too slow in practice because it computes an
optimal b-matching at each iteration (requiring O(kmn log n)
running time, where n is the number of nodes, m is the number
of edges in a similarity graph used to produce obfuscated
data, and k is the maximum level of privacy desired). The
algorithm does not have much parallelism. Other well known
exact algorithms for solving the problem stated in [3] share
the same weaknesses.

We describe the first shared-memory and distributed-
memory parallel data sharing algorithms satisfying adaptive
anonymity requirements, giving privacy guarantees adapted to
different needs of different users. Our contributions in this
paper are as follows:

1) An approximation algorithm that employs variational
optimization and a b-Edge Cover formulation to solve
the adaptive anonymity problem.

2) A shared memory implementation of the
adaptive anonymity algorithm.

3) A linear memory formulation of the algorithm, which
enables the solution of problems two orders of mag-
nitude larger than previous algorithms on a shared
memory machine.

4) A distributed memory implementation of the
adaptive anonymity algorithm, which can solve
large-scale problems three orders of magnitude faster
than shared-memory implementations.

Our work employs several concepts including a formulation
of the adaptive anonymity problem, a variational optimization
algorithm to solve the problem, a b-Edge Cover computation
to solve a grouping step within each iteration of the opti-
mization, the reduction of the b-Edge Cover problem to a
b-Matching problem, and the b-SUITOR algorithm for the last
problem. We illustrate the relationships among these problems
and algorithms in Fig. 2 to aid in understanding the rest of the
paper, which is organized as follows. In Section II, we discuss
previous work on data privacy and the b-Edge Cover problem.
We discuss a general framework for the adaptive anonymity
problem and identify the most compute-intensive step, called
the Grouping step in Section III. We show that a 2-approximate
b-Edge Cover algorithm can efficiently compute the Grouping
step in Section IV. In Section V, we discuss shared memory
and distributed memory implementations of our algorithm.
We report performance results in Section VI, and provide

concluding remarks in Section VII.

II. RELATED WORK

Here we discuss previous work on data privacy as well as
approximation algorithms for the b-Edge Cover problem.

A. Data Privacy Algorithms

The are several classes of algorithms for data privacy, of
which one of the most powerful is differential privacy [4].
Intuitively, differential privacy is the loss of privacy for an
individual when their private data is used in a collective data
product that can be queried. However it is not a flexible tool
in this setting since it usually requires the particular use of the
data to be specified in advance. In many applications the users
would like to release the raw data, with some obfuscation, for
purposes of general exploration. In order to be consistent in
our terminology we refer to users as instances and attributes
as features from now onward.

Another kind of privacy can be defined on relational
data where individuals can identified using some external
knowledge. To handle re-identification attacks, Sweeney [5]
proposed the k-anonymity method. A data set is said to be
k-anonymous if each record is indistinguishable from at least
(k− 1) other records in the context of their features. Here the
privacy assigned to each record is a constant value k.

Adaptive Anonymity is a generalization of k-anonymity,
where privacy requirements of individuals can vary. Some
attempts to address the anonymity issue in the adaptive context
were made in [6], [7], [8], [9], but the algorithms were not
efficient and exact privacy guarantees were not formulated.
The state of the art for the adaptive anonymity problem is de-
scribed in [3]. The algorithm in [3] uses a Belief Propagation
based formulation, which requires impractically high runtimes
for large problems, and is also not guaranteed to converge if
the solution is not unique. The algorithm uses a variational
optimization formulation, in which a b-matching is computed
exactly at each iteration. As stated in the Introduction, this
algorithm requires O(kmn log n) running time.

Several studies discuss ways to strengthen k-anonymity
based data privacy, namely l-diversity [10] and t-
closeness [11]. The authors of the paper [11] noted that
it may be more desirable to use both k-anonymity and
t-closeness at the same time. However, both these techniques
are based on a procedure for finding equivalence classes, i.e.,
grouping instances based on some criteria. The grouping step
is also the most compute-intensive step of these algorithms.
Hence our work is applicable to such modifications of
adaptive anonymity. Our goal is to devise a method to group
instances that is amenable to parallelization, and we achieve
it by computing an approximate b-Edge Cover in a graph.

B. b-Edge Cover Algorithms

The b-Edge Cover problem is a special case of the Set
Multicover problem: Here we are given a collection of subsets
of a set, each with a cost, and we are required to find a
sub-collection of subsets of minimum total cost to cover each
element e in the set a specified number b(e) times. If each sub-
set has exactly two elements, then we have the b-Edge Cover



username

Anna (x0) 1 0 0 0
Robert (x1) 0 0 0 0
Paul (x2) 0 0 1 1
Peter (x3) 1 0 1 1
Carl (x4) 1 1 0 0
Olaf (x5) 0 1 1 1

x0

x1

x2

x3

x4

x5

y0

y1

y2

y3

y4

y5

key

* * 0 0 172 (y0)
* 0 0 0 236 (y1)
* * 1 1 672 (y2)
* 0 1 1 229 (y3)
1 * 0 0 761 (y4)
0 * 1 1 298 (y5)

Fig. 1. An example of an adaptive anonymity problem. Left: usernames and feature matrix (x,X); Right: the anonymized feature matrix with keys (Y, y);
Center: A bipartite graph that matches each user to a set of anonymized keys compatible with the user’s data. There are six users and four features, and the
privacy requirements are: k(x0) = 3, k(x1) = 2, k(x2) = 3, k(x3) = 2, k(x4) = 2, k(x5) = 2. The solution using adaptive anonymity masks eight data
items, while k-Anonymity for k ≥ 2 would mask ten elements.

Fig. 2. Our framework for solving the adaptive anonymity problem.

problem. This problem arises in communication or distribution
problems on networks where each communication node has to
be covered several times to increase reliability in the event of
a communication link failing [12]. The well-known k-nearest
neighbor graph construction to represent noisy and dense
data is also related to the b-Edge Cover problem. An exact
algorithm for the b-Edge Cover problem can be obtained using
an exact algorithm for computing a b-Matching of maximum
weight, and the best known exact algorithm for b-Matching
is due to Anstee, with time complexity min{O(n2m +
nlog(β) (m + nlogn)), O(n2log(n)(m + nlog(n)))}, where
m and n are as defined earlier, and β = max b(v) [13], [14].

However the exact algorithm is not practical for solving
large problems, and is also not amenable for parallelization
on modern architectures. Recently a number of approximation
algorithms have been developed for the minimum weighted
b-Edge Cover problem in order to solve large problems in
parallel. The authors in [15] developed a 3/2− approximate
Locally Subdominant Edge algorithm (LSE) which computes
the same edge cover as the GREEDY algorithm but is amenable
for parallelization. The authors in [16] have described two
2-approximation algorithms, called static LSE (S-LSE) and
Matching Complement Edge cover (MCE). The MCE algo-
rithm is currently the fastest approximation algorithm and in
practice computes a near-optimal b-Edge Cover. The algo-
rithm uses a 1/2-approximate b′-Matching algorithm called
b-SUITOR to compute a b-Edge Cover. The b-SUITOR algo-
rithm scales up to 50× on shared memory machines with
60 cores, and up to 16K cores on a distributed memory

machines [17], [18]. The parallel efficiency is the main moti-
vation to use MCE algorithm for solving adaptive anonymity
problem in this paper. One variant of the b-SUITOR algorithm
also has the property that it does not require the whole graph
in memory at one time in order to compute the solution. We
use this property to reduce the memory complexity of the
adaptive anonymity algorithm on shared memory machines.

III. A GENERALIZED FRAMEWORK

In this section we give a precise mathematical de-
scription of the problem and an algorithm that achieves
adaptive anonymity and high utility of the shared data at the
same time. We start with the definition of adaptive anonymity,
which is generalized from k-anonymity proposed in [5].

Definition III.1. A release of data is said to have the adaptive-
anonymity property if the information for each individual v
contained in the release cannot be distinguished from the
information of at least k(v)− 1 individuals in the dataset.

The difference between adaptive anonymity and k-
anonymity is that the latter uses a uniform value k for all
individuals instead of a value k(v) for each individual v. For
k-anonymity, the value of k has to be the maximum of k(v)
for all v to satisfy the privacy requirements. If there exists
a user who would like their record to be confused with all
others, in the k-anonymity setting, the obfuscated data will
have little utility.

Our model is illustrated in Figure 1. We are given a dataset
X ∈ Zn×f , where n is the number of individuals and f is the
number of features. Each row xv ∈ Zf of X is a contribution
of the user v to the dataset and consists of f discrete features.
A feature might be race, age, height, weight, income bracket,
etc. A vector k of length n, where an element k(v) of k
is a privacy parameter of the v-th user is also given. The
value k(v) specifies that the data of the v-th user must be
indistinguishable from that of k(v)−1 other users. The output
of the algorithm is an anonymized dataset Y ∈ (Z∪{∗})n×f ,
where the ∗ symbol indicates that a particular feature has been
masked. Each feature vector xv ∈ X is associated with a
username xv ∈ Z and each row yu of Y is associated with
a key yu ∈ Z. Keys are output together with a matrix Y .



The sensitive information that needs to be hidden from an
adversary (one who is trying to discover the identity of the
users from the value of their features) is the matching between
usernames xv and corresponding keys yu. We call this the
canonical matching. Thus, the goal of the adversary is to reveal
as many edges of the canonical matching as possible. The
engine must publish data in such a way that instances with
larger privacy parameter k(v) have a smaller probability of
being matched with the corresponding key by the adversary.

We say that feature vector xv ∈ X is compatible with vector
yu ∈ Y if xv(l) = yu(l) for every 1 ≤ l ≤ f such that
yu(l) 6= ∗. Hence yu can be obtained from (confused with) xv
after masking some attributes of xv . Thus either the feature
values agree between the instances or we can match a ‘*’ in
the second vector to 0, 1, or * in the first.

In the suppression model analyzed here the goal is to mask
as few attributes in X as possible to produce Y (to get as
high utility of the published data as possible), but in such a
way that each entry xv of X can be confused with at least
k(v) rows yu in Y . Thus we have the following measure of
the utility of the presented scheme.

Definition III.2. The utility of the suppression model is the
ratio of the number of unmasked features and the total number
of features, nf . The goal of the database algorithm producing
obfuscated data is to minimize the number of masked features
such that all privacy constraints are met.

Given a dataset X , we define a function γ(i, j, l) as follows,

γ(i, j, l) =

{
1 if Xil 6= Xjl,

0 otherwise.

For an undirected graph G with an adjacency matrix G ∈
{0, 1}n×n and a dataset X , we define the Hamming distance
h(G) as

h(G) =
∑
i

∑
j

Gij

∑
l

γ(i, j, l).

Here Gij is either zero or one.
Given a graph G, we compute an expression for the number

of stars to put in the dataset. The maximum number of stars
one can put is nf . Let us consider a node i in the graph G,
and a column l in X . Now we find the rows j of column l
which correspond to neighbors of the node i, i.e, Gij = 1. If
every such element Xjl is equal to Xil, then we do not have
to put a star in Yil; otherwise we need to put a star in the
position Yil. Mathematically this can be expressed as follows.

s(G) = nf −
∑
i

∑
l

∏
j

(1−Gij γ(i, j, l)).

The second term in this equation counts the positions in the
matrix Y where no stars are needed. If Xjl = Xil then
γ(i, j, l) = 0; if this is true for all neighbors j of node i,
then every term in the product is 1, and then the value of Yil
is set to Xil and not a star.

Choromanski, Jebara and Tang proposed the following
method [3] that finds a good-quality approximation of G. First

the algorithm minimizes h(G) over all graphs G satisfying the
privacy requirements. Then a variational upper bound [19] on
s(G) is iteratively minimized with the use of the weighted
version of the Hamming distance. The first phase of their
algorithm solved the b-Matching problem exactly.

It is clear from the definition that there are two goals for
solving the adaptive anonymity problem: group instances to
satisfy privacy constraints and hide as little data as possible.
Since optimal solution for this problem is NP-complete [3],
our approximate solution comes from the observation that if
we group similar instances together (w.r.t. their corresponding
features) then we need to hide fewer features. Our proposed
adaptive anonymity algorithm is shown in Algorithm 1.

Algorithm 1 Adaptive Anonymity (X ∈ Zn×f , k ∈ Zn, ε)
1: Let cε = log( ε

1+ε
)

2: Initialize W ∈ Rn×f to the all ones matrix
3: Initialize Y to X
4: while not converged do
5: Let G be a weighted graph, where:
6: Eij =

∑
l(Wil +Wjl)γ(i, j, l) . Compute Graph

7: C = b-Edge Cover (G,E,k− 1) . Grouping Step
8: for all i, l do . Update W
9: Wil ← exp(

∑
j Cijγ(i, j, l) cε)

10: for all i, l do
11: if Cij = 1 and Xjl 6= Xil for any j then
12: Yil = ∗
13: Ypublic =MY , where M is a random row permutation of Bn×n

The algorithm is a variational optimization algorithm which
iterates until some convergence criterion is met or a maximum
number of iterations is reached. First, the algorithm creates
a complete graph of n vertices corresponding to instances
and a weight multiplier matrix initialized to all ones. Within
an iteration, the algorithm assigns the weight of an edge
between two vertices based on some dissimilarity measure
between the two instances, multiplied by the weight multiplier.
Next, the algorithm performs a grouping step based on the
current weight assignment, and then the weight multipliers
are adjusted based on the grouping.

A critical part of Algorithm 1 is how the grouping step is
done. There are two requirements for the grouping step: i) each
instance v has to be in a group with k(v)− 1 other instances,
and ii) “similar” instances should be grouped together in order
to minimize number of masked data elements. In order to
achieve this goal, we use a b-Edge Cover formulation for the
grouping step.

Definition III.3. A b-Edge Cover in a graph is a subgraph
C such that every vertex v has at least b(v) edges incident
on it in the subgraph. If the edges are weighted, then a cover
that minimizes the sum of weights of its edges is a minimum
weight b-Edge Cover.

Given the definition of the b-Edge Cover, we group in-
stances together with the following three steps:

1) Create a complete graph G where the instances are the
vertices.

2) Calculate the edge weight between a pair of vertices us-
ing the dissimilarity measure between the corresponding



instances. The dissimilarity between two instances is the
number of the features in which the instances do not
agree.

3) Set b(v) = k(v) − 1 for each vertex, and solve a
b-Edge Cover problem with the input (G, b).

Since b-Edge Cover is a minimization problem, it will
group less dissimilar, i.e., more similar vertices together; each
vertex v is grouped with k(v) − 1 other vertices. We use
a 2-approximation algorithm called the MCE algorithm for
the b-Edge Cover problem [16], [20]. we have compared the
anonymizations obtained with the 3/2-approx and 2-approx
b-Edge Cover algorithms, LSE and MCE respectively, and
found less than 1% difference in utility. The details of the
MCE algorithm are explained the next section.

Now we provide more details of our b-Edge Cover based
formulation of adaptive anonymity, in Algorithm 1. The al-
gorithm starts by initializing the weight multiplier matrix
W ∈ Rn×f , to all 1’s. The matrix W associates a weight
Wij ≥ 1 to each entry of input dataset Xij , which the
algorithm updates at each iteration. The algorithm iterates
until the utility measure converges or a maximum number
of iterations is reached. At each iteration, we compute edge
weights in the graph as the weighted sum of the product of the
weight multipliers and the dissimilarity between two instances.
Then we group instances using a b-Edge Cover C in the graph
and the k(v) values. Finally, we update the weight multipliers
based on the following rule: We proportionally increase the
multiplier value associated with the feature l of the instance
i, Wil, based on how many times the feature Xil differs with
Xjl, the corresponding feature of other instances j grouped
together with i. We increase the weight multiplier of a feature
when it has the potential to create more maskings because
we compute an approximate minimum weight b-Edge Cover.
When the algorithm converges, we mask a feature if it does not
agree with other values of the same feature in the same group.
Then we publish a row-permuted copy of the masked data. The
time complexity of Algorithm 1 per iteration is as follows: the
Compute Graph step has complexity of O(n2f); the Update
W step has complexity of O(nkf), where k is max(k(v));
and the grouping Step has time complexity O(n2logn) if
an exact b-Edge Cover algorithm is used. If a 2-approximate
b-Edge Cover algorithm is used, the time complexity of the
last step becomes O(βm), where β = maxv∈V b(v).

We discuss theoretical guarantees on the quality of the
computed solution below. We will need the following lemma.

Lemma III.1. For any graph G, the Hamming distance h(G)
and the number of stars s(G) satisfy s(G) ≤ h(G) ≤ ks(G),
where k = maxv∈V k(v).

Proof. The first inequality is immediate since we need at most
one star for each difference that contributes to the Hamming
distance. We consider the contributions that an instance i and

a feature l make to h(G) and s(G).

h(G) =
∑
i

∑
j

Gij

∑
l

γ(i, j, l) =
∑
i

∑
l

Gij

∑
j

γ(i, j, l)

≡
∑
i

∑
l

hil(G).

s(G) = nf −
∑
i

∑
l

∏
j

(1−Gijγ(i, j, l)

=
∑
i

∑
l

(1−
∏
j

(1−Gijγ(i, j, l)))

≡
∑
i

∑
l

sil(G).

Now we consider two cases. Case 1: If for every instance j
such that Gij = 1, we have γ(i, j, l) = 0, then hil(G) = 0
and sil(G) = 0, and hence the inequality holds.
Case 2: There is some j such that Gij = 1 and γ(i, j, l) = 1.
Then, considering the worst-case

hil(G) =
∑
j

Gijγ(i, j, l) ≤ k.

Also sil(G) = 1 since we need a star here. Hence

hil(G) ≤ k ≤ k · sil(G).

Summing over all i and l, we obtain the lemma.

Theorem III.1. The first iteration of the while-loop in Algo-
rithm 1 finds a b-Edge Cover C such that

s(C) ≤ αk min
G∈Bn×n

s(G),

where the minimum in the expression is over all adjacency
matrices satisfying privacy requirements, and α is the approx-
imation ratio of the b-Edge Cover algorithm.

Proof. Initially the variational matrix W has all elements set
to one, and hence in the first iteration the objective of the
b-Edge Cover is proportional to the Hamming distance of G.
Suppose Ĝ = argmin h(G); then h(C) ≤ α h(Ĝ) since we
have an approximation algorithm for b-Edge Cover. For any
graph G, s(G) ≤ h(G) from the Lemma. Combining, we have
s(C) ≤ h(C) ≤ α h(Ĝ). Now suppose G∗ = argmin s(G).
Since Ĝ minimizes h(G), we have h(Ĝ) ≤ h(G∗). From the
Lemma III.1, we have h(G) ≤ k s(G). Combining all these,
s(C) ≤ h(C) ≤ α h(Ĝ) ≤ α h(G∗) ≤ αk s(G∗).

We illustrate the Grouping step by a b-Edge Cover by the
example shown in Figure 3, with six instances and six binary
features. Each user expects 2-anonymity, i.e., each user wants
to be confused with at least one other user. The anonymity
algorithm computes a b-Edge Cover with b = 1 for each
node. Given the input data, the anonymity algorithm first
constructs a dissimilarity matrix S. Each row of the matrix
defines the dissimilarity between that instance and all other
instances in the input. For example, the second entry of the
first row denotes the dissimilarity between user U1 and U2

which is 2, because the instances disagree in features f2 and
f4. This dissimilarity matrix acts as the input adjacency matrix



Instances f1 f2 f3 f4 f5 f6
U1 1 0 1 0 1 0
U2 1 1 1 1 1 0
U3 0 1 0 1 0 1
U4 0 0 0 0 0 1
U5 1 1 0 0 0 0
U6 1 1 0 0 0 1

S U1 U2 U3 U4 U5 U6

U1 - 2 6 4 3 4
U2 - 4 6 3 4
U3 - 2 4 2
U4 - 3 2
U5 - 1
U6 -

Instances f1 f2 f3 f4 f5 f6
U1 1 * 1 * 1 0
U2 1 * 1 * 1 0
U3 0 * 0 * 0 1
U4 0 * 0 * 0 1
U5 1 1 0 0 0 *
U6 1 1 0 0 0 *

Fig. 3. An example for adaptive anonymity. From top to bottom: original
input, dissimilarity matrix (Hamming distances) and anonymized output.

to the b-Edge Cover algorithm where each entry refers to
the weight of an edge. The bold-font entries are the edges
included in the b-Edge Cover. We see that grouped pairs
are: (U1, U2), (U3, U4) and (U5, U6). Next the anonymity
algorithm uses this grouped output to mask entries in the
following manner: for each pair, it finds the dissimilar features
and mask those features with a ∗. For example, U5 and U6 are
grouped and the instances do not agree on feature f6, so the
algorithm puts ∗ in the corresponding f6 entries. As we can
see, there are 6 × 6 = 36 entries and after one iteration the
algorithm masks 10 entries. Thus the utility at this iteration is
1− 10/36 = 0.722, i.e., 72%.

An important feature of our framework, specifically in the
shared memory context, is that the memory requirement of
Algorithm 1 is linear in the number of instances, whereas a
state-of-the-art algorithm [3] requires quadratic memory. This
significant reduction comes from an interesting property of the
MCE algorithm for solving the b-Edge Cover problem.

IV. b-Edge Cover: THE MCE ALGORITHM

In this section, we discuss the details of the Matching
Complement Edge cover (MCE) algorithm.

Definition IV.1. A b-Matching in a graph is a subgraph M
such that every vertex v has at most b(v) edges incident on
it in the subgraph. If the edges are weighted, then a matching
that maximizes the sum of weights of its edges is a maximum
weight b-Matching.

An optimal algorithm for the minimum weight
b-Edge Cover problem can be obtained by computing a

maximum weight b′-Matching, by the following three step
procedure [14]:

1) For each vertex v, compute b′(v) = deg(v)−b(v), where
deg(v) is the degree of v, the number of edges incident
on v.

2) Compute Mopt, a maximum weight b′-Matching.
3) A min weight b-Edge Cover is the complement of the

matching: Copt = E \Mopt.
In this construction, steps 1 and 3 ensure that the computed

b-Edge Cover is a valid cover, and the optimality of the
cover depends on step 2. If we compute an approximate
b′-Matching, keeping steps 1 and 3 fixed, then the solution to
the b-Edge Cover may not necessarily be an approximate so-
lution for b-Edge Cover. However, the authors in [16] showed
that if the b′-Matching is computed using the b-SUITOR
algorithm then the corresponding b-Edge Cover will satisfy
2-approximation bounds.
Algorithm 2 MCE(G, b)

1: EC = ∅
2: for v ∈ V in parallel do
3: b′(v) = max{0,deg(v)− b(v)}
4: M=Parallel b-SUITOR(G, b′)
5: for v ∈ V in parallel do
6: EC = EC ∪ {N(v) \M(v)}
7: return b-Edge Cover EC

Since b-SUITOR is an essential part of the MCE algorithm,
we briefly describe a variant of it in Algorithm 3. For more
details, we refer the reader to the papers [18], [17]. The
b-SUITOR algorithm is derived from the SUITOR algorithm
for maximum weighted matching [21]. The algorithm is based
on vertices making proposals to each other, just as in the
Stable Matching problem. Vertices can propose in any order,
but each vertex must propose to its current heaviest eligible
neighbor. A vertex v is an eligible neighbor of a vertex u
if v does not already have a proposal of higher weight from
another neighbor of v. A vertex u can also annul the proposal
made by a vertex w to a mutual neighbor v, if the weight
of the edge (u, v) is higher than the weight of (v, w). In this
case, u proposes to v, and annuls the proposal (v, w); now w
must propose to its next heaviest eligible neighbor. An edge
is matched when two vertices propose to each other. Since
we can annul proposals, any vertex can make proposals thus
increasing the parallelism.

The parallel b-SUITOR algorithm is shown in Algorithm 3.
The algorithm maintains a queue Q of vertices whose b(v)
values are not satisfied yet, for which it tries to find partners
during the current iteration of the while loop; and also a queue
of vertices Q′ whose proposals are annulled in this iteration,
and will be processed again in the next iteration. (This is
what “delayed” means; annulled vertices are not processed
in the same iteration. “Partial” means that the adjacency lists
are partially sorted to find a subset of heaviest neighbors.)
The algorithm then seeks a partner for each vertex u in Q in
parallel. It tries to find b(u) proposals for u to make while the
adjacency list N(u) has not been exhaustively searched thus
far in the course of the algorithm.



Algorithm 3 Parallel b-SUITOR(G, b)

1: Q = V ; Q′ = ∅;
2: S(v) = ∅, min-priority heap ∀v
3: while Q 6= ∅ do
4: for vertices u ∈ Q in parallel do
5: i = 1;
6: while i <= b(u) and N(u) 6= exhausted do
7: Let p ∈ N(u) be an eligible partner of u;
8: if p 6= NULL then
9: Lock S(p);

10: if p is still eligible then
11: i = i+ 1;
12: Add u to S(p);
13: if u annuls the proposal of v then
14: Add v to Q′; Update db(v);
15: Remove v from S(p);
16: Unlock S(p);
17: else
18: N(u) = exhausted;
19: Update Q using Q′; Update b using db;
20: return S

Consider the situation when a vertex u has i − 1 < b(u)
outstanding proposals. The vertex u can propose to a vertex p
in N(u) if it is a heaviest eligible neighbor in the set N(u)
and if the weight of the edge (u, p) is greater than the lowest
offer that p has. In this case, p would accept the proposal of
u rather than its current lowest offer.

If the algorithm finds a partner p for u, then the thread
processing the vertex u attempts to acquire the lock for the
priority queue S(p) so that other vertices do not concurrently
become Suitors of p. This attempt might take some time to
succeed since another thread might have the lock for S(p).
Once the thread processing u succeeds in acquiring the lock,
then it needs to check again if p continues to be an eligible
partner, since by this time another thread might have found
another Suitor for p, and its lowest offer might have changed.
If p is still an eligible partner for u, then we increment the
count of the number of proposals made by u, and make u a
Suitor of p. If in this process, we dislodge the last Suitor x of
p, then we add x to the queue of vertices Q′ to be processed in
the next iteration. Finally the thread unlocks the queue S(p).

We fail to find an eligible partner p for a vertex u when we
have exhaustively searched all neighbors of u in N(u), and
none offers a weight greater than the lowest offer u has. In
this case u will have fewer than b(u) matched neighbors. After
we have considered every vertex u ∈ Q to be processed, we
can update data structures for the next iteration. We update Q
to be the set of vertices in Q′; and the vector b to reflect the
number of additional partners we need to find for each vertex
u using db(u), the number of times u’s proposal was annulled.

The time complexity of the b-SUITOR algorithm can be
described in the depth-work model [16]. Its parallel depth
(number of steps in the parallel algorithm) is log ∆ log b′(V ),
and its work (total number of operations performed by all
processors) is O(β′b′(V )) = O(β′m), which is linear in
the number of edges. Here b′(V ) =

∑
v∈V b

′(v), β′ =

maxv∈V b
′(v), and ∆ is the maximum degree of a vertex.

V. PARALLEL IMPLEMENTATION OF adaptive anonymity

In this Section we discuss shared memory and distributed
memory implementations of the adaptive anonymity algo-
rithm. Referring to Algorithm 1, the compute graph (line 6)
and the Update W (line 9) steps are pleasingly parallel, and
independent in terms of the input instances. These two steps
usually take less than 15% of the total execution time, and
therefore the main challenge for the scalability of the algorithm
stems from the scalability of the Grouping step, i.e., the
MCE algorithm. In turn, the scalability of the MCE algorithm
depends on the performance of the b-SUITOR algorithm. The
shared memory as well as distributed memory performance
of MCE and b-SUITOR algorithms have been studied earlier
in [18], [17], [16]. Hence, the basic shared memory and dis-
tributed memory implementations of the adaptive anonymity
algorithm are obtained from these papers. However, we discuss
optimizations for shared memory and distributed memory
implementations for anonymity computations.

A. Input Preprocessing

We process the input datasets in accordance with standard
practice [3]. As an example, we briefly describe the processing
of features for the CMS dataset: First, we replace all the
uniquely identifiable features, e.g., physician’s name, and
medical license number, with unique random strings and we
do not use these features further in the algorithm. Second, we
group the range of values of a continuous feature, e.g., amount
of payment, into deciles, i.e., in groups of 0−10%, 10−20%
and so on; and then replace each feature value with the
median value of the group it belongs to. Finally, we consider
all features, i.e., originally categorical features (e.g., medical
specialty, method of payment, medical device type), and
continuous-valued features that are processed to be categorical
(e.g., amount of payment) together, and binarize them using
one-hot encoding, a widely used encoding in machine learning.
For example, the categorical feature ”medical specialty”, has
9 categories such as Gynecology, Cardiology, etc. The one-hot
encoding of the ”medical specialty” feature is a bitstring of 9
bits where each bit represents a particular medical specialty.
After binarization, each instance becomes a long concatenated
bitstring of all the features as shown in Figure 3. There are
a few advantages to the binarized form: i) we compress the
processed binarized input by using bitfields to store binary
values and store them as a binary file as opposed to text,
which saves memory; ii) the bitfield representation speeds up
the computation of the dissimilarity matrix by using logical
operations instead of comparisons; and iii) after we anonymize
the data, it is trivial to map it back from the binarized to
the textual/numeric form since there is one-to-one mapping of
categories of a feature to one-hot-encoding.

B. Linear Memory Formulation

An important experimental contribution in the context of
shared memory machines is the linear memory formulation
of the privacy problem. Referring to Algorithm 1, from the



instance-feature matrix X , we can generate the full dissimilar-
ity matrix which requires O(n2) space. On the other hand, we
can save space by generating each element in the dissimilarity
matrix when it is needed “on the fly” with O(f) computation
(recall f is the number of features). Since the dissimilarity
represents the input edge weights to MCE algorithm, and
MCE has time complexity linear in the number of edges,
the total computational complexity of the adaptive anonymity
algorithm becomes O(m∆f) = O(n2∆f) per iteration. That
is, the full generation of the dissimilarity matrix requires
O(n2) memory but no additional re-computation of weights.
On the other hand, “on the fly” does not require any explicit
memory allocation but the computation of weights becomes
prohibitively expensive. So we need a strategy which is in
between these extremes, i.e., one that generates a smaller
submatrix of E at any time, and computes the edge cover
using these submatrices. The impact of the partial generation
of the dissimilarity matrix is two-fold: it allows the user to
specify the part size to fit in available memory, and to solve
larger problems which would be infeasible otherwise.

The question of partial generation of the dissimilarity matrix
boils down to whether the underlying Grouping step can work
with a partial set of edges and their weights or not. We use the
MCE algorithm for this step, which in turn uses the b-SUITOR
algorithm. By its design, the ”Delayed Partial” version of
b-SUITOR algorithm can work with a subgraph (Algorithm
3) as we have pointed out in Section IV. (Once the edges in
the adjacency set of a vertex are exhausted, if the value of
b′(v) is not satisfied yet, more edges will be generated in a
subsequent step.) We generate a constant number of elements
for each row of the matrix E, and thus the b-SUITOR algorithm
reduces the space complexity of adaptive anonymity problem
from O(n2) to O(n).

C. Distributed Memory Implementation
There are three major data structures for the

adaptive anonymity algorithm: input dataset X ∈ Zn×f ,
weight matrix, W ∈ Zn×f and the dissimilarity matrix
E ∈ Zn×n. In our first implementation, we partitioned all
three data structures across the compute nodes, partitioned by
instances. Assuming there are p compute nodes, each node
i contains: Xi ∈ Zn/p×f , Wi ∈ Zn/p×f and Ei ∈ Zn/p×n.
However, this strategy requires significant communication
during the Compute graph and the update W steps in
Algorithm 1. So, we partitioned only E among the compute
nodes, since it has O(n2) memory complexity, but not X
and W , because both of them have O(n) space complexity.
We partition E by rows, and τ(Ei) represents the rows of E
owned by compute node i. Thus we avoid communication
altogether during the Compute Graph step. The Grouping
step, which is handled by the MCE algorithm and in turn
by the b-SUITOR algorithm, uses graph weights derived
from the distributed dissimilarity matrix E. We follow the
strategies described earlier in [17] to implement b-SUITOR on
distributed memory multiprocessors. Finally, in the Update
W step, each compute node i updates the rows r of W ,
where r ∈ τ(Ei), using the output Ci from the Grouping
step. Each node then broadcasts its updates to all other nodes

Algorithm 4 Update W
1: for all r ∈ τ(Ei) in parallel do
2: for all l do
3: Wrl ← exp(

∑
j Crjγ(i, j, l)cε)

4: Add Wr to send buffer
5: if send buffer is full then
6: MPI IBcast(send buffer)

7: if Received new update then
8: MPI IRecv(recv buffer)
9: Update W with recv buffer

so that in the next iteration, the Compute Graph step has
the full matrix W consistent across all nodes. To avoid the
communication bottleneck of each node broadcasting all of its
local updates, we broadcast the updates in fixed size batches
asynchronously, and overlap them with the computation in
order to hide latency. The pseudo-code for the Update W step
in shown in Algorithm 4.

VI. EXPERIMENTS AND RESULTS

We conducted our experiments on Cori, a Cray XC40 su-
percomputer at NERSC, Berkeley. Each node on Cori consists
of two 16-core 2.3 GHz Intel E5-2698 (Haswell) processors
with 128 GB RAM. Each core in a node has its own 64 KB
L1 cache and 256 KB L2 cache, as well as a 40 MB shared
L3 cache per socket. Cori nodes are also interconnected with
the Cray Aries network using the Dragonfly topology.

We used the Intel MPI implementation for inter-node
communication and OpenMP for intra-node multi-threading,
and compiled the code with the built-in compiler wrapper
optimized for the system, CC-2.5.12 with the flags -O3
-qopenmp. Our hybrid implementation used the following
MPI-openMP settings: one OpenMP process for each of the
32 cores on a node, and one MPI process per node. Hyper-
threading did not improve the performance of our code.

We consider eight datasets for adaptive anonymity experi-
ments in Table I. We use four small datasets in our experiments
to compare an adaptive anonymity algorithm by Choromanski
et al [3], which groups individuals using belief propagation
and exact b-matching algorithms, with our approximate b-edge
cover approach. For each of these problems, these authors
picked a specific privacy requirement k that varies with each
data item, and we use the same values to be consistent with
their work. The values for k ranged from 2 to 10. The
earlier belief propagation algorithm is not capable of solving
the larger problems in our test set. We consider three larger
problems from a Machine Learning Repository at University of
California, Irvine [22], and one from the Centers for Medicare
and Medicaid Services [2], to demonstrate that the approxi-
mate b-edge cover approach can solve them. We generated
b(v) values for each problem as the minimum of the degree
of a vertex and a uniform random integer between one and the
square root of the number of vertices. For each experiment we
repeat the computations three times and report the average run-
time. The utility for each problem is invariant since the same
b-edge cover is computed. Our algorithm terminates if three
consecutive iterations do not show any improvement in the



TABLE I
PROBLEM SETS FOR adaptive anonymity.

Problem Instances Features
Caltech36 768 101
Reed98 962 139
Haverford76 1,446 145
Simmons81 1,518 140
UCI Adult 32,561 101
USCensus1990 158,285 68
Poker hands 500,000 95
CMS 745,280 512

utility measure. For smaller problems the algorithm terminates
within four iterations and for the larger problems it takes three
to nine iterations. However, most of the feature masking occurs
in the first iteration. For example, the CMS dataset achieves
a utility of 79.3% in 6 iterations, whereas the utility after the
first iteration is 70.9%.

TABLE II
COMPARING RUN TIMES OF THE Belief Propagation (BP) AND MCE

ALGORITHMS ON A SINGLE THREAD OF AN INTEL HASWELL.

Problem BP MCE Rel. Perf. Utility
Diff (%)

Caltech36 13m 15s 10s 80 -0.85
Reed98 20m 47s 22s 57 -0.32
Haverford76 1h 07m 55s 73 0.23
Simmons81 59m 29s 45s 79 -0.81

A. Shared Memory Results

In Table II, we compare the run-times of the belief prop-
agation algorithm (BP) [3], with the MCE based algorithm.
BP algorithms are well-known in Machine Learning, and have
been used to solve a variety of problems including graph
matching [23]. We observe that the MCE algorithm is 55 to 80
times faster than the BP algorithm. The last column of Table
II shows that b-Edge Cover also achieves this improvement
without compromising the utility, since the differences are
less than 1%. We proceed to describe results from our parallel
algorithm that can solve large problems, which are not feasible
for the BP algorithm.

Fig. 4. Strong scaling of adaptive anonymity problems on 32 cores of an
Intel Haswell processor.

Next we show the impact of the linear memory formulation
of the adaptive anonymity problem in the shared memory
context using 32 cores on one node of Cori. We consider
four larger problems to illustrate the effect of trading com-
putation for space. The problems Poker_hands and CMS
have roughly 500K and 750K instances. Assuming each entry
of E is a 4 byte integer, storing the full matrix E would
require approximately 1TB and 2TB of memory, respectively,
but our machine only has 128GB of memory. Hence we cannot
solve these problems with an algorithm that needs the entire
dissimilarity matrix for computations. For these problems, we
randomly generate k values between kl = 5 and kh = 100
for privacy parameters. We partially generate the dissimilarity
matrix using the following strategy: for each row, we generate
t ∗ kh entries, with t ∈ {8, 32, 128}, yielding a total memory
requirement of t ∗ khn for n rows in the dissimilarity matrix
E. We summarize the results in Table III. The fastest result
for each problem is indicated in bold font. We observe that
“on the fly” computation, i.e, no storage for the matrix, is
significantly slower than using optimal part sizes. We mask
less than 25% of the data elements for these problems. Our
linear memory formulation also shows the adaptability of our
algorithm in terms of memory constraints. A user can easily
choose a size factor t dependent on the memory available, and
provide it as an input to the algorithm.

Next we show the strong scaling performance of the
adaptive anonymity algorithm that uses the MCE algorithm on
all eight problems in Figure 4. For the larger four problems,
we use the best part sizes from Table III. We observe that
the algorithm achieves a speedup of 27× on 32 threads for
the larger problems. The smaller problems do not scale well
beyond 16 threads because the amount of work available per
thread is small, and cannot offset the NUMA costs.

B. Distributed Memory Results

We report the strong and weak scaling performance of
our algorithm on the three largest problems. The distributed
memory implementation does not employ the linear memory
formulation, since it is not memory-constrained as the shared
memory implementation is. The implementation uses a hybrid
strategy, i.e., each compute node is assigned one MPI task for
inter-node communication and each node uses 32 OpenMP
threads for parallel computation. In Figure 5, we report the
strong scaling performance of our algorithm. An ideal speed-
up curve is plotted so that the reader could compare its slope
with the observed slopes of the three problems. We observe
that the algorithm scales well up to 8, 192 cores, and that
initially some problems exhibit super-linear speed-up. This is
due to the smaller memory available on fewer processors. For
example, Poker_hands roughly requires 1 TB of memory
for the data and data structures, but 8 compute nodes (256
cores) have only 1 TB memory in total. Since the operating
system requires some memory as well, the problem does not
fit in the memory. Hence it is likely that many memory
swaps occur, slowing the code for fewer processors. The
UCI_Adult problem strongly scales to 1, 024 cores but not
beyond it, due to its small size.



TABLE III
EFFECT OF WORKING SET MEMORY ON RUNTIMES USING THE MCE ALGORITHM ON 32 CORES OF AN INTEL HASWELL PROCESSOR.

Problems on the fly 8 ∗ khn 32 ∗ khn 128 ∗ khn Utility
UCI Adult 1m 48s 18s 15s 20s 90.4%

USCensus1990 3h 47m 13m 19m 22m 87.1%
Poker hands >24h 51m 46m 1h 02m 81.3%

CMS >24h 6h 11m 6h 48m 6h 16m 79.3%

Fig. 5. Strong scaling of adaptive anonymity algorithm on Cori using our hybrid MPI-OpenMP code.

Fig. 6. Weak scaling of adaptive anonymity algorithm on Cori.

The adaptive anonymity problem has quadratic memory
complexity in the number of instances,and hence for each
problem we randomly pick 12.5%, 25%, 50% and 100% of
all instances and run on 64, 256, 1024 and 4096 cores, re-
spectively. We repeat the process three times for each problem

and the report the average run-times in Figure 6. Our algorithm
exhibits reasonably good weak scaling as the curves are nearly
horizontal, implying that it could potentially scale beyond 8K
cores with larger problem sizes.

VII. CONCLUSIONS

We have presented a scalable algorithm for the anonymiza-
tion of large datasets that guarantees privacy requirements
while achieving high utility of the published obfuscated
datasets. These transformed datasets can be used for ma-
chine learning purposes which do not have to be specified
in advance. Our technique handles datasets infeasible for
earlier methods by significantly reducing the runtime of the
anonymization procedure as well as its memory requirements,
and it works well in the heterogeneous setting where different
users require different levels of privacy. The algorithm scales
up to 8K cores on a distributed memory machine, and it can
solve problems with 700K instances and a hundred features
in under five minutes instead of days.
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