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Abstract 

 
StructOpt, an open-source structure optimization suite, applies genetic algorithm and particle 
swarm methods to obtain atomic structures that minimize an objective function. The objective 
function typically consists of the energy and the error between simulated and experimental data, 
which is typically applied to determine structures that minimize energy to the extent possible while 
also being fully consistent with available experimental data. We present example use cases 
including the structure of a metastable Pt nanoparticle determined from energetic and scanning 
transmission electron microscopy data, and the structure of an amorphous-nanocrystal composite 
determined from energetic and fluctuation electron microscopy data. StructOpt is modular in its 
construction and therefore is naturally extensible to include new materials simulation modules or 
new optimization methods, either written by the user or existing in other code packages. It uses 
the Message Passing Interface’s (MPI) dynamic process management functionality to allocate 
resources to computationally expensive codes on the fly, enabling StructOpt to take full advantage 
of the parallelization tools available in many scientific packages.  
 
 

1. Introduction 
 
The determination of the atomic structure of materials is a ubiquitous problem in materials science. 
Crystals with large unit cells, amorphous materials, and interfaces often have complex structure-
property relationships that necessitate a thorough understanding of the material’s atomic structure. 
In a typical approach to complex structure determination, a researcher would combine available 
data from experiments and simulations using scientific intuition, prior knowledge, and trial-and-
error to discover the “best” structure for a given material. “Best” is often defined as the lowest 
energy structure most consistent with experimental data subject to (sometimes vague) constraints 
from prior knowledge. Unfortunately, available experimental data typically lack the information 
necessary to uniquely determine three-dimensional (3D) structure information, particularly for 
complex nanostructures. Pure simulation approaches, on the other hand, must often make 
approximations to reach realistic length and time scales at atomic resolution and therefore often 
cannot model realistic conditions giving rise to metastable structures or structures stabilized by 
complex environmental factors. Combining experimental data with simulations can provide the 
necessary spatio-temporal resolution and scale for systematic structure determination and allow 
structures to be determined that minimize energy as much as possible while remaining consistent 
with available experimental data. 



 
In this context, the problem of materials structure determination can be redefined as a multi-
objective, global optimization problem where the representation of a material (e.g. atomic structure 
and composition) is determined by an optimization algorithm that minimizes the system energy 
and the disagreement with experimental observations [1]. In general, an algorithm that simulates 
experimental data from an atomic structure (henceforth simply referred to as a forward simulation) 
yields simulated data and does not directly give the structure or structures that are consistent with 
a given data set, which is the “inverse modeling” problem. However, any forward simulation can 
be effectively turned into an inverse modeling tool by a sufficiently extensive search of the 
structure space to find all structures consistent with the available data. Unfortunately, there may 
be multiple structures that agree with the data, and the inversion can yield many structures that are 
unphysical in their energetics, e.g., have bond lengths too small/large or atoms in very unstable 
locations. By combining simulated energy information with forward simulations and experimental 
data, the atomic structures can be constrained more tightly, yielding ideally a unique or relatively 
small set of possible structures that are both energetically stable and consistent with experimental 
data. 
 
Optimization methods have already been used to solve a variety of structure determination 
problems in science and engineering [2–6] including the prediction of globally stable [7–11] and 
metastable [12–14] crystal structures and amorphous materials [15–17]. Often the goal of these 
structure determination methods is to predict the lowest energy structure of a given stoichiometry 
under specific thermodynamic constraints [18,19]. In addition, there are a number of applications 
of optimization approaches for structure optimization incorporating forward simulations of 
experiments, e.g., in glass alloy structure determination [20–23]. The challenges of such 
optimization often requires the quantitative comparison to various sources of experimental 
characterization data [6], meaning “goodness-of-fit” values for multiple types of forward 
simulations need to be integrated into the optimization. Meredig and Wolverton have  explored 
approaches very like those used here that integrate both simulated atomistic energy and forward 
simulation to define an objective function, e.g., incorporating experimental X-ray diffraction data 
to guide a genetic algorithm to determine the lowest energy crystal structures of specific materials 
[24]. 
 



Here we present a flexible community tool to enable multiobjective structure optimization with 
guidance from both atomistic modeling-based energy prediction and multiple types of 
experimental forward simulations called StructOpt (short for Structure Optimizer). The primary 
goal and features of StructOpt are shown in Figure 1. StructOpt optimizes a population of atomic 
systems in search of structures that are energetically stable and show good agreement between 
forward simulations and experimental characterization data. The stability of the structure can be 
calculated at various levels of theory by atomistic modeling methods, although interatomic 
potentials of some kind are the most common approach [25]. Forward  simulations are used to 
predict images or spectra of an atomic structure associated with a given characterization method 
and also can be implemented at various levels of fidelity [22,26–28]. StructOpt incorporates both 
types of calculations by constructing an objective function to evaluate an atomic structure’s energy 
and agreement of multiple forward simulations to experimental data. An optimization algorithm is 
then built around this objective function to search the domain space for suitable solutions. 
StructOpt can evaluate multiple solutions simultaneously, allowing parallelized population-based 
searches for faster convergence and a more comprehensive search. The concept for StructOpt (and 
the name) was originally developed for genetic algorithm optimization of point defect clusters in 
crystals [29], then adapted to structure determination of single-specie nanoparticles against total 
energy and STEM data [30]. Those single-purpose research codes have been rewritten into the 
modular, extensible framework described here. We expect the StructOpt code to be useful for 
researchers attempting to determine complex 3D nanostructures from experimental data that 
cannot be directly inverted ((S)TEM, XRD, etc.). 
 
The remainder of this paper is organized as follows: Section 2 gives an overview of StructOpt in 
the context of population-based optimization schemes such as genetic algorithms (GA). Section 3 
demonstrates StructOpt’s capabilities by providing example structure refinements against STEM 
and FEM data. Sections 4 and 5 describe the hierarchal and modular architecture of the code, which 
allows it to be easily extensible to new types of data and materials problems. Finally, Section 6 
describes the parallelization techniques that allow StructOpt to scale to large numbers of cores and 
seamlessly incorporate parallelization in existing codes to calculate system energies or to simulate 
experiments. 
 
 

 
Figure 1: Schematic of atomic structure refinement program StructOpt. E is the energy and 2 

represents the error in forward simulations compared to experiments. 



2. Overview 
 
Structure determination algorithms iteratively refine an atomic model by modifying the structure—
for example by changing the positions of atoms—until the structure minimizes an objective 
function. StructOpt currently supports two structure determination algorithms [31]: a genetic 
algorithm [32] and a particle swarm optimization [33,34]. Both algorithms are population-based 
optimization schemes, allowing the features of the best candidate structures to collectively inform 
the creation of new candidates. These approaches allow for a more comprehensive search of the 
domain space given a sparse and diverse sampling of the initial population [32] than optimization 
approaches that operate on a single atomic structure. Genetic algorithms have been applied to 
atomic systems to study atomic clusters [35–38], crystal unit cells [9,10,39–41], defects [29], and 
grain boundaries [42,43]. The particle swarm optimization implemented in StructOpt was 
generally found to be slower and less adept at finding deep minima in energy-only optimizations 
than the genetic algorithm, so we focus on the genetic algorithm in this manuscript. 
 
Given an atomic configuration 𝜃, an objective function is calculated via 
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where 𝑓௜ are specific terms of the objective function that evaluate a specific property of 𝜃. For any 
given application, at least one 𝑓௜ is likely to be an evaluation of energy. Additional 𝑓௜ can be defined 
that are related to experimental data (D) or user specified structural constraints (C). 𝛼௜ are 
weighting factors chosen to give a desired numerical importance to each component of the 
objective function, typically set so that different contributions make similar levels of contributions 
to 𝑂ሺ𝜃ሻ. Any number of terms can be included in the objective function (see Section 5). Alternative 
multi-objective optimization schemes exist that remove the need to explicitly set each 𝛼௜ (such as 
Bayesian [44] and Pareto front [45] optimization), although these involve greater code and 
operation complexity and sometimes higher computation expense. Such tools are not presently 
available in StructOpt. 𝑂ሺ𝜃ሻ is minimized using the selected optimization algorithm to obtain 
atomic structure(s) with low values of each term in 𝑂ሺ𝜃ሻ. In the context of genetic algorithms, the 
individual objective function terms are often called fitness functions, and their numerical output is 
called a fitness score. We use this naming convention here. 
 
StructOpt currently supports optimization of atomic structures with periodic or non-periodic 
boundary conditions. Other constraints can be readily added due to the modular structure of the 
code. These constraints can help to define the type of structure that can be realized, such as 
nanoclusters with 3D surfaces, amorphous materials with or without periodic boundary conditions, 
and crystals with various symmetry constraints. All the operations within StructOpt can be applied 
to any type of structure, although some operations are more useful for one structure type than 
another. For example, an operation that moves surface atoms on a nanocluster may not have any 
surfaces on which to apply this move for a structure with periodic boundary conditions in all 
directions. The constraints on the structure can be defined by the user and can be as simple or 
complicated as the nature of the problem requires. 
 
StructOpt defines a set of operations that can be applied to specific structures. In the context of 



genetic algorithms, these include crossovers, mutations, relaxations, and fitnesses. After creating 
or loading a set of atomic structures, the genetic algorithm performs crossovers on the population. 
Crossovers combine two structures by patching them together in unique ways, and result in two 
new structures that are added to the population. StructOpt then performs mutations on a subset of 
the population’s structures, which modify a single structure to create a single new structure. 
Because crossovers and mutations can create unstable structures, relaxations are performed to 
move the atomic configuration towards a local minimum of one or more parts of the objective 
function (for example, some relaxations are designed to bring the modified structures into 
energetic equilibrium). Fitness evaluations require forward simulations performed on a static 
structure and provide information about the “goodness” of the structure. Fitness evaluations are 
run after the relaxation process. The weighted sum of the fitness evaluations in Eq 1 provides a 
single fitness score for each individual. Once all structures have been assigned a fitness score, 
StructOpt uses this information to remove certain structures from its current population and repeats 
the above processes. This iterative procedure is repeated until the convergence criteria—usually 
based on the fitness scores—are satisfied. StructOpt does not limit these operations (crossovers, 
mutations, relaxations, forward simulations, and structure selectors) to genetic algorithms, so they 
can be used within other optimization algorithms defined in StructOpt or defined by the user. 
 
Crossovers and mutations modify the atomic structure to sample both nearby and distant parts of 
the configuration space. Given a diverse starting population, crossovers allow for sampling new 
areas of the search space by combining two distinct solutions, whereas mutations are perturbations 
on an existing structure. The crossovers implemented in StructOpt include a crossover that rotates 
two models, cuts both rotated models along a plane, and glues the opposing slices together, 
producing two children [35]. The mutations in StructOpt are numerous and include swapping atom 
species, randomly moving a single atom, randomly moving a cluster of atoms, moving atoms from 
the bulk to the surface, and twisting the model. Mutations and crossovers are among the simplest 
operations to add to StructOpt, and they can be configured to work differently on different structure 
types. 
 
StructOpt implements three structural relaxation approaches, which are primarily used to relax 
locally unstable atomic configurations that result from crossovers, mutations, etc. The first is to 
relax energy using the molecular simulation package LAMMPS  [5]. StructOpt can use any 
minimization algorithm provided by LAMMPS to relax the atomic structure, including conjugate 
gradient minimization or molecular dynamics. The second relaxation mechanism is a hard-sphere 
relaxation that simply moves atoms to ensure that no two atoms overlap a fixed radius around each 
atom. Finally, StructOpt has implemented a special relaxation of atomic positions related to STEM 
image matching, which we call the “STEM relaxation”. The STEM relaxation performs a rotation 
of the atomic model to best match the STEM image without changing the positions of the atoms 
relative to one another. 
 
StructOpt currently implements three objective function terms. The first term, called LAMMPS 
inside StructOpt, finds the potential energy of the relaxed atomic arrangement using the LAMMPS 
package which requires the user to choose an appropriate interatomic potential. The optimization 
of the LAMMPS objective function term attempts to find the lowest energy arrangement, and if it 
is the only term in the objective function it will ideally yield the zero-temperature ground state of 
the applied interatomic potential for the given constraints. The second routine, called STEMSIM, 



provides an algorithm for comparing atomic structures to STEM images. STEMSIM [26] 
calculates the discrepancy in pixel intensities between a STEM experimental image and a simple 
linear convolution STEM image simulation model [38,39]. If STEMSIM is the only term in the 
objective function, then the ideal optimized structure will have atom positions consistent with the 
experimental STEM image along one 2D orientation, but the bond lengths in other orientations 
and atomic forces and energies will be unconstrained and may be unrealistic. FEMSIM calculates 
the discrepancy between fluctuation electron microscopy (FEM) experimental data and a FEM 
simulation using a kinematic diffraction approach [28,47] and is useful for amorphous systems. 
Similar to STEMSIM, if FEMSIM is the only term in the objective function then the optimized 
structure will be consistent with the experimental data but may have unphysical atom positions 
which are very far from an energy minimum [48]. Examples of the use cases of these objective 
terms can be found in the examples presented in Section 3. 
 
After the objective functions of all individuals in the population are calculated, the final task of 
the genetic algorithm is deciding which individuals are discarded in the next generation. StructOpt 
includes selection and predator operations for choosing which individuals to mate and keep, 
respectively, by evaluating their objective function. StructOpt comes with several operators that 
affect the diversity of the population. Selection and predator operators such as “best”, “rank”, and 
“roulette” promote the dissemination and retention of the best individual’s features, while “fuss” 
and “tournament” have the option of maintaining a more diverse population [49–51]. Predators 
can also be used to eliminate duplicate structures, thereby increasing diversity and eliminating 
premature convergence on a non-ideal structure. 
 
The operations described above all require varying inputs, outputs, and resources. In the next 
sections, we discuss how StructOpt’s object-oriented approach facilitates flexibility and 
extensibility of the entire codebase, the wrappers around StructOpt to make that it user-friendly, 
and the dynamic resource allocation system that handles the various parallelization requirements. 
We first present two examples that demonstrate how experimental STEM and FEM data can be 
used to refine the atomic structure to metastable particles and amorphous solids. 
 
 

3. Examples 
 
Figures 2 compares the optimization of just the energy term with the optimization of both the 
energy and STEMSIM terms for refining the structure of nanoparticles. Figure 3 shows a similar 
comparison using the FEMSIM term and the structure of amorphous materials. In both cases, 
simulated data is substituted for experimental data for better model assessment. Such simulated 
data is often called phantom data because the structure that is used to create the data is known a 
priori. Therefore, the target of the optimization is also known a priori. When the simulation 
finishes, the output structure(s) can be compared to the target structure to quantitatively determine 
the accuracy of the solution(s). 
 
In Figure 2(a), StructOpt optimized the structure of a 561 atom Pt nanoparticle (Pt561) using an 
embedded-atom method (EAM) force field potential [52]. The initial population consisted of 18 
randomly generated fcc particles already in the (100) orientation, and the STEMSIM relaxation 
procedure was used to align the modified atomic structures to the STEM image throughout the 



optimization. When the optimization was constrained by only the system energy, StructOpt found 
the icosahedral Pt561 particle, which is the lowest energy, magic number particle with 561 atoms 
[53,54]. The icosahedral structure is fcc-like with tilt boundaries that allow the surface to consist 
of low energy, hexagonal close-packed planes with a low surface-to-volume ratio. The final 
structure has minor surface defects with respect to the perfect icosahedral structure, but the overall 
icosahedral symmetry is found. 
 
When a STEM fitness function is added to the objective function, StructOpt identifies a different, 
metastable optimal structure. In Figure 2(b), the objective function is modified to contain both an 
energetic term (Ef) and a term representing the fit (𝜒ଶ) to a simulated STEM image of a 561 atom 
cuboctahedron. The cuboctahedron shape has an fcc structure with no defects and exposes higher 
energy (100) surfaces captured in the phantom STEM image which do not exist in the icosahedron 
in Figure 2(a). When the additional constraint of error vs. the phantom is added to the objective 
function (with 𝛼௅஺ெெ௉ௌ ൌ 1 and  𝛼ௌ்ாெௌூெ ൌ 100), the Pt561 icosahedron is not found as the 
optimal structure and instead StructOpt identifies the cuboctahedron as the correct target structure. 
Note that the experimental image is simulated, so the STEM fitness at the end of the algorithm has 
a fitness value close to zero upon finding the optimal structure. The fitness value is not exactly 
zero because the identified structure has minor surface defects with respect to the target structure, 
but previous results using this technique show that for phantom data the atom positions are 
recovered nearly exactly [30]. The optimization using STEM data only has not been carried out, 
since the STEM data will not constrain the structure in the direction perpendicular to the plane of 
the image. As a result, the optimized structure is guaranteed to be unphysical [48]. 
 
Figure 3 shows results for the optimization of 256 atoms of Al with periodic boundary conditions 
using an Al EAM potential [55]. Similar to Figure 2(a), the optimization shown in Figure 3(a) is 
performed with just an energy term. In this case the fcc Al ground state is obtained, as expected. 
The optimization in Figure 3(b) includes both energy and forward simulation objective function 
terms, where the simulation is compared to phantom FEM data calculated from an 
amorphous/nanocrystal composite structure proposed as a model for high Al-content metallic 
glasses [56] (see [57], Fig. 1 for example experimental data on Al88Y7Fe5). Since the target 
structure is a model of a glass, it is metastable in energy. The initial population for the genetic 
algorithm contained purely amorphous structures, and the crossovers and mutations modified the 
structures in the population until an amorphous-nanocrystal composite was formed that matched 
the experimental data well and had low energy. The FEM data captures the nanometer-scale order 
information of the phantom composite material, driving the optimal structure away from the 
energetically optimal fcc Al single crystal (Figure 3(a)) and towards a metastable material that has 
better agreement with the FEM data (Figure 3(b)). The fraction of Voronoi indices that are crystal-
like [23][ is similar in the final optimized structure and the phantom structure. 



 
 

 

Figure 2: A StructOpt run optimizing the structure of a Pt561 nanoparticle using an EAM 
potential (a) without and (b) with the STEMSIM term in the objective function. The inset in 
(a) shows the Pt561 regular icosahedron with 20-fold symmetry found by StructOpt using only 
an energy term in the objective function. The inset in (b)-upper shows the Pt561 cuboctahedron 
refined by StructOpt using both energy and STEMSIM terms in the objective function. 
Minimization of the relative stability, Ef, drives the energy of the system down. Meanwhile, 
the STEMSIM term (𝜒ଶ) gives the magnitude of the error between the forward STEMSIM 
simulation and the STEM image in inset (b)-lower, and drives the system toward agreement 
with the phantom experimental data. The blue and red dashed lines show the relative 
formation energies of the Pt561 icosahedron and cuboctahedron particles, respectively, 
calculated using an EAM potential and LAMMPS. 



4. Code Architecture 
 
StructOpt is written in python and is open-source. It was designed with modularity and flexibility 
in mind, and its object-oriented approach makes clear distinctions between different types of 
functionality. The code has three important pieces of functionality, which are the Individual class, 
the Population class, and the optimization algorithm. The Individual class is a stand-alone object 
containing an atomic structure with the necessary functionality to operate on itself. The Population 
class contains a list of Individual instances and provides functionality for operating on Individual 
instances. The optimization algorithm uses the functionality of the Population class to iteratively 

 
Figure 3: A StructOpt run optimizing the structure of Al using an EAM potential (a) without 
and (b) with the FEMSIM fitness function and phantom data from a nanocrystal / amorphous 
composite. The black lines show the fitness values calculated by StructOpt using LAMMPS 
and FEMSIM. The blue and red dashed lines show the formation energies of an Al fcc crystal 
and the nanocrystal / amorphous composite target, respectively, calculated using an EAM 
potential in LAMMPS. The inset in (a) shows the Al256 fcc structure found with an energy-only 
optimization. The inset in (b)-upper shows an Al3692 amorphous structure refined by StructOpt 
when the FEM data in inset (b)-lower is incorporated into the FEMSIM cost function. In the 
inset in (b)-lower, the blue line is the FEMSIM data of the phantom target and the green line is 
the FEMSIM data of the optimal structure StructOpt identified.  



modify the underlying individuals. It is the job of the optimizer to shape the individuals in the 
population into a form that satisfies the convergence criteria. By making clear distinctions between 
these different pieces of functionality, each part of the code can be used and modified 
independently. 
 
The Individual class extends the ASE.Atoms [58] class and implements methods to modify an 
instance of itself in the context of the implemented optimization algorithms. Specifically, an 
Individual can mutate, relax, and perform various fitness evaluations on itself in the context of the 
genetic algorithm and can perform analogous operations for particle swarm. StructOpt makes use 
of ASE’s LAMMPS calculator to calculate energies from LAMMPS and to encourage code reuse. 
Because different types of atomic structures exist, StructOpt implements different classes that 
inherit from the Individual class. Subclasses of Individual implement methods that are specific to 
the atomic structure they are modeling, overriding any necessary functionality. The two types of 
structures currently implemented in StructOpt are the Periodic and APeriodic classes which 
enforce and do not enforce periodic boundary conditions, respectively. Materials problems that 
require nanoclusters can use the APeriodic structure type, while materials problems that require 
optimizing unit-cells of crystals or supercells of more complex materials can use the Periodic 
structure type. Figure 3 is an example of using a Periodic structure to optimize an amorphous-
nanocrystal composite. Implementing new Individual classes with different boundary conditions 
or other constraints only requires inheriting from the Individual and making any necessary 
physically-motivated modifications to the code. For example, a new Individual class might be 
called Surface, which would have periodic boundary conditions in two dimensions. Once defined, 
the new Individual subclasses can be used immediately in any implemented optimization 
algorithm. 
 
The Population class implements methods for operating on multiple Individual instances at once. 
For example, the Population can perform crossovers on and removals of the individuals in the 
population as required by the genetic algorithm. The Population also manages parallelized 
execution of the Individual methods. The complicating factor of this class is communication during 
parallelization because different parallelized processes can modify a Population instance in 
different ways. A more detailed description of the issues and implementation decisions around 
parallelization can be found in Section 6 and in the online documentation. 
 
The goal of the optimization algorithm is to use the methods in the Population and Individual 
classes to modify the atomic structures into a form that satisfies the convergence criteria. Standard 
versions of genetic and particle swarm algorithms are included as examples, and users can modify 
these codes to apply additional optimization algorithms if desired. 
 
StructOpt requires an input file specifying the details of the initial population, objective function 
terms, relaxation algorithms, output data, and parameters associated with the optimization 
algorithm, such as mutations, crossovers, and selection schemes for the genetic algorithm.  These 
inputs parameterize the optimization and allow StructOpt to be highly configurable. This flexibility 
comes at the cost of increased complexity, so a hierarchical file format (json) was chosen to help 
mitigate some of the complexity. The output data of StructOpt simulations includes structure files, 
files for input/output of external programs such as LAMMPS, and logs of fitness scores, 
genealogy, and which crossovers/mutations were applied to specific atomic structures. 



 
The output data can be parsed using a data exploration utility that is packaged with StructOpt 
called DataExplorer. In addition to providing standard data processing for reading outputs such as 
fitness scores, the data explorer provides utility functions for working with the genealogy of the 
population after genetic algorithm optimization and provides access to all the functionality within 
StructOpt (e.g. relaxations, crossovers, and fitness calculations). Any operation that can be run on 
an Individual instance within StructOpt can also be applied to an atomic model loaded through the 
data explorer. It is therefore straightforward to reevaluate the fitness of a particular structure, for 
example, to identify a crucial turning point in the simulation. Additionally, since the data explorer 
is modularized in much the same way as the core components of StructOpt, its analysis techniques 
can be tied directly into StructOpt and used to tune the parameters of an optimization on-the-fly. 
 
Finally, StructOpt also comes packaged with a simple job manager utility. This can be replaced by 
other workflow managers such as FireWorks [55], Pegasus [59], or CONDOR [60] but the built-
in job manager provides a simple way to design a series of simulations and manage their results 
within a uniform environment. By combining the job manager with the data explorer, a single 
script can submit, track, and analyze a set of jobs for determining the behavior of the optimizer 
against various parameters. These capabilities are particularly useful for hyperparameter 
optimization, for example to test a variety of ’s in Eq 1 to determine their effect on the optimized 
structures. 
 
 

5. Extending the Code 
 
There are three areas in which the codebase is designed for easy modification and extension. New 
optimization algorithms can be implemented that use the current functionality in new ways; 
additional constraints can be implemented to cover a wider range of structure types; and new 
functionality for the optimizations (such as crossovers, fitnesses, etc.) can be added. Each of these 
areas of modifications can be done independently. For example, to add the particle swarm 
optimization to the existing code implementing genetic algorithms, we added a new module that 
updates the atomic positions via the approaches from the particle swarm method [61], which 
replaced the genetic algorithm’s crossovers and mutations. The other functionality of StructOpt 
was used without modification. Smaller-scale modifications to the optimization scripts are also 
designed to be fast and intuitive to the user. For example, in a genetic algorithm optimization, the 
number of individuals in a population can be controlled by updating a parameter to the 
Population.kill method over the course of the simulation. 
 
As an illustration of how to implement a new optimization constraint, consider the example of a 
crystal constrained to a specific space group. Atoms could be restricted to an asymmetric unit 
within the unit cell, then a set of symmetry operations could be implemented to extend those atoms 
to fill the unit cell or a large supercell if necessary. New mutations and crossovers could be defined 
to operate only on well-defined atom sites rather than general atom positions, and a short wrapper 
that populates the sites with atoms could be wrapped around the pre-existing Individual fitness and 
relaxation methods to easily incorporate their pre-existing functionality. Once crossovers, 
mutations, and wrapper functions have been written, the Population class and optimization 
algorithms can use this new constraint without modification to their code.  



 
Finally, crossovers, mutations, and other methods that are designed to modify atomic structures in 
unique ways can be added easily. Each method is contained within its own file and is attached to 
the Individual class (or a subclass thereof) via an import in the corresponding file. Then, the new 
operations are enabled within the input file by specifying the name of the operation. 
 
While StructOpt is written in Python, its functionality is not limited to Python. External programs 
that operate on atomic structures can be incorporated into StructOpt. In particular, the fitness 
modules in StructOpt are all implemented in different languages: STEMSIM is implemented in 
native Python; LAMMPS is written in C++; and FEMSIM is written in FORTRAN. Any relaxation 
code is expected to accept an atomic structure as input and output a modified atomic structure. 
Similarly, any fitness operation is expected to accept an atomic structure and output a fitness score. 
 
 

6. Parallelization and Resource Allocation 
 
In addition to being easily extensible, the code architecture allows for flexible resource 
management. Depending on the computational expense and complexity of the algorithm, the user 
can instruct StructOpt to allocate one or more cores to the methods that operate on the individuals 
in the population. For example, a force-field calculation of a system’s energy may require only 
one core, but a first-principles calculation may require many. The different computation algorithms 
and varying number of structures that need to be evaluated requires StructOpt to be capable of 
dynamically allocating its available resources at every iteration. 
 
StructOpt utilizes two types of parallelization to handle resource allocation, shown schematically 
in Figure 6. The single-core-per-individual (SCPI) parallelization mechanism uses mpi4py [62–
64] to distribute Individual instances over the available cores. If there are at least as many cores as 
Individual instances, each instance is assigned to a different core. If there are more Individual 
instances than cores, the instances will be divided amongst the available cores, and the instances 
that are assigned to the same core will be evaluated serially on that core. This method does not 
support parallelization to more cores than there are Individual instances. mpi4py handles the 
communication required to collect the updated information from each core and redistribute the 
updated Individual instances. 



 
If an evaluation algorithm (such as FEMSIM) already takes advantage of MPI, it can be used 
within StructOpt via the multiple-program-multiple-data (MPMD) functionality supported by 
OpenMPI [65]. Under the MPMD settings, StructOpt uses the MPI_Spawn_Multiple command to 
allocate multiple cores to each Individual instance. When using MPMD, the user can specify a 
range of cores to be used for each evaluation. StructOpt attempts to intelligently assign a number 
of cores to each Individual instance to minimize the total computation time. For example, if the 
user specifies that an evaluation should use between 2 and 16 cores, and for a given iteration four 
individuals need to be evaluated, StructOpt will allocate four cores to each Individual; if, for 
another iteration, only one individual needs to be evaluated, StructOpt will allocate all 16 cores to 
that one individual. 
 
On the other hand, some operations are fast enough that they should only be run on the master 
core. These operations are defined by StructOpt’s @root Python decorator, which provides simple 
syntax for broadcasting the result of the operation on the master core to all other cores. For 
operations that are parallelized, the allgather operation in StructOpt collects the updated 
Individuals from each core, combines them into a single updated Population, and propagates the 
updated Population to all cores. 
 

 
Figure 6:  The SCPI (a) and MPMD (b) methods differ in the way in which they parallelize the 
code. Standalone operations that are computationally expensive benefit from MPI’s MPMD 
functionality, while less computationally intensive operations can be parallelized at the 
population level using SCPI. 



StructOpt’s parallelization mechanisms allow a variety of different algorithms to be incorporated 
into its framework without significantly reducing each algorithm’s parallelized potential. It is 
likely that the algorithms that will most benefit from parallelization will be relaxation or fitness 
algorithms that either intelligently move atoms or perform simulations of experiments. Users can 
integrate their pre-existing techniques and codes into StructOpt to solve their own unique structure 
determination problems. 
 
Population-based optimization algorithms have the advantage that they can be highly parallelized. 
StructOpt takes advantage of this potential by combining both SCPI and MPMD parallelization 
schemes into a dynamic resource management system. SCPI and MPMD scale differently with the 
number of cores used. SCPI parallelizes up to a number of cores equal to the number of individuals 
in the population, while MPMD is limited by the scaling potential of the operation that is being 
parallelized (per individual). For example, assuming an MPMD program is efficient up to 100 
cores and StructOpt uses a population size of 20, the code has the potential to scale up to 
20*100=2,000 cores. The limitation to scaling of this type is the time spent outside the parallelized 
MPMD functions, which will reduce the speedup of the overall code at a high number of cores, 
following Amdahl’s law. In addition, a combination of SCPI and MPMD processes may result in 
many cores being unused for a non-trivial amount of wall-clock time, in which case the scaling of 
StructOpt will be poor. In practice, we find that StructOpt parallelizes with a speedup of 50-100% 
up to one core per individual for a range of problems. The speedup drops significantly at higher 
numbers of cores, but in a way that is strongly problem-specific. 
 
 

7. Conclusion 
 
StructOpt, an open-source structure determination program, provides a framework for 
incorporating simulated energies and experimental characterization data into atomic structure 
optimization of materials. StructOpt is highly modular and can therefore easily integrate new types 
of experimental data, optimization algorithms, and optimization constraints into its infrastructure. 
StructOpt has already been used to solve complex nanoparticle and amorphous structure problems. 
It currently implements genetic algorithm and particle swarm optimizations, and can use 
LAMMPS, STEM, and FEM data within its objective function. In addition, StructOpt implements 
an advanced dynamic resource allocation system to take advantage of MPI functionality and 
existing parallelized applications for materials simulations. 
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