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ABSTRACT

In this paper, we calculate the optimal sampling sets for
bandlimited signals on cographs. We take into account the
tree structure of the cograph to derive closed form results
for the uniqueness sets of signals with a given bandwidth.
These results do not require expensive spectral decomposi-
tions and represent a promising tool for the analysis of signals
on graphs that can be approximated by cographs.

Index Terms— Cographs, graph sampling, sampling sets.

1. INTRODUCTION

The interest on the analysis of data defined on graph-like
structures has increased dramatically in recent years [1], and
different approaches have been proposed in order to deal
with the ever growing size of the data [2]. Of particular im-
portance is the graph signal sampling problem, where the
objective is to identify a subset of nodes of a network that
provides the minimum information required for the unique
representation and low error reconstruction of a quantity of
interest defined on the nodes [1, 2]. While many interesting
approaches have been proposed to solve this problem for
static signals [3, 4, 5, 6], and some others for time varying
signals [7], these techniques are general and do not always
exploit the structure of particular classes of graphs. Addition-
ally, the approaches that offer the best results require spectral
decompositions which can be, in some cases, computationally
expensive [1].

Among these relevant classes of graphs are cographs,
which can be described as graphs with no path of 4 vertices as
an induced subgraph [8, 9]. Cographs have become of interest
in applications that range from orthology detection [10, 11]
up to community detection in large size graphs [12]. Addi-
tionally, cographs have become of relevance as they can often
be used to approximate more complex graphs [13].

In this work, we exactly determine all the minimal unique-
ness sets for static bandlimited signals on cographs. To this
end, we exploit the particular structure of cographs and the
way these graphs are built. We take advantage of the tree
representation inherited by every cograph to compute the
uniqueness sets in a fast and exact way, starting with sim-
ple low complexity uniqueness sets. The analysis presented

here leads to concrete and precise results that only require
simple and sequential computations, and no spectral de-
compositions. We remark that these results have promising
applications when the graphs of interest can be approximated
by cographs. We show with numerical simulations that for
different degrees of approximation between a graph and a
cograph, the sampling sets calculated with the cograph of-
fers low error reconstructions in comparison with random
sampling and the state of the art techniques.

This paper is organized as follows. Section 2 introduces
the basic notation and terminology of the paper, including
the central concept of uniqueness set and basic definitions
about cographs. Section 3 contains our new results about
the uniqueness sets of cographs, as well as an algorithm for
their calculation. We demonstrate the utility and promising
applications of our results in Section 4 through numerical ex-
periments. We conclude with a summary of our findings in
Section 5 .

2. BACKGROUND AND NOTATION

For any n ∈ N, we let [n] := {1, . . . , n}. We identify the vec-
tor f = (f1, . . . , fn)

T ∈ Rn with the function f : [n] → R,
where f(i) = fi. For any arbitrary n × n matrix A, let us
represent by AS,T the submatrix of A with rows in S and
columns in T , where S, T ⊆ [n]. Similarly, for v ∈ Rn,
vS denotes the restriction of the vector v to its entries corre-
sponding to indices in S. We denote the all ones and all zeros
matrices of size m× n by 1m×n and 0m×n respectively, and
we adopt the convention that 1n×1 ≡ 1n and 0n×1 ≡ 0n.

Definition 2.1. Let U be a subspace of Rn. We will say that
a subset S ⊆ [n] is a uniqueness set for U if for all g,h ∈ U ,
the condition g(i) = h(i) for all i ∈ S implies g = h. A
uniqueness set will be said to be minimal if it does not contain
a uniqueness set as a proper subset.

Hence, S ⊆ [n] is a uniqueness set for U , if the values on S of
any signal f ∈ U determine the signal on U . The following
result provides a useful characterization of uniqueness sets.

Proposition 2.2. Let U be a k-dimensional subspace of Rn

and let {w1, . . . , wk} ⊆ Rn be any basis of U . Let W be
the n × k matrix with columns w1, . . . , wk. Then, the subset
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Fig. 1. (a) The cotree representation of the cograph G = (({v1} ∨ {v2}) ∪ {v3}) ∨ {v4} . (b) The cotree representation of the
cographG = (({v1} ∨ {v2}) ∪ {v3})∨{v4} using complements and unions. (c) A tree representation showing the equivalence
G1 ∨G2 = (Gc

1 ∪Gc
2)

c.

S ⊆ [n] is a minimal uniqueness set for U if and only if
|S| = k and detWS,{1,...,k} 6= 0.

Observe that Proposition 2.2 works for any subspace of
Rn. In particular, it applies to the important case of subspaces
built from the eigenspaces of operators defined on a graph
[2]. To elaborate, let G = (V (G), E(G)) be a simple graph
with vertex set V (G) and edge set E(G). We denote by A
the adjacency matrix of G and by LG := D − A the graph
Laplacian of G, where D = diag(d1, . . . , dn) and di is the
degree of the i-th vertex of G. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn
denote the eigenvalues of LG, and let 1n = w1, . . . , wn ∈ Rn

be an associated orthogonal basis of eigenvectors. We identify
signals (functions) f : V (G) → R with vectors in R|V (G)|.
For ω ≥ 0 we define the Paley–Wiener space PWω(G) as
PWω(G) := span{wi : λi ≤ ω}. Notice that PWω(G) is a
vector space of dimension dimPWω(G) = k, with k being
the largest integer in [n] such that λk ≤ ω. We also define
the modified Paley-Wiener space PW0

ω(G) as PW0
ω(G) :=

span{wi : i ≥ 2 and λi ≤ ω}, and the complementary Paley-
Wiener space CPWω(G) as CPWω(G) := span{wi : λi ≥
ω}. In this work we adopt the convention of having 1n as
the eigenvector associated to the eigenvalue λ1 = 0, and the
whole set of eigenvectors is assumed orthogonal. Proposition
2.2 implies the following characterization of the uniqueness
sets for PWω(G).

Corollary 2.3. Let G be a simple graph on n vertices with
Laplacian LG. Let W = (w1, . . . , wn) ∈ Rn×n be any ma-
trix whose columns form a basis of eigenvectors associated
to the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn of LG. Also,
let ω ≥ 0 and let k be the largest integer in [n] such that
λk ≤ ω. Then a subset S ⊆ V (G) is a minimal uniqueness
set for PWω(G) if and only if |S| = k = dimPWω(G) and
the matrix WS,{1,...,k} is non-singular.

Corollary 2.3 implies that if f ∈ PWω(G) then there is
a k dimensional vector αk such that f = Wαk. The com-
ponents of αk are known as the nonzero Graph Fourier co-
efficients of f , and it is said that the bandwidth of f is ω

on the spectral axes (or is k on the discrete axes). Then,
it is clear that f has only k degrees of freedom determined
by αk, and the knowledge of f on a set S of k well cho-
sen nodes is enough to determine f completely. The selec-
tion of such a subset S requires that the system of equations
fS = WS,{1,...k}αk should have a unique solution for αk,
which happens when WS,{1,...k} is non-singular, i.e. when S
is a uniqueness set.

2.1. Cographs

Let G = (V (G), E(G)), H = (V (H), E(H)) be two graphs
with V (G) ∩ V (H) = ∅. The union of the graphs G and H ,
denoted by G ∪H , is the graph with vertex set V (G ∪H) =
V (G)∪V (H) and edge set E(G∪H) = E(G)∪E(H). The
join of G and H , denoted G ∨H , is the graph with vertex set
V (G ∨ H) = V (G) ∪ V (H) and where ab ∈ E(G ∨ H) if
and only if either
• ab ∈ E(G) or ab ∈ E(H); or
• a ∈ V (G), b ∈ V (H) or a ∈ V (H) and b ∈ V (G).

With these definitions, we introduce the notion of a cograph.

Definition 2.4. A cograph (or a complement-reducible
graph) is a graph defined recursively as follows:

1. Isolated vertices are cographs;
2. If G and H are cographs on disjoint vertex sets, then so

is their join G ∨H;
3. If G and H are cographs on disjoint vertex sets, then so

is their union G ∪H .

An equivalent definition can be given by only working
with unions and complements. Recall that the complement
of a graph G is the graph Gc := (V (G), E(G)c). Using the
fact that G ∨ H = (Gc ∪ Hc)c one can show that a graph
is a cograph if and only if it can be obtained from isolated
vertices by only performing unions and complements [9]. In
the reminder of the paper we only use this representation.

Figure 1 displays the tree representation (or cotree) of a
cograph that is built according to Definition 2.4, and its equiv-
alent cotree constructed using unions and complements. As
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All ones vector

Fig. 2. Cotree represention of the cograph G = (Gc
1 ∪G2)

c ∪G3 that is built from more elementary cographs G1, G2 and G3.
(a) Indication on the cotree of the Paley-Weiner subspaces of G1, G2, G3 involved in the calculation of the uniqueness set of
PWω(G), and how the bandwidth changes when moving on the cotree. (b) Indication of how the set of eigenvectors associated
to G are obtained from G1, G2, G3 and the transformations involved when moving on the cotree.

we will indicate later, it is possible to take advantage of this
representation to describe how the uniqueness sets of the co-
graph are related to the uniqueness sets of the building graphs
used to generate the cograph.

3. UNIQUENESS SETS OF COGRAPHS

Taking into account that the representation of any cograph can
be expressed in terms of unions and complements (see Figure
1), we establish in this section how the uniqueness sets are
affected by these operations.

Lemma 3.1. Let G1 = (V1, E1), G2 = (V2, E2) be two sim-
ple graphs, let G := G1 ∪G2, and let ω ≥ 0. Then

1. dimPWω(G) = dimPWω(G1) + dimPWω(G2).
2. S is a minimal uniqueness set for PWω(G) if and only

if S = S1 ∪ S2 where S1 is a minimal uniqueness set
for PWω(G1) and S2 is a minimal uniqueness set for
PWω(G2).

Proof. The result follows easily from the fact that LG =
LG1 ⊕ LG2 and from Corollary 2.3.

Similarly, we can easily describe the spectrum of the com-
plement of a graph on N vertices using the fact that LGc =
NIN − 1N×N − LG.

Lemma 3.2 (see e.g. [14, Section 1.3.2]). Let G be a
graph with Laplacian eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤
λN and associated eigenvectors 1N = u1, u2, . . . , uN .
Then the complement graph Gc has Laplacian eigenvalues
{0, N − λN , . . . , N − λ2}, and eigenvectors 1N = v1, v2 =
uN , . . . , vN = u2.

Using the above lemma, we can now describe the Paley-
Wiener space of the complement of a graph.

Theorem 3.3. Let G = (V (G), E(G)) be a graph with
|V (G)| = N . Then for any ω > 0, we have PWN−ω(G

c) =
1N ⊕ CPWω(G) and CPWN−ω(G

c) = PW 0
ω(G).

Proof. Let 0 = µ1, µ2, . . . , µN denote the Laplacian eigen-
values of Gc. We know that PWN−ω(G

c) is generated by all
eigenvectors associated to the eigenvalues µi ≤ N − ω, and
by Lemma 3.2 the µi’s are given by 0, N − λN , . . . N − λi

with i > 1. This implies that N−λi ≤ N−ω ⇒ λi ≥ ω then
PWN−ω(G

c) = 1N ∪ CPWω(G). Similarly, we have that
CPWN−ω(G

c) is generated by the eigenvectors associated
to the eigenvalues µi ≥ N − ω which implies λi ≤ ω.

Theorem 3.3 provides a succinct way to compute the
uniqueness sets of a cograph via its cotree representation. For
example, consider the illustration in Figure 2. Suppose the co-
graph G is constructed from simple cographs G1, G2, G3 for
which the uniqueness sets can be easily computed (e.g. they
could be isolated vertices). From the cotree representation, it
is possible to identify in a systematic way what are the Paley-
Wiener spaces involved in the calculation of the uniqueness
sets of G. Fig 2 (a) shows how the bandwidth and the type
of Paley-Wiener space change as we go down the tree. Fig 2
(b) then illustrates how the basis for PWω(G) is built from
the basis of G1, G2 and G3 by doing simple transformations
according to the operations performed in the tree.

3.1. Algorithm

Algorithm 1 summarizes the ideas derived above. In the
cotree representation of the cograph we assume each node
corresponds to the union of two graphs. These nodes are rep-
resented by c(i) where c(1) is the node at the top of the tree
and c(cT ) is the node at the bottom of the tree. Complements
are indicated on the edges of the cotree (see Fig 2). The oper-
ator PWω(·) indicates the calculation of the uniqueness sets
for the Paley-Wiener space of bandwidth ω and CPWω(·)
indicates the uniqueness sets for the complementary Paley-
Wiener space of bandwidth ω. The descending branches of
each node are denoted by b�, br and |b| denotes the number of
nodes of all the elementary cographs Gi descending from the
branch b. The symbol P(b →) denotes the application of the
operator P on the branch b after the complement operation.
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Fig. 3. First row: reconstruction error for random bandlimited signals defined on a graph G with cograph approximation G.
The number t indicates the number of edges that differ between the graph G and G, whereas m = ω indicates that the number
of samples is equal to the bandwidth of the signal. Second row: same results without the random sampling approach.

Algorithm 1 Uniqueness set for Cographs
Input: Cotree of cograph G, ω.
Output: A minimal uniqueness set U of PWω(G).

Initialisation : U = ∅
P = PWω(·).

2: for i = 1 : 1 : cT do
Get the branches b = b�, br of c(i). Then for each b:

4: if b has no complement then
Ub = P(b).

6: else
P = CPW |b|−ω(·)

8: Ub = P(b →)
end if

10: U = Ub� ∪ Ubr ∪ U
end for

12: return U .

4. APPLICATIONS

We now provide numerical evidence to demonstrate how the
uniqueness sets calculated from a cograph approximation of
an arbitrary graph can lead to low reconstruction error, at a
very low computational cost. As we show, for a wide range
of the percentage of edges that differ between a graph and its
cograph approximation, the sampling sets calculated from the
cograph lead to competitive error. To assess the performance
of our method, we compare its reconstruction error to the er-
ror obtained by selecting a sampling set (a) at random; and (b)
using the general state-of-the-art method of Anis et al. [3].

For the experiment, a random cograph G is created and a
percentage of edges is altered creating a graph G. The unique-
ness sets for PWω(G) are then determined and used as the
sampling sets of PWω(G). The values of ω are selected such
that they are always located in between two eigenvalues of
LG . For each PWω(G), 100 signals are selected randomly
and then sampled on the sampling sets obtained using Algo-

rithm 1. More specifically, the sampling of a signal f on the
graph G on a subset of nodes S = {s1, . . . , sm} ⊂ V (G) is
obtained by fS = Mf where M is a binary matrix whose
entries are given by M = [δs1 , . . . , δsm ]T and δv is the N−
dimensional Kronecker column vector with center at v. From
fS , it is possible to obtain a reconstructed version of f as

frec = argmin
z∈span(Uω)

‖Mz−fS‖22 = Uω (MUω)
†
fS (4.1)

where Uω is the matrix whose column vectors are the ba-
sis of PWω(G), and (MUω)

† is the Moore-Penrose pseudo-
inverse of MUω [15].

As shown in Figure 3, the sampling sets calculated from
the cograph approximation lead to very competitive recon-
struction errors that are typically smaller than the two compet-
ing methods that were considered. This suggests approximat-
ing a graph by a cograph provides a viable way to efficiently
approximate sampling sets of very large graphs.

5. CONCLUSIONS

We presented a new method to exactly compute all the
uniqueness sets of cographs. By exploiting the cotree struc-
ture of the cograph, it is possible to determine its uniqueness
sets by only performing sequential and simple operations on
the uniqueness sets of very simple graphs. Numerical simu-
lations show how a cograph approximation can be exploited
to approximate uniqueness sets at very low cost, leading to
low error reconstructions for a wide range of approximation
degrees. This represents a very promising alternative for the
calculation of sampling sets in large size networks. We also
note that our method allows one to compute all the unique-
ness sets of a cograph in closed form. As a consequence,
cographs form an interesting test set of graphs that can be
used in theoretical studies to better understand the properties
of uniqueness sets, and to provide new insights about them.
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