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ABSTRACT 

This paper discusses the generalization of the concept of blue 

noise sampling from traditional halftoning to signal process- 

ing on graphs. Making use of the spatial properties of blue 

noise, we generate sampling patterns that provide reconstruc- 

tion errors that are similar to the ones obtained with state of 

the art approaches. This sampling scheme presents an alterna- 

tive to those techniques that require spectral  decompositions. 

Index Terms— Graph signal processing, sampling, blue 

noise dithering. 

 

1. INTRODUCTION 

 
The everyday growing datasets that describe connectivity and 

interaction in multiple applications have been successfully 

modeled on graphs [1], promoting research interests about 

how to process quantities that are interrelated, and these 

applications range from social networks [2], brain signals 

analysis [3] up to financial systems [4]. Many efforts have 

been done in order to obtain or translate well established 

results in traditional signal processing to signal processing    

on graphs [1]. At the very core of all these applications re- 

sides the problem of graph signal sampling where the interest 

relies on identifying those nodes of the graph that would 

guarantee a unique representation of a graph signal with a 

given bandwidth [1, 5–7]. Up to now, most of the research 

about sampling signals on graphs relied on the use of the 

spectral decomposition of the adjacency matrix or the Lapla- 

cian operator [7, 8], however those eigen-decompositions are 

not always available. 

This work offers a substantially different approach from 

previous works, considering that the spectral decomposition 

of the graph matrices is not available. The sampling patterns 

obtained with the proposed approach have common charac- 

teristics on the spectral domain, as they are characterized by a 

high frequency energy and represent the extension to graphs 

of what is called in the dithering literature as blue noise [9]. 

Additionally,  the  vertex-domain  properties  of  the  obtained 
 

 

sampling patterns resemble the spatial characteristics of tra- 

ditional blue noise, showing an homogeneous distribution of 

the sampling nodes where the nodes are as far as possible 

from each other. 

This paper is organized as follows. In Section 2 the no- 

tation and the problem of sampling on graphs is described 

including previous approaches. In Section 3 blue noise sam- 

pling on graphs is defined, while an algorithm for the genera- 

tion of blue noise on graphs is introduced in Section 4. In Sec- 

tion 5 a set of experiments is presented showing a clear com- 

parison between blue noise sampling and other techniques. 

Finally in Section 6 a set of conclusions is  presented. 

 

 
2. SAMPLING THEORY ON GRAPHS 

 
2.1. Background and notation 

 

Let G = (  ,   ) be a weighted graph with nodes    , and edges 

. W is the adjacency matrix, with W(u, v) the weight con- 

necting the nodes u and v. Let D be the diagonal matrix 

whose entries are given by D(u, u) = v=u W(v, u). The 

combinatorial Laplacian matrix associated to G is defined as 

L = D     W, whose eigenvalues are 0     µ1       µ2       . . . 

µN , N  =    [10].  If G is connected, µ1  = 0 and µ   > 0   

for all f > 1 [10]. A signal, x, on the graph is then defined as 

the function x : R represented by the vector  x    RN 

where x(v) is the value of the signal on v .  The eigen-  

vector decomposition of L is represented as L = UΛUT,  

with U being the matrix of eigenvectors. The Graph Fourier 

Transform of the signal, x, is given by x̂  = UTx.  On the 

spectral axes, it is said that the signal x has bandwidth ω, if 

x̂(k) = 0 for all µk        ω, on the discrete axes the bandwidth 

of x is given by k. The set of signals of bandwidth ω is rep- 

resented as P Wω (G) = span  Uk   : µk      ω   which is the   

so called Paley-Wiener space of bandwidth ω [5], where Uk  

is the matrix whose columns are the first k column vectors in 

U. 

The vector of samples of a signal x on S  ⊂  V  are   given 

This work was supported in part by the National Science Foundation, 

grant NSF #1815992, by the UDRF foundation strategic initiative award, 

and by a University of Delaware Dissertation Fellowship Award. 

by xS  = Mx where M  = [δs1 
, . . . , δsm 

]   , si  ∈  S  ∀ i = 

1, . . . , m and δv is the N − dimensional Kronecker column 

vector centered at v  ∈  V.  If x is known to be    bandlimited, 
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from xS  a reconstructed version of x can be obtained  as: 

xrec =  argmin 
z∈span(Uk ) 

IMz − xS I2 = Uk (MUk) xS (1) 

with (MUk)
† 

being the pseudo-inverse of MUk [8].  Then  

the central challenge in the sampling problem relies on find- 

ing the set that leads to the minimum   error between 

x and xrec. In what follows we will refer to the ratio m/N 

between the number of sampling nodes and N as the sam- 

pling density d. The function s :  V  →  {0, 1}N  represents  

the sampling pattern associated to S  ⊂  V, where sS  = 1 and 

sSc   = 0. 

2.2. Previous approaches 

Previous approaches faced the sampling problem by the use of 

greedy techniques that build the sampling set selecting node 

by node according to a specific criteria that involve the cal- 

culations of eigenvalues and singular values of submatrices  

of Uk.  In [11] the optimal sampling set,  Sopt, is found as  

Sopt  =    arg max|S|=m σ
2, whereas in [12] the optimal set is 

given by          = arg max σ−   and recently in [8] 

opt   = arg max|S|=m  = 
k 

σ2; where σi  is the ith sin- 
gular value of MUk.  In [12] the so called graph   spectral 

proxies of order q, Ωq ( ) = (σ1,q ) 2q , are introduced to facil- 

itate the calculation of the optimal sampling set,  where    σ1,q 

 
 
 
 
 

 
Fig. 1. Bottom-left: Random(uniform) sampling pattern dis- 

tribution on the nodes of the graph. Bottom-right: spectral 

characteristics of 100 averaged spectrums. Top-left: Blue 

noise sampling pattern distribution on the nodes of the graph. 

Top-right: spectral characteristics of 100 averaged spectrums. 

 

proposed allowing an approximate solution of (3), with this 

approach it can be proven that MP−1/2 satisfies the restricted 

isometry property, but only for a number of samples on the or- 

der of O(k log k). Most recently [8] proposed the use of de- 

terminantal point processes (DPP) to obtain an estimate of P 

including the case where eigen decompositions are not avail- 

able and the reconstruction of the signal is obtained solving 

eqn. (3). 

In [14] the problem of graph signal sampling is considered 

is the smallest eigenvalue of (LT 

Sc,Sc 
)q Lq 

Sc,Sc , with Lq  being in a scenario in which only one node is used for the  sampling 
of the product between the shifting operator and the signal, 

the qth  power of L and LSc,Sc   represents the matrix obtained 
from L deleting the columns and rows indexed by  . It can 

be proved that for any q and any , zero error recon- 

struction is possible when ω < Ωq ( ). Then, the optimal 

sampling set of nodes is given by 

opt  = arg max Ωq (  ). (2) 
|S|=m 

The solution of (2) is achieved using a heuristic rule, that con- 

considering several powers of the shifting operator. 

 
3. BLUE NOISE DITHERING ON  GRAPHS 

The concept of blue noise dithering has played a central role 

in applications involving representation and printing of im- 

ages, where a gray scale image has to be represented with a 

binary pattern in such a way that this representation preserves 
sists in calculating the first eigenvector of    Lq 

Sc,Sc while the essential properties of the original image.   In particular,    the 
nodes are aggregated one at a time. In particular, a node is 

added to the sampling set according to the index location of 

the component with the highest absolute value for the first 

new representation looks to the human eye as an image free  

of artifacts that represents the range of gray scale tones of the 

original one [9,15,16].  The spatial and spectral characteristics 
eigenvector of Lq 

Sc,Sc .  The value of q should be selected   as of blue noise sampling patterns allow the generation of    such 
large as possible for high accuracy. 

Other approaches do not require spectral decompositions. 

In [13] an approach is proposed, where the nodes are selected 

according to a random matrix operator P which is designed 

jointly with the sampling matrix M, and the reconstruction of 

the signal is given by 

patterns either considering the spectral shaping of its Fourier 

transform or the spreading of the samples in the spatial do- 

main following simple and intuitive principles. 

 
3.1. Spectral Statistics 

x = arg min 

(1
1
P−1/2(Mz − x  )

1
12 

+ τ zTg(L)z

\ 

, On the spectral axes,  blue noise sampling patterns are    char- 

 
 

 
where τ       R+  and g( ) is a polynomial function,  both     of 

which are selected empirically. The optimal way to deter- 

mine P requires the eigenvector decomposition of L, how- 

ever in [13] an eigen decomposition free estimation of P is 

tral properties, we average the power spectrum of several of 

its realizations, to this end the idea of periodograms is ex- 

tended to signals on graphs as follows. Let q be the number of 

realizations, x1, x2, . . . , xq , of a stochastic signal, its power 

(3) 

acterized by a low energy content on the low frequencies. In 

order to quantify the behavior of a pattern regarding its  spec- 

S 
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q 

f = 2, . . . , N. (4) 

2 

M as m 

), 

c(supp(s)c) = K(supp(s), supp(s)c) − τ . 

{ } { } 
{ } 

  

), 

), 
− ≥ 

spectrum can be calculated as 
 

N   x̂ i(f)
2 

 

   

 
 

Algorithm 1 Void and cluster algorithm for  graphs  

Input:  m: number of samples,  σ. 

Output:  s: sampling pattern 

 
 

 
 

 

       
Calculate K(i, j) = e−   

σ for all 1 ≤ i, j ≤ N . 
where the fth component of p is associated to the fth Fourier 

coefficient.  Notice that p(f) is the average of what is called  

in [10] the amplitude spectrum of the signals xq . It is important to point out that for a uni random sam- 

2:   c = K1N ×1. 
Get nodes selected at random. 

4:  s(M) = 1. 

form 

pling pattern the behavior of p is expected to be flat. In Fig. 1 

 

for r = 1 : 1 : N do 

6: c(supp(s)) = 
),

K(supp(s), supp(s)). 

 

pling pattern and a blue noise sampling pattern is depicted on 

a random sensor network considering a density of d = 0.1. 

Then, approximate versions of blue noise sampling patterns 

can be defined as the minimizers of the cost function Rs, 

given by 

8: s (arg maxi  c(i) ) = 0. 

s (arg mini  c(i) ) = 1. 

10: if IndA=arg maxi c(i) and IndB=arg mini c(i) 
then 

break N 2 
 1 ŝ(f)  

Rs = . (5) 
m µ  

 =2 

12: else 

IndA=arg mini{c(i)}. 
14: IndB=arg maxi{c(i)}. 

Rs can be considered as a measure of redness for the sam- 

pling pattern s, and basically penalizes the low frequency 

content. 

 
3.2. Spatial characteristics of  Blue-Noise 

As can be observed in Fig. 1, the vertex distribution of a blue 

noise sampling pattern on the graph displays a spread uni- 

formity in the sense that nodes where the sampling pattern is 

equal to 1 are located as far as possible from each other. In 

the following section, this property is exploited in order to 

generate blue noise patterns. 

 
4. GENERATING BLUE-NOISE SAMPLING  SETS 

In order to generate blue noise sampling patterns we pro-  

pose an adapted version of the void and cluster algorithm 

originally developed in digital halftoning applications [17]. 

The adapted version of this algorithm for the generation of 

blue noise sampling patterns on graphs can be appreciated    

in the Algorithm 1. The spreading of the sampling nodes is 

performed considering the geodesic distances on the graph, 
Γ(i,j)2 

Γ,  evaluated on a Gaussian kernel K(i, j) =  e−   
σ      , 

where the value of σ is related with the average distance 

between sampling points and should be selected accordingly. 

The distances between sampling nodes using K are itera- 

tively computed in  c(supp(s)) = K(supp(s), supp(s)), 
where the support of the sampling pattern  is  used  to  up- 

date the components of c and the distance between sampling 

nodes and the complement set is computed in c(supp(s)c) = 

K(supp(s), supp(s)c)     τ ,  where  τ      N  .   The  use 

of the kernel is meant to emphasize the interaction between 

sampling nodes that are close.   In this way,  the ones in s,   

are relocated to reduce the average distances between sam- 

pling points moving nodes from clustered regions to voids 

an estimate of the power spectra of a random (uniform)   sam- 

Initialisation : s = 0, IndA=-1, IndB=-1. 2 i 
i=1 

q 

Γ(i,j) 

Initialisation : s = 0, IndA=-1, IndB=-1. Ix̂ I2 

i=1 
q 

{ } 

p(f) = 
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N 

end if 

16:   end for 

       return s  

 

on the vertex domain. The results of the void and cluster 

algorithm can be appreciated in Fig. 2, where blue noise 

sam- pling patterns are displayed considering several 

densities d. The vertex-domain spreading and uniformity 

can be clearly appreciated, as there are not cluttered 

sampling nodes. Ad- ditionally the spectral characteristics of 

blue noise are also depicted. 

 
5. EXPERIMENTS 

 
Blue noise sampling patterns are tested against state of the   

art techniques considering different graphs and signal mod- 

els. Given a graph model and a signal model, a set of 100 

signals is generated, sampled and reconstructed considering 

several sampling rates. The mean squared error (MSE) is 

cal- culated for each reconstruction and averaged over the 

number of signals used. The schemes of sampling 

considered for the experiment are: Random (uniform) 

sampling, blue noise sam- pling by void and cluster, the 

sampling scheme proposed by Chen et. al. [11] and the 

sampling scheme proposed by Anis et. al. [12]. The signal 

models used  are: 

SM1: A random signal of bandwidth k = 50, where the 

Fourier coefficients are generated from the Gaussian 

distri- bution (0, 0.52). The samples captured are 

contaminated with additive Gaussian noise such that the 

Signal to Noise Ratio is SNR = 20dB. 

SM2: A random signal of approximate bandwidth k = 

50. The Fourier coefficients are generated from the     

Gaussian 

• 

• 
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h(µ) = 

( 
≤ 

 

 
 

(a) (b) (c) (d) 

Fig. 2. Void and cluster: blue-noise sampling patterns for different intensities d. First row: Localization on the graph of the  

nodes selected in a blue-noise sampling pattern. Second row: Power spectral density for the different blue-noise sampling 

patterns. Third row: the redness Rs    of the sampling pattern vs the iteration number using void and cluster. 

 

distribution N (0, 0.52) and modulated by h(µ), where 

1 If   µ µ50 

e−4(µ−µ50 ) If    µ > µ50 

 

 
(6) 

 

The graphs used are: 

Graph G1: A bunny graph with N = 2503 nodes, where 

the edges weights are given by the Euclidean distance be- 

tween vertices. 

Graph G2: A sensor network with N = 500 nodes, where 

the edges weights are given by the Euclidean distance be- 

tween vertices. 

In Fig. 3 the reconstruction error of different signals from 

a set of samples is depicted considering different graphs, and 

several signal models. The results show consistently that blue 

noise sampling leads to competitive results with respect to the 

state of the art techniques. In [18] some theoretical insights 

are provided about why blue noise sampling promotes good 

sampling sets on graphs. 

 
6. CONCLUSIONS 

The concept of blue noise sampling on graphs is discussed 

and its performance against other techniques has been evalu- 

ated. Taking into account the characteristics of these patterns 

on the vertex domain, an algorithm for its generation has been 

also discussed. This maximization of the distance between 

sampling nodes obeys the intuitive idea that the samples of 

(a) (b) 
 

  
(c) (d) 

Fig. 3. The averaged mean squared error of the reconstructed 

signals from a sampled representation: (a) The graph G1 and 

the signal model SM1. (b) The graph G1 and the signal model 

SM2. (c) The graph G2 and the signal model SM1. (d) The 

graph G2 and the signal model  SM2. 

 

 
the signals should not be too close to each other as they will 

be highly correlated and would lead to poor  reconstructions. 

 
The calculation of geodesic distances on the graph nec- 

essary for the use of void and cluster could be in some cases 

computationally expensive. However, efficient implemen- 

tations can be obtained exploiting the simple principle of 

spreading the sampling nodes homogeneously and as far as 

possible from each other. This efficient implementation for 

the generation of blue noise is part of our current  research. 
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