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A B S T R A C T

Many species use stored energy to hibernate through periods of resource limitation. Hibernation, a physiological
state characterized by depressed metabolism and body temperature, is critical to winter survival and re-
production, and therefore has been extensively quantified and modeled. Hibernation consists of alternating
phases of extended periods of torpor (low body temperature, low metabolic rate), and energetically costly
periodic arousals to normal body temperature. Arousals consist of multiple phases: warming, euthermia, and
cooling. Warming and euthermic costs are regularly included in energetic models, but although cooling to torpid
body temperature is an important phase of the torpor-arousal cycle, it is often overlooked in energetic models.
When included, cooling cost is assumed to be 67% of warming cost, an assumption originally derived from a
single study that measured cooling cost in ground squirrels. Since this study, the same proportional value has
been assumed across a variety of hibernating species. However, no additional values have been derived. We
derived a model of cooling cost from first principles and validated the model with empirical energetic mea-
surements. We compared the assumed 67% proportional cooling cost with our model-predicted cooling cost for
53 hibernating mammals. Our results indicate that using 67% of warming cost only adequately represents
cooling cost in ground squirrel-sized mammals. In smaller species, this value overestimates cooling cost and in
larger species, the value underestimates cooling cost. Our model allows for the generalization of energetic costs
for multiple species using species-specific physiological and morphometric parameters, and for predictions over
variable environmental conditions.

1. Introduction

Heterothermy is a thermoregulatory strategy employed by many
mammals whereby body temperature (Tb) and metabolic rate are re-
duced in response to climatic conditions or reduced nutritional avail-
ability (Geiser, 1988; Lyman, 2013; Speakman and Thomas, 2003).
Hibernation is an extreme form of extended heterothermy, which
consists of cycles of torpor, or periods of low metabolic rate and Tb, and
arousals, or periods of euthermic Tb (Geiser, 1988; Thomas et al.,
1990). Each arousal consists of three phases: (1) warming from torpid
Tb to euthermic Tb, (2) maintaining euthermic Tb, (3) and cooling from
euthermic Tb back to torpid Tb. The energetics of hibernation are cri-
tical to winter survival, and hence this component of life history has
been extensively quantified and modeled across many species (Hayman
et al., 2016; Humphries et al., 2002; Thomas et al., 1990).

Although only a small fraction of hibernation is spent in euthermia,

it accounts for up to 75–90% of winter energy budgets (Thomas et al.,
1990). Because of the high energetic cost of arousal, most research has
focused on quantifying these costs and how arousal frequency relates to
energy budgets and survival (Geiser, 1988; Thomas et al., 1990; Wang,
1978). The energetic cost of warming has been calculated by a variety
of models (Table 1), and all of these models focus on the temperature
difference between euthermic and torpid Tb. This difference in Tb is
scaled by the specific heat of animal tissue, which describes the energy
required to warm 1 g of tissue by 1 °C (Wang, 1978). Beyond the cost to
warming animal tissue, it is also important to consider the cost of
maintaining metabolism during the time it takes to warm (typically
against an environmental gradient of cool ambient temperature [Ta]
relative to Tb). McKechnie and Wolf (2004) added this additional cost
with the calculation of metabolism over the period of warming. Cryan
and Wolf (2003) then incorporated the effect of thermal conductance
on warming, accounting for heat lost to the environment. Both of these
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models also incorporated the effects of warming rate, which is found to
scale with body mass in both mammals and birds (Geiser and
Baudinette, 1990; McKechnie and Wolf, 2004).

Cooling is also an important phase of the torpor-arousal cycle;
however, this phase has been overlooked in modeling hibernation en-
ergetics (Henshaw, 1968; Kleiber, 1972). Most models of hibernation
energetics have either used an assumed cost of cooling calculated from
the cost of warming or excluded the cooling phase entirely (Table 1).
Cooling is typically considered a passive process (but see discussions of
metabolic suppression: Drew et al., 2007; Geiser, 2004; Heldmaier and
Ruf, 1992; Snapp and Heller, 1981; Staples, 2014) and therefore re-
quires less energy than warming (Geiser, 2004, 1988). However, the
cooling phase still requires energy for metabolism over the period of
time it takes to cool (Thomas et al., 1990; Wang, 1978), which can vary
among taxa.

The energetic cost of cooling was first measured by Wang (1978) in
Richardson's ground squirrels (Urocitellus richardsonii, formerly Sper-
mophilus richardsonii) across winter hibernation at a range of Ta.
Thomas et al. (1990) used Wang's measurements to calculate cooling
cost as a proportion of warming cost, regardless of temperature, and
found cooling costs were equivalent to 65–67% of the cost of warming.

As the Thomas et al. (1990) energetic model has been frequently ap-
plied and revised, many subsequent hibernation energetic models have
assumed the same proportional cost of cooling (Table 1). It is unclear
whether this proportion is broadly representative across taxa.

We suspect that assuming proportional cooling costs could be pro-
blematic in other taxa for three reasons: differences in body size, dif-
ferences in thermal conductance, and the influence of Ta on cooling
rate. Estimates of cooling cost by the 67% proportion may overestimate
cost in small-bodied species or underestimate cost for larger species due
to the relationship between body mass and surface area (Berman, 2003;
Gouma et al., 2012; Meeh, 1879). The higher surface area to volume
ratio in smaller species lead to a greater rate of heat loss, and thus, for
species smaller than Richardson's ground squirrels (the basis for the
proportional cost estimate), there is a potential for a lower cooling cost
than that predicted by 67% of warming. Additionally, thermal con-
ductance has been observed to scale with body mass (Aschoff, 1981;
Kleiber, 1972), and thus large-bodied species not only have greater
body mass to cool, but are more resistant to heat loss. Thermal con-
ductance can also vary within similar-sized species that reside in vari-
able environments (Aschoff, 1981; Anon, 1987). Thus, it is possible that
cooling rate may be more affected by Ta than warming rate due

Table 1
Summary of previous studies that calculated energy expenditure during torpor or arousals, including the various methods by which warming and cooling costs
have been considered. Warming models consider the effects of body mass (Mb), specific heat capacity of tissues (S), euthermic (Teu) and torpid (Tb) body
temperatures, and resting (RMR) and torpid (TMR) metabolic rates.

Species Warming model Cooling use Reference

Various bats

M T T S( )b eu tor

None (Prothero and Jürgens, 1986)

Myotis lucifugus

T T S( )eu tor

67.2% of warming (Thomas et al., 1990)

Myotis lucifugus

T T S( )eu tor

None (Humphries et al., 2002)

Lasiurus cinereus

M T T S C T T( ) ( )b eu tor t

t
eu a

1

2+

None (Cryan and Wolf, 2003)

Lasiurus cinereus

M T T S D TMR RMR TMR[ ( ) ] *
2b eu tor warm+ +

None (Willis et al., 2006)

Myotis lucifugus

T T S( )eu tor

65% of warming (Frederico, 2007)

Myotis lucifugus

T T S( )eu tor

67% of warming (Boyles and Brack, 2009)

Myotis lucifugus

T T S( )eu tor

67% of warming (Boyles and McKechnie, 2010)

Various bats

T T S( )eu tor

67% of warming (Boyles and Willis, 2010)

Myotis lucifugus

T T S( )eu tor

67% of warming (Jonasson and Willis, 2012)**

Myotis lucifugus

T T S( )eu tor

67% of warming (Ehlman et al., 2013)

Myotis lucifugus None None (Burles et al., 2014)
Lasionycteris

noctivagans
M T T S C T T( ) ( )b eu tor t

t
eu a

1

2+

67.2% of warming (McGuire et al., 2014)

Various bats

T T S( )eu tor

None (Hayman et al., 2016)

Myotis lucifugus

M T T S D TMR RMR TMR[ ( ) ] *
2b eu tor warm+ +

67.2% of warming (Wilcox and Willis, 2016)

Myotis lucifugus

T T S( )eu tor

67.2% of warming (Czenze et al., 2017)

*Dwarm is defined as the time required to warming tissues, a function of the rate of warming and gradient between euthermic and torpid body temperatures.
**Jonasson and Willis (2012) also used models published by Thomas et al. (1990) and Humphries et al. (2002) listed in the table.
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differences in physical and physiological processes in each phase (Nicol
and Andersen, 2007), and therefore cooling cost may have higher
variation with Ta compared to warming cost.

Many applications of the 67% cooling cost assumption have focused
on bats (Table 1), which may have very different physiologies and
cooling properties compared to ground squirrels (Bakken, 1976a;
Strunk, 1971). Appropriately modeling hibernation energetics is im-
portant for understanding the impacts of white-nose syndrome (WNS)
(Hayman et al., 2016), a disease of hibernating bats caused by an in-
vasive fungal pathogen (Blehert et al., 2009; Lorch et al., 2013;
Warnecke et al., 2012). WNS causes an increase in arousal frequency
(Reeder et al., 2012; Warnecke et al., 2012), leading to premature de-
pletion of fat stores and death (Hayman et al., 2016). Many studies have
focused on the energetics associated with hibernation and WNS
(Hayman et al., 2016; Mayberry et al., 2018; McGuire et al., 2017;
Warnecke et al., 2013; Willis, 2015; Willis et al., 2011), and therefore
energetic models represent an important tool for understanding the
costs and consequences of the disease. This approach is especially
timely as evidence suggests species differ in their susceptibility and
response to WNS, due in part to interspecific variation in morphology
and physiology, and microclimate selection during hibernation
(Langwig et al., 2016; Langwig et al., 2012; Willis, 2015).

We investigated the energetic cost of cooling to determine if pre-
vious estimates are applicable across taxa. We developed a mathema-
tical model to calculate the cost of cooling given the change in meta-
bolic rate between euthermia and torpor and the rate at which an
animal cools. Cooling rate was calculated using Newton's law of cooling
(Bakken, 1976a; Newton, 1701; Prothero and Jürgens, 1986), which
considers body mass, surface area, and thermal conductance in addition
to the difference between euthermic Tb and Ta. We also determined if
mass-specific cooling cost could be predicted by cooling rate. We then
applied our model to a variety of species to test whether modeled
cooling cost matched the oft cited 67% of warming cost and determined
if any variation in the relationship is better described by differences in
body size. Finally, given the scaling relationship found between body
mass and warming rate, we determined if cooling rate could be pre-
dicted by body mass.

2. Materials and methods

2.1. Energetic costs of cooling

We modeled the energetic cost of cooling (Ecool) as a function of the
difference between euthermic and torpid Tb, the decrease in metabolic
rate over that temperature range, and the cooling rate. We assumed that
cooling occurred passively; that is, the reduction in metabolic rate is
due to an effect of temperature, rather than physiological inhibition
(but see Geiser, 2016, 2004).

We calculated the total cost of cooling as the energy required for
metabolism during steady-state torpor, plus the additional costs to

maintain metabolism above torpid Tb as the body cools from euthermic
Tb (Prothero and Jürgens, 1986; Strunk, 1971). We calculated this
change using Q10, or the change in metabolic rate over a 10 °C change
in temperature, with a scaling equation with body mass (Mb; g)(Geiser,
1988):

Q M3.82 0.507log b10 10= (1)

The cost of cooling was therefore calculated as the sum of this re-
duction in euthermic metabolic rate in response to the difference be-
tween torpid and euthermic Tb, and the metabolic rate of steady-state
torpor:

E D TMR RMR Qcool cool min
T T

10 10
tor eu

= +
(2)

where TMRmin is the mass-specific minimum torpid metabolic rate (ml
O2 g-1 h-1), RMR is the mass-specific resting metabolic rate at Ta (ml O2
g-1 h-1), Ttor and Teu are torpid and euthermic Tb (°C), respectively, and
Dcool is the duration of the cooling phase (h). We estimated RMR by
increasing allometrically predicted BMR (Schmidt-Nielsen, 1984;
Speakman and Thomas, 2003) in response to Ta and scaled by eu-
thermic thermal conductance (C):

RMR BMR C T T( )eu a= + (3)

The duration of the cooling phase (Dcool) was determined by the
cooling rate (CR) and the temperature difference between Tb:

D log T T
CR

( )
cool

eu tor= (4)

We assumed that cooling followed an exponential decay (Newton,
1701). Therefore we modeled the rate of cooling as a derivation from
Newton's Law of Cooling (Henshaw, 1968; Kleiber, 1972; Newton,
1701; Strunk, 1971), which assumes the rate of heat loss from a body is
directly proportional to body size, conductance, and temperature dif-
ference between the body and the surrounding environment (Bakken,
1976a; Prothero and Jürgens, 1986). We calculated the cooling rate as:

CR C M log T T
S M

( )b eu a

b

0.67
=

(5)

where C is the thermal conductance during euthermia (ml O2 g-1 °C-1 h-1),
Mb

0.67 represents the surface area of the animal as defined by body mass,
Teu – Ta is the difference between euthermic Tb and Ta (°C), and S is the
specific heat of animal tissue (0.1728ml O2 g-1 °C-1; Hart, 1951). By
taking the log of the temperature difference in both Eqs. 4 and 5, we
account for the exponential change in the rate of cooling as Tb is reduced
to torpid body temperature. Rather than estimating an instantaneous
cooling rate, this equation allowed for the consideration of body size and
insulation of the animal (i.e. thermal conductance), as well as environ-
mental influences (e.g., rapid cooling in cold environments).

Table 2
Measured and modeled costs (ml O2 g-1) of cooling into torpor from euthermia. Measured costs are reported from the referenced papers and modeled costs are from
Eq. (2).

Species Ta (°C) Measured Costs Modeled Costs Data Reference

Erinaceus europaeus 5 4.73 4.65 Webb and Ellison (1998)
Glis glis 4 2.65 2.86 Wilz and Heldmaier (2000)
Marmota flaviventris 6 9.25 8.53 Armitage et al. (2003)
Marmota marmota 7 3.76 3.86 Heldmaier et al. (2004)
Urocitellus richardsonii 13–15 4.22a 4.50b Wang (1978)
Urocitellus richardsonii 8–10 3.16a 3.85b Wang (1978)
Urocitellus richardsonii 2–6 4.09a 3.98b Wang (1978)
Zapus princeps 5 5.09 5.17 Cranford (1983)

a mean over all individuals.
b mean over all temperatures.
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2.2. Model validation

To validate the cooling equation, we compiled data from published
papers that presented metabolic rate and skin temperature curves over
time and compared the total energetic cost of torpor entry (i.e., cooling)

with modeled cost (Table 2). For publications where data was only
presented in figures, we used plot digitizing software (WebPlotDigitizer
4.1; https://apps.automeris.io/wpd) to extract metabolic rate and skin
temperature over the period of cooling. We calculated the mean of
euthermic and torpid skin temperatures and defined the onset of

Table 3
Parameters used to apply cooling model across mammalian species: cooling rate (CR; °C h−1), warming rate (WR; °C h−1), body mass (Mb; g), thermal conductance
(C; ml O2 g−1 °C−1), euthermic (Teu; °C) and torpid (Ttor; °C) body temperature, air temperature (Ta; °C), and Q10 rates.

Species, by order CR WR Mb C Teu Ttor Ta Q10 Reference [Conductance Reference]

Chiroptera
Chalinolobus gouldii 1.29 84.0 12 0.34 36 6 5 3.27 Hosken and Withers (1997)
Corynorhinus townsendii 0.80 91.2a 10 0.20 37 9 8 3.32 CGH et al. (Unpublished data)

Speakman and Thomas (2003)
Eptesicus fuscus 0.61 90.0b 18 0.20 37 16 15 3.19 Halsall et al. (2012) and Willis (2015)
Lasionycteris noctivagans 0.59 162.0b 11 0.15 35 6 5 3.30 Dunbar (2007)
Lasiurus borealis 0.46 106.8b 13 0.13 35 6 5 3.26 Dunbar and Tomasi (2006)
Lasiurus cinereus 0.53 128.4b 25 0.18 35 6 5 3.11 Cryan and Wolf (2003)
Myotis californicus 1.26 77.4a 5 0.26 35 11 10 3.47 CGH et al. (Unpublished data)

Speakman and Thomas (2003)
Myotis lucifugus 1.11 64.0a 9 0.26 37 5 4 3.33 Czenze and Willis (2015) and Hayman et al. (2016)
Myotis myotis 0.51 24.2a 25 0.20 35 17 16 3.11 Wojciechowski et al. (2007)
Myotis nattereri 0.77 63.0a 8 0.18 35 10 8 3.36 Hope and Jones (2012) and Speakman and Thomas (2003)
Myotis velifer 0.70 50.0 14 0.20 37 9 8 3.23 CGH et al. (Unpublished data)

Hirshfeld and O’Farrell (1976)
Myotis yumanensis 0.72 27.6 6 0.15 37 9 8 3.44 Licht and Leitner (1967) and O’Farrell and Studier (1970)
Nyctalus noctula 0.21 94.8a 27 0.07 37 5 5 3.09 Kayser (1964)
Nyctophilus geoffroyi 1.57 80.4b 8 0.36 36 6 6 3.37 Geiser and Brigham (2000) and Herreid and Kessel (1967)
Pipistrellus pipistrellus 1.10 57.0a 6 0.23 37 6 5 3.43 Kayser (1964)
Tadarida brasiliensis 0.90 43.8a 12 0.25 36 11 10 3.27 Herreid and Schmidt-Nielsen (1966)
Tadarida teniotis 0.45 46.8a 30 0.18 35 22 15 3.07 Marom et al. (2006)
Dasyuromorphia
Dasyuroides byrnei 0.21 33.0a 120 0.13 34 11 10 2.77 Geiser and Baudinette (1987)
Planigale gilesi 1.19 57.0 8 0.33 33 10 15 3.36 Geiser and Baudinette (1988) and Stone and Purvis (1992)
Sminthopsis macroura 0.50 8.0a 28 0.22 34 21 19 3.09 Song et al. (1995)
Diprotodontia
Burramys parvus 0.32 26.4a 54 0.14 36 3 2 2.94 Fleming (1985) and Herreid and Kessel (1967)
Cercartetus concinnus 0.70 47.4a 17 0.21 34 6 5 3.20 Geiser (1987)
Cercartetus lepidus 0.78 54.0a 12 0.21 34 6 5 3.27 Geiser (1987)
Cercartetus nanus 0.22 24.0a 70 0.11 35 6 5 2.88 Song et al. (1997)
Eulipotyphla
Crocidura leucodon 0.61 54.0a 12 0.20 36 24 20 3.27 Nagel (1977)
Crocidura russula 0.69 54.0a 14 0.20 36 19 10 3.24 Nagel (1977)
Crocidura suaveolens 1.56 54.0a 8 0.37 36 20 10 3.38 Nagel (1977)
Erinaceus europaeus 0.19 10.2 505 0.18 34 11 10 2.45 Webb and Ellison (1998)
Rodentia
Baiomys taylori 1.44 20.4 6 0.39 36 22 20 3.41 Hudson (1965)
Callospermophilus lateralis 0.18 20.0 137 0.12 35 16 15 2.74 Larkin and Heller (1996) and Snapp and Heller (1981)
Chaetodipus californicus 0.70 54.6 22 0.23 34 11 5 3.14 Tucker (1965)
Chaetodipus hispidus 0.47 21.0 40 0.21 38 18 17 3.01 Wang and Hudson (1970)
Cricetus cricetus 0.15 30.0a 370 0.13 35 10 8 2.52 Waßmer and Wollnik (1997) and Kayser (1964)
Eliomys quercinus 0.34 54.0a 80 0.17 33 6 5 2.86 Pajunen (1970) and Kayser (1964)
Glis glis 0.20 51.0a 100 0.11 36 8 8 2.81 Wilz and Heldmaier (2000) and Kayser (1961)
Ictidomys mexicanus 0.18 21.0a 190 0.14 36 15 17 2.66 Neumann and Cade (1965) and Snyder and Nestler (1990)
Ictidomys tridecemlineatus 0.16 27.0a 190 0.11 35 7 6 2.66 Pohl and Hart (1965) and Aschoff (1981)
Marmota broweri 0.03 2.9 2400 0.04 30 10 2 2.11 Lee et al. (2016)
Marmota flaviventris 0.02 2.3 3405 0.04 36 9 8 2.03 Arnold (1988) and Florant and Heller (1977)
Marmota marmot 0.02 5.0a 3870 0.04 34 10 7 2.00 Ortmann and Heldmaier (2000) and Kayser (1964)
Mesocricetus auratus 0.35 25.8a 80 0.17 37 5 4 2.86 Lyman (1948)
Microdipodops pallidus 0.53 48.0a 15 0.15 39 9 8 3.22 Bartholomew and MacMillen (1961)
Muscardinus avellanarius 0.87 66.0a 15 0.26 36 11 10 3.22 Pretzlaff and Dausmann (2012)
Otospermophilus beecheyi 0.11 2.6 502 0.12 32 15 14 2.45 Strumwasser (1959) and Aschoff (1981)
Perognathus longimembris 1.18 24.0a 8 0.27 35 5 3 3.35 Bartholomew and Cade (1957)
Phodopus sungorus 0.32 8.7 31 0.13 32 18 12 3.07 Heldmaier et al. (2004)
Sicista betulina 1.53 72.0a 10 0.38 38 6 5 3.31 Johansen and Krog (1959)
Spermophilus citellus 0.15 24.0a 290 0.11 36 6 1 2.57 Hut et al. (2002) and Aschoff (1981)
Tamias amoenus 0.52 56.0a 50 0.21 38 3 1 2.96 Geiser and Kenagy (1988) and Kenagy and Vleck (1982)
Tamias striatus 0.25 60.0a 92 0.13 35 6 5 2.82 Neal (1976) and Wang and Hudson (1970)
Urocitellus parryii 0.14 7.0 406 0.11 35 0 −2 2.50 Boyer and Barnes (1999) and Hock (1960)
Urocitellus richardsonii 0.19 9.4 400 0.17 37 10 10 2.50 Wang (1978) and Snyder and Nestler (1990)
Zapus princeps 0.72 60.0a 26 0.25 33 6 5 3.10 Cranford (1983)
Monotremata
Tachyglossus aculeatus 0.01 4.3 4600 0.03 33 2 2 1.96 Grigg et al. (1992) and Nicol and Andersen (2007)

a Geiser and Baudinette (1990).
b Menzies et al. (2016).
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cooling when skin temperature dropped at least 2 °C below mean eu-
thermic skin temperature and the end of cooling when skin temperature
was within 0.5 °C of mean torpid skin temperature. We extracted me-
tabolic rate for the cooling curve at one-hour intervals from the start
and end of cooling and summed the values over the entire cooling
period.

Using Eq. (2), we then modeled the energetic cost of cooling given
morphometric, physiological, and environmental parameters reported
in each publication. We obtained body mass, torpid and euthermic Tb,
and thermal conductance (if available) for each species; if thermal
conductance was not available, we calculated conductance using
methodology described by McNab (1969) and Speakman and Thomas
(2003). RMR was predicted using Eq. (3) and TMR was predicted using
the Q10 decrease in BMR in response to torpid Tb (Geiser, 1988). One
publication (Wang, 1978) reported cooling costs for multiple in-
dividuals over three ranges of Ta. Therefore, we calculated the mean
cost for each temperature range over individuals (for the measured
cost) and temperatures (for modeled cost). In instances where multiple
data sources existed for the same species (as in the case of Myotis lu-
cifugus), we chose the source that reported as many model parameters
as possible.

We compared our modeled values to measured values using linear
regression in R version 3.3.3 (R Development Core Team, 2009). We
assumed that if our cooling model adequately represented measured
cooling cost, the slope of the relationship would not be different than 1
(Glantz and Slinker, 2000). We did not run a sensitivity analysis of the
model to changes in parameters, as a preliminary analysis showed that
the model was sensitive to all parameters equally.

We examined the relationship between mass-specific cooling cost
and both body size and thermal conductance to determine the effects of
each variable on cooling. We also determined if a scaling relationship
with body size and mass-specific cooling cost existed with cooling rate,
similar to the relationships observed with warming rate (Geiser and
Baudinette, 1990; McKechnie and Wolf, 2004).

2.3. Comparison between 67% proportion and cooling model

We compared the energetic cost of cooling for 53 species (Table 3)
using both our cooling model (Eq. (2)) and the commonly-assumed 67%
proportion of warming cost. We defined the energy required to warm
from torpor to euthermia (Ewarm) as a function of the cost to raise the
temperature of animal tissue from torpid to euthermic Tb (McKechnie
and Wolf, 2004), in addition to the metabolic costs required to balance
heat lost to the environment over the period of warming (Cryan and

Wolf, 2003). Thus, the cost of warming was calculated as:

E S T T D C T T( ) [ ( )]warm eu tor warm eu a= + (6)

where Dwarm is the duration of time required to warm from torpid to
euthermic Tb (h). Assuming warming occurs linearly (Cryan and Wolf,
2003; McKechnie and Wolf, 2004), we calculated Dwarm as:

D T T
WRwarm

eu tor= (7)

where WR is the warming rate for the species (°C h-1). We obtained
warming rates for each species from multiple sources (Geiser and
Baudinette, 1990; Hirshfeld and O’Farrell, 1976; Menzies et al., 2016;
Willis, 2008). All other model parameters were acquired as described
above.

We compared both estimates of cooling, predicted from Eq. (2) and
estimated as 67% of warming, using linear regression. If 67% of
warming sufficiently described the cost of cooling, we assumed the
slope of the relationship not to be different from 1 (Glantz and Slinker,
2000). We regressed the difference between the two estimates against
body mass to examine differences in predicted cooling costs in the
context of body size.

Fig. 1. Measured and modeled cooling cost (ml O2 g-1) of hibernating species
used to validate a cooling cost model. Dashed line represents 1:1 line. Modeled
cost was not different from measured cost (slope = 0.99 [0.939, 1.04], F1,7 =
1220, p= <0.001, r2 = 0.99).

Fig. 2. Relationship between cooling rate (CR; °C h−1) and A) body mass (g)
and B) mass-specific cooling cost per arousal (ml O2 g−1) for 53 mammalian
hibernators.
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3. Results

Cooling cost from our model was not different from measured cost
(slope = 0.99 [0.93, 1.04], F1,7 = 1220, p= <0.001, r2 = 0.99;
Table 2, Fig. 1). Mass-specific costs of cooling ranged from 0.36ml O2 g-1

in the Northern birch mouse (Sicista betulina [10 g]), one of the smallest
species, to 41.9ml O2 g-1 in the short-beaked echidna (Tachyglossus
aculeatus [4600 g]), the largest species in our dataset. Warming ranged
from 2.8ml O2 g-1 in the bicolored shrew (Crocidura leucodon [12 g]) to
26.4ml O2 g-1 in the arctic ground squirrel (Urocitellus parryii [406 g]).
Cooling was more energetically costly than warming in four species
(Marmota flaviventris, M. broweri, M. marmota, and T. aculeatus), all of
which had low thermal conductance values (< 0.05ml O2 g-1 °C-1 h-1),

large body sizes (>2000 g), and thus slow cooling rates (< 0.5 °C h-1).
Both body mass and thermal conductance were significant pre-

dictors of mass-specific cooling cost (F1,51 =226.4, p < 0.001, r2 =
0.90), with body mass and thermal conductance accounting for 88.9%
and 10% of the variation in cooling cost across species, respectively.
Mass-specific cooling cost decreased with increased cooling rate
(F1,51 = 506.4, p < 0.001, r2 = 0.91; Fig. 2a), and cooling rate was
inversely proportional to body mass (F1,51 = 611.1, p < 0.001, r2 =
0.92; Fig. 2b).

The oft-used 67% proportion of warming cost estimate of cooling
cost did not describe cooling cost across taxa (slope = 0.07 [-0.03,
0.16], F1,51 = 1.83, p=0.18, r2 = 0.03; Fig. 3a). Body mass, however,
explained 47% of the variation in the difference between the two cal-
culations (F1,51 = 44.36, p < 0.001; Fig. 3b). The mean cooling cost
was 47.9 ± 18% of warming cost, ranging from 3.8% in Perognathus
longimembris (8.4 g), the little pocket mouse, to 383% in T. aculeatus
(4600 g). Cooling cost represented 67% of warming cost in all ground
squirrel species and one other species of similar body size: Callo-
spermophilus lateralis (137 g, 58% [48–68%]), Cricetus cricetus (370 g,
76% [66–86%]), Ictidomys mexicanus (190 g, 74% [64–84%]), I. tride-
cemlineatus (190 g, 70% [60–80%]), Otospermophilus beecheyi (502 g,
57% [47–67%]), Spermophilus citellus (290 g, 58% [48–68%]), U. parryii
(406 g, 60% [50–70%]), and U. richardsonii (406 g, 67% [57–77%]).

4. Discussion

The common assumption that the cost of cooling is equal to 67% of
the cost of warming during arousal in hibernation is not broadly ap-
plicable across taxa. The cost of cooling scaled with body mass, which
was expected given the relationship between the rate of heat loss and
surface area to volume ratio (Bakken, 1976a). Consequently, cooling
rate was inversely related to mass-specific cooling cost (Fig. 2a), sug-
gesting cooling rate, as a function of body size and thermal con-
ductance, is an important factor in hibernation energetics.

We attributed the mismatch between the two estimates of cooling
cost to the fact that the 67% proportion relied on metabolic measure-
ments from a squirrel species (U. richardsonii), which has a body mass
that is not representative of the body size of most hibernating mam-
mals. Due to the scaling relationship between body mass and surface
area (Schmidt-Nielsen, 1984), smaller species have a greater amount of
surface exposed to the environment per unit volume compared to larger
species (Kleiber, 1972; Strunk, 1971). Greater surface area leads to
greater heat loss and thus faster cooling rates, which we observed in the
relationship between cooling rate and body mass (Fig. 2b). Therefore,
the estimated 67% of the cost of warming overestimated the cost of
cooling in species smaller than ground squirrels and underestimated the
cost of cooling in larger species (Fig. 3). The fact that most of the
variation in the relationship between both cooling cost calculations was
described by body mass also supports these patterns. Incorporating both
body size and surface area (scaled from body mass) in the calculation of
cooling cost leads to more accurate estimates of the differences in
cooling across taxa.

In addition to body size differences, body shape can affect cooling
cost. Behavioral changes such as posture adjustments may be as im-
portant to heat exchange as the physiological properties of an animal
(Satinoff, 1978; Stelzner and Hausfater, 1986). Even small postural
changes can reduce exposed surface area and alter the amount of heat
lost to the environment (Adair, 1976; Sale, 1970). For instance, when
exposed to cold environments, captive pigs decrease heat loss by pos-
ture adjustments that reduce surface area by as much as 35% (Mount,
1964; Turnpenny et al., 2000). Similarly, U. richardsonii curl into a
sphere when hibernating (Wang, 1978), whereas other species, such as
bats, often remain cylindrical (Gouma et al., 2012). Our model does not
consider differences in postural changes, but as the sphere has the least
amount of surface area per unit of volume of all geometric shapes
(Schmidt-Nielsen, 1970), species of the same body mass may have

Fig. 3. A) Energetic cost of cooling (ln[ml O2 g−1]) for 53 mammalian species
grouped by order and predicted from our cooling model and estimated from the
commonly assumed 67% of warming costs. Dashed line represents one-to-one
relationship between estimates and solid line is the fitted relationship. B)
Relationship of the difference between cooling cost estimates (predicted from
67% of warming cost – cooling model; ml O2 g−1) and body mass (ln[g]).
Dashed line represents 0 difference between estimates.
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considerable differences in heat loss due to changes in posture. How-
ever, as body size and thermal conductance account for almost 99% of
the variation in cooling cost, postural changes could account for only
1% of the variation.

Air temperature can greatly influence the energetic costs associated
with both the cooling and warming phases of hibernation: colder en-
vironments facilitate a faster rate of cooling and thus lower cooling cost
(Bakken, 1976b; Henshaw, 1968) but substantially increase the cost of
warming. Therefore, it is no surprise that deriving cooling cost from
estimates of warming cost would not be accurate in most species across
environments, as Ta has opposite effects on each phase. Though the
proportion holds true for U. richardsonii in the environments that were
measured in the Wang (1978) study, it may misrepresent cooling cost in
other environments. By including the effect of Ta in both the cooling
and warming models, we include a mechanistic influence of the en-
vironment on animal physiology.

The physiological mechanisms behind the cooling and warming
processes also suggest it is inappropriate to estimate cooling cost from
warming estimates. Warming is considered to be an active process in
our analysis, where animals increase Tb using endogenous heat pro-
duction to warm tissues (Geiser, 2004; but see discussion of passive
rewarming below). In placental mammals, brown adipose tissue pro-
vides high metabolic heat production for nonshivering thermogenesis
(Smalley and Dryer, 1963; Smith and Hock, 1963), while non-placentals
(monotremes and marsupials) and birds generate heat by shivering
(Johnston, 1971; Schmidt-Nielsen, 1987). Nonshivering thermogenesis
has been reported to produce as much heat as shivering in species that
do both (Janský, 2008), but the energetic costs of brown fat con-
sumption compared to muscular activity required by shivering have yet
to be compared. Differences in the efficiency between these two pro-
cesses may potentially lead to interspecific differences in warming
costs, which makes assumptions inaccurate for some species.

In contrast with active warming, our model assumed that entry into
torpor was a passive process – that is, cooling was driven by heat loss
rather than active metabolic suppression (Snapp and Heller, 1981).
Snapp and Heller (1981) observed that the rate of metabolism decreases
in response to temperature, i.e. the Q10 effect, supports the hypothesis
that most mammals passively enter torpor. However, active metabolic
inhibition (e.g. suppression of enzyme activity) may be required for
deep torpor (Geiser, 2016, 2004). If active suppression is required for
the cooling phase to occur, then cooling rate would also be driven by
the ability to inhibit metabolism rather than just body size and thermal
conductance. Due to the uncertainty behind when and in which species
metabolic inhibition occurs, we assumed passive cooling, and did not
account for any changes to metabolic rate. However, our model can be
revised to include alterations to input parameters (e.g. metabolic rate)
if active suppression alters metabolic rate for a species of interest.

Behavioral mechanisms, such as social thermoregulation, are not
considered in our model and may limit model applicability. Social
thermoregulation can occur when individuals cluster in hibernation.
Social thermoregulation can potentially lead to passive rewarming,
which occurs when individuals use increasing Tb of neighbors to syn-
chronize their warming and decrease costs of arousal (Geiser, 2004).
Passive rewarming can influence our calculations of warming costs in
two different ways. First, lower efficiency of passive rewarming
(Arnold, 1988) results in reduced warming rates. Second, because
passive rewarming does not have the same energetic requirements of
active rewarming, the total energetic cost of warming would be lower
in these species (Currie et al., 2015). Although social thermoregulation
has been hypothesized to reduce energetic costs associated with arou-
sals and euthermia (Boyles et al., 2008), there has not been an in-
dication of how it may influence cooling. Clustering can increase in-
sulation of individuals and decrease surface area, both of which impede
heat loss (Boyles et al., 2008). Though we do not specifically address
these issues here, the use of equations to model both cooling and
warming allows for modification of functional body size, thermal

conductance, or cooling/warming rate once the effect of clustering on
these parameters is determined. Using a mathematical equation to
predict cooling costs, rather than a general assumption, allows for in-
corporation of thermoregulatory behavior into energetic modeling.

5. Conclusion

A common assumption used to predict the energetic cost of cooling
may not represent cooling cost of all hibernators due to interspecific
variation in body size, thermal conductance, and Ta exposure. We
considered how mechanisms differed between the cooling and warming
processes and how these differences may lead to a mismatch between
the assumed proportion and modeled costs. We found that cooling rate
scaled linearly with body mass and was a strong predictor of overall
cooling cost. Our model allows for generalization of energetic cost for
multiple taxa using species-specific physiological and morphometric
parameters, and for predictions over variable environmental condi-
tions. Accurate predictions are especially important in the context of
wildlife conservation, as the case with predicting the energetic effects of
white-nose syndrome on bat species across North America.
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