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Pathogen circulation among reservoir hosts is a precondition for zoonotic

spillover. Unlike the acute, high morbidity infections typical in spillover

hosts, infected reservoir hosts often exhibit low morbidity and mortality.

Although it has been proposed that reservoir host infections may be

persistent with recurrent episodes of shedding, direct evidence is often lack-

ing. We construct a generalized SEIR (susceptible, exposed, infectious,

recovered) framework encompassing 46 sub-models representing the full

range of possible transitions among those four states of infection and

immunity. We then use likelihood-based methods to fit these models to

nine years of longitudinal data on henipavirus serology from a captive

colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary

to explain observed dynamics; that acute infectious periods may be very

short (hours to days); that immunity, if present, lasts about 1–2 years; and

that recurring latent infection is likely. Although quantitative inference is

sensitive to assumptions about serology, qualitative predictions are robust.

Our novel approach helps clarify mechanisms of viral persistence and

circulation in wild bats, including estimated ranges for key parameters

such as the basic reproduction number and the duration of the infectious

period. Our results inform how future field-based and experimental work

could differentiate the processes of viral recurrence and reinfection in

reservoir hosts.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
Pathogen circulation in reservoir hosts is an essential precursor to spillover

but is often poorly understood relative to post-spillover processes. Bats are an

especially important clade to study, as they host a uniquely rich set of

viruses—more viruses per species than even rodents [1], including many

important emerging zoonoses [2,3]. Bats host at least six of the World

Health Organization’s top ten named priority pathogens with potential to
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Figure 1. Diagram of generalized SEIR model showing all possible connections
between compartments. Parameters represented include the transmission rate
bi (where i is in f1, 2g), the recurrence rate e , the ‘latency’ rate r, the
immune waning rate v and the clearance rates from latent and acute infection,
sj and gk (where j and k are both in f1, 2g), respectively. While these par-
ameters indicate the same state transitions in all submodels, their biological
representations may vary; e.g. in a model with b1. 0 and r ¼ 0, a high
value of s2 indicates non-infectious infection rather than clearance from
recurring infection.
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create a public health emergency [4]. The mechanisms

that allow for the circulation of such otherwise virulent

viruses in their reservoir hosts, however, are poorly under-

stood despite their enormous consequences for human

health.

Henipaviruses are hosted by fruit bats (family Pteropo-

didae) and include Hendra virus (HeV) in Australia and

Nipah virus (NiV) in Asia [5–7], which are among the

bat-borne pathogens considered by the WHO and others

to have the highest pandemic potential. Both HeV and

NiV cause almost annual outbreaks in horses and people,

respectively. Human fatality rates are greater than 50% [8].

Spillover has occurred both directly from bats to people

(e.g. NiV) [9–12] and indirectly via amplifying or bridging

hosts, namely pigs for NiV and horses for HeV [13–15].

Henipaviruses have also been detected in fruit bats in

Africa [16], and antibodies to them have occasionally been

detected in people and pigs, although no human cases

have yet been documented [17–19]. The nature of

henipavirus circulation in the reservoir—including the

possibility that these viruses can persist in individual

hosts and be impacted by environmental forces—has

strong implications for the risk and drivers of spillover to

people [12,20,21].

The hypothesis that henipavirus infections may be recur-

rent (i.e. oscillating between latent and acute infection) in

their bat hosts has been gaining support (reviewed in [22]).

Evidence includes simultaneous viral shedding of henipa-

viruses from a large number of individuals in a single roost

during presumed times of physiological or nutritional stress

[23,24]; serological conversions of bats that had previously

exhibited apparent clearance [25] (though re-exposure from

an external source cannot be ruled out); ongoing henipaviral

circulation in small island populations [26,27]; and long-term

persistence of circulating henipaviruses in small, closed

populations [28]. However, our incomplete understanding

of bat immunology and the difficulty associated with isolat-

ing henipaviruses from bats have rendered it challenging to

determine what these observations mean in terms of bats’

immunity, clearance and transmission of these pathogens

[22]. Simple models of plausible latent, recurring infection

(e.g. the ‘susceptible–infected–latent–infected’, or SILI,

model) have been analysed theoretically but not empirically

applied to this system [22,29].

Rather than comparing alternative, arbitrary models

of bat-virus dynamics, we decided to systematically explore

a comprehensive set of hypotheses about the cycle of

henipavirus infection and immunity in bats. We expand

upon the classical compartmental SEIR (‘susceptible,

exposed, infectious, recovered’) framework to cover a com-

prehensive range of models of infection dynamics,

including features of recurrence, reinfection and non-

infectious infection. We statistically fit these models to a

longitudinal serological dataset of a breeding, captive

colony of Eidolon helvum held in Ghana for nine years. In

line with empirical evidence [27], we include a seasonal

birth pulse, maternally derived immunity and a simple

age structure in our set of models. We use the results of

the cross-model comparison to predict the most likely

within-host dynamic features—including cycles of recur-

rence and reinfection, clearance of infection, and probable

parameter values—of African henipavirus infections in

their bat reservoir hosts.
2. Material and methods
(a) Data
Individual-level serological data were collected longitudinally

from a captive colony of E. helvum established in Achimota

forest, Accra National Zoo in Accra, Ghana as described in

[28]. The colony is separated from the surrounding forest by a

solid roof and two layers of wire mesh, and captive bats have

been isolated from all other bats since colony establishment.

After the initial capture of 77 wild E. helvum by January 2010,

the bats have been breeding in captivity, and since 2012 the

population has oscillated between approximately 100 and 120

individuals. Blood has been collected from the tagged bats 1–5

times per year since the establishment of the colony, and seropre-

valence has been assessed using a Luminex assay. Antibody

levels were represented using the mean fluorescence index

(MFI) and the seropositivity cut-off was set at 110 MFI (electronic

supplementary material, figure S1) [28,30].

(b) The generalized SEIR model
Because within-host dynamics of henipaviruses in bats are so

poorly understood, we opted to allow for multiple assumptions

about the existence of immunity, heterogeneity in the form of

infection and ability of infections to clear or recur. We developed

a framework that generalizes the SEIR model, composed of a

subset of all possible combinations of transitions among four

state variables (figure 1 and table 1):

1. S: susceptible and must undergo infection to become immune;

2. E: infected but not infectious (‘exposed’)—either incubating or

latently infected;

3. I: both infected and infectious, contributing to the force of

infection;

4.R: recovered/immune and must lose immunity to be reinfected.

We added the additional constraints that viral transmission

occurs directly, that any infection requires an incubation period

for either all hosts or no hosts (i.e. for any one model all trans-

missions occur either to E or to I), that the model must include



Table 1. Parameter names and values used in all models. The parameters bi, sj and gk can each occur in two forms where (i, j and k are each in f1, 2g),
but only one of each pair is nonzero for any submodel. The birth pulse timing parameter f corresponded to a birth pulse peak occurring in April in Accra,
Ghana [28]. The R0 range included subcritical values owing to the small population of the captive colony.

symbol parameter meaning value constraints source

R0 basic reproduction number 0.25þ fit for all models

b1 transmission rate to E — calculated from R0
b2 transmission rate to I — calculated from R0
v immune waning rate 0þ fit for relevant models

r ‘latency’ rate (I!E) 0þ fit for relevant models

e incubation/recurrence rate (E!I) 0þ fit for relevant models

s1 clearance rate (!S) from E 0þ fit for relevant models

s2 recovery rate (!R) from E 0þ fit for relevant models

g1 clearance rate (!S) from I 0þ fit for relevant models

g2 recovery rate (!R) from I 0þ fit for relevant models

f birth pulse timing 4.5 [28]

s birth pulse synchronicity 14.3 [31]

c birth pulse scalar 1.53 calculated to balance deaths

m adult death rate 0.186 year21 [32]

mj newborn and juvenile death rate 0.796 year21 [32]

vm maternal antibody waning rate 1.79 year21 [27]

m juvenile maturation rate 2.27 year21 for 1-year juvenile stage

N population size 13–123 exact sample numbers

k population carrying capacity 100 estimated to match observed population oscillations (100–120)
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some way for individuals to enter an infectious (I) compartment,

and that recovery from either infected state is immunizing in

either all cases or none (although individuals from E may

develop immunity while those from I clear infection without

immunity, or vice versa). These constraints restrict the general fra-
mework shown on figure 1 to 46 submodels, including classical

SIR, SIRS, and SEIR/SEIRS models, as well as a model identical

to the SILI model previously proposed for henipavirus dynamics

[22] (where L (latent infection) is the same as our E (exposure to a

disease–which may include latent infection) compartment), and

models including more elaborate types of recurrent infection

with the possibility of either temporary or lifelong immunity.

For any model within this framework, the basic reproduction

number R0 can be calculated using the next generation matrix

method [33] as:

R0 ¼
1b1N þ b2N(1þ s1 þ s2 þm)

(1þ s1 þ s2 þm)(g1 þ g2 þmþ r)� 1r
:

Owing to the diversity of submodels contained within this

framework, we use the following notation system to refer to

each uniquely:

— Square brackets represent loops of exposed/latent and acute

infection (i.e. recurrent infection); individuals can flow from

the last compartment within the set of brackets to either the

first compartment within the brackets or the first compart-

ment to the right of the brackets; e.g. S[IE] is our notation

for the previously developed SILI model and S[IE]R indicates

recurrent infection where latently infected individuals can

develop immunity.

— Parentheses indicate one of two possible routes for the preced-

ing compartment; e.g. E(S)I indicates that exposed individuals

can directly become either susceptible or acutely infected.
To allow for maternal immunity and emulate age structure,

we also incorporated a simple age- and sex-stratified structure

into the model. This structure included newborn (up to 6.7

months to correspond to estimates of maternal antibody

waning [27]), juvenile (up to 1 year), adult male and adult

female classes. Newborns and juveniles have a higher mortality

rate than adults, corresponding to previous estimates [32]; new-

borns are born with maternally derived immunity if and only if

born to an immune mother [28]. Births occur according to a

yearly birth pulse as previously developed [34]. Our newborn,

juvenile and adult age classes are related to dynamic character-

istics and do not correspond exactly to morphologically

assessed age categories [35]. Newborns in our model are instead

characterized by potential maternal immunity and correspond to

individuals typically labelled neonate or (young) juvenile, while

our adult age classes are characterized by higher annual survival

rates than juveniles and include both adult and sexually imma-

ture (i.e. subadult) individuals between approximately 1 and 2

years of age. We calculated R0 based on the adult mortality rate.

(c) Fitting models to data
To account for both the goodness-of-fit of model trajectories and

their chances of persisting in this small, closed population, we fit

models to the data in two stages (figure 2). In both stages, we

used a likelihood function that accounts for overall observed

seroprevalence and observed distributions of seroconversion

and reversion times, with the first stage using the deterministic

variant of each model. In the second stage, we fit the stochastic

variant of each model to additionally account for the chance of

stochastic persistence in this small, isolated population. The

two stages were:

1. Maximum-likelihood optimization of the deterministic variant

of the model with a burn-in time of 300 years and initial
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Figure 2. Diagram of model fitting procedure for a single submodel with five particles and two iterations. The first stage of fitting is maximum-likelihood estimation
(MLE) of the deterministic version of the submodel, where the likelihood function incorporates two types of data: estimates of seroconversion and seroreversion
times, and sampled seroprevalences over time. The best parameter estimate (u) is perturbed slightly for each particle (circles) and then used to simulate the
stochastic version of the submodel once per particle. The likelihoods of each simulation are calculated (here, darker colours represent higher likelihoods) and
the parameters from the highest-likelihood particles (here, particles 1 and 4) are sampled in proportion to their likelihood-based weights. These are perturbed
again and used in a new round (i.e. iteration) of sampling. (Online version in colour.)
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parameters sampled from a Latin hypercube sample (n ¼ 100)

owing to the frequency of parameter values resulting in a like-

lihood of zero.

2. Iterated particle filtering [36] (100 iterations on 10 000 particles

with a cooling factor of 1% per iteration; see electronic sup-

plementary material, text 2.2 for additional details). For the

first iteration, we performed 10 000 stochastic simulations of

the submodel with parameters perturbed from the initial par-

ameters determined in step 1. Subsequent iterations involve:

(a) Calculating the likelihoods of all 10 000 simulations of the

previous iteration.

(b) Sampling starting parameter sets proportional to weights

calculated from those likelihoods.

(c) Perturbing those starting parameter sets with an initial

standard deviation of half the initial parameter value

(with a minimum standard deviation of 0.1 for R0). This

standard deviation ‘cooled’ by a factor of 0.01 per iteration.

(d) Finally simulating exact stochastic trajectories of each

model using an adaptive t-leaping algorithm (by repeat-

edly sampling transition events for each time step t;

electronic supplementary material, text 2.3).

Owing to uncertainties about the mechanisms of antibody

responses in bats [22,37], we performed this analysis under

two different assumptions about serological status. In the first,

we assumed that all non-susceptible individuals are seropositive

(i.e. the E, I and R compartments). In the second, only the R com-

partment is seropositive. We refer to these sets of assumptions as

EIRþ and Rþ, respectively.

The likelihood function for each of these stages was based on

cross-sectional seroprevalences, the probabilities of different

seroconversion/reversion pathways within each model and the

expected time for an individual to traverse that pathway; we fit

these components both to population-level seroprevalence at

each sampling point and to the range of possible timings of all

observed seroconversion/reversion events (i.e. a uniform distri-

bution of times between the minimum and maximum possible

times based on the sampling dates). Additional information on
the likelihood function can be found in electronic supplementary

material, text 2.1.

(d) Model comparison
For each set of assumptions, we created a composite model by

averaging parameters by Akaike weight (derived from Akaike

information criteria, AIC) for that assumption [38]. We also

used the Akaike weights to estimate the relative importance for

each model parameter and several model features comprised of

parameter and model specification combinations, such as recur-

rent latent infection (electronic supplementary material, text

2.4). For each set of assumptions, we calculated relative impor-

tance for each possible parameter and feature as the summed

weight of all models containing the relevant parameter(s).
3. Results
(a) Model comparison
Top-fitting models were able to reproduce observed patterns

of seroprevalence, seasonality and distributions of serocon-

version/seroreversion times (figure 3). The two sets of

serological assumptions (EIRþ and Rþ) resulted in different

top models according to AIC (figure 3a), although both

predicted recurrent cycles of acute and latent infection

and spontaneous clearance of latent infection (electronic

supplementary material, figures S6 and S7):

— E, I and R seropositive (EIRþ): S[E(S)I] (Akaike weight of

0.64): model with initial exposure that can either clear

without acute infection or may result in acute infection.

Once acute, may recur through cycles of latent infection

or may clear.

— R only seropositive (Rþ): S[E(S)I]RS (Akaike weight of

0.55): as in EIRþ model, but acute infection may result

in temporary immunity.
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Many model structures were unable to adequately predict

both observed serological patterns and viral persistence in

the captive colony under certain serological assumptions.

For example, under the EIRþ assumption, SI/SEI (i.e. lifelong

infection), S[IE]R/S[EI]R (i.e. recurrent latent infection with

eventual lifelong immunity) and S[EI]/S[IE] (i.e. lifelong recur-

rent infection) models all resulted in a likelihood of zero when

applied to our longitudinal dataset. This was often, but not

always, because these models cannot produce both serocon-

versions and seroreversions (e.g. under the EIRþ
assumption, only models where infected bats can eventually

return to susceptibility can produce seroreversions).
Under the assumption that antibodies represent immunity

(i.e. Rþ) all likely models included two types of infection

cycles: recurrent latent infection and reinfection following

viral clearance (figure 4). Under the EIRþ assumption, poten-

tial models were more varied, but rarely included sterilizing

immunity (i.e. any R compartment) and often included

potentially recurrent latent infection.
(b) Parameter estimates
Under the EIRþ assumption, several key parameter estimates

were consistent across models, especially R0 (figure 5a) and
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the immune waning rate v. Most high-likelihood values of R0

fell between 2 and 4, with a composite mean of 3.0. However,

the Rþ assumption resulted in extremely high R0 values (up

to about 200; figure 5c). The composite mean R0 values for

this assumption was 112.3.

Estimated immune waning times were remarkably con-

sistent across all models and both sets of assumptions

(figure 5). Under the EIRþ assumption, all but one model

predicted immunity lasting either 1–2 years or lasting life-

long (10þ years) or longer on average. Under the Rþ
assumption, predicted immunity lasts just under 1 year for

all probable submodels.

While recurrence and reinfection after viral clearance were

supported in nearly all high-likelihood models, the balance of

these mechanisms differed by serological assumption (table 2).

However, under both assumption sets seroconversion and

seroreversion processes were best supported by frequent

cycles of recurrent infection and occasional clearance.

Weighted estimates for other parameters were more vari-

able (electronic supplementary material, figures S2–S5) but

exhibit several trends. For example, the duration of acute

infection predicted under the Rþ assumption is between

hours and about one week under all but three models with

nonzero likelihoods; these three models predict long infec-

tious periods but are three of the four worst-fitting models.

For both sets of assumptions, cycles of acute and latent infec-

tion are predicted to be very short (between hours and days).
4. Discussion
Observed patterns of seroprevalence, seroconversion, serore-

version and persistence of henipaviruses in a captive colony

of E. helvum in Ghana were best explained by cycles of rein-

fection with occasional viral clearance, possibly alongside

cycles of recurrent latent henipavirus infection and/or non-

infectious infections. For the best-fitting model under the

EIRþ assumption (i.e. individuals in the E, I and R compart-

ments are seropositive), a latently infected bat is about

75 times more likely to undergo at least one more short
bout of acute infection than to spontaneously clear infection.

This leads to an expected duration of infection (including

both latent and acute stages) of about 4.5 years. For the

best-fitting model under the Rþ assumption (i.e. only indi-

viduals in the R compartment are seropositive), an acutely

infected bat is about 40 times more likely to return to a

latent state than to recover and develop temporary immunity,

with an expected duration of infection of about 10 months.

These expected durations are, however, highly variable

even for a single parameter value, because there is a wide dis-

tribution of the number of infection cycles that a single

individual may experience. Minimum infection times are

possible on the scale of about a day (between 1–3% of indi-

viduals under both sets of assumptions), while maximum

infection times may last throughout a bat’s expected lifetime

(although with less than 0.1% probability). The variability in

infection length and frequent support for multiple infection

pathways may suggest high individual heterogeneity in

response to infection; e.g. some individuals may be able to

effectively suppress infections while others, perhaps in

response to pregnancy or other sources of physiological

stress [21,39], experience acute infection or recurrence.

Measuring differences in infection and antibody dynamics

at the individual level could provide additional support for

the existence of multiple infection pathways and could help

disentangle these processes.

Both sets of serological assumptions (EIRþ and Rþ) con-

sistently predict rapid cycles of acute and latent infection that

correspond to the cyclic nature of seroprevalence in the

observed data. This suggests that viral shedding is sporadic,

in accordance with observations of henipaviruses in nature,

although we note that a transition time of a few hours is

unlikely to represent a true immune response [16,23]. Our

likelihood function may favour excessively short cycles of

acute and latent infection because these can provide a wide

range of probable serological transition times. Although

experimental infection studies have failed to provide reliable

data on the patterns and duration of henipavirus shedding

[6], our results indicate that acute–latent infection cycles are

able to reflect naturally observed variation in serological tran-

sition times (perhaps reflecting individual heterogeneity [40]

or dose-dependency [41] in immune responses).

Observed patterns of seroprevalence, seroconversion and

seroreversion could not be explained by models with simple

immunizing infection or recurrent latent infection alone.

Especially under the Rþ assumption, most models had likeli-

hoods of zero, including many models with immune waning.

SEIR models—which may apply to Marburg virus dynamics

in fruit bats [31,42,43]—and SEI models with or without immu-

nizing asymptomatic infections—which may explain rabies

persistence in neotropical and temperate bats [44–46]—notably

could not explain observed patterns of henipavirus serology in

the captive E. helvum colony under either serological assump-

tion. Even models of lifelong latent infection were unable to

explain these patterns under our current model assumptions.

This includes the S[IE] model, which had been suggested

(under the acronym of SILI) for henipavirus dynamics in fruit

bats [22]. Thus, while our study supports the existence of recur-

rent infection in bats, it also suggests a need for additional

features of the cycle of infection and immunity.

Variations both within and between assumption sets—

including apparently unrealistic predictions—are informative

about which dynamic features are required to explain observed
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Figure 5. Distributions of predicted parameter values for models with at least 1% Akaike weight under the EIRþ (a,b) and Rþ (c,d ) assumptions. R0 values (a,c)
and immune waning durations (b,d ) are weighted by particle likelihood in last 10 iterations of stochastic captive colony fitting procedure. Models are ordered
according to decreasing weight. Most models under the EIRþ assumption result in identical predictions of lifelong immunity (b) because they do not include
the relevant parameter (v). (Online version in colour.)

Table 2. Top and weighted composite models under each set of serological assumptions. All top and composite models include reinfection, recurrence and non-
infectious infections. Composite models are mean parameters weighted by submodel Akaike weights.

EIR1 R1

top model composite top model composite

representation S[E(S)I] — S[E(S)I]RS —

R0 2.0 3.0 66.7 112.3

shedding duration 1.0 months 2.7 days 1.6 weeks 4.5 h

latency/incubation period 2.1 h 1.8 h 3.0 h 2.9 h

immunity duration — 88 years 2.3 years 1.3 years
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patterns. The extremely high predicted R0 values under the Rþ
assumption, for example, may suggest that long-term viral per-

sistence in this small, closed population is unlikely within

plausible parameter ranges if all seropositive individuals are

immune. Indeed, the data imply that 60–70% of bats would

be immune under the Rþ assumption, which may require a

very high value of R0 for the virus to persist; these values

allow some individuals to be infected long-term, maintaining

infection in the population and avoiding stochastic extinction

that is otherwise likely with only a few dozen susceptible
individuals. However, owing to the lack of prior constraints

on the rangeofparametervaluesexploredduring the fittingpro-

cess, we cannot rule out that there are other plausible parameter

sets with lower R0 values that were excluded by our likelihood-

maximization method.

One of the limitations of our analysis is the remaining uncer-

tainty about the interpretation of serological data in the absence

of virological data. Ideally, measurements of both infection and

serological status could allow stronger inferences. However,

while viral shedding in urine has been readily detected in
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wild bat populations, no consistent, accurate and noninvasive

test of an individual’s truehenipavirus infection status currently

exists. Some immunological differences between bats and other

mammals may exist; as additional research clarifies the role of

their antibody responses to infection, and henipavirus infection

in particular, the appropriate set of serological assumptions

may become clearer [43,47–49]. In addition, our analysis

relied on the classification of bats as either seropositive or sero-

negative, which is achieved by choosing a MFI cut-off for the

Luminex serological assays. Because interpretation of bats’ anti-

body responses to henipavirus infection remains uncertain [30],

thismay introduce somebias in our results. However, the distri-

butions of seroconversion times and seroreversion times based

on the data remain similar across a wide range of cut-off values

(electronic supplementary material, figure S1).

Explicit modelling of antibody titres and measurement

uncertainty (if necessary, with an assay that more consistently

and directly maps to individual infection status) could improve

inference but would require additional information about the

role of antibodies in bats’ response to henipaviruses. Modelling

antibody titres instead of seropositive versus seronegative

status would also require more frequent sampling timepoints.

Other limitations of our analysis include the assumption of a

steady state within the colony. More longitudinal studies of

bat henipavirus dynamics in wild populations could resolve

these issues, although low rates of recapture make such studies

difficult [50]. Finally, any additional bounds on our parameters

could improve inferences. For example, constraining the dur-

ation of acute infection/viral shedding in particular could

prevent any bias that our captive colony fitting algorithm

shows toward short acute-latent cycle times.

Despite these limitations, we have narrowed the range of

plausible hypotheses for persistence and circulation of henipa-

viruses in a fruit bat reservoir host in Africa, using uniquely

long-term and well-controlled data from a captive colony.

Because the captive colony in this study has been isolated

from wild bats, has had minimal human intervention, has a

well-documented demographic history and has demonstrated

ongoing henipavirus circulation for almost a decade, it is

an ideal system to study the long-term individual- and

population-level dynamics of henipaviruses with minimal risk

of an external force of infection. Our generalized SEIR model

framework has allowed us to compare a diverse range of

models and parameters, representing many potential within-

host mechanisms rather than assuming such mechanisms in

the context of uncertain serological interpretation.

Our expanded SEIR framework lends itself to exploring

hypotheses for the hidden process of viral circulation in
reservoir hosts more broadly. This framework could be

useful for generating transmission and within-host hypoth-

eses for other low-morbidity pathogens. Application of this

framework to such pathogens may be particularly useful to

develop testable predictions to target field-based and exper-

imental work [51]. In the case of henipaviruses in bats,

models of reinfection following viral clearance and seasonally

recurring latent infection have been considered as possible

explanations of seasonal shedding [22]. Future work on the

relationship between antibody presence and infection

status, as well as examination of heterogeneity in responses

to infection, could help disentangle these hypotheses further.

While we cannot conclusively say which mechanism

underlies this process, we have extended these explanations

into a wider set of hypotheses, applied them to several

types of real-world data and supported the existence of

certain dynamic features of henipaviruses in Eidolon helvum.
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