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For mission-critical and time-sensitive navigation of autonomous vehicles, controller 
design must exhibit excellent tracking performance with respect to the speed of convergence 
to reference command and steady-state accuracy. In this article, a novel design integration 
of the neural network with the traditional control system is proposed to adaptively obtain 
optimized controller parameters resulting in improved transient and steady-state 
performance of motion and position control of autonomous vehicles. Application of the 
proposed intelligent control scheme to mobile robot navigation was presented for an eight-
shaped trajectory by optimizing a Lyapunov-based nonlinear controller. Furthermore, a 
Linear Quadratic Regulator-based controller was optimized based on the proposed 
strategy to control the pitch and yaw angles of a 2-Degree-of –Freedom helicopter. The 
simulation results showed that the proposed scheme outperforms the traditional controllers 
in terms of the speed of convergence to the desired trajectory and overall error 
minimization.  
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1. Introduction
There have been growing demands for autonomous vehicles

with excellent maneuvering capabilities both for commercial and 
military applications [1, 2]. Significant amount of work is ongoing 
to realize the commercial operation of autonomous cars [3, 4], and 
Wheeled Mobile Robots (WMRs) are finding increasing use in 
industrial and service applications [5]. Autonomous Surface 
Vehicles (ASV) have been utilized to improve port safety and for 
ecological as well as meteorological purposes [6], whereas 
Autonomous Underwater Vehicles (AUVs) are useful tools for 
underwater search and inspection [7]. 

Safe navigation will require both excellent path planning and 
path tracking strategies. Path planning involves the determination 
of an appropriate trajectory for the vehicle whereas path tracking, 
which is the focus of this study, is the following of a desired 
trajectory. Several schemes have been reported in the literature for 
path planning, including in [8], where a framework was proposed 
to synthesize sequences of maneuvers that are tracked using 
nonlinear controllers, and other strategies are presented in [9, 10]. 
To execute the maneuvers generated by path planners, control 
strategies have been proposed as well. 

In [11], Fuzzy Logic Controller (FLC) was proposed for robot 
tracking and Proportional-Integral-Derivative (PID) controller was 

utilized to control the speed of WMRs in [12]. The authors of [13] 
presented an observer-based approach, whereas backstepping 
control strategy was presented in [14, 15]. Sliding-mode control 
for WMR trajectory tracking with initial error was reported in [16], 
and modular-based method was proposed in [17]. The authors of 
[18] proposed a Model Predictive Control (MPC) approach and
Kalman filter-based strategy was presented in [19]. Lyapunov-
based scheme was reported in [20] and controller design by
approximate linearization utilizing Taylor expansion was proposed
in [21]. In order to enhance the perfomance of traditional control
methods, Least Square Policy Iteration (LSPI) and Dynamic
Heuristic Programming (DHP) algorithms were utilized in [22] for
optimizing a Proportional-Derivative (PD) controller. Also, the
authors of [23] utilized neural network (NN) to describe the inverse
dynamics of a biped robot with respect to output errors for the
control of level walking. However, application examples were
limited to scenarios where the robot is initialized at the desired
starting coordinate.

In order to execute maneuvers for unmanned Air Vehicles 
(UAVs), feedback linearization [24, 25] and sliding mode control 
[26] have been proposed, but they have failed for certain models
due to the nonlinear dynamics of the vehicle [27]. For helicopter
control, backstepping control strategy [28] and Linear Quadratic
Regulator (LQR)-based control [29] have been proposed.
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In this study, a novel learning-based adaptive scheme utilizing 
the neural network is developed for autonomous vehicle trajectory 
tracking. Whereas, plant models predict the vehicular motion for a 
given control command, accuracy is limited by modelling errors 
and approximations. Also, for certain models with complex 
nonlinear dynamics, it is difficult to obtain a suitable controller. 
Since machine learning models provide a more powerful tool to 
describe nonlinear dynamics of a plant given example data of plant 
operation, this article presents a parameterized control law 
designed to achieve trajectory tracking of autonomous vehicles 
adaptively. Rather than using a single controller, a family of 
controllers is obtained utilizing the NN model to estimate the time 
varying controller parameters. The scheme was applied to optimize 
a Lyapunov-based nonlinear controller parameters used to execute 
an eight-shaped maneuver for a mobile robot. Furthermore, LQR-
based controller parameters for 2-Degree-Of-Freedom (DOF) 
helicopter position control were optimized using the proposed 
scheme. Simulation results show that the scheme outperforms the 
traditional control strategies in terms of faster convergence to the 
desired trajectory and more accurate steady-state performance, 
regardless of the initial shift in starting coordinates. Also, because 
the scheme is sample-based, it can compensate for modeling errors. 

The rest of the paper is organized as follows; Section 2 presents 
the problem formulation. Section 3 provides an illustrative 
application of the proposed scheme. Simulation results are 
discussed in Section 4, and Section 5 summarizes the study. 

2. Problem Formulation 
A dynamic system can generally be defined in state-space as, 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

The system state is represented by  𝑥(𝑡), the control input is 
denoted by 𝑢(𝑡), whereas 𝑓 denotes a mathematical function and  
𝑥(𝑡)̇  is the state derivative with respect to time. Given a target 
signal 𝑟(𝑡), a traditional feedback control law can be computed 
based on the difference between the target signal and the actual 
system output. Such difference can be denoted by 𝑒(𝑡), resulting 
in a control input defined as, 

 𝑢(𝑡) =  𝐾(𝑡)𝑒 (𝑡)              (2) 

where 𝐾(𝑡) denote the control gain, which can be constant or time-
varying depending on the dynamic description of the system. 
However, by utilizing certain control strategies, not only the error 
is fed back for control but the states also. For two-dimensional and 
higher order systems; the states, control input and error signals are 
vectors, whereas the control gain could be a vector or matrix 
depending on the control strategy used. 

 In order to optimize the controller performance for changing 
system dynamics or operation regions, a neural network-based 
method that adaptively determines the control gain is proposed as 
follows. For a traditional closed-loop control system, sample test 
run of the system is performed and for each time step 𝑘, the state 
variables and the control gain are measured and arranged into 3-
tuple {𝑥(𝑡), 𝑥(𝑡 + 𝑘), 𝐾(𝑡). The state measurement before the 
application of control input is denoted as 𝑥(𝑡) whereas the next 
state caused by the control action is 𝑥(𝑡 + 𝑘),. The control gain 
that caused the state transition is represented as 𝐾(𝑡). 

 Multiple samples of state transitions and control gains are 
measured for a sequence of operation, then the control gain or the 
control gain parameters for time-invariant or time-varying system 
respectively are varied for other sequences. Example of a sequence 
is the tracking of a particular course by a mobile robot or the 
change in angular orientation of a helicopter over a period of time. 
For training stability, the data set is normalized depending on the 
data range. And based on the accumulated data set as represented 
by the 3-tuple, a NN is trained using the state and next state as input 
and the control gain as the output. Hence, 

 𝐾(𝑡) =  𝑓(𝑥(𝑡), 𝑥(𝑡 + 𝑘))  (3) 

 The NN model is made up of processing units called neurons 
with weighted interconnections among them [30], and the neurons 
with nonlinear activation functions are arranged into layers as 
shown in Figure 1. 

 
Figure 1: Feed forward neural network structure 

The input layer is the vector of input variables, which are system 
states in the study. For a single hidden layer system, the hidden 
layer is a nonlinear combination of the input signals, and for 
multiple hidden layer system, subsequent layers are nonlinear 
combination of the previous layers. Knowledge is extracted from 
the output layer after model training. In supervised learning 
employed in this study, an error function based on the difference 
between the actual outputs called labels and the predicted outputs 
from the NN is minimized to adjust the interconnection weights 
among the neurons. After several iterations, the model is said to be 
trained. Whereas only a portion of the dataset is used for training, 
the remainder is used for testing the performance of the trained 
model. The mathematical description of the NN model as utilized 
in this study is, 

     𝐾𝑛
(𝑙+1)

= 𝜃(𝑠𝑛
(𝑙+1)

)   (4)
                        

 𝑠𝑛
(𝑙+1)

= 𝑤(𝑙+1)𝐾𝑙 + 𝑏𝑛
(𝑙+1)  (5)

               

 where the output vector of a layer 𝑙  is denoted by 𝐾𝑙. Hence, 
the input layer vector 𝐾0  is equivalent to the state input 
{𝑥 (𝑡), 𝑥(𝑡 + 𝑘)}. The activation function is denoted by 𝜃 and 𝑠𝑙 
represents the input vector to layer 𝑙. The interconnecting weights 
and biases from layer 𝑙 − 1 to unit 𝑛 of layer  𝑙 are represented by 
𝑤𝑛

𝑙  and 𝑏𝑛
𝑙  respectively. 

 Following offline training as decribed above, the trained NN 
model is integrated as a control gain estimator in the traditional 
control system as shown in Figure 2.  
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Figure 2: Neural network optimized adaptive control system 

For online control gain estimation, the NN input due to the next 
state 𝑥(𝑡 + 𝑘) is replaced with the reference signal 𝑟(𝑡). Hence, 

𝐾(𝑡) =  𝑓(𝑥(𝑡), 𝑟(𝑡))   (6) 

Then, (2) is transformed to, 

 𝑢(𝑡) =  𝑓(𝑥(𝑡), 𝑟(𝑡)) ∗  𝑒(𝑡)  (7) 

3. Illustrative Examples 
 In order to prove the effectiveness of the proposed scheme, two 
application case studies are presented. One is the tracking of an 
eight-shaped trajectory by a mobile robot, and the other is the 
position tracking of a 2-DOF helicopter. 

3.1. Mobile Robot Trajectory Tracking 

 The nonlinear kinetic model [31] of a non-holonomic wheeled 
mobile robot is described as, 

 [

𝑥̇
𝑦̇

𝜃̇

] = [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

] [
𝑣
𝑤

]   (8) 

 The robot’s states 𝑥, 𝑦, 𝜃   are the cartesian 𝑥, 𝑦,  and angular 
displacements respectively. Whereas 𝑥̇, 𝑦̇,  and 𝜃̇ are the state 
derivatives, 𝑣 corresponds to the linear velocity and 𝑤 represents 
the angular velocity around the vertical axis. 

3.1.1. Traditional Control Design 

 Motion control of the mobile robot is achieved by computing 
appropriate linear and angular velocities to drive the robot in the 
desired trajectory. According to the procedure in [32], the state 
tracking error is generalized by defining it through a rotation 
matrix to obtain, 

        [
𝑒𝑥

𝑒𝑦

𝑒𝜃

]=[
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] [

𝑥𝑑 − 𝑥
𝑦𝑑 − 𝑦
𝜃𝑑 − 𝜃

]  (9) 

where 𝑥𝑑, 𝑦𝑑  ,and 𝜃𝑑 are the target coordinates for the robot. Then 
the error dynamics in generalized coordinates is obtained by taking 
the derivative of (9) as, 

 [
𝑒̇𝑥

𝑒̇𝑦

𝑒̇𝜃

]=[
0 𝑤𝑑 0

−𝑤𝑑 0 0
0 0 0

] [

𝑒𝑥

𝑒𝑦

𝑒𝜃

] + [
𝑣𝑑𝑐𝑜𝑠𝑒𝜃 − 𝑣

𝑣𝑑𝑠𝑖𝑛𝑒𝜃

𝑤𝑑 − 𝑤

]                (10) 

Making the following substitustions, 

       𝑢1=𝑣𝑑𝑐𝑜𝑠𝑒𝜃 − 𝑣                          (11) 

    𝑢2 = 𝑤𝑑 − 𝑤                                              (12)                               

The error dynamics is transformed to the subsequent form, 

[

𝑒̇𝑥

𝑒̇𝑦

𝑒̇𝜃

]=[
0 𝑤𝑑 0

−𝑤𝑑 0 0
0 0 0

] [

𝑒𝑥

𝑒𝑦

𝑒𝜃

] + [
0

𝑠𝑖𝑛𝑒𝜃

0
] 𝑣𝑑 + [

1 0
0 0
0 1

] [
𝑢1

𝑢2
]       (13)         

To ensure global stability for the nonlinear dynamics, the 
following Lyapunov function is selected, 

 𝑉 =
𝐾2

2
(𝑒𝑥

2 + 𝑒𝑦
2) +

𝑒𝜃
2

2
             (14)

           

Taking the derivative of (14) gives 

  𝑉̇ = 𝐾2(𝑒𝑥𝑒̇𝑥 + 𝑒𝑦𝑒̇𝑦) + 𝑒𝜃𝑒̇𝜃                    (15)                               

By substituting for  𝑒̇𝑥, 𝑒̇𝑦 and 𝑒̇𝜃 from (13), 

 𝑉̇ = 𝐾2(𝑒𝑥𝑢1 + 𝑒𝑦𝑣𝑑𝑠𝑖𝑛𝑒𝜃) + 𝑒𝜃𝑢2            (16)
          

Hence, the Lyapunov-based control law such that 𝑉̇  <  0 is 
guaranteed is obtained as, 

 𝑢1 = −𝐾1𝑒𝑥              (17) 

 𝑢2 = −𝐾2𝑣𝑑
𝑠𝑖𝑛𝑒𝜃

𝑒𝜃
𝑒𝑦 − 𝐾3𝑒𝜃             (18)

          

The controller gains are defined as, 

 𝐾1(𝑡) = 𝐾3(𝑡) = 2𝜁√𝑤𝑑
2(𝑡) + 𝑐𝑣𝑑

2(𝑡)             (19) 

where 𝐾2 = 𝑐 >  0 is a constant, and 𝜁 is the damping ratio. 

The control law defined by (17) and (18) are composed of both the 
feedback and feedforward signals. The feedforward commands are 
determined from (8) as, 

 𝑣𝑑(𝑡) = ±√𝑥̇𝑑
2(𝑡) + 𝑦̇𝑑

2(𝑡)                      (20) 

 

     𝑤𝑑(𝑡) =
𝑦̈𝑑(𝑡)𝑥̇𝑑(𝑡)−𝑥̈𝑑(𝑡)𝑦̇𝑑(𝑡)

𝑥̇𝑑
2(𝑡)+𝑦̇𝑑

2(𝑡)
              (21) 

 

         𝜃𝑑(𝑡) = 𝑎𝑡𝑎𝑛2(𝑦̇𝑑(𝑡), 𝑥̇𝑑(𝑡)) + 𝜋𝑖             (22)
      

where 𝑖 is 0 or 1 for forward or backward motion respectively. The 
feedback commands are adaptively computed based on NN 
estimation as described next. 

3.1.2. Controller Parameter Estimation using the Neural      
Network 

 In order to optimize the controller for fast convergence to the 
desired trajectory and improved steady-state performance, the NN 
is utilized to adaptively estimate the feedback control parameters. 
Sample runs of the traditional closed-loop system are performed 
for 15 sequences of 1258 state transitions to make a total of 18870 
data samples. The input features are the current 
state[𝑥(𝑡)   𝑦(𝑡)   𝜃(𝑡)], the nominal velocities [𝑣𝑑(𝑡)   𝑤𝑑(𝑡)], and 
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the next state[𝑥(𝑡 + 𝑘) 𝑦(𝑡 + 𝑘) 𝜃(𝑡 + 𝑘)].  The output labels are 
the control gains [𝐾1(𝑡)  𝐾2(𝑡)  𝐾3(𝑡)] responsible for the state 
transition. Data was normalized and the training was implemented 
using the MATLAB NN tool box using 70% of the dataset. The 
remaining dataset was divided into 15% validation and 15% testing. 
The Levenberg-Marquerdt algorithm [33, 34, 35] was used for 
training using two hidden neurons. The performance of the NN 
estimator was evaluated using the Mean Square Error (MSE) plot 
shown in Figure 3. The figure shows good generalization 
performance as the test error is approximately equal to that of the 
training. 

 
Figure 3: MSE of the NN estimator for robot control 

 The trained NN estimator is integrated in the second loop of 
Figure 2, where a normalizer and denormalizer are embedded for 
better control performance. Simulation results of the adaptive 
closed loop control system is presented in Section 4. 

3.2.   2-DOF Helicopter Position Control 

A Two-Input-Two-Output (TITO) Quanser 2D Helicopter model 
[35] is considered. The linearized model is obtained in [36] as 
follows. 

     

[
 
 
 
𝜃
𝜑̇

𝜃̈
𝜑̈

̇

]
 
 
 

= [

0 0 1.0000 0
0 0 0 1.0000
0 0 −0.0315 0
0 0 0 −0.0673

] [

𝜃
𝜑

𝜃̇
𝜑̇

] + 

   [

0 0
0 0

0.5293 0.0404
0.0372 0.1333

] [
𝑉𝑚𝑝

𝑉𝑚𝑦
]            (23) 

where 𝜃 and 𝜑 are the pitch and yaw angles respectively.The first 
and second derivatives of the pitch and yaw angles are 
𝜃̇,  𝜃 ̈ 𝑎𝑛𝑑 𝜑,̇  𝜑 ̈ respetively. The pitch and yaw propeller voltages 
𝑉𝑚𝑝 and 𝑉𝑚𝑦  are applied to the corresponding motors driving the 
propellers. 

3.2.1. Traditional Control Design 

The pitch and yaw angles of the 2-DOF helicopter were 
regulated using the optimal LQR-based control design presented 
in [29]. And the control law was obtained as, 

    𝑢 = 𝐾𝑥𝑥(𝑡) − 𝐾𝑒𝑒(𝑡)            (24) 

The realized state feedback gains are, 

 𝐾𝑥 = [
547.8 −2.8 45.7 −4.8
2.8 547.9 −4.1 91

]           (25) 

and the error feedback gains were obtained as, 

     𝐾𝑒 = [
−1.0000 0.0051
−0.0051 −1.000

]            (26) 

 The system states are represented by 𝑥(𝑡) whereas 𝑒(𝑡) is the 
error feedback signal. The adaptive computation of the error 
feedback gains using the NN is subsequently described. 

3.2.2. Controller Parameter Estimation using the Neural Network 

 In order to achieve better accuracy and faster tracking 
convergence, the NN is employed to optimize the error feedback 
control gains. In this case, six sequences of 700 state transitions 
totaling 4195 data samples were sufficient, since the plant has been 
linearized. The input features are the current angular orientation 
[𝜃(𝑡) 𝜑(𝑡)] along with the next angular orientation [𝜃(𝑡 +
𝑘) 𝜑(𝑡 + 𝑘)] of the 2-DOF helicopter. The output labels are the 
error feedback control gains 
[𝐾𝑒11(𝑡)  𝐾𝑒12(𝑡)  𝐾𝑒21(𝑡)  𝐾𝑒22(𝑡)] responsible for the angular 
orientation change. Similar procedures as proposed in Subsession 
3.1.2 of this paper are followed, and the MSE plot is as shown in 
Figure 4. The figure shows good generalization of the estimator 
similar to observation in the previous section since the test error 
approximates the training error. The trained NN estimator is 
integrated in the second loop of Figure 2 to obtain optimized 
performance as presented next in Section 4.  

 
Figure 4: MSE of the NN estimator for helicopter control 

4. Simulation Results 
Closed-loop simulation was conducted in Matlab Simulink 

for both the traditional and the NN-optimized control system. The 
results for different initial state shifts were compared to prove the 
effectiveness of the proposed scheme. The desired eight-shaped 
trajectory for the mobile robot was defined as, 

    𝑥𝑑(𝑡) = 𝑠𝑖𝑛
𝑡

10
              (25) 

    𝑦𝑑(𝑡) = 𝑠𝑖𝑛
𝑡

20
               (26) 
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          𝜃𝑑(𝑡) = 𝑎𝑡𝑎𝑛2 (𝑦𝑑̇(𝑡), 𝑥̇𝑑(𝑡))             (27) 

The feed-forward driving and steering velocities as described by 
(20) and (21) are shown in Figures 5 and 6 respectively. 

 
Figure 5: Robot feed-forward driving velocity input 

 
Figure 6: Robot feed-forward steering velocity input 

Figures 7 – 9 is the trajectory tracking performance of the 
nonlinear Lyapunov-based controller for the mobile robot with 
initial state error [0.1, 0.3, 0], where the linear displacement unit 
is meters and radians is the unit of the angular displacement. 
Figure 7 is the result of an underdamped control system due to 
low damping ratio, whereas Figure 8 is the result of an over-
damped control system due to high damping ratio. The result of a 
critically damped control system with unity damping ratio is 
shown in Figure 9, whereas Figure 10 is the corresponding 
trajectory tracking output performance of the NN-optimized 
control system. It can be observed that the NN-optimized 
controller outperformed the different design modes of Lyapunov-
based controller in terms of faster convergence to the desired 
trajectory and steady-state error minimization. The steady-state is 
the region starting at the point where the robot settles around the 
reference trajectory.  Although, either fairly good convergence or 
steady-state performance can be obtained by varying the control 
parameters of the Lyapunov-based controller, but the 
improvement is mutually exclusive. However, the NN-optimized 
controller achieved both better transient and steady state 
performances concurrently by adaptively obtaining varying 
controller parameters. 

Figures 11 - 14 are the control performance outputs for the mobile 
robot trajectory tracking with initial state error [0.3, −0.5, 𝜋 6⁄ ]. 
Also in this case, linear and angular displacements are measured 
in meters and radians respectively. It can be observed, as the case 
is in the previous example, that the NN-optimized controller of 
Figure 14 showed better comparative control performance than 
the different variations of traditional Lyapunov-based controllers 
of Figures 11 – 13. 

To further show the performance advantage of the NN-optimized 
controller, the average linear and angular tracking errors over the 
entire trajectory are presented in Table 1 as it applies to the 
different initial state errors. It can be seen that both the resultant 
linear and angular tracking errors are minimized using the NN-
optimized controller. 

 
Figure 7: Underdamped robot Lyapunov-based control 

 
Figure 8: Overdamped robot Lyapunov-based control 

 
Figure 9: Critically damped robot Lyapunov-based control 
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Figure 10: Robot NN-optimized control 

 
Figure 11: Underdamped robot Lyapunov-based control 

 
Figure 12: Overdamped robot Lyapunov-based control 

 
Figure 13: Critically damped robot Lyapunov-based control 

 
Figure 14: Robot NN-optimized control 

Table 1: Robot mean tracking error based on control method 

Control 
Method 

Initial state 
error 

[m,m,rad] 

Mean x 
error (m) 

Mean y 
error (m) 

Mean θ 
error (m) 

Lyapunov_ 
underdamped [0.1,0.3,0] 1.7×10-3 -2.3×10-3 2.4×10-2 

Lyapunov_ 
overdamped [0.1,0.3,0] -1.8×10-4 -9.2×10-3 2.3×10-2 

Lyapunov_ 
critically 
damped 

[0.1,0.3,0] 2.8×10-4 -3.8×10-3 2.6×10-2 

Neural network 
optimized [0.1,0.3,0] 3.5×10-4 -2.5×10-4 2.2×10-2 

Lyapunov_ 
underdamped [0.3,-0.5,π/6] 3.5×10-3 2.1×10-3 -2.1×10-2 

Lyapunov_ 
overdamped [0.3,-0.5,π/6] 4.4×10-4 1.33×10-2 -3.5×10-2 

Lyapunov_ 
critically 
damped 

[0.3,-0.5,π/6] 1.4×10-3 4.1×10-3 -2.3×10-2 

Neural network 
optimized [0.3,-0.5,π/6] -5.1×10-4 -1.3×10-4 -3.3×10-2 

The desired positioning of the 2-DOF helicopter pitch and yaw 
angular orientations over time are defined as, 

     𝜃𝑑(𝑡) = {
0.8𝜏5 − 8𝜏3 + 10𝜏 + 6, 𝜏 = 0.05𝑡, 𝑡 ≤ 47

−16.9, 𝑡 > 47
    (28) 

   𝜑𝑑 = 5                       (29) 

 
Figure 15: LQR-based pitch angle control 
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The LQR-based controller performance is shown in Figures 15 
and 17 with initial pitch and yaw angular orientations of -40.5 and 
0 degrees. The Q and R parameters were selected as 
𝑑𝑖𝑎𝑔([3𝑒5 3𝑒5 1 1 1 1]) and 𝑑𝑖𝑎𝑔([1 1]) where Q is associated 
with both the state and error feedback signals. The performances 
of the NN-optimized controller are shown in Figures 16 and 18 
for pitch and yaw angle control respectively. Since the system is 
linearized, modest performance improvement is observed with 
respect to response speed and steady-state error minimization. 
Table 2 shows the comparative tracking errors. 

 
Figure 16: NN-optimized pitch angle control 

 
Figure 17: LQR-based yaw angle control 

 
Figure 18: NN-optimized yaw angle control 

Table 2: Helicopter mean tracking error based on control method 

Control 
Method 

Initial state 
error (degrees) 

Mean θ error 
(degrees) 

Mean φ error 
(degrees) 

LQR [-40.5,0] -0.18 0.08 
Neural network 
optimized [-40.5,0] -0.06 0.04 

5. Conclusion 

A neural network optimized control system design for 
autonomous vehicle navigation has been proposed in this study. 
The design consists of an inner error loop integrated with an outer 
loop for estimating the controller parameters utilizing a neural 
network trained on samples from test navigation. Comparative 
studies of the proposed scheme with traditional methods were 
presented. In the first case, the neural network optimized control 
system was shown to outperform a Lyapunov-based controller in 
terms of faster convergence to the desired trajectory and better 
steady-state performance for an eight-shaped maneuver. A second 
illustrative simulation example was conducted for the control of 
pitch and yaw angles of a 2-Degree-Of-Freedom helicopter model, 
where improved transient and steady-state performances were 
observed for NN-optimized controller over a Linear Quadratic 
Regulator-based controller. 

Because the neural network structure allows complex and 
nonlinear mapping of variables, the trained estimator is able to 
learn the behavior of both linear and nonlinear systems. 
Furthermore, since the proposed scheme is sample-based, it can 
compensate for plant modelling errors that degrades the 
performance of traditional controllers in real-life applications. 
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