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Bats provide important ecosystem services such as pollination of native
forests; they are also a source of zoonotic pathogens for humans and domestic
animals. Human-induced changes to native habitats may have created more
opportunities for bats to reside in urban settings, thus decreasing pollination
services to native forests and increasing opportunities for zoonotic trans-
mission. In Australia, fruit bats (Pteropus spp. flying foxes) are increasingly
inhabiting urban areas where they feed on anthropogenic food sources with
nutritional characteristics and phenology that differ from native habitats. We
use optimal foraging theory to investigate the relationship between bat resi-
dence time in a patch, the time it takes to search for a new patch (simulating
loss of native habitat) and seasonal resource production. We show that it can
be beneficial to reside in a patch, even when food productivity is low, as
long as foraging intensity is low and the expected searching time is high.
A small increase in the expected patch searching time greatly increases the
residence time, suggesting nonlinear associations between patch residence
and loss of seasonal native resources. We also found that sudden increases
in resource consumption due to an influx of new bats has complex effects on
patch departure times that again depend on expected searching times and sea-
sonality. Our results suggest that the increased use of urban landscapes by bats
may be a response to new spatial and temporal configurations of foraging
opportunities. Given that bats are reservoir hosts of zoonotic diseases, our
results provide a framework to study the effects of foraging ecology on disease
dynamics.

One contribution of 14 to a theme isssue ‘Anthropogenic resource
subsidies and host—parasite dynamics in wildlife’.

1. Introduction

The aggregation of animals around food resources is an important driver of
disease transmission [1] and spillover to new host species [2]. For many animals,
food availability exhibits substantial seasonal and spatial variation. In particular,
foods such as fruit and floral nectar occur in habitat patches with variable levels
of synchrony across space. Animals that rely on such ephemeral resources must
be highly mobile and must make decisions about the time spent exploiting a
given food patch. Such decisions are probably based on the energetic profitability
of the resources and the costs associated with finding a new food patch [3-9].
In human-modified landscapes, animals are confronted with new foraging
conditions imposed by the removal of traditional food sources and/ or the appear-
ance of exotic foods with different nutritional and yield characteristics. Animals
may respond to changes in the distribution, abundance and quality of food
resources by adjusting their foraging strategies [10-12], which may explain

© 2018 The Author(s) Published by the Royal Society. Al rights reserved.
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Figure 1. Irreqular flowering patterns of flying fox food in subtropical Australia. (@) The maximum number of species flowering per month out of 56 species known
to be nectar food sources for bats in New South Wales, Australia (adapted from [32]). (b) Simulation of the irreqular flowering events of Eucalypt species over a 10-
year period. This simulation was created by randomly drawing flowering events from flowering frequency data collected by Law et al. [31]. The figure illustrates that

irregular flowering events can lead to occasional food bottlenecks.

why some foragers utilize urban habitats with increasing
frequency and duration [13,14]. In the context of public
health and animal welfare, this is important because the use
of urban and peri-urban habitats by animals hosting zoonotic
diseases increases the risk of disease spillover [15,16].
Evaluating the conditions that lead to increased patch resi-
dence time, such as the interplay between resource seasonality,
habitat clearing and foraging decisions could thus provide
valuable insights into the dynamics of animal-borne diseases
[17,18]. For example, disease expression could depend on the
foraging ecology of hosts because immune mechanisms of
defence are energetically costly [19,20]. Similarly, among-
hosts dynamics could depend on the foraging decisions
made by host in different classes of infection [21,22].
Pteropodid bats across the world are known to be reservoir
hosts of several diseases that may transmit to livestock and
humans [16,23—-25]. Previous work on Australian pferopus bat
species (commonly named flying foxes) has shown that disease
spillover is greater in areas where bats, livestock and humans
co-inhabit [16,26,27]. Although urban Australian flying foxes

are considered a nuisance and are often removed from urban
settings, in most other countries, human—bat contact is facili-
tated by the valuable services that bats provide including
bushmeat and guano (which serves as fertilizer). Elucidating
the mechanisms that favour human—-bat contact may thus be
useful in the management of bat-borne viral diseases such as
Ebola, Nipah and Hendra [23,25].

Australian flying foxes establish roosts near habitat patches
where fruit and nectar are produced [28—-30]. However, such
food sources are spatially scattered because of variation in
tree community composition and in the flowering phenology
of any given tree species in space [31, see also figure 1]). Such
asynchronous production of food and the dependence of
flying foxes on high-energy-yielding food sources [31,32] is
thought to explain the nomadic behaviour of flying foxes.
However, the four species of flying foxes in Australia differ
in their dietary requirements. In urban and peri-urban habitats,
generalist species, such as Pteropus alecto, exploit a combination
of native and exotic food sources [33-35], which may favour
increased residency in urban habitats due to a constant food
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supply across seasons [36]. Furthermore, longer residence time
in urban landscapes could result from loss of native habitat
across the landscape or from loss of habitat that flowers
within specific seasons [30]. In either case, higher energetic
demands would be required to find new habitat patches pro-
ducing food [32]. It is thus possible that both the increased
transit distance imposed by habitat clearing and a more con-
stant food supply from non-native food items explain the
increased time that some species of flying foxes spend near
urban habitats. While patch residence times and the movement
behaviour of flying foxes is affected by a multitude of factors,
previous work suggests that flying foxes display optimal fora-
ging behaviours in selecting roosting and foraging sites [37], so
that patch residence time is at least partly guided by energetic
considerations.

Our aim is to predict how seasonal fluctuation in resources
and habitat fragmentation or patch isolation (measured as the
expected time required to travel to a different patch) affect
patch residence times of flying foxes. We assume that bats
make optimal foraging decisions, such that the patch residence
time depends on marginal energetic gains obtained through
foraging in the patch with respect to expected energetic costs
of finding a new patch. To help explain the increase in
number of permanent flying fox camps near urban landscapes
in Australia [38,39], we specifically seek to identify conditions
that lead to longer residence times in habitats with lower
amplitude of seasonal resource variation (i.e. more consistent
resources). For cases of high seasonality, we then characterize
the effect of initial food density at the time of bat arrival on
the patch residence time. Finally, we quantify the effects of
sudden immigration events associated with floral blooms on
the patch residence time of established bats.

2. Material and methods

(a) Dynamic model

We built a dynamic model to track resource abundance R(t) in a
single patch and the amount of energy E(t) stored by a colony of
bats since their arrival at time ¢ = 0 days. In the absence of bats,
the resources (which can be nectar or fruit) are assumed to
follow a logistic growth model [40], with resource birth v and car-
rying capacity K(t) that oscillates as a cosine function with a period
(d) of one year between 1 + k; (peak) and 1 — k; (trough) in arbi-
trary units. The assumption of logistic growth of the resource is
justified by the observation that nectar production is replenished
following consumption [41]. Resources are also assumed to oscil-
late seasonally given that the flowering abundance of native tree
species greatly decreases in winter (figure 1). Bat foraging occurs
at constant rate 8 which implicitly captures the colony size, assum-
ing that all bats arrive and leave at the same time. Bats convert the
consumed resources into energy E(t) at rate ¢. While in the patch,
bats consume energy at metabolic rate u. When bats leave the
patch, they expect to spend an arbitrary time T searching for and
travelling to a new suitable patch, resulting in a net energy expen-
diture of cT. Note that we define a patch as encompassing both
roosting and feeding sites within a close distance; this is in line
with the observation that flying foxes forage in the vicinity of
their roosting site and that migration to new roosts is correlated
with the use of different foraging areas [42]. This leads to the
following set of differential equations:

)

dE

5 = $BR— kE, (2.2)
E(0)=0, (2.3)
and K(t) =1+ ki cos (d2t). (2.4)

(b) Decision model

While patch occupancy and migration patterns of flying foxes
have been shown to correlate with spatiotemporal variations in
food abundance [28,43], the underlying decision process is
poorly characterized. Here we consider one particular framework,
known as the marginal value theorem [44], which has been used to
model resource-driven migration behaviour in several animal taxa
[45-48]. In short, the model assumes that the optimal residence
time in a patch is the value that maximizes the net average
energy gain E'(t): ‘net’ because we discount the energy spent tra-
velling to the next patch (cT), and ‘average’ as we normalize by
the sum of the residence and travelling times:

E(t) — cT

E*(t) =
© T+t

(2.5)
As shown by [44], and summarized in electronic supplementary
material, figure S1, E'(t) is maximized when it is equal to the mar-
ginal energy gain E'(t). In other words, bats remain in the patch for
as long as the marginal energy gain E'(f) exceeds the net average
gain to date E'(f).

We used a Runge—Kutta integrator algorithm in R (function
ode, method ‘Isoda’, package deSolve [49]) to solve the above
differential equations and evaluate the first time point when
E'(t) < E'(t) as the optimal residence time. We generated model
outputs by varying seasonal amplitude k; (range: 0 to 0.95), the
consumption rate 3 (range: 0.05 to 1 consumed resource units/t)
and the expected time required to travel to a new patch T (range:
0.5 to 72h). Consumption was always set to start when the
resource density was cycling at its equilibrium (i.e. on the limit
cycle). To evaluate the effects of variable bat arrival times, we
allowed consumption to start when the resource was either at
the minimum or maximal resource value of the limit cycle.

(c) Effect of secondary immigration

We then investigated how the residence time changed in response
to sudden immigration events associated with floral blooms. We
extended equations (2.1)-(2.3) to simulate the arrival of a second
bat cohort when food resources R(f) were at their peak:

dR R

EzR[v(lf@)*,Blfﬁz}/ (2:6)
dE

cTtl = $BiR — pEy, (2.7)
% = ¢B,R — pE, (2.8)
and K(t) =1+ ky cos (d2t). (2.9)

Here, the subscripts 1 and 2 identify the established and immigrant
bat cohorts, respectively. We varied 3, so that the overall consump-
tion rate was up to 20-fold greater than the consumption rate of the
established population 8;, which was introduced at time 0, when
the resource density was at its lowest value. For the resident
cohort, we set 8; = 0.05, v=1and T = 72 h, leading to residence
times >1.5 years in the absence of immigration (see Results). We
then calculated the residence time for both the established bat
population and immigrant bats at different seasonality values
(ky = 0.25 or 0.95). In cases of high resource consumption, emigra-
tion of arriving bats occurred before the departure of the resident
cohort. In these situations, we recalculated the departure time of
resident bats by setting 8, = 0 when the departure time of the
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Figure 2. Effects of resource seasonality (k;), consumption rate (), initial resource conditions (/nit.) and expected searching time (T) on the patch residence time.
The red dotted line places emphasis on a full year of patch residency. Additional parameter values: the resource generation v = 1, the metabolic rate u. = 0.1, the
resource-to-energy conversion ¢» = 0.5, and the energetic costs of searching for a new patch ¢ = 1.

immigrant cohort occurred (using the ‘events’ option in the
deSolve package in R). This step was also performed to correctly
calculate the departure time of immigrant bats following the
departure of resident bats.

3. Results

Our first objective was to identify conditions that favour resi-
dence in a patch for more than a year (which we refer to as
‘overwintering’). In habitats with large seasonal amplitude k;
and at low consumption rates 3, small increases in expected
searching time (T') led to bats residing in the patch through
complete seasons (figure 2). When comparing the optimal resi-
dence time between bats arriving at the peak or the trough of
patch productivity (respectively, figure 2bd,f and figure
2a,c,e) we found a striking pattern: on the one hand, bats that
arrived in the low season tended to stay for a few months
(but only overwintered if they had a very low consumption
rate, (a)); on the other hand, bats that arrived at the peak of pro-
ductivity would either stay for a very short time or overwinter
until the next peak.

To better understand these patterns, it is helpful to take a
closer look at the dynamics that take place at low consumption
rates (i.e. when 8= 0.05, figure 3). When bats arrived at the
time of minimum resource abundance (figure 3a,b), the follow-
ing generation of resources extended the patch residence time
because of high energetic profits. Increasing the expected
searching time, which is analogous to making the resource
more scarce, also increased the patch residence time because
this allowed for higher marginal energetic profits relative to
expected gains, even through subsequent periods of resource
decay. By contrast, when consumption started at the maximum
resource value, the following resource decay was amplified by
consumption, leading to low energetic profits and quick

departures from the patch. Exceptions to this trend occurred
when the searching time was sufficiently high to maintain
large marginal energetic profits even under fast resource
decay (figure 3c). These results suggest that the initial density
of the resource (and its subsequent growth or decay) interact
with the expected searching time for new patches to determine
the residence time in a focal patch.

Next, we asked how resident bats would respond to the
arrival of a second bat cohort at peak resource density. We
found that the additional resource consumption brought by
immigration could result in an earlier departure time of the
resident bats. The effect of immigrant bats on the departure
time of resident bats, however, depended on the patch’s
resource seasonality, with an earlier departure more easily
achieved in weakly seasonal patches (figure 4 panel a versus
panel b). Overall, these trends depend on the expected search-
ing time T. As T increases, immigration has smaller effects on
the residence time of established bats, regardless of the strength
of seasonality (results not shown. In figure 4, T = 20). Never-
theless, in addition to showing that immigration can affect
the departure time of resident bats, our results also show that
immigrant bats may also reside for a long period of time in
the patch (grey rectangles in figure 4), and that cases of immi-
gration followed by rapid emigration, which occur under high
consumption rates, (3; in figure 4) can also lower the departure
time of resident bats.

4. Discussion

Habitat loss and the availability of food in urban habitats have
been hypothesized to cause flying foxes to become resident in
urban environments [32]. Consistent with this hypothesis, our
results suggest that the ideal conditions for patch residency
occur when the cost of travelling to new patches is high and
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Figure 3. Effect of initial resource density at bat arrival on the patch residence time for two patches with high seasonal resource amplitude k; = 0.95 and low
consumption rate 3 = 0.05. (a) The patch residence time as a function of the expected searching time (this panel is a subset from the a(i)(ii) of figure 2). The cross
symbols are the different expected searching times that are then mapped as green dots in panels b and c. These panels show the resource density as a function of
patch residence time. The overlaid green dots show the residence time and corresponding resource density for a given expected search time, T. In panel b bat arrival
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when the depletion rate of the food source through foraging is
low. By contrast, conditions that favour quick departure from a
patch are a low cost of travelling and a high rate of resource
depletion. Where consumption rates are high, the period of
residence is determined by the resource density at the start of
consumption, which itself depends on the level of seasonality
of the patch’s resources. If bats start foraging when resources
are at the lowest density, then future resource generation
would favour longer patch residence times. By contrast, if
bats start foraging at the highest resource value, then rapid
resource depletion leads to shorter residence times. Our results
show that if bats deplete resources through consumption, patch
residence time depends on the timing of bat arrival with
respect to the resource density.

In Australia, the flower and fruit production of many native
trees is seasonal, with only a few species reliably producing
nectar over winter [31,50]. However, flowering phenology is
spatially asynchronous, such that the timing of peak flower-
ing differs between sites [32]. The differences in flowering

phenology across sites are thus thought to explain the nomadic
behaviour of flying foxes, as they track food across the land-
scape. Our results further suggest that the time that bats reside
in a focal patch (i.e. the degree of nomadism) depends on the
rate at which resources are consumed within a patch, in addition
to the patch’s degree of isolation (as measured by the expected
time required to find a new patch). However, when consump-
tion is high, the effect of patch isolation on the residence
time is small, suggesting that the depletion of food through
consumption is the main predictor of nomadic behaviour.

The urbanization of native habitats has changed the compo-
sition of flowering tree species, with a mixture of exotic and
native foods now probably producing food throughout the
year [36,51]. This human effect on the landscape is hypoth-
esized to explained the increased presence of flying foxes in
urban habitats [52]. Our results suggest that the residence
time does not only depend on constant food availability, but
also depends on the initial food density found at bat arrival.
For example, a longer residence time in a seasonal food patch
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compared to a constant food patch is possible if bats arrive at the
start of the flowering cycle, because the rapid food generation
favours residency. Conversely, if bats arrive to the patch at
peak food production, then the following food decay leads to
quicker departure times in seasonal food patches compared to
constant food patches. Our results thus suggest that consump-
tion rates and food availability are not the only predictors of
patch residence time. Under optimal foraging theory, initial
food density conditions and the degree patch isolation play
an important role in determining the patch residence time.

In contrast to native fruit and nectar which are produced
ephemerally, urban areas contain a mixture of exotic and
native vegetation that probably produces food throughout
the year [36,51]. Thus, the increased presence of flying foxes
is often linked to the constant availability of food in urban
habitats [52]. Our results suggest that the residence time is
influenced by constant food availability, and therefore on a
minimal impact of consumption on food density. In habitat
patches where food density varies more strongly with
season, the residence time also depends on the initial food den-
sity at bat arrival. For example, a longer residence time in a
seasonal food patch compared to a constant food patch is poss-
ible if bats arrive at the start of the flowering cycle, because the
rapid food generation favours residency. Conversely, if bats
arrive to the patch at peak food production, then the following
food decay leads to quicker departure times in seasonal food
patches compared to constant food patches. Our results thus
suggest that in addition to consumption rates and the degree
of patch isolation, the initial food density conditions at bat arri-
val plays an important role in determining the time that bats
will stay in the patch.

Our results also show that new immigration occurring with
floral blooms may trigger the departure of resident bats, with
immigration reducing the departure time of resident bats to a

greater extent in weakly seasonal patches compared to strongly n

seasonal patches. This effect may be explained by the difference
in resource generation and decay between the strongly and
weakly seasonal patches. In contrast to the strongly seasonal
patch, immigration has a large effect on the resource depletion
of weakly seasonal patches. This can then force marginal ener-
getic gains to fall below net average gains made to date,
triggering the earlier departure of resident bats. By contrast,
in the strongly seasonal patch, the additional effect of immigra-
tion may not drastically alter the rate of resource depletion
through seasonal decay, or therefore the optimal departure
time. This result has the caveat that the expected searching
time for new patches can override the effect of immigration,
such that isolated patches may experience additional immigra-
tion but no emigration. Overall, these results suggest that
permanent patch occupation may occur through (1) increased
residency through patch isolation, (2) bat turnover in the
patch as new immigrant bats trigger the departure of previous
bats residing in the patch, rather than because of permanent
occupancy of one bat cohort, or (3) immigration at a rate that
has little or no effect on resource density (e.g. immigration of
only a few bats), but increasing the overall bat population size.

Such contrasting hypotheses about the mechanisms allow-
ing for permanent patch residency have different implications
for understanding and managing human-bat interactions,
including disease spillover. Although some data exist on
patch residence time ([42]; P Eby 2003, unpublished data],
more data are needed to test these hypotheses and to quantify
the energetic and behavioural mechanisms that create variation
in patch residence time. For example, we know that males and
females Pteropus Poliocephalus have different patch residence
times depending on reproductive state (i.e. pregnant and lactat-
ing females have higher energetic requirements and change
patches more often); that some bats forage over much larger dis-
tances [4] than others; and that flight distance is constrained by
bat body size and climatic variables such as temperature
[4,37,53,54]. This suggests that the energetic benefits of foraging
and expected travelling costs are likely to be determined by
body size, reproductive state or season. It also suggests that
some decisions to migrate or stay put are driven by reproduc-
tive considerations and territoriality which may either
override or amplify decisions based on energetic demands.

Thus, while processes other than marginal energetic gains
may play a role in determining patch residence time, previous
studies have argued that movement patterns in Australian
pteropodid bats are greatly influenced by the energetic benefits
of minimizing commuting distance from roosting to foraging
grounds [28,34,37,42,51,55—-57]. These arguments are consist-
ent with the theory of optimal foraging and the marginal
value theorem used here [44]. Furthermore, our results show
that understanding foraging decisions within the context of
temporal variation of food resources can provide qualitative
approximations of the movement dynamics of pteropodid
bats. Further work is, however, required to quantify the
parameters influencing these decisions.

Nevertheless, a key issue is that the data suitable for testing
our model assumptions are also suitable for testing other models
of foraging and movement. One difficulty in developing a
mechanistic understanding of patch residence time is that the
required data would involve studying animal movement conco-
mitantly with physiology and plant phenology. Models like the
ones presented here can guide the design of such studies [58,59],
and then be extended to include testable mechanisms of disease



dynamics. For example, foraging models may be used to set
time-boundaries under which virus transmission, shedding
and spillover can occur in different patches in a metapopulation.
Similarly, stochastic model extensions of these foraging
decisions could be combined with stochastic epidemic
models to evaluate how the movement behaviour of infected
individuals affects disease dynamics.
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