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Disease emergence events, epidemics and pandemics all underscore the

need to predict zoonotic pathogen spillover. Because cross-species

transmission is inherently hierarchical, involving processes that occur at

varying levels of biological organization, such predictive efforts can be com-

plicated by the many scales and vastness of data potentially required for

forecasting. A wide range of approaches are currently used to forecast spil-

lover risk (e.g. macroecology, pathogen discovery, surveillance of human

populations, among others), each of which is bound within particular phy-

logenetic, spatial and temporal scales of prediction. Here, we contextualize

these diverse approaches within their forecasting goals and resulting

scales of prediction to illustrate critical areas of conceptual and pragmatic

overlap. Specifically, we focus on an ecological perspective to envision a

research pipeline that connects these different scales of data and predictions

from the aims of discovery to intervention. Pathogen discovery and

predictions focused at the phylogenetic scale can first provide coarse

and pattern-based guidance for which reservoirs, vectors and pathogens

are likely to be involved in spillover, thereby narrowing surveillance targets

and where such efforts should be conducted. Next, these predictions can

be followed with ecologically driven spatio-temporal studies of reservoirs

and vectors to quantify spatio-temporal fluctuations in infection and to

mechanistically understand how pathogens circulate and are transmitted to

humans. This approach can also help identify general regions and periods

for which spillover is most likely. We illustrate this point by highlighting

several case studies where long-term, ecologically focused studies (e.g. Lyme

disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium
knowlesi in Southeast Asia) have facilitated predicting spillover in space and

time and facilitated the design of possible intervention strategies. Such

studies can in turn help narrow human surveillance efforts and help

refine and improve future large-scale, phylogenetic predictions. We conclude

by discussing how greater integration and exchange between data and

predictions generated across these varying scales could ultimately help

generate more actionable forecasts and interventions.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
Scale is a key challenge for developing actionable forecasts of pathogen spil-

lover. The processes that connect reservoir and recipient hosts to facilitate

cross-species transmission—which include infection dynamics in reservoirs,

release of infectious agents and survival in the environment, and recipient

host exposure and susceptibility to infection—are inherently hierarchical and
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occur over multiple scales of biological organization [1].

Efforts to predict pathogen spillover can thus be complicated

by the many scales and vastness of data potentially required

for such forecasts [2]. However, recent epidemics (e.g. Ebola

virus in West Africa [3]), pandemics (e.g. Zika virus across

the Americas [4]) and disease emergence events (e.g. Plasmo-
dium knowlesi in Malaysia [5]) underscore the need to improve

such predictive efforts.

Any prediction of pathogen spillover will be bound to a

specific scale of space and time [6], and these scales are deter-

mined by objectives of the particular forecast. We rarely aim

to predict which individuals will become infected with a zoo-

notic pathogen; instead, forecasts often aim to predict the

region and period within which interventions are practical.

As an analogue, weather forecasts do not aim to predict the

specific time and place of a particular thunderstorm but

instead predict the probability of rainfall over regional spatial

scales (e.g. cities) at hourly, daily and weekly temporal scales.

Forecasts of pathogen spillover are further restricted not only

to spatial and temporal scales but also to the scale of organ-

isms for which we forecast risk (e.g. reservoirs, vectors,

pathogens). We refer to this as the ‘phylogenetic scale’, fol-

lowing recent developments in ecology and evolution, as it

can be defined along a tunable DNA sequence similarity or

given phylogenetic depth [7,8]. As the concept of scale is

based upon the order of entities within some hierarchy (e.g.

for spatial scale, continents, biomes, ecoregions, etc. [9]), phy-

logenetic scale can accordingly encompass several measures,

including not only taxonomic ranks of organisms (e.g. family,

genus, species) but also clade age, clade size and node-to-root

distance, among others [10]. Though we use the term ‘phylo-

genetic scale’ to be inclusive, its application here is generally

synonymous with taxonomic level. Any spillover prediction

will thus correspond to a particular phylogenetic scale or

scales (i.e. a particular lineage of pathogens from a particular

taxon of reservoirs or vectors) within a particular region of

space and time.

Various approaches are currently used to forecast spil-

lover risk within the bounds of these scales of prediction.

Many macroecological studies focus on processes located

upstream in the spillover pathway and have thus examined

trait profiles or cladistic patterns in which species are likely

to serve as reservoirs or vectors of zoonotic pathogens. For

example, rodents with a particularly fast pace of life are more

likely to host zoonotic pathogens [11]. Related approaches

have been applied to pathogens [12], and recent work has

used viral sequences to predict reservoirs and vectors [13]. By

generating predictions at the phylogenetic scale, these

approaches can guide surveillance. Mapping the distributions

of known or predicted reservoirs, vectors and zoonoses can

also allow spatial predictions that identify regions where spil-

lover is likely [14,15]. Given phylogenetic and spatial biases

in such research [16–18], a related approach has used pathogen

discovery to characterize pathogen diversity; examples include

but are not limited to the US Agency for International Develop-

ment PREDICT project and Global Virome Project [19,20].

Many pathogen discovery projects also enhance local capacity

and conduct human surveillance (e.g. VIZIONS in Vietnam

[21]), which is another (but not mutually exclusive) approach

[22]. Spatio-temporal human surveillance can identify spil-

lovers by screening persons with symptoms that are not

easily diagnosable [23] and can facilitate early detection of

known pathogens [24]. These approaches focus on upstream
(e.g. reservoirs) and downstream (e.g. humans) processes of

the spillover pathway and can generate predictions at different

scales, which has prompted discussions of how best to allocate

research efforts [25,26].

The problem of scale has been well described for ecology

and evolution [9,27] and could inform discussions of how

various research approaches and data streams can contribute

to forecasting pathogen spillover risks [25,28,29]; in particu-

lar, scales define the interface between data collection,

forecasts and interventions. Here, we argue that these various

methods, data streams and predictions fit along a research

pipeline that spans from discovery to intervention (e.g. [30])

and we accordingly contextualize these approaches within

their forecasting goals and resulting scales of prediction

(table 1). On the one hand, many approaches aim to predict

spillover of novel pathogens (e.g. pathogen discovery in wild-

life or in human populations), and these efforts and the data

they collect inform the phylogenetic scales of prediction (e.g.

identifying likely reservoir, vector and pathogen lineages

involved in spillover) and by extrapolation the spatial scales

of prediction (e.g. mapping distributions). On the other

hand, a different suite of efforts aims to predict the spillover

of known pathogens, which often focus explicitly on predic-

tion at the scales of space and time within a well-defined

phylogenetic scale (e.g. yellow fever virus [34] or Hendra

virus [35]). A central concept connecting these different

approaches is scale, but no ecological system has a single

scale for which complex phenomena such as spillover

should be studied or predicted [27]. For pathogen spillover,

the scales for which we aim to forecast risk (i.e. phylogenetic,

spatial, temporal) vary, and the resulting predictions made

across these variable scales can have different applications.

In this paper, we (i) highlight what practical information

can be gained from data at different phylogenetic and spatio-

temporal scales and (ii) identify areas of complement

between coarse- and fine-scale forecasts through ecological

perspective. Specifically, we envision a research pipeline

that spans from discovery to intervention and connects the

data and predictions provided by macroecology, pathogen

discovery and surveillance in wildlife and humans

(figure 1). We also highlight statistical tools for defining the

appropriate phylogenetic, spatial and temporal scales at

which such predictions can be made, which are necessary

to better connect data with proposed interventions. The pro-

blem of predicting pathogen spillover is thus best framed as a

challenge in identifying over what scales our data permit

forecasts, at what benefits and at what costs. Each of these

can be quantified for improved surveillance and management

decisions.
2. Phylogenetic scales of spillover prediction
Do lineages of reservoirs, vectors and pathogens have

common patterns in spillover occurrence? Phylogenetic pre-

dictions for which animals are likely to be reservoirs or

vectors and which pathogens are likely to be zoonotic

range from the phylogenetic scale of species to order or

even class. Species-specific predictions, often generated

from trait-based analyses and machine learning algorithms,

can offer the most operable resolution of spillover forecasting,

given a sufficiently high degree of cross-validation (e.g. area

under the receiver operating characteristic curve (AUC) for



Table 1. Summary of select approaches to predict pathogen spillover, stratified by the goal and the scales of predictions.

prediction goal approach scale example method source

emergence of novel zoonotic

pathogens

reservoir or vector

surveillance

phylogenetic (reservoir, vector,

pathogen), space

quantify pathogen diversity across

reservoirs or vectors globally

[19]

macroecology phylogenetic (reservoir, vector,

pathogen), spacea
machine learning to identify likely or

novel reservoirs or vectors

[11,13]

human surveillance phylogenetic (pathogen),

space

survey human populations with high

wildlife contact

[25]

where and when known

pathogens may spillover

macroecology phylogenetic (host), spacea machine learning to identify which

reservoirs to sample

[15]

human surveillance space, time improve diagnostic capacity to detect

early zoonotic outbreaks

[24]

early warning signals time detect transition from stuttering

chains to sustained transmission

[31]

reservoir surveillance space, time identify ecological predictors of

pathogen spillover

[32,33]

aSpace is here implicit through mapping the distribution of predicted reservoirs or vectors.
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out-of-sample prediction) and resulting rank order of likely

hosts of zoonotic pathogens. For example, boosted regression

trees with high classification accuracy (AUC ¼ 87%) pre-

dicted 112 bat species to be within the 90th percentile of

likely novel filovirus reservoirs [36]. Mapping the geographi-

cal distributions of these likely reservoirs further provided

spatially explicit predictions, with Southeast Asia being a

notable hotspot of filovirus-positive bat species where evi-

dence has otherwise been moderate. Recent filovirus

surveys of bats listed in this 90th percentile (e.g. Eonycteris
spelaea) validate these fine-scale phylogenetic predictions

[39]. Similar species-specific predictions have been generated

for rodent zoonoses [11], Zika virus in mosquitoes and pri-

mates [15,40], and human-to-human transmissibility of

zoonotic viruses [41]. Other trait-based approaches generate

broader predictions focused on the life-history profiles of

likely reservoirs or zoonotic pathogens rather than species

predictions [14,42,43].

Phylogenetic predictions are also commonly generated at

coarser scales, such as clades (figure 1a). Such efforts can be

especially insightful when trait data are limited. A compre-

hensive study across mammal viruses found that host

Order had greater predictive power for explaining variation

in viral diversity compared to traits such as sympatry and

body mass [14]. Similarly, trait-based analyses found no

host traits to be predictive of how helminth infections in wild-

life respond to environmental change, yet Old World

primates showed high phylogenetic signal [37]; recent work

on helminths in more urban vervet monkeys supports such

cladistic predictions [44].

In general, it may not be safe to assume that a single phy-

logenetic scale (e.g. class, order, genus, species) captures any

pattern in an ecological dataset. As traits driving spillover

may evolve along branches in a phylogeny, there may not

be any a priori reason to expect the most important driving

patterns to be concentrated along branches of a fixed depth

(e.g. only genus). A novel machine learning algorithm, phylo-

genetic factorization, was recently developed to more flexibly

identify phylogenetic scales at various depths (e.g. genera
and families simultaneously) underlying patterns in ecologi-

cal data [7]. A recent application of this method to the

taxonomy of mammal viruses found that the propensity of

viruses to be zoonotic is best partitioned along clades of

different phylogenetic scales, such as the order Nidovirales,
family Papillomaviridae and genera Alphavirus and Deltaretro-
virus [45]. Such consideration of multiple phylogenetic

scales in future studies of cladistic patterns in reservoirs

and vectors would be informative.

Generating even coarse predictions of reservoir, vector or

pathogen clades involved in spillover (figure 1a) depends on
pathogen discovery and its data on pathogen diversity. How-

ever, such data streams and phylogenetic forecasts provide

the first steps that are needed to move from discovery to

intervention by narrowing the range of which reservoirs, vec-

tors and pathogens should be the focus of surveillance and

where such efforts should be conducted (figure 1b). This

initial stage of the pipeline can apply to diverse contexts of

spillover (table 1). Predicting broad clades of reservoirs or

vectors could be especially important for guiding surveil-

lance of novel pathogens for which little a priori data exist

[29]; for example, viral genome sequences were used to fore-

cast artiodactyls as the likely origin of the recently emerged

Bas-Congo virus [13]. For known pathogens of public

health concern, coarse phylogenetic predictions can still

guide field surveillance; for example, Old World fruit bats,

primates and artiodactyls could be targeted for further

Ebola virus survey efforts [46]. To move towards interven-

tions, however, these phylogenetic predictions should be

next followed by spatio-temporal studies.
3. Spatio-temporal scales of spillover prediction
As pathogen circulation in the reservoir or vector over space

and time is the first requisite for spillover [1], the next stage

of the pipeline from discovery to intervention requires phylo-

genetic predictions to be supplemented by spatial and

temporal surveillance (figure 1c). Specifically, such studies
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Figure 1. Interplay between scales of pathogen spillover prediction and a proposed pipeline for their integration. Even coarse phylogenetic predictions (a) can
narrow the scope of what reservoirs and vectors for a given set of pathogens, and in which geographical regions, should be prioritized for surveillance (b); examples
based on trait-based or cladistic analyses include filoviruses in Neotropical bats [36], zoonotic pathogens in European rodents [11] and helminths in Old World
primates [37]. Spatio-temporal studies can next elucidate how zoonotic pathogens circulate in reservoir or vector populations, identify broad spatial and temporal
scales at which pathogen pressure (e.g. shedding) is greatest and uncover the ecological mechanisms leading to spillover (c). Based on these regions and times
where risk is greatest (circles), managers can design preemptive interventions and prioritize human surveillance. Data from spatio-temporal studies can further
address information gaps and refine future macroecological analyses and predictions in an iterative fashion (d ). The map (b) is adapted from Han et al. [11],
and perspective plots (c) were generated using random realizations of a binomial point process with varying intensities [38]; both are used here simply as heuristic
devices. (Online version in colour.)
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in the proposed reservoir(s) or vector(s) are necessary to quan-

tify spatio-temporal fluctuations in infection (i.e. pathogen

pressure) [47] and assess their ecological drivers [48–52].

Mechanistic models can help explain whether pathogen

pressure is driven by birth seasonality, metapopulation

dynamics, environmental synchrony and within-host pro-

cesses, among others [53–55]. Models that integrate such

drivers can be highly predictive of spillover. For example,

an ecologically driven model of yellow fever virus spillover

that integrated various spatio-temporal data streams had the

strongest predictive accuracy (AUC ¼ 0.79) when considering

cyclical infection dynamics in wild primate reservoir hosts;

critically, models considering the ecology of mosquito vectors

and wild primate reservoirs were more predictive than those

that also included human population size and immunity [34].

As with phylogenetic predictions, such ecologically driven

efforts may not generate exact spatial and temporal spillover

predictions. However, these coarser predictions at the scale

of months, seasons, geographical regions and habitat types

can be actionable for guiding spillover prevention, surveillance

and possible interventions (figure 1c).
As with phylogenetic predictions, one may not wish to a

priori assume a given spatial (e.g. 5, 50 km) and temporal

scale (e.g. weeks, months) for studying infection dynamics

in reservoirs and vectors. Analyses of spatio-temporal auto-

correlation of case data in recipient hosts or prevalence in

related sylvatic systems can facilitate sampling decisions by
determining the spatial and temporal scales at which

sampling should occur (e.g. by identifying the range of

spatial and temporal dependence with semivariograms)

[56]. Where spatially and temporally explicit data exist

across many reservoir or vector species, phylogenetic factor-

ization could be applied to identify which spatial and

temporal scales may be most appropriate for surveillance or

intervention for specific clades [7]. Determining the spatial

and temporal scales at which infection is correlated can also

help identify ecological correlates of infection dynamics and

spillover risk. For example, spatial dependence across large

scales can suggest effects of major climatic drivers, while

spatial dependence between nearby locations can instead

suggest a highly localized infection process [57,58]. Addition-

ally, other time-series analyses can provide further

epidemiological inference and timescales of spillover risk

(e.g. early warning signals) [31].

Spatio-temporal surveillance of human populations,

especially those in regular contact with wildlife, is also

important for predicting places and times of high spillover

risk [25]. For example, focused surveillance for Ebola virus

in humans within West and Central Africa could alert

health systems to early virus detection and avert costs of

containing large outbreaks [24]. However, focusing on

spatio-temporal data and predictions in the context of reser-

voirs and vectors can be particularly informative, given the

hierarchical nature of spillover, as processes that occur



year t – 2
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Figure 2. Predictive insights into pathogen spillover risk gained from long-term, spatio-temporal studies of reservoir hosts and vectors. For Lyme disease in North
America (a) and Hendra virus in eastern Australia (b), ecological and mechanistic approaches have identified both spatial and temporal proxies for spillover risk in
recipient hosts. Columns indicate ecological correlates of spillover risk at varying time lags, and colours represent those that occur in autumn and winter (blue, dark
grey in print) or in spring and summer (yellow, light grey in print) for systems with strong seasonality (a,b). The ecological mechanisms linking land clearance with
P. knowlesi spillover in Southeast Asia are less well understood (c), but analyses of spatial scale and human cases have generated hypotheses for spatio-temporal
studies of reservoirs and vectors. (Online version in colour.)
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upstream in the pathway to spillover could have a greater

influence on human risk [2,34]. Identifying regions and

times of high pathogen pressure in proposed reservoirs or

vectors (e.g. figure 1c) could also help prioritize human sur-

veillance. Lastly, interventions focused upstream on

reservoirs or vectors could be more cost effective and have

sustained influence on minimizing risk [59].

Below, we highlight three case studies that demonstrate the

value of spatio-temporal data and understanding ecological

mechanisms to generate actionable predictions of spillover

risks and to guide long-term interventions (figure 2). However,

we acknowledge that such efforts can accordingly carry high

logistical costs (e.g. years to establish seasonal pulses of infection

from reservoir populations) and thus ecologically driven studies

should be viewed as complementary to the recipient host

surveillance efforts involved in a response to spillover.

(a) Lyme disease
Lyme disease, which is caused by the bacterium Borrelia
burgdorferi and transmitted to humans by Ixodes ticks, is the

most common vector-borne disease in the USA [60]. Ticks

require three bloodmeals to complete their life cycle. As

larvae are born naive, ticks only obtain Borrelia infection

after feeding on a competent small vertebrate host. Infected

larvae then moult to become nymphs, which are the most

likely life stage to transmit infection to humans. Accordingly,

the density of infected nymphal ticks is a useful proxy for

human Lyme disease risk [61,62].

Two decades of consistent annual monitoring across repli-

cate sites for the density of infected nymphs and relevant

biotic and abiotic covariates (e.g. acorn abundance, small

mammal abundance, deer abundance, temperature, precipi-

tation) have shown that Lyme disease risk can be
predictable [32,63,64]. A given year’s density of infected

nymphs is predicted by the prior year’s abundance of

white-footed mice and eastern chipmunks and by acorn

abundance from 2 years prior [32]. Years with strong acorn

mast generate high rodent abundances in the next year,

which subsequently drive high nymphal abundances the fol-

lowing year. Such analyses drawn from years of repeated,

ecologically driven surveillance thus show that masting indi-

ces can provide relevant spatial and temporal (e.g. 2-year lag)

predictions for spillover risk (figure 2a).
In addition to identifying regions and years for which

human risk of exposure to infected nymphs is high, this

mechanistic understanding highlights opportunities to inter-

rupt Borrelia transmission by targeting small mammal

reservoirs and their contribution to hosting and infecting

larval ticks. Field experiments have found that direct immu-

nization of white-footed mice can reduce nymphal infection

prevalence [65], though effects were strongest when oral

bait vaccines were used to immunize the broader small

mammal host community [66]. Such ecological approaches

were more effective across longer study durations, highlight-

ing how such interventions may be more sustainable [59].

Ongoing efforts through The Tick Project (https://www.tick-

project.org/) are further assessing what combination of

acaricide treatments, deployed at which spatial and temporal

scales, are most capable of reducing risk [67].

(b) Hendra virus
Hendra virus is a RNA virus that emerged in 1994, causing an

outbreak of a lethal respiratory and neurological disease in

horses and subsequently to humans that has been followed by

over 60 spillover events through 2018 across eastern Australia

[33,68]. Flying foxes of the genus Pteropus are the natural

https://www.tickproject.org/
https://www.tickproject.org/
https://www.tickproject.org/
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reservoir hosts, and transmission of virus to horses is assumed to

occur through the ingestion of food or water contaminated with

urine [49,69]. Surveillance shows pulses of bat viral shedding in

winter [70], but these do not follow uniform seasonality [58].

Despite the relatively small number of spillover events

compared to Lyme disease cases, a mechanistic understand-

ing of Hendra virus spillover informed by long-term

ecological work has likewise provided coarse predictions

over space and time [33]. The unprecedented cluster of spil-

lovers in 2011 was preceded by distinct environmental

conditions: a rise in the southern oscillation index in 2010

that shifted eucalypt plants, the preferred nectar source of

bats, into a growth rather than a flowering phase, in turn

restricting food availability [71]. Such food shortages have

been exacerbated by agricultural land conversion and cause

periods of intense nutritional stress for bats [72,73]. Nutri-

tional stress not only drives flying foxes into urban

habitats, where they form sedentary camps near abundant

but poor-quality food resources, but also likely amplifies

Hendra virus shedding by impairing bat immunity; for

example, nutritional stress was associated with greater

seroprevalence in little red flying foxes [74,75] (figure 2b).
Recently, environmental conditions and weather events in

eastern Australia mirrored those seen prior to the 2011

Hendra virus spillovers; a severe El Niño in late 2015 and

early 2016 was followed by a rise in the southern oscillation

index in winter 2016 and a subsequent food shortage in

summer 2016 with concomitant nutritional stress observed

in flying foxes [33]. A spillover event in horses was coincident

in space and time with nutritional stress in flying foxes.

This chain of predictable events enabled researchers to

suggest veterinarians increase winter monitoring of horses

and urge precautionary actions such as vaccination [33]. As

with Lyme disease, a mechanistic ecological understanding

facilitated generating such predictions.
(c) Plasmodium knowlesi
A species of zoonotic malaria, P. knowlesi, primarily circulates

in monkeys across Southeast Asia. While human infections

were first recorded in the 1960s, only since 2004 have larger

epidemiological clusters been recorded [5]; in some regions

(e.g. Sabah, Malaysia), P. knowlesi accounts for the majority

of all malaria cases [76]. Wild macaques and leaf monkeys

are the primary reservoirs, and transmission occurs through

an infectious bite of Anopheles leucosphyrus mosquitoes [77].

Most if not all human cases are spillover from primates [78].

Unlike Lymedisease andHendravirus,most research onP.
knowlesi has focused on humans, including a large-scale case–

control study, MONKEYBAR, in the Philippines and Malay-

sian Borneo [79]. Human risk factors for infection include

recent activities within or at the edge of forests (e.g. vegetation

clearance, agriculture) where wild macaques occur [80,81],

and human cases have been positively associated with high

degrees of local forest cover (2 km) and recent forest loss

[82]. In regions where P. knowlesi cases are less common,

human risk has been associated with land clearing activities

within 500 m of an exposed person’s home [83].

These findings suggest land conversion may alter inter-

actions between humans, reservoirs and vectors differently

at distinct spatial scales. Recent work thus used machine

learning tools to flexibly consider the effects of multiple

spatial scales on malaria cases [84]. Risk was high when the
proportion of cleared land within 1 km was low, suggesting

that isolated households could be more prone to high vector

densities in forested habitats. The effect of deforestation was

also high at larger spatial scales (4–5 km), suggesting elevated

human exposure to mosquitoes during commutes to

agricultural work or a change in macaque behaviour or demo-

graphy [84]. Such large-scale deforestation could reduce

reservoir host densities and promote a subsequent behaviour

change in mosquitoes in these cleared habitats [85]. While

identifying the spatial scales of human risk cannot identify

the processes by which deforestation drives P. knowlesi
spillover, such work can narrow the space of possible ecologi-

cal mechanisms to be elucidated by detailed spatio-temporal

studies of reservoirs and vectors (figure 2c) [86].
4. Interplay between phylogenetic and spatio-
temporal scales of prediction

The above examples highlight that ecologically minded

spatio-temporal studies of reservoirs and vectors can provide

actionable predictions that can be used to mitigate spillover

risks. These predictions are often coarse in scale and cannot

identify the precise spatial location and narrow timepoint of

observed spillover events. However, predictions need not

be generated on extremely fine scales to be useful for preven-

tion or intervention. For Lyme disease, human risk is greatest

in regions with high oak abundance and where acorn mast-

ing occurred 2 years prior. People can become more

vigilant in spring and summer when nymphs are questing,

and ecological interventions can work to break the trans-

mission cycle between rodents and ticks [32,64,67]. For

Hendra virus, veterinarians in regions with active flying fox

camps can expect to more closely monitor horse health

during the seasons that follow notable shifts in the southern

oscillation index or observed nutritional stress events in

flying foxes [33,58,71]. Although the ecological mechanisms

connecting deforestation to P. knowlesi spillover remain less

resolved than for Lyme disease or Hendra virus, observed

associations between human cases and different spatial

scales of land conversion can guide future ecological studies

as well as spatially explicit interventions [82,84,86]. Such

work collectively highlights that spillover can be predicted,

but at varying phylogenetic, spatial and temporal scales,

which carry distinct benefits and costs.

We here argue that generating phylogenetic predictions,

conducting ecologically driven spatio-temporal studies and

surveying human populations are complementary approaches

to investigating and predicting spillover. Ecological studies at

fine spatial and temporal scales can complement large-scale

pathogen discovery projects, macroecology of zoonoses in

reservoirs and vectors, and human surveillance (figure 1).

Pathogen discovery can generate the data needed to narrow

the wide range of which reservoirs, vectors and pathogens

should be targets of surveillance. Detailed ecological field

studies can next generate a mechanistic understanding of

pathogen circulation and spillover that coarsely predict when

and where cross-species transmission is most likely. This

work can also identify ecological interventions that could

occur prior to human exposure and that may have pronounced

and long-term impacts on limiting risks. Further, spatio-tem-

poral studies of reservoirs and vectors can also narrow

human surveillance efforts towards pathogens with the
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greatest likelihood for being zoonotic and around those

regions and periods where spillover is most likely. Indeed, pro-

jects such as PREDICT currently adhere to a similar model by

integrating wildlife and human data streams to guide surveil-

lance efforts [28]. Moreover, these various data streams on

spatial and temporal infection in reservoirs, vectors and recipi-

ent hosts could help refine and improve macroecological

analyses and predictions (figure 1d). This pipeline connecting

macroecology, pathogen discovery and surveillance could

facilitate synergistic hypothesis generation (i.e. prediction)

and testing (i.e. surveillance) to continually refine research

efforts. This integrated approach also highlights how spillover

predictions can catalyse both discovery and intervention.

Greater exchange between macroecology, pathogen discovery

and surveillance (e.g. through interdisciplinary working

groups [87–89]) could ultimately help generate more actionable

predictions and public health interventions to limit pathogen

spillover risks.
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