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Percolation models of pathogen spillover 

Washburne AD, Crowley D, Becker D, Manlove K and Plowright R 

Abstract 

A series of logical events must occur for a pathogen to spill over from animals to people. The pathogen 

must be present in an animal reservoir, it must be shed from the reservoir into the environment or be 

transferred from the reservoir to a vector, it must persist in the environment or vector until contact with 

a human or amplifier host, and it must successfully enter, colonize, and reproduce within the human. 

These events each represent a barrier the pathogen must cross to successfully infect a human. 

Percolation models of pathogens completing the series of barriers or logical events can connect models 

of spillover risk with standard tools for statistical inference.  

Here, we develop percolation-based models of spillover risk and a theoretical framework for managing 

spillover as an inextricably multilevel process. Through analysis and simulation, we show that estimated 

associations between level-specific covariates and spillover events will err towards associations from 

dominant pathway to spillover, a potential problem if there are alternative pathways to spillover with 

different associations with covariates. Furthermore, estimated associations between covariates and 

spillover will better reflect associations between covariates and success probabilities of bottleneck 

events with the highest pathogen attrition rates in the data observed. If one agrees with a percolation 

model for spillover, then GLMs should not be used to estimate relative importance of various levels. We 

recommend always using nonlinear models for predicting spillover risk with quantitative covariates and 

discuss why switching regression models may be well suited for avoiding some obvious pitfalls in 

predicting spillover from alternative pathways or wildlife reservoirs. Finally, we demonstrate how 

percolation models formalize an intuitive management paradigm for mitigating risk in the inherently 

multilevel process of pathogen spillover. 

Introduction 

A series of logical events must occur for a pathogen to spill over from animals to people. The 

pathogen must be present in an animal reservoir, it must be shed from the reservoir into the 

environment or be transferred from the reservoir to a vector, it must persist in the environment or 

vector until contact with a human or amplifier host, and it must successfully enter, colonize, and 

reproduce within the human. Predicting pathogen spillover by understanding the processes shaping 

these various logical events is a major challenge for contemporary epidemiology [1, 2, 3].  

All predictions are based on mathematical models, yet one of the great challenges of 

mathematical biology, absent the laws and governing dynamics present in physics and chemistry, is 

deciding on a model of suitable complexity; in the words of George Box, “all models are wrong but some 

are useful” [4]. A general space of all possible spatiotemporal models for pathogen spillover has been 

fleshed out in a recent paper [3]. However, linking general dynamical systems of abstracted functional 

forms connecting everything from wildlife infection d dynamics and pathogen shedding to dose-

response curves may fall short of predicting spillover risk due to the inherent complexity of abstract, 

deterministic models of everything.  
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Here, we describe a series of probabilistic models based on the percolation of pathogens 

through a series of logical steps between reservoir host infections to downstream human infections. 

Percolation models of pathogen spillover adhere to biological first principles and still allow tractable 

results on how to infer the relative importance of various processes in pathogen spillover. By allowing 

tractable results and a tunable level of complexity, our probabilistic framework may be more useful for 

quantifying spillover risk and the uncertainty about our predictions.  

Percolation processes in mathematics are the stochastic movement of material on graphs [5]. 

The pathway to spillover could be modeled as a directed graph with nodes representing various pools or 

measurement points (reservoir hosts, environment, etc.), and edges representing the potential 

movement of pathogens between those pools. In such a graph, one can tally pathogen loads at the 

nodes and model probabilities of successful passage along edges.  

When a pathogen is shed, it enters a pool of pathogens in the environment. When it survives 

long enough in the environment to contact a human, the shed pathogen enters a pool of pathogens 

available to infect a host. As the logical events on the pathway to spillover occur, pathogens from animal 

reservoirs move along various states or pools on the pathway towards infecting a human. Percolation 

models of pathogen spillover can connect the randomness of real-world data – often count processes of 

spillover events – with statistical models of the series of logical events.  

This paper has two parts. First, we enumerate different percolation model structures 

corresponding to different assumptions about the pathway(s) of pathogen spillover. In the context of 

model structures, we develop conceptual tools useful for discussing spillover risk and assignment of 

relative importance to various steps of the spillover process. The model structures illuminate why log-

probabilities yield a more natural way to analyze such percolation processes, yielding some important 

concepts for management such as the amount of variance in spillover risk that is manageable.  While 

log-probabilities are useful, they introduce a nonlinearity which provides insight into potential pitfalls of 

statistical inferences of spillover risk and its associations with covariates. 

Second, we examine parameter estimation in percolation models. Percolation processes provide 

tractable analysis of rate parameters at various pools in the pathway to spillover. However, true rates 

are often nonlinear in the natural or canonical parameters one infers via regression on counts of 

spillover events through generalized linear models (GLMs) [6]. When attempting to infer associations 

between covariates and the rate of pathogen spillover from multiple reservoirs or multiple pathways, 

the results will be biased towards those of the dominant reservoir or pathway.  

Percolation-based models of pathogen spillover provide easy visualizations of model structure, a 

tractable route for analysis of spillover risk, agreement with first principles of pathogen spillover, 

conceptual tools for management, and a clear connection between model structure and statistical 

inference.  

Model Structures 

A series of logical events must occur for a pathogen to spill over from wildlife to people.  In this 

paper, we consider an integer number, 𝑋, of pathogen particles released from the reservoir and 

surviving a series of logical events leading to 𝑌 spillover events. These percolation model structures can 
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be illustrated with a graph indicating the pathway to pathogen spillover. For example, the graph below, 

read from left to right, 

 

represents 𝑋 pathogens produced from wildlife reservoirs. The pathway to pathogen spillover is 

partitioned into a series of 𝑛 logical events with probabilities 𝑝1, 𝑝2, … 𝑝𝑛 of occuring. At the end of the 

graph, we denote a total number of spillover events, 𝑌. Under this model, spillover only occurs if each of 

the n steps in the progression occurs. Such a graph could be used to represent a percolation model for 

the pathway to spillover of Nipah virus, for example [Oppenshaw et al., this issue]. We refer to this as 

the “serial” model for pathogen spillover. 

Another scenario is a case in which, for one part of the pathogen spillover pathway, there exist 

alternative pathways. For example, Ebola virus can spill over directly from bats to people through 

bushmeat hunting [7] but spillover is more likely to occur through contact with the infected carcass of 

an amplifier host such as a forest antelope or non-human primate [8]. The percolation model for Ebola 

virus will have the graph structure 

 

where the thickness is used to illustrate the dominant pathway and the route to the amplifier has two 

new probabilities: 𝑞1, the probability of infecting an amplifier, and 𝑞2, the probability an infected 

amplifier contacts a human with an infectious dose. The percolation models we investigate below are 

summarized in Table 1.  

For notation, we will always use 𝑋 as the random variable representing the number of virions 

shed or released from the reservoir and 𝑃𝑆 – the probability of spillover - will denote the probability that 

an individual pathogen particle infects a human or other recipient host. We use 𝑝 to denote probabilities 

for logical events on the pathway to pathogen spillover, with single subscripts (𝑝𝑗) representing the 𝑗𝑡ℎ 

event and dual subscripts (𝑝𝑖,𝑗) representing the 𝑖𝑡ℎ alternative pathway for the 𝑗𝑡ℎ event. Finally, 𝑌 will 

represent a filtered number of particles after a series of logical events, with 𝑌𝑗 representing the number 

of pathogen particles surviving 𝑗 events. In general, the subscript 𝑗 will denote event 𝑗 in a series of 

events to pathogen spillover, 𝑖 will indicate an alternative pathway, and 𝑙 will be reserved for the counts 

of pathogens surviving up to some intermediate node or measurement pool in the pathway to spillover. 

Serial (Figure 1) – conceptualization of percolation 

The simplest percolation model for pathogen spillover is to partition a single pathway into 𝑛 

logical events, 𝑗 = 1, … , 𝑛, each with probability 𝑝𝑗  of occurring given all previous events have occurred. 

One way to formalize this model is with a series of Bernoulli random variables 𝐵𝑗) with probability of 

success 𝑝𝑗, indicating whether or not a pathogen makes it through level 𝑗 on the pathway to spillover. 

The random variable 𝐵𝑆 = ∏ 𝐵𝑗𝑗  indicates whether or not a pathogen makes it through every level to 
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infect a person. In this serial model of a single pathway to pathogen spillover, the probability a given 

infectious particle causes a human infection is  

𝑃𝑆 = ∏ 𝑝𝑗

𝑛

𝑗=1

(1) 

Percolation processes operate well with count processes frequently used to model infectious 

particle release or spillover events. If we assume the number of viruses released into the environment is 

a Poisson random variable, 𝑋~𝑃𝑜𝑖𝑠(𝜆), and a serial percolation process filters viruses – each virion 

having probability 𝑝𝑗  of surviving step 𝑗 on the pathway to spillover – then the number of spillover 

events is  

𝑌~𝐵𝑖𝑛𝑜𝑚(𝑋, 𝑃𝑆) (2) 

which is easily shown to follow a Poisson distribution, 𝑌~𝑃𝑜𝑖𝑠(𝑃𝑆𝜆). Similarly, if 𝑋~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇, 𝜓), 

then one can show 𝑌~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝑃𝑆𝜇, 𝜓) (see supplemental information for proofs). The stability of 

count distributions filtered through percolation models is a useful feature for analysis and statistical 

inference as it connects shedding rates and survival probabilities to the end result of a random number 

of spillover events.  

 Some intuition about the behavior of percolation models of pathogen spillover can be obtained 

by taking the logarithm of equation 1. If each 𝑝𝑗  is a random variable (e.g. through dependence on time, 

temperature, or other measured quantities treated as random variables), then the variance of the 

probability of pathogen spillover, 𝑃𝑆, can be decomposed into the sum of variances and covariances of 

log-probabilities, log(𝑝𝑗), 

Var[log(𝑃𝑆)] = ∑Var[log(𝑝𝑗)]

𝑛

𝑗=1

+ ∑ ∑ Cov[log(𝑝𝑗),log(𝑝𝑘)].

𝑛

𝑘≠𝑗

𝑛

𝑗=1

 (3) 

If any two events have a perfect, negative correlation on a log scale, they won’t contribute to 

variance in the overall probability of spillover. All else being equal, if changing the ambient temperature 

halves the probability a virus survives long enough to contact a but doubles the probability of infection 

given contact, the risk of pathogen spillover will remain unchanged human [9, 10, 11, 12]. More 

generally, the covariances between events determine whether a measured change in any given log(𝑝𝑗) 

will have an equal, dampened, or amplified effect on the overall probability of spillover. Pathogen 

spillover is an inextricably multilevel process: one cannot make inferences about how predictable 

changes in the probability of success at one level, such as how temperature is associated with the 

duration of environmental persistence, affect the overall probability of pathogen spillover without 

knowing concomitant changes in the probability of success at every level, such as how temperature is 

associated with shedding, contact, and the probability of infection. The only way a measured change in a 

log(𝑝𝑗) produces an equal change in log(𝑃𝑆) is if one assumes or knows that all other levels remain 

unchanged. 

The log decomposition of variance in the probability of pathogen spillover produces some useful 

concepts for discussing the multilevel modeling and management of pathogen spillover. First, there may 

be an unknowable total variance in spillover risk as we can’t measure Var[log(𝑃𝑆)]. As studies 
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accumulate statistical associations between environmental covariates and log probabilities of success, 

log(𝑝𝑗), some variance in pathogen spillover risk is observed and explained. Not all variance explained 

by environmental covariates may be accessible through management interventions, and so an 

important terminological distinction is that between “explained variance” and “manageable variance” 

(Box 1). Manageable variance is the overall variance in spillover risk which can be modulated through 

allowable management interventions or a set of management interventions under consideration 

[Sokolow et al., this issue]. 

Analogous concepts can be derived using the derivative of the vector of log-probabilities, 
𝑑

𝑑𝑧
log(𝒑), to parameterize the directional change in log probabilities of spillover resulting from changing 

environmental covariates or management actions defined by a variable 𝑧. For example, if 𝑧 is 

temperature, then we can model temperature-dependent probabilities of success as 𝒑(𝑧). Noting that 

𝑑log𝑃𝑆

𝑑𝑧
= ∑

𝑑log(𝑝𝑗)

𝑑𝑧

𝑛

𝑗=1

(4) 

one obtains the net effect of the management action or environmental covariate on spillover risk by 

projecting the vector 
𝑑

𝑑𝑧
log(𝒑) onto the one vector, 𝟏. If the inner product 〈

𝑑

𝑑𝑧
log(𝒑), 1〉 > 0, then the 

risk of pathogen spillover will increase with increasing 𝑧, and isoclines of 𝑃𝑆 are linear subspaces: planes 

of log(𝒑) orthogonal to 1 . The linearity log(𝑃𝑆) as a function of each level’s log probability is 

mathematically useful to note (insofar as the underlying model pertains to reality): linearity permits 

simple dimensionality reductions by decomposing changes in log(𝒑) into changes along the simplex-like 

isoclines on which spillover risk is constant and changes along the single direction along which spillover 

risk increases or decreases [13]. 

Analysis of a serial percolation process for pathogen spillover yields an intuitive scaffold for 

managers attempting to make decisions based on literature from multiple levels: the net impact of a 

covariate or management action depends on an unavoidably multilevel process. Only when the impact 

of a management lever [Sokolow et al., this issue] on probabilities of pathogen success across many 

levels is known (or justifiably assumed) can one estimate the impact of management actions on 

pathogen spillover risk. Such estimations can be approximated by considering log-scale changes in the 

probability of various events on the pathway to spillover occurring. 

 

Alternative pathways / Detours 

 

In many cases, the assumption of a single pathway to pathogen spillover may be too restrictive. 

For example, a pathogen like Bartonella could be transmitted by one of many transmission routes [14, 

15]. In these scenarios, the graphical model becomes  
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where level 𝑙 has 𝑚 alternative pathways (in the case of Bartonella, alternative transmission routes) and 

𝑝𝑖,𝑙is the probability of a pathogen surviving the 𝑖𝑡ℎ alternative pathway given entry to that pathway. 

Letting 𝛼𝑖 be the fraction of particles in the pool prior to 𝑙 which go down the 𝑖𝑡ℎ alternative pathway 

such that ∑ 𝛼𝑖 = 1𝑖 , the probability a given particle spills over becomes 

𝑃𝑆 = (∏ 𝑝𝑗

𝑛

𝑗≠𝑙

) 〈𝒑𝑙〉𝜶. (5) 

where  〈𝒑𝑙〉𝜶 = ∑ 𝛼𝑖𝑝𝑖,𝑙𝑖  is the weighted average probability of surviving level 𝑙.  

Taking the logarithm of both sides of equation (5), we encounter a nonlinearity through the 

logarithm of an arithmetic mean,  

log𝑃𝑆 = log(∑ 𝛼𝑖𝑝𝑖,𝑙

𝑚

𝑖=1

) + ∑ log(𝑝𝑗)

𝑛

𝑗≠𝑙

. (6) 

This log-sum nonlinearity affects our ability to make neat inferences on the impact of doubling or 

halving the probabilities of success along one of the alternative pathways. Similarly, the variance of a 

log-sum cannot expressed in terms of variances and covariances of each log-probability. Taking the 

derivative of equation (6) with respect to a covariate, 𝑧, yields 

𝑑log𝑃𝑆

𝑑𝑧
=

𝑑log(〈𝒑𝑙〉𝜶)

𝑑𝑧
+ ∑

𝑑log(𝑝𝑗)

𝑑𝑧

𝑛

𝑗≠𝑙

(7) 

 

and, noting that, 

𝑑log(〈𝒑𝑙〉𝜶)

𝑑𝑧
=

1

〈𝒑𝑙〉𝜶
∑

𝑑

𝑑𝑧
𝛼𝑖𝑝𝑖,𝑙

𝑚

𝑖=1

(𝑧) (8) 

we see the impact of unit changes on one alternative pathway can’t be separated from the probabilities 

of other alternative pathways due to the inverse dependence on the mean, 〈𝒑𝑙〉𝜶. The analysis becomes 

even more complicated if the fraction of pathogens going down alternative pathways, 𝜶(𝑧), depends on 

the covariate 𝑧. Within alternative pathways, equal and opposite arithmetic changes in edge percolation 

probabilities, 𝛼𝑖𝑝𝑖,𝑙, as opposed to log-scale changes, will cancel out. 

While there are analytical tools for variance decomposition through Taylor Series 

approximations of the log-sum function, that is beyond the scope of this paper. Instead, we want to 
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emphasize that the simplest deviation from the serial percolation model produces a log-sum function in 

equation (6) that prevents the immediate generalization of the variance decomposition from the serial 

model.  The log-sum will come up again. Since the operands of the log-sum are all positive, they can be 

represented as an exponent, 𝑒𝜓𝑖 = 𝛼𝑖𝑝𝑖,𝑙, yielding the LogSumExp function, also known as the softmax 

function because  

log(∑ 𝑒𝜓𝑖

𝑖

) = 𝜓1 + log(1 + ∑ 𝑒𝜓𝑖−𝜓1

𝑖>1

) (9) 

is approximately equal to the maximum, 𝜓1 = max{𝜓𝑖}, when 𝜓1 is sufficiently prominent (i.e. 

∑ 𝑒𝜓𝑖−𝜓1
𝑖>1 ≈ 0). If 𝜓1 is the alternative pathway with the most percolation of pathogens, what we 

refer to as the “dominant pathway“, then the percolation through all of the alternative pathways, 

including its associations with covariates, will resemble percoluation through the dominant pathway in a 

manner given by the softmax function. We further discuss and demonstrate the role of the softmax 

function on parameter estimation in the section on statistical inference. 

Alternative Sources 

Many pathogens can spill over from one of multiple reservoirs. Examples of pathogens spilling 

over from multiple animal reservoirs include plague [16], E. coli [17], giardia [18], Crypotospordiosis [18], 

Lyme disease [19] and more. For 𝑚 alternative reservoirs whose shed or vector-borne pathogens follow 

independent pathways until a common pool at level 𝑙, the percolation graph becomes 

 

where 𝑋𝑖  is the amount of pathogen released from reservoir 𝑖, 𝑝𝑖,𝑗  is the probability of the pathogen 

released from reservoir 𝑖 successfully passing level 𝑗, and 𝑌𝑙  is the amount of pathogen pooled at step 𝑙, 

after 𝑙 logical events. We will use 𝑙 to denote the first point at which pathogens from different reservoirs 

are in a common pool, such as influenza virions shed into a pond by waterfowl [20, 21]. 

Prior to pooling, each pathway is a separate, serial percolation process with the usual results: a 

Poisson random variable at the shedding process for species 𝑖, 𝑋𝑖~𝑃𝑜𝑖𝑠(𝜆𝑖) yields a filtered Poisson 

random variable prior to pooling denoted 𝑌𝑖,𝑙−1~𝑃𝑜𝑖𝑠(𝜆𝑖 ∏ 𝑝𝑖,𝑗)𝑗<𝑙 . 𝑌𝑖,𝑙−1 is a filtered Poisson because it 

can be expressed as a Poisson random variable for which counts are subsequently passed through a 

Bernoulli filter with success probability ∏ 𝑝𝑖,𝑗𝑗<𝑙 ; virions released from a Poisson shedding process be 

removed with probability 1 − ∏ 𝑝𝑖,𝑗𝑗<𝑙 .  

At the intersecting node of the pathways from alternative sources, a set of Poisson random 

variables are added to yield the number of pathogens in the common pool having survived a series of 𝑙 

events. Since the sum of Poisson random variables is a Poisson random variable with rate equal to the 

sum of the rates, the number of pathogens surviving up to the common pool will be  
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𝑌𝑙~𝑃𝑜𝑖𝑠 (∑ 𝜆𝑖 ∏ 𝑝𝑖,𝑗

𝑗≤𝑙𝑖

) . (10) 

The number of spillover events can be calculated by recognizing that percolation is serial between 𝑌𝑙  and 

𝑌 (table 1). For pathogens spilling over from multiple sources each shedding a Poisson-distributed 

number of pathogens, the pooled number of spillover events from all sources will be a Poisson random 

variable with a rate equal to the sum of other rates. Such pooling is commonly modeled and analyzed in 

queuing processes, a conceptual connection we save for future work. 

Time-Dependence – percolation processes 

In all the discussed different probabilistic model structures for pathogen spillover, we’ve 

implicitly assumed an instantaneous count process – Poisson or negative binomial – generating a pulse 

of pathogens and an instantaneous filtration of the shed pathogens to yield similar count processes at 

each point on the pathway to spillover. Often, however, shedding is a time-dependent process, and our 

data (e.g., the number of bird flu virions found in a pond) consist of a sampling of pathogens that have 

survived up to a step in the spillover pathway at a point in time. In addition to shedding, the survival 

probabilities of a pathogen may depend on time, such as seasonal patterns in temperature affecting the 

rate of decay of pathogens in the environment.  

Let 𝜆(𝑡) be the propensity of viral shedding at time 𝑡. Consider the time-dependence of 

environmental persistence combined with a variable time, 𝜏, between shedding and contact. For 

pathogen spillover to occur, viruses shed into the environment must survive until contacting a human. 

The environmental pool at time 𝑡, 𝑌𝑙(𝑡), will contain viruses shed at various times in the past that have 

survived up to time 𝑡. Let 𝜏~ℎ(𝜏) be a random variable with density ℎ, 𝑝𝑙(𝑡, 𝜏) be the probability of a 

pathogen surviving in the environmental pool from time 𝑡 − 𝜏 to 𝑡, and assume that all previous logical 

events partitioned are instantaneous but with time-dependent probabilities, 𝑝𝑗(𝑡). Then, 

𝑌𝑙(𝑡)~Pois(𝜆𝑙(𝑡)), where 

𝜆𝑙(𝑡) = ∫ 𝜆(𝑡 − 𝜏) (∏ 𝑝𝑗(𝑡 − 𝜏)

𝑙−1

𝑖=1

) 𝑝𝑙(𝑡, 𝜏)ℎ(𝜏)𝑑𝜏

∞

0

. (11) 

The rate defined in equation (11) is equivalent to the model of alternative sources in equation (10) with 

appropriately shifted time-dependent probabilities. Hence, nonstationary probabilities of passage and 

random time intervals for lagged passage through a particular level produce a percolation model of 

alternative sources in time for all steps including and prior to the lagged step, as illustrated below, 

where darker shading is used to indicate more recent shedding times. 
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Stochastic epizootiological and shedding processes can be integrated over time to produce 

models of spillover risk by employing a formally defined birth-death process with inhomogeneous 

hazard rates 𝜆(𝑡) [22] as approximated with a Gillespie algorithm [23]. Keeping track of the hazard rate 

allows one to use the analytical results from alternative sources, in particular the softmax nonlinearity, 

to understand how inferred variation in the overall spillover risk is driven by variation in the maximum-

risk pathways in time. 

 

Statistical Inference 

With the inextricably multilevel nature of pathogen spillover, one aim is to estimate the relative 

importance of various levels in the pathway to spillover using data on the incidence of pathogen 

spillover [24, 25, 26]. Barring data on intermediate pools of pathogens 𝑌𝑗, one may hope to measure 

relative importance of each level through the curation of a dataset with level-specific covariates, 𝑧𝑗, 

hypothesized to explain some variation in the probability of spillover for level 𝑗. For example, in an 

alternative source model one may measure the population densities of all alternative sources in the 

locales where spillover occurred. Typically, large-scale studies of spillover work with a set of pooled 

counts, 𝑌, representing successful infections at the end of the percolation model of spillover, and we 

hope to use regression – often generalized linear or additive modeling – to determine spillover risk and 

assess the relative importance of different covariates and barriers to spillover. 

Percolation models easily demonstrate two challenges for such statistical inferences using 

pooled counts such as the number of spillover events. The challenges arise from the difference between 

the probability and rate parameters used in the derivation of equations 1-11, and the canonical 

parameters, logit probabilities and log-rates, used for generalized linear modelling of exponential family 

random variables.  While the probability and rate parameters combine nicely for tractable analyses of 

percolation models, statistical inference through GLMs frequently uses canonical parameters obtained 

by evaluating nonlinear link functions of the probability or rate parameters. The nonlinearity of link 

functions for the Poisson, negative binomial, and Bernoulli random variables present in the percolation 

models of spillover have important consequences for interpreting results from regression on 𝑌 and the 

inference of the relative importance of various steps and pathways to spillover. In this section, we will 

denote canonical parameters 𝜂(𝑧) as functions of a single covariate 𝑧, and the random variable for that 

covariate will be 𝑍. 

Serial  

 The simplest percolation model of pathogen spillover for statistical inference will contain a 

pathogen pulse,  𝑋~𝑃𝑜𝑖𝑠(𝜆(𝑧)), and the probability of spillover, 𝑃𝑆(𝑧), combined to yield the number 

of spillover events, 𝑌~𝑃𝑜𝑖𝑠(𝑃𝑆(𝑧)𝜆(𝑧)). In a GLM framework, one would model the canonical 

parameters of the two processes – counts of virions shed from reservoirs and the probabilities of 

survival through a percolation process - separately as  

𝜂𝑋 = log(𝜆)

                 = 𝛽𝑋,0 + 𝛽𝑋,1𝑧
 (12) 
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𝜂𝑝 = log (
𝑝

1 − 𝑝
)

           = 𝛽𝑃,0 + 𝛽𝑃,1𝑧
(13) 

However, a GLM for spillover events, 𝑌, would estimate 𝜂𝑌, the log of the rate for 𝑌. Using the rate of 𝑌 

defined by the percolation process, combined with equations (12) and (13), we see that a GLM 

predicting 𝑌 would model 

𝜂𝑌 = log(𝜆(𝑧)) + log(𝑝(𝑧))

= 𝜂𝑋 − log(1 + 𝑒−𝜂𝑝).
(14) 

Substitution with equations 12 and 13, yields 

𝜂𝑌 = 𝛽𝑋,0 + 𝛽𝑋,1𝑧 − log(1 + 𝑒−𝛽𝑃,0−𝛽𝑃,1𝑧). (15) 

If  𝜂𝑝 ≪ 0, the approximation log(1 + 𝑒−𝜂𝑃) ≈ −𝜂𝑃 permits approximate superposition of intercepts 

and slopes for an overall linear model, yielding  

𝜂𝑌 ≈ (𝛽𝑋,0 + 𝛽𝑃,0) + (𝛽𝑋,1 + 𝛽𝑃,1)𝑧. (16) 

However, if 𝜂𝑝 ≫ 0, the approximation log(1 + 𝑒−𝜂𝑃) ≈ 𝑒−𝜂𝑃 produces terms which are nonlinear in 𝑧𝑗, 

yielding 

𝜂𝑌 ≈ 𝛽𝑋,0 + 𝛽𝑋,1𝑧 − 𝑒−𝛽𝑝,0𝑒−𝛽𝑝,1𝑧 (17) 

 

These approximations and the switching points between them near 𝜂𝑃 = 0 are illustrated in Figure 2. 

The nonlinearity of canonical parameters as functions of rate and probability parameters in 

percolation processes yields one important caveat of statistical inference of the association between 

covariates and the number of spillover events. Where the datasets and covariates are limited to 

observing high probabilities of pathogen success given shedding (𝑃𝑆 ≫ 0.5), estimates of regression 

coefficients will resemble the associations driving shedding (𝜂𝑋), causing one to underestimate the 

potential importance of attrition when projecting beyond observed data to extreme but feasible 

covariate values yielding 𝑝 ≪ 0.5. Equation 14 shows how percolation models produce tractable and 

sometimes linear combinations of the parameters describing the percolation process's input rates and 

probabilities, yet nonlinear functions of canonical parameters typically used in GLMs of a single level. 

Consequently, one may assume a GLM for each level or a GLM for the number of spillover events, but 

not both. 

 Consider, for example, a carefully curated dataset of level-specific data, 𝑧𝑗, such that  

𝜂𝑝,𝑗
= 𝛽𝑗,0 + 𝛽𝑗,1𝑧𝑗 (18) 

for levels 𝑗 = 1, … , 𝑛, and shedding having a canonical parameter dependent upon 𝑧𝑋 as modeled as in 

equation 12. The number of spillover events will then have canonical parameter 

𝜂𝑌 = 𝜂𝑋 − ∑ log(1 + 𝑒
−𝜂𝑝𝑗 )

𝑛

𝑗=1

. (19) 
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If over the observed values of {𝑧𝑗}, levels can be summarized as either strong attritions with 𝜂𝑝,𝑗 ≪ 0 

for all 𝑗 ∈ 𝑆 or weak attritions 𝜂𝑝,𝑗 ≫ 0 for all 𝑗 in 𝑊, where  𝑆 ∪ 𝑊 = {1, … , 𝑛} captures all the logical 

events between shedding and spillover, then approximations used for equations 16 and 17 yields 

𝜂𝑌 ≈ 𝜂𝑋 + ∑ 𝜂𝑃,𝑗

𝑗∈𝐴

+ ∑ 𝑒−𝜂𝑃,𝑘

𝑘∈𝐵

≈ 𝜂𝑋 + ∑ 𝜂𝑃,𝑗

𝑗∈𝐴

(20) 

Levels with weak attrition rates in the observed data – even if they are more sensitive to feasible 

changes in covariates - will be nonlinear, and their importance as manageable levels will be 

underestimated as they contribute little to the canonical parameter for the overall rate of spillover. If 

one agrees with a percolation model for spillover, then GLMs should not be used to estimate relative 

importance of various levels. Unless estimating the correct nonlinear model in 18, one should be more 

wary than usual of projecting risk for covariate values far beyond those used to train a model (Figure 2).    

  

Alternative Pathways and Sources 

 As we show above, the number of spillover events for alternative pathways and sources, 

whether alternative reservoirs or alternative sources in time, will be a Poisson random variable whose 

canonical parameter will include a softmax function of the rates or probabilities for alternate pathways 

to spillover (equation 9). The softmax nonlinearity provides some insight into how investigations based 

on GLMs of spillover risk can err. If 𝑌𝑖~Pois(𝜆𝑖) for alternative pathways 1, … , 𝑚, then the pooled 

number of spillover events, 𝑌 = ∑ 𝑌𝑖𝑖 , is a Poisson random variable  𝑌~Pois(∑ 𝜆𝑖𝑖 ). The canonical 

parameter one would estimate for GLMs of 𝑌 will be 

𝜂𝑌 = log(∑ 𝑒𝜂𝑖

𝑖

) . (21) 

The softmax functional form of 𝜂𝑌 provides some insight about its behavior. First, 𝜂𝑌 will behave more 

like the maximum of {𝜂𝑖} as the proportion of spillover events arising from the dominant pathway 

increases. Consequently, GLMs of pooled counts or spillover events across alternative sources will 

produce regression coefficients reflecting those of the maximum-risk i.e. dominant pathway (Figure 3).  

Second, if linear models for each pathway are the correct model for each level but the 

maximum-risk pathway is globally dominant within a dataset (e.g., if different reservoirs are dominant in 

different geographic regions or different time periods), a linear model of 𝑌 will fit a plane,  𝜂̂(𝑧) = 𝜷𝑇𝑧, 

across a convex bowl  

𝜂𝑌(𝑧) = log(∑ 𝑒𝛽𝑖
𝑇𝑧

𝑖

) (22) 

leading to a potentially interpretable nonlinearity (Figure 3a). While one should always look for 

heteroskedasticity to ensure a model is a good fit, it’s especially important to check when predicting 

pathogen spillover risk from alternative sources in space, time, or species, as overdispersion could 
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suggest either nonlinearity in the constituent canonical parameters or linearity in the constituent 

canonical parameters for each level combined with switching between dominant pathways of spillover 

within a dataset. Heteroskedasticity does not imply reservoir switching, but spillover data analysts 

should be extra wary because pathway switching is an additional potential source of heteroskedasticity 

in non-serial percolation models. Regression clustering or switching-regression models [27, 28] may 

separate data points with different dominant pathways for overdispersion due to pathway switching; 

this could be a fruitful avenue for future research. 

Conclusions 

Pathogen spillover is an inherently random, multilevel process [3]. Here, we have developed the 

inherently random and multilevel percolation-based models of pathogen spillover. Percolation models 

can be visualized with graphs indicating our mental model of the pathways to spillover, and various 

percolation models can be analyzed to yield clear connections between model structure, data analysis, 

and management paradigms for inferring and mitigating spillover risk. 

For a serial percolation model, the log-probability of pathogen spillover allows one to 

decompose variance in spillover risk in terms of variances and covariances of log-probabilities of each 

level, providing a basic multilevel model of pathogen spillover. The serial decomposition of spillover risk 

may be of use for those developing statistical and mathematical methods to model and infer spillover 

risk. The serial model of pathogen spillover produces some conceptual tools, illustrated in Figure 1, 

towards a management paradigm to evaluate the relative costs and benefits of various management 

actions, the information gain of data from different levels through increased explained variance in log-

probabilities of success, and more. 

We have shown how percolation-based models lend themselves to easy visualizations of model 

structure and tractable calculations of spillover rates. In addition, we have provided two important 

results for the inference of spillover risk across levels and across alternative pathways. In general, one 

cannot use GLMs for both levels or alternative sources and the overall rate of spillover. While 

probabilistic percolation-based models of the number of spillover events yields count distributions 

which are easily described as products of probabilities and sums of rates, such quantities are nonlinear 

functions of the canonical parameters used for the individual levels. 

Consequently, despite the demand for inferences of relative importance of various pathways in 

spillover and the ease of inferring relative importance in generalized linear models, we strongly 

discourage the default use of GLMs predicting the number of spillover events. For alternative source 

models, we hypothesize that regression clustering algorithms may allow one to separate out the linear 

models of alternative levels. When using a GLM to predict pathogen spillover risk, it’s especially 

important to check for heteroskedasticity as bowl-shaped heteroskedasticity may indicate a meaningful 

and consequential alternation of dominant pathways to spillover within the dataset. Instead, 

generalized additive models or the appropriate nonlinear models specified in equations 20 and 22 

should be estimated to appropriately estimate attrition rates at various levels in the pathway to 

spillover. 

Percolation models will fail when virion replication in intermediate pools is non-negligible, such 

as replication within alternative pathways reliably leading to one virion causing potentially multiple 

infections. Similarly, percolation models do not capture epizootiological feedbacks which may exist 
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between environmental or vector pools and wildlife reservoirs. Finally, where dose-response filters are 

crucial, the spatial distribution of virions may be relevant and will require additional model complexity.  

Percolation-based models capture the minimal assumptions of pathogen spillover and allow a 

tunable level of complexity for modeling spillover risk ranging from a coin toss to a fully deterministic 

system in which alternative sources and pathways are determined with probability 1. Percolation 

pipelines can also be a modular component for models of spillover risk. One could model shedding as an 

externally defined stochastic process, as we have assumed here, or one could model shedding into a 

percolation pipeline through more commonly employed SIR-type epizootiological models. Even 

deterministic models can be input into percolation pipelines, as a posterior distribution over different 

model structures can be incorporated through a stochastic sampling of different models’ shedding 

trajectories over time or space. All models are wrong, but percolation models may be a useful tool for 

conceptualizing, managing, and analyzing the risk of pathogen spillover. 
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Table 1 

Model Graph Probability of Percolation, 𝑷𝑺 Rate of Spillover, 𝝀𝑺 Example 
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𝑝𝑙(𝑡, 𝜏)ℎ(𝜏)𝑑𝜏) 

× (∏ 𝑝𝑘

𝑘>𝑙

) 

Nipah 

 

Percolation-based models of pathogen spillover allow graphical visualizations of model structure (the 

graphs) and a clear connection between a multilevel model and resulting probabilities of percolation 

and rates of spillover. Here, 𝜆𝑖 is the rate of shedding from source 𝑖, 𝑝𝑗  is the probability of surviving 

level 𝑗, 𝑝𝑖,𝑗  the probability of surviving level 𝑗 along pathway 𝑖, and 𝕀𝑖 is the indicator function equal to 1 

if the pathogen is shed from source 𝑖 and 0 otherwise. Percolation models can be easily adapted for 

different pathogens with different pathways to spillover, and most adaptations yield similar 

nonlinearities whose impacts on spillover rates and statistical inference we discuss in this papers.  
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Figure 1 

 
Partitioning the pathway to spillover into a series of logical events allows one to model, study, 
conceptualize, and visualize risk maps of spillover across levels. Percolation models subdivide the overall 
probability of spillover into a series of events, such as environmental persistence or viral replication, in-
between which there are pools of potential observations, such as the number of human exposures or 
the number of infected humans. Some variation in the overall risk of pathogen spillover can be 

explained through known associations between log-probabilities log(𝑝𝑗) of each event 𝑗 in the series, 

and external covariates. A management action can differentially impact the probabilities of each event 
happening, leading to a degree of manageable risk under a proposed management regime. Covariances 
between attrition rates at different levels, and even directionality of changes following a management 
action, can be visualized with asymmetric graphs of manageable risk. Pathogen spillover is an 
inextricably multilevel process, and as such quantifying the manageable risk requires knowing the 
impacts of management actions on every one of the series of events happening. Unknown or unstudied 
levels can impact the overall effect of an action on spillover risk, and such unknown effects must be 
explicitly recognized and can either assumed to be unaffected or prioritized for further study. 
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Figure 2 

 

Figure 2: Simulations confirm the nonlinearities of equations (13) and (15). (A-B) The nonlinearity is well 

approximated with a linear model when attrition rates are high, 𝜂𝑃 ≫ 0, or when attrition rates are low  

𝜂𝑝 ≪ 0. By simulating 1 × 105 Poisson random variables, varying 𝛽𝑝,0 while fixing 𝛽𝑋,0 = 3, 𝛽𝑋,1 = −1 

and 𝛽𝑝,1 = 2, we see the convergence of estimated intercepts and slopes to that predicted by equations 

(13) and (15). (C) Using the same parameterization and plotting 𝜆𝑝 as a function of 𝑧 on a log scale 

illustrates the switching behavior of the nonlinearity in 𝜂 = log(𝜆𝑝). For sufficiently large 𝑧, 𝜂𝑝 ≫ 0 and 

the approximation 𝜂 ≈ 𝛽𝑋,0 + 𝛽𝑋,1𝑧 holds (dashed line). The potential for such nonlinearities in real 

world data motivate the use of nonlinear models, such as GLMs or the explicit nonlinear model defined 

in equation (19). 
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 Figure 3 

 

Alternative pathways, whether across reservoirs or across time, result in a nonlinearity in the canonical 
parameters. If 𝑌𝑖,𝑙−1~Pois(𝜆𝑖) is the pathogen contribution from alternative sources 𝑖 = 1, … , 𝑚, then 
the pool of pathogens contributing to spillover, 𝑌𝑙~Pois(∑ 𝜆𝑖)𝑖  has canonical parameter 𝜂 = log(∑ 𝑒𝜂𝑖

𝑖 ) 
where 𝜂𝑖 = log(𝜆𝑖). This nonlinearity, the LogSumExp or softmax function, biases linear regression 
coefficients, including slopes, towards the pathway with the highest mean or intercept, what we refer to 
as the dominant pathway. (A) The bias of the softmax function for linear regression is shown. If two 
pathogens have different regression coefficients with a standard Gaussian covariate, 𝑧~Gsn(0, 𝜎2), but 
one has a larger mean under the observed covariates, the pathogen with the larger mean will dominate 
linear regression. Consequently, generalized linear models of pathogen spillover will underestimate the 
risk of spillover when an alternative pathway becomes dominant. Such effects can reduce the 
effectiveness of multiple regression efforts to predict spillover risk. Generalized additive models or 
regression clustering may alleviate this issue (B) Linear regression of pooled Poisson random variables 
with different covariate regression coefficients, 𝛽𝑖,1, will exhibit threshold switching towards the 
regression coefficient of the dominant pathway. The estimated slope is reasonably approximated by a 
weighted average of the slopes, with weights equal to the mixing proportions of pathogens in the pool 
(yellow dots). 
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Supplemental calculations 

Proof of Poisson & Negative Binomial stability to binomial filtration 

If 𝑿~Pois(𝝀) and 𝒀~Binom(𝑿, 𝒑), then 𝒀~Pois(𝝀𝒑). 

By the law of total probability, the probability mass function of 𝑌 is 

𝑃{𝑌 = 𝑘} = ∑ 𝑃{𝑌 = 𝑘|𝑋 = 𝑥}𝑃{𝑋 = 𝑥}

∞

𝑥=1

 

 

Noting that 𝑃{𝑌 = 𝑘|𝑋 = 𝑥} = 0 for 𝑥 < 𝑘 and substituting the binomial and Poisson probability mass 

functions, we get 

𝑃{𝑌 = 𝑘} = ∑ [(
𝑥!

𝑘! (𝑥 − 𝑘)!
) 𝑝𝑘(1 − 𝑝)𝑥−𝑘]

∞

𝑥=𝑘

[
𝑒−𝜆𝜆𝑥

𝑥!
] 

Substituting 𝑚 = 𝑥 − 𝑘 and combining a few terms, we get 

𝑃{𝑌 = 𝑘} =
𝑒−𝜆(𝜆𝑝)𝑘

𝑘!
∑ [

(1 − 𝑝)𝑚𝜆𝑚

𝑚!
]

∞

𝑚=0

 

Noting that the infinite sum is the Taylor expansion for 𝑒𝜆(1−𝑝), we get 

𝑃{𝑌 = 𝑘} =
𝑒−𝜆𝑝(𝜆𝑝)𝑘

𝑘!
 

QED. 

If 𝑿~NegBinom(𝒓, 𝒒) and 𝒀~Binom(𝑿, 𝒑), then 𝒀~NegBinom(𝒓,
𝒑𝒒

𝟏−𝒒(𝟏−𝒑)
).  

Repeating the first two steps above, but for a negative binomial probability mass function for 𝑋 

𝑃{𝑋 = 𝑥} =
(𝑥 + 𝑟 − 1)!

𝑥! (𝑟 − 1)!
(1 − 𝑞)𝑟𝑞𝑥 

yields  

𝑃{𝑌 = 𝑘} = ∑ [(
𝑥!

𝑘! (𝑥 − 𝑘)!
) 𝑝𝑘(1 − 𝑝)𝑥−𝑘] [

(𝑥 + 𝑟 − 1)!

𝑥! (𝑟 − 1)!
(1 − 𝑞)𝑟𝑞𝑥] .

∞

𝑥=𝑘

 

Cancelling and collecting a few terms, and using the same substitution 𝑚 = 𝑥 − 𝑘, we get 

𝑃{𝑌 = 𝑘} = (1 − 𝑞)𝑟
(𝑝𝑞)𝑘

𝑘! (𝑟 − 1)!
∑ [(

(𝑚 + 𝑘 + 𝑟 − 1)!

𝑚!
) (1 − 𝑝)𝑚𝑞𝑚] .

∞

𝑚=0
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Multiplying and dividing by (𝑘 + 𝑟 − 1)! yields  

𝑃{𝑌 = 𝑘} = (1 − 𝑞)𝑟
(𝑝𝑞)𝑘(𝑘 + 𝑟 − 1)!

𝑘! (𝑟 − 1)!
∑ [(

(𝑚 + 𝑘 + 𝑟 − 1)!

𝑚! (𝑘 + 𝑟 − 1)!
) (1 − 𝑝)𝑚𝑞𝑚]

∞

𝑚=0

 

Which can be written more simply using the binomial coefficient 

𝑃{𝑌 = 𝑘} = (
𝑘 + 𝑟 − 1

𝑘
) (1 − 𝑞)𝑟(𝑝𝑞)𝑘 ∑ [(

𝑚 + 𝑘 + 𝑟 − 1

𝑚
) (1 − 𝑝)𝑚𝑞𝑚]

∞

𝑚=0

 

Multiplying and dividing by (1 − 𝑞(1 − 𝑝))𝑘+𝑟, and moving the term (1 − 𝑞(1 − 𝑝))𝑘+𝑟 inside the 

summand yields 

𝑃{𝑌 = 𝑘} = (
𝑘 + 𝑟 − 1

𝑘
)

(𝑝𝑞)𝑘(1 − 𝑞)𝑟

(1 − 𝑞(1 − 𝑝))𝑘+𝑟
∑ [(

𝑚 + 𝑘 + 𝑟 − 1

𝑚
) [𝑞(1 − 𝑝)]𝑚[1 − 𝑞(1 − 𝑝)]𝑘+𝑟 ]

∞

𝑚=0

 

 

The summand is the probability mass function of a negative binomial random variable with 𝑘 +

𝑟 failures and success probability 𝑞(1 − 𝑝). As such, the infinite sum is equal to 1 and we’re left with 

𝑃{𝑌 = 𝑘} = (
𝑘 + 𝑟 − 1

𝑘
)

(𝑝𝑞)𝑘(1 − 𝑞)𝑟

(1 − 𝑞(1 − 𝑝))𝑘+𝑟
 

Combining terms yields the familiar probability mass function 

𝑃{𝑌 = 𝑘} = (
𝑘 + 𝑟 − 1

𝑘
) (

𝑝𝑞

1 − 𝑞(1 − 𝑝)
)

𝑘

(
1 − 𝑞

1 − 𝑞(1 − 𝑝)
)

𝑟

 

For a negative binomial, therefore  

𝑌~NegBinom (𝑟, (
𝑝𝑞

1 − 𝑞(1 − 𝑝)
)) 

QED. 

Parameterized by mean 𝝁 and dispersion 𝝍: 

If 𝑿~NegBinom(𝝁, 𝝍) and 𝒀~Binom(𝑿, 𝒑), then 𝒀~NegBinom(𝝁𝒑, 𝝍). 

Using the formulas for the mean 𝜇 =
𝑞𝑟

1−𝑞
 and dispersion 𝜓 =

1

𝑟
, we note that the dispersion of 𝑋 and 𝑌 

are equal, while the mean of 𝑌, denoted 𝜇𝑌, becomes 

𝜇𝑌 = (
𝑝𝑞

1 − 𝑞(1 − 𝑝)
) (

1 − 𝑞(1 − 𝑝)

1 − 𝑞
) 𝑟 

which simplifies to 

𝜇𝑌 = 𝑝
𝑞𝑟

1 − 𝑞
= 𝑝𝜇 

QED. 
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