$ sciendo

Proceedings on Privacy Enhancing Technologies ; 2018 (4):125-140

Anastasia Shuba*, Athina Markopoulou, and Zubair Shafiq

NoMoAds: Effective and Efficient Cross-App

Mobile Ad-Blocking

Abstract: Although advertising is a popular strategy for mo-
bile app monetization, it is often desirable to block ads in or-
der to improve usability, performance, privacy, and security. In
this paper, we propose NoMoAds to block ads served by any
app on a mobile device. NoMoAds leverages the network in-
terface as a universal vantage point: it can intercept, inspect,
and block outgoing packets from all apps on a mobile de-
vice. NoMoAds extracts features from packet headers and/or
payload to train machine learning classifiers for detecting ad
requests. To evaluate NoMoAds, we collect and label a new
dataset using both EasyList and manually created rules. We
show that NoMoAds is effective: it achieves an F-score of
up to 97.8% and performs well when deployed in the wild.
Furthermore, NoMoAds is able to detect mobile ads that are
missed by EasyList (more than one-third of ads in our dataset).
We also show that NoMoAds is efficient: it performs ad clas-
sification on a per-packet basis in real-time. To the best of our
knowledge, NoMoAds is the first mobile ad-blocker to effec-
tively and efficiently block ads served across all apps using a
machine learning approach.

Keywords: ad-blocker; machine learning; mobile; privacy

DOI 10.1515/popets-2018-0035
Received 2018-02-28; revised 2018-06-15; accepted 2018-06-16.

1 Introduction

Online advertising supports millions of free applications
(apps) in the mobile ecosystem. Mobile app developers are
able to generate revenue through ads that are served via third-
party ad libraries such as AdMob and MoPub [1]. Unfortu-
nately, the mobile advertising ecosystem is rife with different
types of abuses. First, many mobile apps show intrusive ads
that annoy users due to the limited mobile screen size [2]. Sec-
ond, mobile ads consume significant energy and data resources
[3]. Third, third-party mobile ad libraries have been reported to

*Corresponding Author: Anastasia Shuba: University of California,
Irvine, E-mail: ashuba@uci.edu

Athina Markopoulou: University of California, Irvine, E-mail:
athina@uci.edu

Zubair Shafiq: University of Iowa, E-mail: zubair-shafiq@uiowa.edu

leak private information without explicit permission from app
developers or users [4]. Finally, there have been reports of mal-
ware spreading through advertising in mobile apps [5]. Due
to the aforementioned usability, performance, privacy, and se-
curity abuses, it is often desirable to detect and block ads on
mobile devices.

Mobile ad-blocking apps such as Adblock Browser by
Eyeo GmbH [6] and UC Browser by Alibaba [7] are used by
millions of users. There are two key limitations of existing ad-
blocking apps. First, most ad-blockers rely on manually cu-
rated filter lists (or blacklists) to block ads. For example, Ea-
syList [8] is an informally crowdsourced filter list that is used
to block ads on desktop browsers. Unfortunately, these filter
lists do not perform well in the app-based mobile ecosystem
because they are intended for a very different desktop-based
web browsing ecosystem. Second, most of the existing mobile
ad-blocking apps are meant to replace mobile web browsers
and can only block ads inside the browser app itself. Specifi-
cally, these browser apps cannot block ads across all apps be-
cause mobile operating systems use sandboxing to isolate apps
and prevent them from reading or modifying each other’s data.

In this paper, we propose NoMoAds to effectively and ef-
ficiently block ads across all apps on mobile devices while op-
erating in user-space (without requiring root access). We make
two contributions to address the aforementioned challenges.
First, to achieve cross-app mobile ad-blocking, we inspect the
network traffic leaving the mobile device. Our design choice of
intercepting packets at the network layer provides a universal
vantage point into traffic coming from all mobile apps. Our
packet interception implementation is optimized to achieve
real-time filtering of packets on the mobile device. Second,
we train machine learning classifiers to detect ad-requesting
packets based on automatically extracted features from packet
headers and/or payload. Our machine learning approach has
several advantages over manual filter list curation. It automates
the creation and maintenance of filtering rules, and thus can
gracefully adapt to evolving ad traffic characteristics. More-
over, it shortens the list of features and rules, making them
more explanatory and expressive than the regular expressions
that are used by popular blacklists to match against URLSs.

Our prototype implementation of NoMoAds can run on
Android versions 5.0 and above. We evaluate the effectiveness
of NoMoAds on a dataset labeled using EasyList and manually
created rules that target mobile ads. The results show that Ea-

[@) ev-ne-no |

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 126

syList misses more than one-third of mobile ads in our dataset,
which NoMoAds successfully detects. We evaluate different
feature sets on our dataset and provide insights into their use-
fulness for mobile ad detection. In particular, network-layer
features alone achieve 87.6% F-score, adding URL features
achieves 93.7% F-score, adding other header features achieves
96.3% F-score, and finally, adding personally identifiable in-
formation (PII) labels and application names achieves up to
97.8% F-score. Furthermore, when tested on applications not
included in the training data, NoMoAds achieves more than
80% F-score for 70% of the tested apps. We also evaluate the
efficiency of NoMoAds operating in real-time on the mobile
device and find that NoMoAds can classify a packet within
three milliseconds on average. To encourage reproducibil-
ity and future work, we make our code and dataset publicly
available at http://athinagroup.eng.uci.edu/projects/
nomoads/.

The rest of this paper is organized as follows. Section
2 discusses the background and prior work related to mo-
bile ad-blocking. Section 3 describes NoMoAds’ design and
implementation. Section 4 describes our data collection and
ground truth labeling procedure. Section 5 evaluates NoMo-
Ads in terms of effectiveness and efficiency and compares it to
state-of-the-art filtering approaches. Section 6 concludes the
paper and outlines directions for future work.

2 Background

Deployment of ad-blockers has been steadily increasing for
the last several years due to their usability, performance, pri-
vacy, and security benefits. According to PageFair [9], 615
million desktop and mobile devices globally use ad-blockers.
While ad-blocking was initially aimed at desktop devices
mainly as browser extensions such as AdBlock, Adblock Plus,
and uBlock Origin, there has been a surge in mobile ad-
blocking since 2015 [10]. Mobile browsing apps such as UC
Browser and Adblock Browser are used by millions of iOS
and Android users, particularly in the Asia-Pacific region due
to partnerships with device manufacturers and telecommuni-
cation companies [10]. Moreover, Apple itself began offering
ad-blocking features within their Safari browser since i0S9
[11]. As we discuss next, mobile ad-blocking is fundamentally
more challenging as compared to desktop ad-blocking.

2.1 Challenges

Cross-App Ad-Blocking. It is challenging to block ads across
all apps on a mobile device. Mobile operating systems, includ-

ing Android and iOS, use sandboxing to isolate apps and pre-
vent them from reading or modifying each other’s data. Thus,
ad-blocking apps like UC Browser or Adblock Browser can
only block ads inside their own browser unless the device is
rooted. Specifically, Adblock has an Android app for blocking
ads across all apps, but it can work only on rooted devices, or it
has to be setup as a proxy to filter Wi-Fi traffic only [12]. Nei-
ther of these options are suitable for an average user who may
not wish to root their device and may not know how to setup a
proxy. A recent survey of ad-blocking apps on the Google Play
Store found that 86% of the apps only block ads inside their
browser app [13]. Recent work on leveraging VPNs for mobile
traffic monitoring has considered interception in the middle of
the network (e.g., ReCon [14]) as well as directly on the mo-
bile device (e.g., AntMonitor [15], Lumen [16]), primarily for
the purpose of detecting privacy leaks and only secondarily for
ad-blocking [3, 17].

Cross-app ad-blocking is not only technically challeng-
ing but is also considered a violation of the Terms of Service
(ToS) of the official Apple and Android app stores [18]. How-
ever, there are still ways to install cross-app ad-blocking apps
without rooting or jailbreaking a mobile device (e.g., through
a third-party app store). Legally speaking, ad-blockers have
withstood legal challenges in multiple European court cases
[19]: acting on users’ behalf with explicit opt-in consent, ad-
blockers have the right to control what is downloaded. We are
unaware of any successful challenges against ad-blockers un-
der the Computer Fraud and Abuse Act (CFAA) in the U.S.

Efficient Traffic Interception. While a mobile app can inter-
cept network traffic from all other apps in user-space by setting
up a VPN, it is challenging to efficiently analyze packet head-
ers and/or payload to block ads. Ad-blocking typically oper-
ates by filtering URLs pointing to advertising domains. Given
limited battery and processing capabilities of mobile devices,
it is particularly challenging to open up network traffic headers
to inspect URLSs of every packet from all apps. As compared to
remote traffic interception (through a VPN server), local (on-
device) mobile traffic interception provides local context but
needs to be done efficiently due to the limited CPU, mem-
ory, and battery resources on the mobile device. We build on
AntMonitor [15], a system for analyzing network traffic at the
mobile device, to efficiently implement a cross-app mobile ad-
blocker.

Avoiding Blacklists. Desktop ad-blockers rely on manually
curated filter lists consisting of regular expressions such as the
ones depicted in Tables 2 and 3. Unfortunately these lists are
not tailored to the app-based mobile ecosystem, and hence we
cannot simply reuse them to effectively block mobile ads. We
either have to replicate the crowdsourcing effort for the mo-

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking =—— 127

bile ecosystem or design approaches to automatically generate
blacklist rules to block mobile ads.

Ad-blocking apps on the Google Play Store also rely
on blacklists to block ads [13, 20]. More than half of these
apps rely on publicly-maintained lists such as EasyList and
some rely on customized filter lists. In addition, cross-app ad-
blockers that are not allowed on the Google Play Store, such
as DNS66 [21] and Disconnect [22], also rely on both public
and customized blacklists. Unfortunately, these blacklists are
manually curated, which is a laborious and error-prone pro-
cess. They are also slow to update and do not keep up with
the rapidly evolving mobile advertising ecosystem [23]. Fur-
thermore, they contain obsolete filter rules that are redundant,
which results in undesirable performance overheads on mobile
devices.

2.2 Related Work

In this section, we survey the most closely related literature to
this paper. Bhagavatula et al. [24] trained a machine learning
classifier on older versions EasyList to detect previously un-
detected ads. More specifically, they extracted URL features
(e.g., ad-related keywords and query parameters) to train a k-
nearest neighbor classifier for detecting ads reported in the
updated EasyList with 97.5% accuracy. Bau et al. [25] also
used machine learning to identify tracking domains within the
web ecosystem. Later, Gugelmann et al. [26] trained classi-
fiers for complementing filter lists (EasyList and EasyPrivacy)
used by popular ad-blockers. They extracted flow-level fea-
tures (e.g., number of bytes and HTTP requests, bytes per re-
quest) to train Naive Bayes, logistic regression, SVM, and tree
classifiers for detecting advertising and tracking services with
84% accuracy. Rodriguez et al. [17] leveraged graph analysis
to discover 219 mobile ad and tracking services that were un-
reported by EasyList. They identified third-party domains by
noting the domains contacted by more than one app, and then
inspected each third party domain’s landing page for certain
keywords that would mark it as an ad or tracking service. In a
similar fashion, PrivacyBadger [27] learns which domains are
potential trackers by analyzing the number of web pages a cer-
tain domain appears on. Going a step further, to avoid broken
pages for cases where domains are multi-purposed (i.e., both
functional and tracking), PrivacyBadger only blocks cookies
belonging to such domains.

Compared to prior work, our approach trains per-packet
classifiers (thus maintaining less state than per-flow) to detect
ad-requesting packets in mobile traffic. By efficiently analyz-
ing full packets, as we discuss later, our approach can make
use of more information than just flow-level or URL-based
features. To the best of our knowledge, prior research is lack-

ing an effective approach to automatically detect ads directly
on the mobile device.

Aside from inspecting network traffic, there have been
other approaches for blocking ads on Android devices. For in-
stance, PEDAL [28] decompiles applications and trains clas-
sifiers to distinguish the bytecode of apps from that of ad-
libraries. However, static analysis and code re-writing can lead
to unusable apps (e.g., due to broken third party functional-
ity), and cannot deal with native code. Modifications to the
Android Operating System (OS) have also been proposed to
mitigate privacy exposure to ad libraries (e.g., AdDroid [29]).
However, OS modification is not suitable for mass adoption
as most users are not comfortable with the complex procedure
of changing their mobile OS. In the future, we plan to build
on the OS modification approach to automatically label ads in
packet traces, which can then be used as ground truth to train
our machine learning classifiers.

3 The NoMoAds Approach

Fig. 1 provides an overview of our cross-app mobile ad-
blocking system. It consists of user-space software NoMoAds
and a server used for training classifiers. The NoMoAds app
intercepts every packet on the device and inspects it for ad re-
quests, extracting features and passing them on to a classifier
(Sec. 3.1). To obtain the ground truth, we match packets with
blacklists (Sec. 3.2.1), log the labeled packets, and then upload
them to the server for training (Sec. 3.3.1). While the detection
of ad packets is done in real-time on the device itself, the se-
lection of features and the training of classifiers is done offline
at a server in longer time scales (Sec. 3.3.2).

3.1 Packet Monitoring

NoMoAuds relies on the ability to intercept, analyze, and filter
network traffic from all apps on a mobile device. To that end,
NoMoAds leverages the APIs of the AntMonitor Library [15],
as described next.

Packet Interception. We make the design choice to inter-
cept packets at the network layer, because it provides a uni-
versal vantage point to traffic from all mobile apps and al-
lows us to build a cross-app mobile ad-blocker. We leverage
our prior work on the AntMonitor Library [15], which is a
lightweight VPN-based tool for monitoring packets coming in
and out of the device. The AntMonitor Library has the follow-
ing desirable properties: it operates in real-time at user-space,
without the need for root access, proxy or special configura-
tion. As shown in Fig. 1, we use the acceptIPDatagram

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking =—— 128

1
I
I
1

Applying Classifiers
to Packets

HTTP Parsing

ContentType

4 I
. .
Android Device Connector Type
(N\ Incoming Traffic ----»
NoMoAds Application Outgoing Traffic ----»
D AdR OffineLogs ~ ------- >
etecting equests i Training
/ (Co—cooococcocoooococooo=og \ Labeling PCAPNG Files }.|. .. —_—
I N\ e Packets ClassifiersiLists J<} | ""*--...
/Matching Packets Block Decision |---1 Log . ‘A y
with Blacklists -

Training Classifiers

J SON Files
Training Module

: l Other
". AppS
N . (Packet Monitoring

Classifiers

Packet-to-App
Mapping

Packet
Consumer

 consume
* Packet()

Fig. 1. The NoMoAds system: it consists of the NoMoAds application on the device and a remote server used to (re)train classifiers. The
app uses the AntMonitor Library to intercept, inspect, and save captured packets. All outgoing packets are analyzed for ads either by the
AdblockPlus Library or by our classifiers. The former is used to label our ground truth dataset, as well, as a baseline for comparison, and

the latter is the proposed approach of this paper.

and acceptDecryptedTLSPacket API calls provided
by the AntMonitor Library to intercept unencrypted and suc-
cessfully decrypted SSL/TLS packets, respectively. While the
AntMonitor Library cannot decrypt SSL/TLS packets when
certificate pinning is used, it can still analyze information from
the TCP/IP packet headers. Note that certificate pinning is cur-
rently not widely deployed: Oltrogge et al. [30] reported that
only 45 out of 639,283 mobile apps employ certificate pinning.

Packet Analysis. Given a list of strings to search for, the Ant-
Monitor Library can perform Deep Packet Inspection (DPI)
within one millisecond (ms) per packet (see [15]). When
strings of interest are not known a priori, we can use Ant-
Monitor Library’s visibility into the entire packet to parse and
extract features from TCP/IP and HTTP/S headers and pay-
load. For example, we can use IP address information in the IP
header, port numbers and flag information in the TCP header,
hostnames and query strings in the HTTP header, string sig-
natures from the HTTP payload, and server name indication
(SNI) from TLS extensions. In addition, the AntMonitor Li-
brary provides contextual information, such as which app is
responsible for generating a given packet via the mapPacket
API call.

Packet Filtering. For each packet, we can decide to block it
(by returning false within one of the API calls) or to al-

low it (by returning t rue). By default, if our classifier returns
a match, we block the packet and return an empty HTTP re-
sponse back to the application that generated the ad request.
It is critical to return feedback to the application, otherwise
it triggers wasteful retransmissions that eat up the mobile de-
vice’s scarce resources.

Leveraging the aforementioned packet interception, anal-
ysis, and filtering techniques, NoMoAds aims to detect and
block packets that contain ad requests.

3.2 Detecting Ad Requests in Outgoing
Packets

Ads are typically fetched from the network via HTTP/S re-
quests. To detect them, we take the approach of inspecting
every outgoing packet. Blocking requests for ads is consis-
tent with the widely used practice of most ad-blockers. Note
that ad-blockers also sometimes modify incoming ads (e.g.,
through CSS analysis) when it is impossible to cleanly block
outgoing HTTP requests. The approach of outgoing HTTP re-
quest filtering is preferred because it treats the problem at its
root. First, the ad request is never generated, which saves net-
work bandwidth. Second, this approach prevents misleading

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 129

the ad network into thinking that it served an ad, when it ac-
tually did not (this keeps attribution analytics and payments
for ad placements honest and correct). Third, this approach
circumvents the need to modify the rendered HTML content
(e.g., CSS values).

The rest of this section compares two approaches for
blocking ad requests: the traditional, blacklist-based approach
(Sec. 3.2.1) and the proposed machine learning-based ap-
proach taken by NoMoAds (Sec. 3.2.2).

3.2.1 Blacklists

According to a recent survey [13], mobile ad-blocking apps
on the Google Play Store rely on blacklists to block ads [13].
These blacklists (such as EasyList in AdblockPlus) capture
the ad-blocking community’s knowledge about characteristics
of advertisements through informal crowdsourcing. However,
blacklists suffer from the following limitations.

1. Maintenance. Blacklists are primarily created and main-
tained by humans domain-experts, often assisted by
crowdsourcing. This is a tedious, time-consuming, and
expensive process. Furthermore, as the characteristics of
ad traffic change over time, some filer rules become obso-
lete and new filter rules need to be defined and added to
the blacklist.

2. Rules Compactness and Expressiveness. Humans may not
always come up with the most compact or explanatory fil-
ter rules. For example, they may come up with redundant
rules, which could have been summarized by fewer rules.
We faced this issue ourselves when coming up with our
own set of rules tailored to mobile traffic (e.g., see rows
20 and 25 in Table 3). In addition, filter rules in today’s
blacklists are limited in their expressiveness: they are an
“OR” or an “AND” of multiple rules. On the other hand,
classifiers can come up with more complicated but intu-
itive rules, such as the decision tree depicted in Fig. 3.

3. Size. Blacklists can be quite lengthy. For instance, Ea-
syList contains approximately 64K rules. This is a prob-
lem for implementations on the mobile device with lim-
ited CPU and memory resources.

4. URL-focused Rules. Most of today’s blacklists were
specifically created for browsers and web traffic, and they
typically operate on the extracted URL and HTTP Referer
header. As we show later, this is one of the reasons that
these lists do not translate well when applied to mobile
traffic. By exploiting AntMonitor Library’s visibility into
the entire payload (beyond just URLSs), we can leverage
the information from headers and payload to more accu-
rately detect ads in mobile traffic.

In this work, we used EasyList (the most popular publicly-
maintained blacklist [13]) as (i) a baseline for comparison
against our proposed learning approach — see Section 5.1, and
for (ii) partially labeling packets as containing ads or not — see
Section 4. In order to match packets against EasyList, we in-
corporated the open source AdblockPlus Library for Android
[31] into NoMoAds, as shown in Fig. 1. The AdblockPlus Li-
brary takes as input the following parameters: URL, content
type, and HTTP Referer. The content type is inferred from
the requested file’s extension type (e.g., . js, .html, . jpg)
and is mapped into general categories (e.g., script, document,
image). Relying on these parameters to detect ad requests re-
stricts us to HTTP and to successfully decrypted HTTPS traf-
fic. Hence, we first have to parse each TCP packet to see if
it contains HTTP, and then extract the URL and HTTP Ref-
erer. Afterwards, we pass these parameters to the AdblockPlus
Library, which does the matching with EasyList.

3.2.2 Classifiers

NoMoAds uses decision tree classifiers for detecting whether
a packet contains an ad request. While feature selection and
classifier training is conducted offline, the trained classifier is
pushed to the NoMoAds application on the mobile device to
match every outgoing packet in real-time. To extract features
from a given packet and pass them to the classifier, one typi-
cally needs to invoke various Java string parsing methods and
to match multiple regular expressions. Since these methods are
extremely slow on a mobile device, we use the AntMonitor Li-
brary’s efficient DPI mechanism (approximately one millisec-
ond per packet) to search each packet for features that appear
in the decision tree. We pass any features found to the classi-
fier, and based on the prediction result we can block (and send
an empty response back) or allow the packet.

Classifiers vs. Blacklists. NoMoAds essentially uses a set of
rules that correspond to decision tree features instead of black-
list rules. The decision tree classifier approach addresses the
aforementioned limitations of blacklists.

1. Mobile vs. Desktop. Since EasyList is developed mostly
for the desktop-based web browsing ecosystem, it is prone
to miss many ad requests in mobile traffic. In contrast,
NoMoAds uses decision tree classifiers that are trained
specifically on mobile traffic. This leads to more effective
classification in terms of the number of false positives and
false negatives.

2. Fewer and more Expressive Rules. A classifier contains
significantly fewer features than the number of rules in
blacklists. While EasyList contains approximately 64K

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 130

rules, our trained decision tree classifiers are expected to
use orders of magnitude fewer rules. This ensures that the
classifier approach scales well — fewer rules in the deci-
sion tree result in faster prediction times. Decision tree
rules are also easier to interpret while providing more ex-
pressiveness than simple AND/OR.

3. Automatically Generated Rules. Since decision tree clas-
sifiers are automatically trained, it is straightforward to
generate rules in response to changing advertising char-
acteristics. These automatically generated rules can also
help human experts create better blacklists.

3.3 Training Classifiers

This section explains our approach to training classifiers,
which is done offline and at longer time scales. The trained
classifier (i.e., decision tree model) is pushed to the mobile de-
vice and is applied to each outgoing packet in real-time (Sec.
3.2.2).

3.3.1 Labeling Packets (on the mobile)

In order to train classifiers, we first need to collect ground
truth, i.e., a dataset with packets and their labels (whether or
not the packet contains an ad request). As shown in Fig. 1, we
use the AntMonitor Library’s API to store packets in PCAPNG
format, i.e., the packets in PCAP format plus useful informa-
tion for each packet, such as the packet label. We make mod-
ifications to the AntMonitor Library to allow us to block ad-
related packets from going to the network, but still save and
label them to be used as ground truth. We use tshark to con-
vert PCAPNG to JSON, extracting any relevant HTTP/S fields,
such as URI, host, and other HTTP/S headers. The JSON for-
mat offers more flexibility in terms of parsing and modifying
stored information, and hence is a more amenable format for
training classifiers.

We further extend the AntMonitor Library to annotate
each packet with the following information: (i) its label pro-
vided by AdblockPlus (ii) the name of the app responsible for
the packet (available via AntMonitor Library’s API calls); and
(iii) whether or not the packet contains any personally identi-
fiable information, as defined next.

We consider the following pieces of information as per-
sonally identifiable information (PII): Device ID, IMEI, Phone
Number, Email, Location, Serial Number, ICC ID, MAC ad-
dress, and Advertiser ID. Some of these identifiers (e.g., Ad-
vertiser ID) are used by major ad libraries to track users and
serve personalized ads, and hence can be used as features in
classification. PII values are available to the AntMonitor Li-

brary through various API calls provided by Android. Since
these values are known, the library can easily search for them
with DPI. The full discussion of PII is out of the scope of
this paper, and we refer the reader to [15] and [14] for de-
tails. Within the NoMoAds system, we use the AntMonitor
Library’s capability to find PII and label our packets accord-

ingly.

3.3.2 Training Classifiers (at the server)

We train decision tree classifiers to detect outgoing packet con-
taining an ad request. We use the decision tree model for the
following reasons. First, in our past experience this model has
performed well in terms of accuracy, training and prediction
time [32, 33]. Second, decision trees provide insight into what
features are useful (they end up closer to the root of the tree).
Finally, decision trees make the real-time implementation on
the device possible since we know which features to search
for.

During training, we adopt a bag-of-words model to extract
features from a given packet. This approach has been used in
the past, e.g., by ReCon [14], as a general way to detect PII
leakage. We adapt this idea for ads and learn which specific
words are useful features when it comes to predicting ad traf-
fic.

In particular, we break the packet into words based on de-
limiters (e.g., “?”, “=", “:”) and then use these words as fea-
tures in classification. As a preliminary phase of feature se-
lection, we discard words that appear too infrequently, since
ad requests typically follow the same structure in each packet
sent. We also discard words that are specific to our setup, such
as version numbers and device/OS identifiers (e.g., “Nexus”
and “shamu”), since we would like our classifier to be applica-
ble to other users. We systematically extract features from dif-
ferent parts of the packet (i.e., TCP/IP headers, URL, HTTP
headers, and payload) to compare and analyze their relative
importance (Sec. 5.1.1).

4 The NoMoAds Dataset

In order to train and test our classifiers for detecting ads, we
collected and analyzed our own dataset consisting of packets
generated by mobile apps and the corresponding labels that
indicate which packets contain an ad request. Sec. 3.3.1 de-
scribes the format of our packet traces and the system used to
collect them. In this section, we describe the selection process
of mobile apps for generation of these packet traces.

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking = 131

70
60
@ 50
i
v
£ 40
-
°
=
<
< 30
o
‘q-, ‘
a 20 l II|
10 | I
II M | I
]
0 IIIIII-..II-
Q Vw8 O >c k7 > 0T Yoo c s 5
0T 835353 9808wl T oacy 83
© Q O = T = c ®© & g N .2 Q9
E 719 2og g@ c e 138535 > c
- >8 2 0 g ® 8 8 3§ <c ot g idw o
c £ Y ES g2 £ ¥ S22 5 3s <3 g
tE5Esga =928 2
S5 < © < € ® O £
=) E._
©
Ad Libraries

leadbolt m

50
45
mm Number of Apps -Percent of Installs 40 5
2
35 %
&
30 g
Q.
25 <
-
o
205—,
K-}
15 €
=]
10 2
i 5
e -1 0 e . = 0
O WQE XFT LY UNSTFS2L Yy 5O €T
scastescE8cB8g2e23358¢g8
55 a9 90 ® 20 06 0 £ o2 8§ © g5 & E
Ec g >3€E 8™~ EQ 33Ul w gL ©
= - 5 & ® 3T = L
o © S © © £ =
o ©
© ‘CIJJ ©
2 9] £
e} =
[e) (&)
€

Fig. 2. Third-party ad libraries that we tested and the number of apps that were used to test each library. The line plot in orange shows
the percentage of installed apps from the Google Play Store that use each library according to AppBrain [1]. In order to obtain a repre-
sentative dataset we made sure to test each ad library with a fraction of apps that is proportional to the fraction of this ad library’s installs

in the real world.

App developers typically use third-party libraries to serve
ads within their apps. We want to have sufficient apps in our
dataset to cover a vast majority of third-party ad libraries. Ac-
cording to AppBrain [1], about 100 third-party ad libraries are
used by a vast majority of Android apps to serve ads. Among
these third-party ad libraries, only 17 are used by at least 1%
of Android apps. The most popular third-party ad library, Ad-
Mob, alone is used by more than 55% of Android apps. There-
fore, we can gain a comprehensive view of the mobile adver-
tising ecosystem by selecting apps that cover the most popular
third-party ad libraries.

We tested the most popular applications from the Google
Play Store as ranked by AppBrain [1]. While we mainly fo-
cused on apps that contain third-party ad libraries, we also in-
cluded a couple popular apps (Facebook and Pinterest) that
fetch ads from first-party domains. More specifically, we se-
lected 50 apps that display ads with the goal of capturing all
third-party libraries that account for at least 2% of app installs
on the Google Play Store (as reported by AppBrain [1]). Fig.
2 shows the 41 third-party ad libraries that are covered by at
least one app in our selection of 50 apps. We note that the
third-party ad libraries covered in our dataset account for a
vast majority of app installs on the Google Play Store.

To label ad packets, we interacted with the aforemen-
tioned 50 apps from the Google Play Store using NoMoAds in-
tegrated with the AdblockPlus Library. We noticed that certain
ads were still displayed which means that they were not de-
tected by the filter rules in EasyList. We manually analyzed the
outgoing packets using Wireshark [34] to identify the packets
responsible for the displayed ads. For instance, some packets
contained obvious strings such as “/network_ads_common”

and “/ads,” and others were contacting advertising domains
such as “applovin.com” and ““api.appodealx.com.” To help us
identify such strings, we utilized two more popular ad lists
— AdAway Hosts [35] and hpHosts [36]. We picked AdAway
Hosts because it is specific to mobile ad blocking; and hp-
Hosts has been reported by [17] to find more mobile adver-
tisers and trackers as compared to EasyList. However, we did
not always find relevant matches with these lists because they
tend to have many false positives and false negatives (see Ta-
ble 4). Using manual inspection along with suggestions from
AdAway Hosts and hpHosts, we were able to create Custom
Rules, in the EasyList format, that are specifically targeted at
mobile ads. In summary, we use the following strategy to de-
velop a list of filter rules to detect all ads by each app:

1. Run the app with NoMoAds using both EasyList and our
Custom Rules. If there are no residual ads, then interact
with the app for 5 minutes and save the packets generated
during this time. If there are residual ads displayed, then
proceed to the next step.

2. Each time an ad is displayed, stop and extract the capture,
and inspect the last few packets to find the one responsible
for the ad. Use AdAway Hosts and hpHosts for sugges-
tions and develop new Custom Rules. Add the new rule to
the list to be used by the AdblockPlus Library.

3. Run the app again to see if the freshly created rule was
successful in blocking a given ad. If the new rule matched,
but the same ad was still shown, that means the rule trig-
gered a false positive. Remove the rule and repeat Step 2.
If the new rule matched, and a different ad was shown,
repeat Step 2. The repetition is important as applications

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking =— 132

Count
Apps Tested 50
Ad Libraries Covered 41
Total Packets 15,351
Packets with Ads 4,866
HTTPS Packets with Ads 2,657
Ads Captured by EasyList 3,054
Ads Captured by Custom Rules 1,812

Table 1. Dataset Summary

often keep trying various ad networks available to them
until they find one that will correctly produce an ad. We
stop repeating when there are no more ads being displayed
for the duration of the 5 minute interaction with the app
in question.

Table 1 summarizes key statistics of our dataset. The 50 tested
apps in our dataset use 41 different third-party ad libraries.
Our packet traces contain 15,351 outgoing HTTP(S) packets
out of which 4,866 (over 30%) contain an ad request. Inter-
estingly enough, about half of the ad requests are sent over
HTTPS. This indicates good practices among ad libraries, but
also demands the TLS-interception ability that is provided by
the AntMonitor Library.

It is noteworthy that EasyList fails to detect more than
one-third (37%) of ad requests in our dataset. We notice that
EasyList seems to catch most of the ads generated by AdMob
[37] and MoPub [38] — two of the most popular ad libraries,
owned by Google and Twitter, respectively. Both of these com-
panies also serve ads on desktop browsers, and hence it is
expected that EasyList covers these particular ad exchanges.
However, when applications use ad libraries that only have
mobile components (e.g., UnityAds and AppsFlyer), EasyList
misses many ads and we have to create Custom Rules for them.
This observation highlights that EasyList is not well suited
for today’s app-based mobile advertising ecosystem. Table 2
shows some of the 91 EasyList rules that matched packets in
our dataset. 91 is a tiny fraction of the approximately 64K fil-
ter rules in EasyList. Thus, we conclude that EasyList not only
fails to capture one third of ad requests but also consists of
mostly unused or redundant filter rules. Table 3 further shows
the Custom Rules that we manually curated to detect ad re-
quests that evaded EasyList. There were dozens of rules that
we discarded as they triggered false positives or false nega-
tives (in Step 3 above) and are thus omitted from the table.
This finding illustrates the challenge of manually creating fil-
ter rules.

Our

athinagroup.eng.uci.edu/projects/nomoads/.

dataset is publicly available at http://

Number of
EasyList Rules Occurrences

1|/googleads. 951
2|://ads.Sdomain=...~ads.red... 686
3|://ads.Sdomain=...~ads.route.cc... 168
4|.com/adv_ 135
5]| |vungle.com”S$third-party 124
6|| |inmobi.com”Sthird-party 107
7|/pubads. 74
8|&ad_type= 64
9| | |adcolony.com/Sthird-party 61
10]|/videoads/* 60
11|.com/ad.Sdomain="ad-tuning.de 47
12| | | smaato.netASthird-party 36
13]| | rubiconproject.com”$third-party 34
14|.com/ad/$~image,third-party,domain... 33
15]| |adnxs.com”Sthird-party 28
16| |moatads.comASthird-party 28
17]| |appnext.com”Sthird-party 24
18| | | mobfox.comASthird-party 23
19| | |andomedia.com?S$third-party 23
20|/advertiser/*Sdomain="affili.net|~bi... 19
21|/api/ad/* 19
22|| |teads.tvASthird-party 17
23]| | spotxchange.com”Sthird-party 17
24|/adunit/*$domain="propelmedia.com 15
25|/securepubads. 14
26|/adserver.$~xmlhttprequest 13
27|| |vdopia.comASthird-party 11
28|/curveball/ads/* 11
29[| |ads.tremorhub.com” 10
30|&advid=$~image 10

Total 3054

Table 2. EasyList rules that matched at least 10 packets in our
dataset. A total of just 91 rules were triggered by our dataset.

5 Evaluation

In this section, we evaluate NoMoAds in terms of effectiveness
of the classification (Section 5.1) as well as efficiency when
running on the mobile device (Section 5.2). In terms of effec-
tiveness, we show that NoMoAds achieves an F-score of up
to 97.8% depending on the feature set. Furthermore, we show
that NoMoAds performs effectively even when used to detect
ads for previously unseen apps and third-party ad libraries. In
terms of efficiency, we show that NoMoAds can operate in
real-time by adding approximately three milliseconds of addi-
tional processing time per packet.

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking =—— 133

Number of
Custom Rules Occurrences
1|antsmasher_Advertiser ID 611
2|/bee7/*/advertiser_ 414
3|| |applovin.com”? 203
4|/network_ads_common” 169
5|/adunion? 87
6[| | ssdk.adkmob.com”? 62
7|/mpapi/ad*adid” 49
8|/simpleM2M~ 41
9(| | placements.tapjoy.com” 36
10(| |ads.flurry.com” 33
11| | https://t.appsflyer.com/api/*app_id* 26
12(| |api.appodealx.com” 25
13|] | cdn.flurry.com” 18
14(| | api.tinyhoneybee.com/api/getAD* 6
15(] |init.supersonicads.com” 5
16|/ads” 5
17| | https://publisher-config.unityads... 5
18] | ap.lijit.comASthird-party 3
19(| |advs2sonline.goforandroid.com” 3
20(| | doodlemobile.com/feature_server? 3
21(| |live.chartboost.com/api” 2
22| | https://api.eqmob.com/?publisher_id* 2
23| | |impact.applifier.com/mobile/camp... 1
24| http://newfeatureview.perfectionholic... 1
25(| | doodlemobile.com:8080/feature_ser... 1
26| | |i.bpapi.beautyplus.com/operation/ad” 1
0
Total 1812

Table 3. The set of Custom Rules that we manually came up with
to capture ad requests that escaped EasyList, and the number of
packets that match each rule in our dataset. Only the rules that
triggered true positives are shown.

5.1 Effectiveness

For evaluation of the classification methodology, we can split
the packets in our dataset into training and testing sets, at dif-
ferent levels of granularity, namely packets (Section 5.1.1),
apps (Section 5.1.2), or ad libraries (Section 5.1.3). Next, we
show that our machine learning approach performs well for
each of these three cases. Along the way, we provide useful
insights into the classification performance as well as on prac-
tical deployment scenarios.

5.1.1 Testing on Previously Unseen Packets

First, we consider the entire NoMoAds dataset, described in
Section 4, and we randomly split the packets into training and
testing sets without taking into account any notion of apps or
ad libraries that generated those packets.

We note that this splitting may result in overlap of apps
in the training and test sets. Training on packets of apps that
are expected to be used (and will generate more packets on
which we then apply the classifiers) may be both desirable and
feasible in some deployment scenarios. For example, if data
are crowdsourced from mobile devices and training is done at
a central server, the most popular apps are likely to be part
of both the training and testing sets. Even in a distributed de-
ployment that operates only on the device, users might want
to do preliminary training of the classifiers on the apps they
routinely use.

Setup. We train C4.5 decision tree classifiers on various com-
binations of features, extracted from each packet’s headers and
payload. The bottom rows of Table 4 summarize our results for
each feature set. We report the F-score, accuracy, specificity,
and recall based on a 5-fold cross-validation. We also report
the initial size of the feature set and the training time (how long
it takes to train on our entire dataset on a standard Windows
10 laptop). Finally, we report the resulting tree size (number of
nodes in the decision tree, excluding the leaf nodes), and the
average per-packet prediction time on a mobile device. This
helps us gain an understanding of which combination of fea-
tures, extracted from headers and/or payload, are essential for
classifying packets as containing ad requests or not.

Network-based Features. We started by using destination IP
and port number as our only features. With these features
alone, we were able to train a classifier that achieved an F-
score of 87.6%. However, IPs change based on a user’s loca-
tion since different servers may get contacted. A natural next
step is to train on domain names instead. With this approach,
our decision tree classifier achieved an F-score of 86.3%. As
expected, training on domains performs similarly to training
on IPs since these two features are closely related.

URL and HTTP headers. Domain-based ad blocking is often
too coarse as some domains are multi-purposed, which is why
ad-blocking blacklists typically operate on URLs. Thus, we
trained decision trees with the following combinations: using
the path component of the URL only, using the full URL only,
and using the full URL and all other HTTP headers. As shown
in Table 4, breaking the contents of packets into words signifi-
cantly increases the training time since the number of features
grows dramatically from 1-2 to several thousands. However,
having more features increases the F-score to more than 90%.
We note that the F-score increases as we use more packet con-
tent.

PII as features. Since many ad libraries use various identifiers
to track users and provide personalized ads, a natural ques-
tion to ask is whether or not these identifiers can be useful
for detecting ads. The AntMonitor Library already provides

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking = 134

Number Per-packet
Approaches Under F-score | Accuracy | Specificity | Recall | of Initial Training Tree Prediction
Comparison (%) (%) (%) (%) | Features | Time (ms) Size Time (ms)

%o EasyList: URL + Content
§ ‘3 Type + HTTP Referer 77.1 88.2 100.0 62.8 63,977 N/A N/A | 0.54 +2.88
S = |hpHosts: Host 61.7 78.3 89.1 55.2 47,557 N/A N/A 0.60+1.74
'2 AdAwayHosts: Host 58.1 81.2 99.8 41.1 409 N/A N/A 0.35+0.10
E:; Destination IP + Port 87.6 92.2 94.5 87.3 2 298 304 0.38 £ 0.47
E—’ 9 Domain 86.3 91.0 91.9 89.3 1 26 1 0.12+0.43
o § Path Component of URL 92.7 95.1 99.2 86.1 3,557 424,986 188 2.89+1.28
_'F_a § URL 93.7 96.2 99.7 88.7 4,133 483,224 196 3.28+1.75
a % |URL+Headers 96.3 97.7 99.2 94.5 5,320 755,202 274 3.16 £1.76
% -3 URL+Headers+PlI 96.9 98.1 99.4 95.3 5,326 770,015 277 2,97 +1.75
S Y |URL+Headers+Apps+Pll 97.7 98.5 99.2 97.1 5,327 555,126 223 1.71+1.83
g URL+Headers+Apps 97.8 98.6 99.1 97.5 5,321 635,400 247 1.81+1.62

Table 4. Evaluation of decision trees trained on different sets of features, using our NoMoAds dataset (described in Section 4) and 5-fold
cross-validation. We report the F-score, accuracy specificity, recall, initial number of features, the training time (on the entire dataset at
the server), the resulting tree size (the total number of nodes excluding the leaf nodes), and the average per-packet prediction time (on
the mobile device). The top rows also show our baselines for comparison, namely three popular ad blocking lists: EasyList [8] (alone,

without our Custom Rules), AdAway Hosts [35], and hpHosts [36].

the capability to search for any PII contained within a packet,
including Advertiser ID, Device ID, location, etc. Typically,
these features cannot be used in lists since they change from
user to user. But, since our system runs on-device, it has ac-
cess to these values and can provide labels (instead of the
actual PII values) as features for classification. However, Ta-
ble 4 shows that using PII as features has a very small effect
on effectiveness: although it slightly decreases the amount of
false positives (higher specificity), it does so at the cost of in-
creasing the number of false negatives (lower recall). Fig. 3
shows a partial view of the final classifier tree when training
on URLs, headers, and PII with zoom-ins on areas of interest.
At the root of the tree is the feature with the most information
gain — “&dnt=", which is a key that stands for “do not track”
and takes in a value of O or 1. From there, the tree splits on
“ads.mopub.com” — a well known advertiser, and when it is
the destination host of the packet, the tree identifies the packet
as an ad request. Other interesting keys are “&eid” and “&ifa”
both of which are associated with various IDs used to track the
user. The keys “&model=" and “&width=""are often needed
by advertisers to see the specs of a mobile device and fetch
ads appropriate for a given screen size. Finally, we note that
PII (such as Advertiser ID shown in Fig. 3) do not appear un-
til later in the tree, meaning they have little information gain.
This is most likely due to the fact that advertisers are not the
only ones collecting user information, and that there are ser-
vices that exist for tracking purposes only. If in the future we
expand NoMoAds to blocking ads and trackers, we expect PII
to play a bigger role.

App names. Next, we examined whether or not additional
information available on the mobile device through the Ant-
Monitor Library can further improve classification. We consid-
ered the application package name as a feature, e.g., whether a
packet is generated by Facebook or other apps. This is a unique
opportunity on the mobile device: a packet can be mapped to
the application, which may not be the case if the packet is ex-
amined in the middle of the network. As shown in Table 4,
adding the app as a feature slightly increased the F-score while
decreasing the training time by 214 seconds and shrinking the
resultant tree size. Training on URLS, headers, and app names
alone (without PII) achieves the highest F-score. However, us-
ing app names is not ideal since this feature is not available
when we classify a packet that belongs to applications that
were not part of the training set. Yet, the better performance
of the classifier and faster training time indicates the need to
further explore contextual features. For instance, as part of fu-
ture work, we plan to use the set of ad libraries belonging to
an app as a feature. Moreover, we expect the saving in train-
ing time to become more important when training on larger
datasets. In our past experience, for every ~5K packets in the
dataset, the number of features increases by 50%. For instance,
for a dataset with ~45K packets, the number of features would
be ~13K. Training on ~13K features could take several hours,
which is acceptable when running on a server. However, more
than that can quickly become unusable, as ideally, we would
like to re-train our classifiers daily and push updates to our
users, similarly to what EasyList does. Therefore, as our train-
ing datasets grow, we will need to be more selective about

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking =—— 135

Fig. 3. Partial view of the classifier tree when using URL, HTTP headers, and Pll as features. Out of the 5,326 initial features, only 277
were selected for the decision tree depicted here. At the root of the tree is the feature with the most information gain — “&dnt=", which
is a key that stands for “do not track” and takes in a value of 0 or 1. From there, the tree splits on “ads.mopub.com” — a well known ad-
vertiser, and when it is the destination host of the packet, the tree identifies the packet as an ad. Other interesting keys are “&eid” and
“&ifa” both of which are associated with various IDs used to track the user. Finally, the keys “&model=" and “&width=" are often needed
by advertisers to see the specs of a mobile device and fetch ads appropriate for a given screen size.

which data and which features we feed to our classifiers; this
will be part of future work.

Blacklists as Baselines. The top rows of Table 4 also report
the performance of three popular ad-blocking lists, which we
use as baselines for comparison, namely: EasyList [8] (alone,
without our Custom Rules), AdAway Hosts [35], and hpHosts
[36]. EasyList is the best performing of the three, achieving
an F-score of 77.1%, 88.2% accuracy, 100% specificity (no
false positives), and 62.8% recall (many false negatives). Since
EasyList filter rules operate on URL, content type and HTTP
referer, they are most comparable to our classifiers trained on
URL and HTTP Header features. AdAway Hosts and hpHosts
perform worse than EasyList since they operate on the granu-
larity of hosts and end up with many false positives and even
more false negatives. hpHosts contains more rules than Ad-
Away Hosts, and thus performs slightly better in terms of F-
score. However, since hpHosts is more aggressive, it ends up
with a lower specificity score.

5.1.2 Testing on Previously Unseen Apps

Setup. We split the NoMoAds dataset so that we train and test
on different apps. From a classification point of view, this is
the most challenging (“in the wild”) scenario, where testing is
done on previously unseen apps. This may occur as new apps
get installed or updated, potentially using new ad libraries, and

exhibiting behavior not captured in the training set. From a
practical point of view, if one can do preliminary re-training
of the classifier on the new apps, before using and pushing
it to users, that would be recommended. However, we show
that our classifiers perform quite well even in this challenging
scenario of testing on packets of previously unseen apps.

We use the decision tree with the URL, HTTP headers,
and PII feature set because it performed quite well in Table 4
(see row highlighted in bold) and does not use the app name
as a feature (which is not useful when testing on unseen apps).
To test our system against apps that may not appear in our
training set, we performed 10-fold cross-validation, this time
separating the packets into training and testing sets based on
the apps that generated those packets. Specifically, we divided
our dataset into 10 sets, each consisting of 5 apps, randomly
selected. We then trained a classifier on 9 of those sets (i.e., 45
apps total) and tested on the remaining set of 5 apps. We re-
peated this procedure 10 times so that each set was tested ex-
actly once. Therefore, each app was tested exactly once using
a classifier trained on different apps (i.e., the 45 apps outside
that app’s test set).

Results. Fig. 4 summarizes the classification results (F-score
and accuracy). We see that the classifier performs well on a
large majority of the apps: over 70% of the apps have an F-
score of 80% or higher, while half of the apps have an F-score
above 90%. Accuracy is even better: over 80% have an accu-
racy of 80% or higher. This is expected since there are more

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking = 136

=
o
(=}

80
60
40

20
F-score ——Accuracy

Complementary Cmulative
Distribution Function (CCDF)

o

0 10 20 30 40 50 60 70 80 90
F-score/Accuracy

100

Fig. 4. Complementary Cumulative Distribution Function (CCDF)
of F-score and accuracy for the 50 apps in our dataset.

negative samples than positive ones, making the true negative
rate (and hence the accuracy) high.

Next, we investigated the reasons behind the good classifi-
cation performance. One plausible hypothesis is that the clas-
sifier performs well on previously unseen apps because apps
use the same ad libraries. To assess this hypothesis, for each
app, we computed not only its F-score/accuracy (on each indi-
vidual app’s data) but also the overlap in ad libraries. We de-
fine the overlap in ad libraries as the percentage of the app’s ad
libraries that appeared in the training set. An overlap of 100%
means that all ad libraries used by the app in question were
seen during training.

Fig. 5 shows the results for each app. The apps are or-
dered on the x-axis in terms of decreasing F-scores. We note
that all apps have high overlap in ad libraries: all of them are
above 50% and most of them have 100%. There are several
apps (e.g., apps 2, 6, 10, 13, and 25) with near perfect F-scores
even though they contain some ad libraries not seen during
training (i.e., have a less than 100% overlap in ad libraries).
However, there are a few apps with low F-scores despite the
fact that they had all their ad libraries captured in the training
set (overlap 100%). One possible explanation is that each app
employs different functionalities of each ad library and some
functions may have been absent from the training set.

False Negatives. We took a closer look into the five worst per-
forming apps (e.g., apps 46-50, on the right of Fig. 5 that had a
very low F-score). The main reason behind their poor perfor-
mance was the low number of positive samples. For instance,
App #48 is Spotify, which had no positive samples, and hence
no true positives, making the F-score equal to 0%. Apps #49
and #50 are YouTube and LINE: Free Calls & Messages, re-
spectively. These two apps had eight and 19 positive samples,
respectively — a small number in comparison to an average of
about 97 positive samples per app. NoMoAds was unable to
detect these positive samples correctly. However, in both cases
NoMoAds achieved a 0% false positive rate, and hence the ac-
curacy for both of these cases is relatively high.

Next, we examined the two apps with a low (13% and
14.8%) but non-zero F-score. The two apps are Facebook (App
#47) and Pinterest (App #46), and they are the only ones in our
dataset that are serving ads as a first party, while all the other
apps use third-party ad libraries. In other words, the first-party
ad serving behavior was not seen during training in both cases,
which led to the poor performance of the classifiers.

Finally, for the four poorly performing apps with a non-
zero amount of positive samples, we performed another ex-
periment. Specifically, we trained on all 49 apps plus 50% of
the packets belonging to each app in question and tested on
the remaining 50% of packets belonging to that app. In some
cases, the F-score improved significantly: the LINE: Free Calls
& Messages app was able to achieve an F-score of 100%.
YouTube stayed at 0% F-score due to a very low number of
positive samples (eight total, with just four in the training set).
Facebook and Pinterest improved only slightly: an F-score of
52.2% and 50%, respectively. This can be explained by the fact
that both of these apps not only serve ads from a first-party,
but also fetch very diverse content depending on what the user
clicks. In contrast, most of the other apps in our dataset have
a very specific set of functionalities and do not exhibit a wide
range of network behavior. For example, games tend to con-
tact their servers for periodic updates and third party servers
for ads. Whereas Facebook and Pinterest can contact many
different servers based on which pages the user visits. This
finding suggests a deployment approach where the classifier
is pre-trained on some packets of these popular apps before
being deployed on the mobile device.

False Positives. We also examined apps with a high false pos-
itive rate. For instance, Shadow Fight 2 (App #40) only had
48% specificity, but looking at the packets that were incor-
rectly labeled as positive revealed that all of the false pos-
itives were actually related to ads and/or tracking. Specif-
ically, the URLs within those packets contained the adver-
tiser ID and strings such as the following: “ad_format=video,”
“tracker,” and “rewarded.” Similarly, other apps that had speci-
ficity below 80% (Angry Birds Seasons (App #17), Spotify
(App #48), Plants vs. Zombies FREE (App #43), and Beau-
tyPlus - Easy Photo Editor (App #28)) also had explainable
false positives that contained the following strings within the
URLSs: “/impression/,” “spotify.ads-payload,” “/tracking/api/,”
and “pagead/conversion/.” One possible explanation for these
packets getting through our labeling process (Sec. 4) is that not
all ad-related packets directly lead to an ad. For instance, some
are simply specifying phone specs to fetch an ad of the correct
size in the future, others track if and when an ad was actu-
ally served, and some track the user’s actions to serve more
personalized ads. This indicates that even our Custom Rules

NoMoAds:

Effective and Efficient Cross-App Mobile Ad-Blocking =— 137

100 X0 XX 0 KKK Ko K eur YN D 0 KX K- o Hen N MK KR NN N X XXX x,x--x--x--x--x
N A WSty % S Ay
< 80 &7 L] % g X X X, e 3
s R ¥ % X : N
B 60 i
g X
o 40
o
(O]
e 20
0
1 6 11 16 21 26 31 36 41 46
Apps Tested (1-50)
F-score Accuracy -+ Ad Libraries Overlap

Fig. 5. Accuracy and F-score of NoMoAds when training on 45 apps in our dataset and testing on the remaining 5 apps (see Sec. 5.1.2).
We repeated the procedure 10 times so that all apps were in the test set exactly once. We list the F-score, the accuracy, and the Ad
Libraries Overlap (the percentage of a given app’s ad libraries that also appeared in the training set) for each individual app. The x-axis

orders the 50 apps (i.e., the 50 most popular apps on Google Play) in

are incomplete, but our classifiers can suggest more rules for
further improvement of ad-blocking.

5.1.3 Testing on Previously Unseen Ad Libraries

Another way to test the performance of our machine learn-
ing approach is to see if our classifiers can perform well on
libraries that were not present in the training set. This would
require to partition the packets in the dataset into testing and
training parts, so as to separate different ad libraries, and then
train on some and test on the remaining ones.

Unfortunately, this is not possible with our current
network-based approach from user-space (VPN): we can iden-
tify which app generated a packet, but we cannot reliably iden-
tify which ad library is responsible for a given packet. Using
AppBrain’s database, we can tell which ad libraries an app
contains, but we do not know which ones are actually used.
This is because 90% of the apps in our dataset use more than
one ad library, and 80% use more than two. Facebook and Pin-
terest are examples of apps with no ad libraries, and we dis-
cussed them in detail in the previous section. There are three
apps with just one ad library, and they all contain AdMob [37]
- the ad library that is present in all of the apps in our dataset
(except Facebook and Pinterest). Therefore, we cannot parti-
tion our dataset based on ad libraries. As part of future work,
we plan to build a system that can facilitate this mapping by
tracing API calls to the network, either with static analysis (as
was done in PEDAL [28]) or at the OS-level (as was done in
ProtectMyPrivacy [39]). This effort is outside the scope of this
paper.

Despite this limitation, we analyzed the overlap in ad li-
braries to get some insight into the performance of our system
in the presence of previously unseen ad libraries. Fig. 5 shows

our dataset in decreasing F-score.

that NoMoAds does not need to see all the ad libraries in train-
ing in order to correctly classify packets belonging to apps
with unseen ad libraries. Specifically, there are several apps
(e.g., apps 2, 6, 10, 13, and 25) with near perfect F-scores even
though they contain some ad libraries not seen during train-
ing (i.e., have a less than 100% overlap in ad libraries). This
can be easily explained by the fact that multiple ad libraries
may end up contacting the same ad networks even though their
software implementation for mobile devices may differ. More-
over, as we stated earlier, some apps may contain multiple ad
libraries, but use only a subset. We refer the reader to Section
5.1.2 for details on how the overlap of ad libraries relates to
the classification performance.

5.2 Efficiency
5.2.1 Classification on the Mobile Device

In this section, we discuss experiments performed on a mobile
device and we demonstrate that our decision tree classifiers
can run in real-time — on the order of three milliseconds per
packet. The experiments were performed on a Nexus 6 (Quad-
Core 2.7 Ghz CPU, 3 GB RAM) running Android 6.0.1. To
minimize noise from background processes, we kept only pre-
installed apps and an instrumented version of NoMoAds.

To evaluate how much extra processing NoMoAds in-
curs, we fed 10 HTTP packets of varying sizes (between 300-
2000B) to our classification function and timed how long it
took using System.nanoTime (). As a baseline for com-
parison, we also timed how long parsing out HTTP features
and using the AdblockPlus Library (with EasyList) takes to
label a packet. We repeated each test case 100 times and calcu-
lated the average run-time and standard deviation. Each func-
tion was tested in isolation, running on the main thread, so as

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 138

to minimize timing the overhead of possible thread switching.
The results are as follows.

e The total time for NoMoAds to extract features and apply
the decision tree classifier is: 2.96 ms £ 2.07 ms.

* The total time for HTTP parsing and applying the Adblock-
Plus Library is: 1.95 ms £ 0.75 ms.

Although the AdblockPlus Library outperforms NoMoAds by
one millisecond (on average), it does so at the cost of a nearly
20% degradation in the F-score performance (Table 4).

In order to understand how much latency overhead pre-
diction by itself adds, we tested the same 10 HTTP packets
(100 times each) and timed the prediction time of each vari-
ant of our classifier (see the last column in Table 4). As we
can see, the prediction time closely follows the tree size — the
smaller the tree, the quicker we can make a prediction. Hence,
it is important to know which features to train on in order to
produce a small and efficient tree that can be used on mobile
devices in real-time without significantly degrading user expe-
rience. Our tree of choice (URL, HTTP Headers, and PII), on
average, predicts within three milliseconds. For comparison,
we repeated the experiment with the AdblockPlus Library, this
time isolating the matching of URL, Content Type, and HTTP
Referer. We report the result in the last column of Table 4. The
AdblockPlus Library is more efficient than our classifier in
prediction time, indicating that most of the delay, when using
the AdblockPlus Library approach, comes from HTTP pars-
ing. Conversely, in the NoMoAds approach, most of the delay
comes from the prediction itself, and not the search for fea-
tures.

5.2.2 (Re)training Time

In Table 4, we reported the training time when using our entire
dataset, as well as the size of the initial feature set extracted
from all packets, and the final size of the tree (number of non-
leaf nodes in the decision tree). We note that only a small sub-
set of the features is selected by the decision tree. The selected
features are up to an order of magnitude less in size than the
initial feature set. This results in relatively small and intuitive
classifiers, like the one depicted in Fig. 3. Furthermore, the se-
lection of features significantly affects the training time and
has a moderate effect on classification performance. In this
paper, our training dataset was relatively small, and training
our classifiers from scratch did not take more than 13 minutes
(Table 4). This is acceptable since training is currently done
offline at a remote server. In future work, we plan to further
investigate training time as a function of the size of the train-

ing dataset and the selected features. Our goal is to be able to
train and retrain our classifiers within a couple hours, in order
to be able to push them from the server to mobile devices at
least once a day, or a few times a day, as EasyList does.

6 Conclusion and Future
Directions

To the best of our knowledge, NoMoAds is the first mo-
bile ad-blocker to effectively and efficiently block ads served
across all apps using a machine learning approach. Our
work complements blacklist-based ad-blocking approaches,
such as EasyList (which uses only the URL and HTTP Ref-
erer), DNS66 [21] (which operates on the coarse granular-
ity of domains), and recent work on learning flow-based fea-
tures [26]. To encourage reproducibility and future work,
we make our code and dataset publicly available at http:
//athinagroup.eng.uci.edu/projects/nomoads/.

We conclude by discussing the limitations of NoMoAds
and outline future research directions to address them.

First, the size of the training set used in this paper is lim-
ited. We currently manually label packets, which is not scal-
able if larger datasets are desired for training. Hence, in the
future, we will explore options for automatic labeling of pack-
ets by separating ad library code from application code, ei-
ther with static analysis and re-compilation (as done in [28])
or with OS-level modifications (as done in [39]). This will en-
able us to not only expand our dataset, but also to map each
packet to the ad library responsible for generating (e.g., by
tracing API calls). An alternative way to increase the size of
the dataset is through crowdsourcing, along the lines of Lumen
[17].

Second, ad libraries may be able to circumvent our system
by employing certificate pinning. However, certificate pinning
is currently not widespread. Oltrogge et al. [30] reported only
45 out of 639,283 mobile apps employing certificate pinning.
The authors explained that there are certain implementation
hurdles that come with certificate pinning and it is generally
not recommended that third-parties (such as ad libraries) use
pinning since certificates must be kept up-to-date and it is dif-
ficult for app and ad library developers to coordinate certificate
updates. Furthermore, network-level features can still be used
to classify certificate-pinned packets: as shown in Table 4, des-
tination IP and port, or destination domain lead to F-scores of
86% and above on our current dataset. In addition, with the au-
tomatic labeling approach proposed above, we will be able to
label encrypted packets and explore using TCP/IP and various
TLS-specific fields (e.g., cipher suites, TLS extension headers)
as features for classifying pinned packets.

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 139

Third, ad libraries may attempt to obfuscate other features
in order to circumvent NoMoAds. While some apps and li-
braries do already obfuscate PII, the practice is uncommon
as was shown in [40]. Even when PII are obfuscated, NoMo-
Ads can use keys that correspond to PII values (e.g., “uid=",
“idfa="") as was done in [14] to detect PII that are a priori un-
known to a system. Such features, as well as URL paths, are
difficult to change, making NoMoAds resilient to feature ob-
fuscation. Apps may also attempt to use anti ad-blockers to
detect presence of ad-blockers [41, 42]. While we did not ob-
serve such behavior, if and when that happens, we can block
anti ad-blocking scripts that are downloaded from third-parties
[23] or use more sophisticated dynamic analysis techniques to
circumvent anti ad-blocking logic that is part of the app [43].

Acknowledgements

This work is supported in part by the National Science Founda-
tion under grant numbers 1715152 and 1649372, by the Data
Transparency Lab (DTL), and CPCC at UCI. A. Shuba has
been partially supported by an ARCS Fellowship. We would
like to thank the anonymous reviewers whose thorough com-
ments helped improve this paper.

References

[11 AppBrain.
libraries/ad.

[2] Daniel G Goldstein, R Preston McAfee, and Siddharth Suri.
The Cost of Annoying Ads. In Proceedings of the 22nd in-
ternational conference on World Wide Web, pages 459—470.
ACM, 2013.

[38] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore,
Yan Grunenberger, Konstantina Papagiannaki, Hamed Had-
dadi, and Jon Crowcroft. Breaking for Commercials: Charac-
terizing Mobile Advertising. In Proceedings of the 2012 ACM
conference on Internet measurement conference, pages
343-356. ACM, 2012.

[4] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and
Wenke Lee. The Price of Free: Privacy Leakage in Personal-
ized Mobile In-App Ads. In Network and Distributed System
Security Symposium (NDSS), 2016.

[5] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringh-
ini, Thorsten Holz, Christopher Kruegel, and Giovanni Vigna.
The Dark Alleys of Madison Avenue: Understanding Mali-
cious Advertisements. In Proceedings of the 2014 Confer-
ence on Internet Measurement Conference, pages 373-380.
ACM, 2014.

[6] Adblock Browser. https://adblockbrowser.org/.

[7] UC Browser. https://play.google.com/store/apps/
details?id=com.UCMobile.int1l.

[8] Easylist. https://easylist.to/.

https://www.appbrain.com/stats/

[9]

[10]

(1]

[12]

(13]

[14]

(18]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

PageFair. The state of the blocked web — 2017 Global Ad-
block Report. https://pagefair.com/downloads/
2017/01/PageFair-2017-Adblock—Report.pdf, 2017.
James Hercher. Mobile Ad Blocking Takes Off In

Asia, Sparked By User Data Costs. https://
adexchanger.com/mobile/mobile-ad-blocking-
takes-off-asia-sparked-user—data-costs/, 2017.
Alex Hern. A proxy war: Apple ad-blocking software

scares publishers but rival Google is target. https:
//www.theguardian.com/technology/2016/jan/01/
publishers—apple-ad-blockers—-target—-google/,
2016.

Adblock Plus for Android. https://adblockplus.org/
en/android-about.

Muhammad lkram and Mohamed Ali Kaafar. A First Look

at Mobile Ad-Blocking Apps. IEEE Network Computing and
Application (NCA), 2017.

Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout,
and David Choffnes. ReCon: Revealing and Controlling

Pl Leaks in Mobile Network Traffic. In Proceedings of the
14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 361-374. ACM, 2016.
Anastasia Shuba, Anh Le, Emmanouil Alimpertis, Minas
Gjoka, and Athina Markopoulou. AntMonitor: System and
Applications. arXiv preprint arXiv:1611.04268, 2016.

Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Christian Kreibich, Phillipa Gill, Mark Allman,
and Vern Paxson. Haystack: A Multi-Purpose Mobile Vantage
Point in User Space. arXiv:1510.01419v3, Oct. 2016.
Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas
Razaghpanah, Rishab Nithyanand, Mark Allman, Christian
Kreibich, and Phillipa Gill. Tracking the Trackers: Towards
Understanding the Mobile Sdvertising and Tracking Ecosys-
tem. arXiv preprint arXiv:1609.07190, 2016.

Adblock Plus for Android Removed from Google Play Store.
https://adblockplus.org/blog/adblock-plus—
for-android-removed-from-google-play-store.
Ben Williams. Adblock Plus and (a little) more. https:
//adblockplus.org/blog/five-and-oh-1look—
another-lawsuit-upholds—-users—-rights-online,
2016.

Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick
Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. Block Me If You Can: A Large-Scale Study of
Tracker-Blocking Tools. In Security and Privacy (EuroS&P),
2017 IEEE European Symposium on, pages 319-333. |IEEE,
2017.

DNS-based Host Blocker for Android.
github.com/julian-klode/dns66.
Disconnect. https://disconnect.me/.

Umar Igbal, Zubair Shafig, and Zhiyun Qian. The Ad Wars:
Retrospective Measurement and Analysis of Anti-Adblock
Filter Lists. In ACM Internet Measurement Conference (IMC),
2017.

Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi
Gupta, and Brian Ziebart. Leveraging Machine Learning

to Improve Unwanted Resource Filtering. In Proceedings
of the 2014 Workshop on Atrtificial Intelligent and Security
Workshop, pages 95-102. ACM, 2014.

https://

(28]

[26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

[34]
(35]
(36]
(37]
(38]
(39]

[40]

[41]

[42]

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking —— 140

Jason Bau, Jonathan Mayer, Hristo Paskov, and John C
Mitchell. A Promising Direction for Web Tracking Counter-
measures. Proceedings of W2SP, 2013.

David Gugelmann, Markus Happe, Bernhard Ager, and Vin-
cent Lenders. An Automated Approach for Complementing
Ad Blockers’ Blacklists. Proceedings on Privacy Enhancing
Technologies, 2015(2):282-298, 2015.

Privacy Badger. https://www.eff.org/privacybadger,
2018.

Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. Effi-
cient Privilege De-escalation for Ad Libraries in Mobile Apps.
In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, pages 89—
103. ACM, 2015.

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David
Wagner. AdDroid: Privilege Separation for Applications

and Advertisers in Android. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications
Security, pages 71-72. Acm, 2012.

Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew
Smith, and Sascha Fahl. To Pin or Not to Pin-Helping App
Developers Bullet Proof Their TLS Connections. In USENIX
Security Symposium, pages 239-254, 2015.

Adblock Plus Library for Android. https://github.com/
adblockplus/libadblockplus-android.

Anastasia Shuba, Evita Bakopoulou, and Athina
Markopoulou. Privacy Leak Classification on Mobile Devices.
In Signal Processing Advances in Wireless Communications
(SPAWC), 2017 IEEE 18th International Workshop on. |IEEE,
2018. To Appear.

Anastasia Shuba, Evita Bakopoulou, Milad Asgari
Mehrabadi, Hieu Le, David Choffnes, and Athina
Markopoulou. AntShield: On-Device Detection of Personal
Information Exposure. arXiv preprint arXiv:1803.01261,
2018.

Wireshark. https://www.wireshark.org/.

AdAway hosts. https://adaway.org/hosts.txt.
hpHosts. https://hosts-file.net/ad_servers.txt.
AdMob. https://www.google.com/admob/.

MoPub. https://www.mopub.com.

Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason |
Hong, and Yuvraj Agarwal. Does this App Really Need My
Location?: Context-Aware Privacy Management for Smart-
phones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 1(3):42, 2017.
Andrea Continella, Yanick Fratantonio, Martina Lindorfer,
Alessandro Puccetti, Ali Zand, Christopher Kruegel, and Gio-
vanni Vigna. Obfuscation-Resilient Privacy Leak Detection
for Mobile Apps Through Differential Analysis. In Network
and Distributed System Security Symposium (NDSS), 2017.
Rishab Nithyanand, Sheharbano Khattak, Mobin Javed,
Narseo Vallina-Rodriguez, Marjan Falahrastegar, Julia E.
Powles, Emiliano De Cristofaro, Hamed Haddadi, and
Steven J. Murdoch. Ad-Blocking and Counter Blocking: A
Slice of the Arms Race. In USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2016.
Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq.
Detecting Anti Ad-blockers in the Wild. In Privacy Enhancing
Technologies Symposium (PETS), 2017.

[43] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafig, , and

Heng Yin. Measuring and Disrupting Anti-Adblockers Using
Differential Execution Analysis. In Network and Distributed
System Security Symposium (NDSS), 2018.

	NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking
	1 Introduction
	2 Background
	2.1 Challenges
	2.2 Related Work

	3 The NoMoAds Approach
	3.1 Packet Monitoring
	3.2 Detecting Ad Requests in Outgoing Packets
	3.2.1 Blacklists
	3.2.2 Classifiers

	3.3 Training Classifiers
	3.3.1 Labeling Packets (on the mobile)
	3.3.2 Training Classifiers (at the server)

	4 The NoMoAds Dataset
	5 Evaluation
	5.1 Effectiveness
	5.1.1 Testing on Previously Unseen Packets
	5.1.2 Testing on Previously Unseen Apps
	5.1.3 Testing on Previously Unseen Ad Libraries

	5.2 Efficiency
	5.2.1 Classification on the Mobile Device
	5.2.2 (Re)training Time

	6 Conclusion and Future Directions

