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For mission-critical and time-sensitive navigation of autonomous vehicles, controller
design must exhibit excellent tracking performance with respect to the speed of convergence
to reference command and steady-state accuracy. In this article, a novel design integration
of the neural network with the traditional control system is proposed to adaptively obtain
optimized controller parameters resulting in improved transient and steady-state
performance of motion and position control of autonomous vehicles. Application of the
proposed intelligent control scheme to mobile robot navigation was presented for an eight-
shaped trajectory by optimizing a Lyapunov-based nonlinear controller. Furthermore, a
Linear Quadratic Regulator-based controller was optimized based on the proposed
strategy to control the pitch and yaw angles of a 2-Degree-of —Freedom helicopter. The
simulation results showed that the proposed scheme outperforms the traditional controllers
in terms of the speed of convergence to the desired trajectory and overall error

minimization.

1. Introduction

There have been growing demands for autonomous vehicles
with excellent maneuvering capabilities both for commercial and
military applications [1, 2]. Significant amount of work is ongoing
to realize the commercial operation of autonomous cars [3, 4], and
Wheeled Mobile Robots (WMRs) are finding increasing use in
industrial and service applications [5]. Autonomous Surface
Vehicles (ASV) have been utilized to improve port safety and for
ecological as well as meteorological purposes [6], whereas
Autonomous Underwater Vehicles (AUVs) are useful tools for
underwater search and inspection [7].

Safe navigation will require both excellent path planning and
path tracking strategies. Path planning involves the determination
of an appropriate trajectory for the vehicle whereas path tracking,
which is the focus of this study, is the following of a desired
trajectory. Several schemes have been reported in the literature for
path planning, including in [8], where a framework was proposed
to synthesize sequences of maneuvers that are tracked using
nonlinear controllers, and other strategies are presented in [9, 10].
To execute the maneuvers generated by path planners, control
strategies have been proposed as well.

In [11], Fuzzy Logic Controller (FLC) was proposed for robot
tracking and Proportional-Integral-Derivative (PID) controller was
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utilized to control the speed of WMRs in [12]. The authors of [13]
presented an observer-based approach, whereas backstepping
control strategy was presented in [14, 15]. Sliding-mode control
for WMR trajectory tracking with initial error was reported in [16],
and modular-based method was proposed in [17]. The authors of
[18] proposed a Model Predictive Control (MPC) approach and
Kalman filter-based strategy was presented in [19]. Lyapunov-
based scheme was reported in [20] and controller design by
approximate linearization utilizing Taylor expansion was proposed
in [21]. In order to enhance the perfomance of traditional control
methods, Least Square Policy Iteration (LSPI) and Dynamic
Heuristic Programming (DHP) algorithms were utilized in [22] for
optimizing a Proportional-Derivative (PD) controller. Also, the
authors of [23] utilized neural network (NN) to describe the inverse
dynamics of a biped robot with respect to output errors for the
control of level walking. However, application examples were
limited to scenarios where the robot is initialized at the desired
starting coordinate.

In order to execute maneuvers for unmanned Air Vehicles
(UAVs), feedback linearization [24, 25] and sliding mode control
[26] have been proposed, but they have failed for certain models
due to the nonlinear dynamics of the vehicle [27]. For helicopter
control, backstepping control strategy [28] and Linear Quadratic
Regulator (LQR)-based control [29] have been proposed.
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In this study, a novel learning-based adaptive scheme utilizing
the neural network is developed for autonomous vehicle trajectory
tracking. Whereas, plant models predict the vehicular motion for a
given control command, accuracy is limited by modelling errors
and approximations. Also, for certain models with complex
nonlinear dynamics, it is difficult to obtain a suitable controller.
Since machine learning models provide a more powerful tool to
describe nonlinear dynamics of a plant given example data of plant
operation, this article presents a parameterized control law
designed to achieve trajectory tracking of autonomous vehicles
adaptively. Rather than using a single controller, a family of
controllers is obtained utilizing the NN model to estimate the time
varying controller parameters. The scheme was applied to optimize
a Lyapunov-based nonlinear controller parameters used to execute
an eight-shaped maneuver for a mobile robot. Furthermore, LQR-
based controller parameters for 2-Degree-Of-Freedom (DOF)
helicopter position control were optimized using the proposed
scheme. Simulation results show that the scheme outperforms the
traditional control strategies in terms of faster convergence to the
desired trajectory and more accurate steady-state performance,
regardless of the initial shift in starting coordinates. Also, because

the scheme is sample-based, it can compensate for modeling errors.

The rest of the paper is organized as follows; Section 2 presents
the problem formulation. Section 3 provides an illustrative
application of the proposed scheme. Simulation results are
discussed in Section 4, and Section 5 summarizes the study.

2. Problem Formulation

A dynamic system can generally be defined in state-space as,

x(0) = f(x(@), u(®)) (1

The system state is represented by x(t), the control input is
denoted by u(t), whereas f denotes a mathematical function and
x(t) is the state derivative with respect to time. Given a target
signal r(t), a traditional feedback control law can be computed
based on the difference between the target signal and the actual
system output. Such difference can be denoted by e(t), resulting
in a control input defined as,

u(t) = K(te (t) 2

where K (t) denote the control gain, which can be constant or time-
varying depending on the dynamic description of the system.
However, by utilizing certain control strategies, not only the error
is fed back for control but the states also. For two-dimensional and
higher order systems; the states, control input and error signals are
vectors, whereas the control gain could be a vector or matrix
depending on the control strategy used.

In order to optimize the controller performance for changing
system dynamics or operation regions, a neural network-based
method that adaptively determines the control gain is proposed as
follows. For a traditional closed-loop control system, sample test
run of the system is performed and for each time step k, the state
variables and the control gain are measured and arranged into 3-
tuple {x(t),x(t + k), K(t). The state measurement before the
application of control input is denoted as x(t) whereas the next
state caused by the control action is x(t + k),. The control gain
that caused the state transition is represented as K (t).

Www.astesj.com

Multiple samples of state transitions and control gains are
measured for a sequence of operation, then the control gain or the
control gain parameters for time-invariant or time-varying system
respectively are varied for other sequences. Example of a sequence
is the tracking of a particular course by a mobile robot or the
change in angular orientation of a helicopter over a period of time.
For training stability, the data set is normalized depending on the
data range. And based on the accumulated data set as represented
by the 3-tuple, a NN is trained using the state and next state as input
and the control gain as the output. Hence,

K@) = fx(@®),x(t +k)) 3)

The NN model is made up of processing units called neurons
with weighted interconnections among them [30], and the neurons
with nonlinear activation functions are arranged into layers as
shown in Figure 1.

h(x)

Input layer | =0

hidden layers 0 <l < L

Output layer I =L

Figure 1: Feed forward neural network structure

The input layer is the vector of input variables, which are system
states in the study. For a single hidden layer system, the hidden
layer is a nonlinear combination of the input signals, and for
multiple hidden layer system, subsequent layers are nonlinear
combination of the previous layers. Knowledge is extracted from
the output layer after model training. In supervised learning
employed in this study, an error function based on the difference
between the actual outputs called labels and the predicted outputs
from the NN is minimized to adjust the interconnection weights
among the neurons. After several iterations, the model is said to be
trained. Whereas only a portion of the dataset is used for training,
the remainder is used for testing the performance of the trained
model. The mathematical description of the NN model as utilized
in this study is,

+1 +1
K" = 0(s) )
Sr(ll+1) — W(l+1)Kl + by(ll+1) (5)

where the output vector of a layer [ is denoted by K. Hence,
the input layer vector K° is equivalent to the state input
{x (t), x(t + k)}. The activation function is denoted by 6 and s*
represents the input vector to layer [. The interconnecting weights
and biases from layer [ — 1 to unit n of layer [ are represented by
w} and b}, respectively.

Following offline training as decribed above, the trained NN

model is integrated as a control gain estimator in the traditional
control system as shown in Figure 2.
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Figure 2: Neural network optimized adaptive control system

For online control gain estimation, the NN input due to the next
state x(t + k) is replaced with the reference signal r(t). Hence,

K@) = fx@®,r®) (6)

Then, (2) is transformed to,

u(®) = f(x(®),r(®) * e(t) (N

3. Illustrative Examples

In order to prove the effectiveness of the proposed scheme, two
application case studies are presented. One is the tracking of an
eight-shaped trajectory by a mobile robot, and the other is the
position tracking of a 2-DOF helicopter.

3.1. Mobile Robot Trajectory Tracking

The nonlinear kinetic model [31] of a non-holonomic wheeled
mobile robot is described as,

J'c

Zﬁggh] (8)

The robot’s states x,y,0 are the cartesian x,y, and angular
displacements respectively. Whereas x, y, and @ are the state
derivatives, v corresponds to the linear velocity and w represents
the angular velocity around the vertical axis.

3.1.1. Traditional Control Design

Motion control of the mobile robot is achieved by computing
appropriate linear and angular velocities to drive the robot in the
desired trajectory. According to the procedure in [32], the state
tracking error is generalized by defining it through a rotation

matrix to obtain,
cosf sinfd 0 xd -X
ey = —sm@ cos@ 0 9)

where x4, y,4 ,and 6, are the target coordinates for the robot. Then
the error dynamics in generalized coordinates is obtained by taking
the derivative of (9) as,

wd 0 vdcoseg — v
€y —[ wd 0 Ol ey|+| wvdsinegy l (10)
0 O0lleg wd —w
Making the following substitustions,
u,=vdcoseg — v (11)
U, =wd —w (12)

The error dynamics is transformed to the subsequent form,
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e[ 0 ex 0 0]
éy|=l—wqy ey| + [sineg|vy +]0 0 [u;] (13)
ég 0 €g 0 1

To ensure global stability for the nonlinear dynamics, the
following Lyapunov function is selected,

V= (el 4e2) + % (14)

Taking the derivative of (14) gives
V = Ky(e 6, + e,8)) + epéy (15)
By substituting for é,, é,, and ég from (13),

V = Ky (e uy + eyvgsineg) + equs, (16)

Hence, the Lyapunov-based control law such that V < 0 is
guaranteed is obtained as,

u, = —Kye, (17)

smeg

U, = _szd — Kseq (18)

The controller gains are defined as,

K;(t) = K3(t) = 2{ywi(t) + cvi(t) (19)

where K, = ¢ > 0 is a constant, and { is the damping ratio.

The control law defined by (17) and (18) are composed of both the
feedback and feedforward signals. The feedforward commands are
determined from (8) as,

Vagy = £/ 325 () + 95 (0) (20)
Va®)xa(@®)-%g(®)ya(t)

W (t) xd(t)+yd(t) (21)

04(t) = atan2(y,(t), x4 (t)) + mi (22)

where i is 0 or 1 for forward or backward motion respectively. The
feedback commands are adaptively computed based on NN
estimation as described next.

3.1.2. Controller Parameter Estimation using the Neural
Network

In order to optimize the controller for fast convergence to the
desired trajectory and improved steady-state performance, the NN
is utilized to adaptively estimate the feedback control parameters.
Sample runs of the traditional closed-loop system are performed
for 15 sequences of 1258 state transitions to make a total of 18870
data samples. The input features are the current
state[x(t) y(t) 6(t)], the nominal velocities [vyy Wa], and
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the next state[x(t + k) y(t + k) 6(t + k)]. The output labels are
the control gains [K;(t) K,(t) Ks3(t)] responsible for the state
transition. Data was normalized and the training was implemented
using the MATLAB NN tool box using 70% of the dataset. The

remaining dataset was divided into 15% validation and 15% testing.

The Levenberg-Marquerdt algorithm [33, 34, 35] was used for
training using two hidden neurons. The performance of the NN
estimator was evaluated using the Mean Square Error (MSE) plot
shown in Figure 3. The figure shows good generalization
performance as the test error is approximately equal to that of the
training.

Best Validation Performance is 0.0040605 at epoch 6
1072

Train
Validation
Test

Best

-

Mean Squared Error (mse)

0 2 4 6 8 10 12
12 Epochs
Figure 3: MSE of the NN estimator for robot control

The trained NN estimator is integrated in the second loop of
Figure 2, where a normalizer and denormalizer are embedded for
better control performance. Simulation results of the adaptive
closed loop control system is presented in Section 4.

3.2. 2-DOF Helicopter Position Control
A Two-Input-Two-Output (TITO) Quanser 2D Helicopter model

[35] is considered. The linearized model is obtained in [36] as
follows.

61 10
ol_1|o
gl |o
1) 0

1.0000
0
—0.0315

0 —0.0673]

0
1.0000
0

||
+

0 0
0 0 [Vmp

0.5293  0.0404 | [Vy

0.0372 0.1333

where 6 and ¢ are the pitch and yaw angles respectively.The first
and second derivatives of the pitch and yaw angles are
6, 6 and ¢, ¢ respetively. The pitch and yaw propeller voltages
Vinp and Vp,,, are applied to the corresponding motors driving the
propellers.

' (23)

3.2.1. Traditional Control Design

The pitch and yaw angles of the 2-DOF helicopter were
regulated using the optimal LQR-based control design presented

in [29]. And the control law was obtained as,
u = K,x(t) — K.e(t) (24)
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The realized state feedback gains are,

_ [5478 —-28 457 —438
Kx=1%28 5479 —41 o1 25)
and the error feedback gains were obtained as,
_ [-1.0000 0.0051
Ke = [—0.0051 —1.000 (26)

The system states are represented by x(t) whereas e(t) is the
error feedback signal. The adaptive computation of the error
feedback gains using the NN is subsequently described.

3.2.2. Controller Parameter Estimation using the Neural Network

In order to achieve better accuracy and faster tracking
convergence, the NN is employed to optimize the error feedback
control gains. In this case, six sequences of 700 state transitions
totaling 4195 data samples were sufficient, since the plant has been
linearized. The input features are the current angular orientation
[6(t) ¢(t)] along with the next angular orientation [6(t +
k) ¢(t + k)] of the 2-DOF helicopter. The output labels are the
error feedback control gains
[Ke11(t) Ko12(t) Koz1(t) Koz,(t)] responsible for the angular
orientation change. Similar procedures as proposed in Subsession
3.1.2 of this paper are followed, and the MSE plot is as shown in
Figure 4. The figure shows good generalization of the estimator
similar to observation in the previous section since the test error
approximates the training error. The trained NN estimator is
integrated in the second loop of Figure 2 to obtain optimized
performance as presented next in Section 4.

Best Validation Performance is 1.4385 at epoch 31
102

Train
Validation
Test

Best

Mean Squared Error (mse)
=)

10D -

. L . . . . A
0 6 10 15 20 25 30 35
37 Epochs

Figure 4: MSE of the NN estimator for helicopter control

4. Simulation Results

Closed-loop simulation was conducted in Matlab Simulink
for both the traditional and the NN-optimized control system. The
results for different initial state shifts were compared to prove the
effectiveness of the proposed scheme. The desired eight-shaped
trajectory for the mobile robot was defined as,

xd(t) = sin% (25)

yd(t) = sin % 26)
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0d(t) = atan2 (yd(t), xd(t)) (27)

The feed-forward driving and steering velocities as described by
(20) and (21) are shown in Figures 5 and 6 respectively.

012
0.11
0.1
0.09
7 oosf
£
> 0.07
0.06
005
0.04
003 : ‘ ; :
0 20 40 60 80 100 120 140
Time (seconds)
Figure 5: Robot feed-forward driving velocity input
03 — :
02
0.1
0
E o
>
z
0.1
02
-0.3 L :

0 20 40 60 80 100 120 140
Time (seconds)

Figure 6: Robot feed-forward steering velocity input

Figures 7 — 9 is the trajectory tracking performance of the
nonlinear Lyapunov-based controller for the mobile robot with
initial state error [0.1, 0.3, 0], where the linear displacement unit
is meters and radians is the unit of the angular displacement.
Figure 7 is the result of an underdamped control system due to
low damping ratio, whereas Figure 8 is the result of an over-
damped control system due to high damping ratio. The result of a
critically damped control system with unity damping ratio is
shown in Figure 9, whereas Figure 10 is the corresponding
trajectory tracking output performance of the NN-optimized
control system. It can be observed that the NN-optimized
controller outperformed the different design modes of Lyapunov-
based controller in terms of faster convergence to the desired
trajectory and steady-state error minimization. The steady-state is
the region starting at the point where the robot settles around the
reference trajectory. Although, either fairly good convergence or
steady-state performance can be obtained by varying the control
parameters of the Lyapunov-based controller, but the
improvement is mutually exclusive. However, the NN-optimized
controller achieved both better transient and steady state
performances concurrently by adaptively obtaining varying
controller parameters.
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Figures 11 - 14 are the control performance outputs for the mobile
robot trajectory tracking with initial state error [0.3, —0.5,”/6].
Also in this case, linear and angular displacements are measured
in meters and radians respectively. It can be observed, as the case
is in the previous example, that the NN-optimized controller of
Figure 14 showed better comparative control performance than
the different variations of traditional Lyapunov-based controllers
of Figures 11 — 13.

To further show the performance advantage of the NN-optimized
controller, the average linear and angular tracking errors over the
entire trajectory are presented in Table 1 as it applies to the
different initial state errors. It can be seen that both the resultant
linear and angular tracking errors are minimized using the NN-
optimized controller.

1.5 T T
Lyapunov: underdamped
reference

1}
051
E o
=
-0.5
-1k
15 L L . I
1 0.5 0 0.5 1
x(m)

Figure 7: Underdamped robot Lyapunov-based control

1.5 T T r I I
Lyapunov: overdamped
reference

-
o
(o]
o
=
(&2

Figure 8: Overdamped robot Lyapunov-based control

15

Lyapunov: critically damped
reference

-1 -0.5 0 0.5 1
x(m)

Figure 9: Critically damped robot Lyapunov-based control
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1.6
& NN Optimized
reference
1t
05
E o
=
05}
A}
1.5
1 0.5 0 0.5 1
x(m)
Figure 10: Robot NN-optimized control
1.5 : :
Lyapunov: underdamped
reference
1
0.5
E o
>
-0.5
A
15 . . . .
-1 -0.5 0 0.5 1
x(m)

Figure 11: Underdamped robot Lyapunov-based control

1.5

Lyapunov: overdamped
reference

x(m)

Figure 12: Overdamped robot Lyapunov-based control

15 T T

Lyapunov: critically damped
reference

Xx(m)

Figure 13: Critically damped robot Lyapunov-based control
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15

0.5

y(m)
o

-0.5

* NN Optimized
reference

0.5 0 05 1
x(m)

Figure 14: Robot NN-optimized control

Table 1: Robot mean tracking error based on control method

Control Initial state Mean x Mean y Mean 6

Method error error (m) | error (m) | error (m)
[m,m,rad]

Ezggr‘g;‘x;e q [0.1,0.3,0] 17x10% | -23x10° | 2.4x10?

Eg’:ﬁ;‘;ﬁ;gd [0.1,0.3,0] S18x10% | 9.2x10% | 2.3x10?

Lyapunov_

critically [0.1,0.3,0] 2.8x10% | -3.8x10°% | 2.6x107?

damped

Neural network 0.1,0.3,0 35x10% | -2.5x10% | 22x102

optimized

Lyapunov_ [0.3,-0.5,1/6] 353103 | 2.1x10% | -2.1x10?

underdamped

Lyapunov_ [0.3,-0.5,1/6] 44x10% | 1.33x102 | -3.5x107

overdamped

Lyapunov_

critically [0.3,-0.5,1/6] 14x10° | 4.1x10° | -2.3x102

damped

E;‘;:;;Z‘;ztwork [03,05m/6] | -5.1x10% | -1.3x10* | -3.3x10?

The desired positioning of the 2-DOF helicopter pitch and yaw
angular orientations over time are defined as,

0u(0) = {

20

0.87> — 873 + 107 + 6,7 = 0.05¢,t < 47
—16.9, t > 47

(28)

29)

-20

Pitch Angle (degrees)

230 |

=40 -

-50

Reference

10 20 30

40

Time (seconds)

60

Figure 15: LQR-based pitch angle control

70
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The LQR-based controller performance is shown in Figures 15
and 17 with initial pitch and yaw angular orientations of -40.5 and
0 degrees. The Q and R parameters were selected as
diag([3e53e51111])and diag([1 1]) where Q is associated
with both the state and error feedback signals. The performances
of the NN-optimized controller are shown in Figures 16 and 18
for pitch and yaw angle control respectively. Since the system is
linearized, modest performance improvement is observed with
respect to response speed and steady-state error minimization.
Table 2 shows the comparative tracking errors.

20

NN Optimized Controller
Reference

-20

Pitch Angle (degrees)

-30

-40

.50 H . L L L &
] 10 20 30 40 50 60 70
Time (seconds)

Figure 16: NN-optimized pitch angle control

LOR
Reference

w S

Yaw Angle (degrees)

[N

s L I I L I
0 10 20 30 40 50 60 70
Time (seconds)

Figure 17: LQR-based yaw angle control

NN Optimized Controller |
Referance

Yaw Angle (degrees)
w s

)

10 20 30 40 50 60 70
Time (seconds)

Figure 18: NN-optimized yaw angle control
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Table 2: Helicopter mean tracking error based on control method

Control Initial state Mean 0 error | Mean ¢ error
Method error (degrees) (degrees) (degrees)
LQR [-40.5,0] -0.18 0.08
Neural network [-40.5,0] -0.06 0.04
optimized

5. Conclusion

A neural network optimized control system design for
autonomous vehicle navigation has been proposed in this study.
The design consists of an inner error loop integrated with an outer
loop for estimating the controller parameters utilizing a neural
network trained on samples from test navigation. Comparative
studies of the proposed scheme with traditional methods were
presented. In the first case, the neural network optimized control
system was shown to outperform a Lyapunov-based controller in
terms of faster convergence to the desired trajectory and better
steady-state performance for an eight-shaped maneuver. A second
illustrative simulation example was conducted for the control of
pitch and yaw angles of a 2-Degree-Of-Freedom helicopter model,
where improved transient and steady-state performances were
observed for NN-optimized controller over a Linear Quadratic
Regulator-based controller.

Because the neural network structure allows complex and
nonlinear mapping of variables, the trained estimator is able to
learn the behavior of both linear and nonlinear systems.
Furthermore, since the proposed scheme is sample-based, it can
compensate for plant modelling errors that degrades the
performance of traditional controllers in real-life applications.
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