

The SFS summer research study at UMBC: Project-based
learning inspires cybersecurity students

Alan Sherman , Enis Golaszewski, Edward LaFemina, Ethan Goldschen,
Mohammed Khan, Lauren Mundy, Mykah Rather, Bryan Solis, Wubnyonga
Tete, Edwin Valdez, Brian Weber, Damian Doyle, Casey O’Brien, Linda Oliva,
Joseph Roundy, and Jack Suess

ABSTRACT

May 30–June 2, 2017, Scholarship for Service (SFS) scholars at
the University of Maryland, Baltimore County (UMBC) analyzed
the security of a targeted aspect of the UMBC computer sys-
tems. During this hands-on study, with complete access to
source code, students identified vulnerabilities, devised and
implemented exploits, and suggested mitigations. As part of a
pioneering program at UMBC to extend SFS scholarships to
community colleges, the study helped initiate six students
from two nearby community colleges, who transferred to
UMBC in fall 2017 to complete their 4-year degrees in com-
puter science and information systems. The study examined
the security of a set of “NetAdmin” custom scripts that enable
UMBC faculty and staff to open the UMBC firewall to allow
external access to machines they control for research pur-
poses. Students discovered vulnerabilities stemming from
weak architectural design, record overflow, and failure to sani-
tize inputs properly. For example, they implemented a record-
overflow and code-injection exploit that exfiltrated the vital
application programming interface (API) key of the UMBC fire-
wall. This report summarizes student activities and findings
and reflects on lessons learned for students, educators, and
system administrators. Our students found the collaborative
experience inspirational; students and educators appreciated
the authentic case study; and IT administrators gained access
to future employees and received free recommendations for
improving the security of their systems. We hope that other
universities can benefit from our motivational and educational
strategy of teaming educators and system administrators to
engage students in active project-based learning centering on
focused questions about their university computer systems.

KEYWORDS

code injection; computer
and network security;
cybersecurity; CyberCorps:
Scholarship for Service
(SFS); firewalls; NetAdmin;
project-based learning;
record overflow; security
evaluation; UMBC SFS
Summer Research Study

Introduction

During four summer days in 2017, cybersecurity students at the University

of Maryland, Baltimore County (UMBC) analyzed the security of a targeted

� 2019 Taylor & Francis Group, LLC

CONTACT Alan Sherman sherman@umbc.edu Cyber Defense Lab, University of Maryland, Baltimore
County (UMBC), Baltimore, 21250 MD.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ucry.

CRYPTOLOGIA

https://doi.org/10.1080/01611194.2018.1557298

aspect of their university computer systems. We report on this novel sum-

mer research study, its technical findings, and takeaways for students, edu-

cators, and system administrators.

In fall 2016, UMBC was one of 10 schools that pioneered a new strategy

for attracting talented cybersecurity professionals into government service:

extend CyberCorps: Scholarship for Service (SFS) scholarships to nearby

partnering community colleges (CCs). There are outstanding students at

CCs and, for many of them, the financial challenges of attending a 4-year

college full-time are daunting. With support from the National Science

Foundation (NSF), UMBC offered six students the following contract: after

completing an associate’s degree, transfer to UMBC and complete a bache-

lor’s degree in a cybersecurity-related major. In return for 3 years of gener-

ous support (tuition, fees, health insurance, stipend, and more) starting in

the last year of CC, students work for government (federal, state, local, or

tribal) for each year of support. UMBC inducted three students from

Montgomery College (MC) and three from Prince George’s Community

College (PGCC), who are all now pursuing degrees at UMBC in computer

science, computer engineering, or information systems.

To integrate these students into the existing UMBC SFS cohort, to

enhance their cybersecurity knowledge and skills, and to inspire them, Alan

Sherman organized a 4-day SFS Summer Research Study at UMBC for all

SFS scholars at MC, PGCC, and UMBC. Sherman also invited professors,

researchers, and graduate students from UMBC and personnel from the

National Security Agency (NSA) to interact with the students as technical

experts. Everyone worked collaboratively on the same focused practical

problem: analyze the security of the NetAdmin capability of the UMBC

computer systems, which, through a web interface, enables UMBC faculty

and staff to open the UMBC firewall to allow external access to machines

they control for research purposes. The project enjoyed strong cooperation

from UMBC’s Division of Information Technology (DoIT), which is

responsible for managing UMBC computer systems in support of teaching,

research, and administration. Participants were given access to all relevant

source code. The students explored all aspects of the problem, including

adversarial models, architectures, key management, use of cryptography,

authentication and key-establishment protocols, software implementations,

configurations, and policy.

By the end of the first day, the SFS scholars identified several potential

vulnerabilities and began devising exploits, working safely in a virtual copy

provided by DoIT of the actual network. Throughout and after the study,

students presented their findings to DoIT and made several recommenda-

tions for mitigating the issues they discovered. Particularly interesting and

illuminating were the end-of-day discussions between students and DoIT

2 A. SHERMAN ET AL.

staff (including the primary NetAdmin script author) during which each

side shared their perspectives on the situation, how the vulnerabilities

arose, the risks they pose, how to deal with them, and how to improve

DoIT’s processes.

Although the ideas underlying the attacks are not new, the analysis of

UMBC’s NetAdmin is. More importantly, we hope that other students,

educators, and system administrators may learn from our experiences in

collaborative project-based learning. All of our students reported that the

summer study inspired them and enhanced their knowledge and skills.

Students and educators appreciated the authentic case study. UMBC’s sys-

tem administrators gained access to highly qualified potential student

employees (several of whom now work for DoIT) and received free con-

sulting on how to improve the security of their system. There are many

benefits for educators to partner with their university’s IT department to

use their university’s computing systems as a cybersecurity learn-

ing laboratory.

UMBC is a midsize public university that emphasizes science and tech-

nology. Recognized as a National Center of Academic Excellence in

Cyberdefense Education and Research (CAE, CAE-R), UMBC offers under-

graduate and graduate tracks in cybersecurity leading to BS, MS, and PhD

degrees in computer science and information systems, and the MPS degree

in cybersecurity. In 2017, it won first place at the National Collegiate

Cyberdefense Competition.

We assume the reader is familiar with the basics of cybersecurity, as

introduced, for example, by Kim and Solomon (2014), Bishop (2003), and

Sherman et al. (2018).

The SFS summer study at UMBC

This section identifies some of the key decisions we faced in organizing the

summer study and our rationale behind the choices we made.

A summer study appealed to us because it emphasized collaboration,

problem solving, and independent thinking in addressing an important,

practical, challenging problem involving a variety of issues. Cybersecurity is

a broad discipline in which it is essential to form teams with appropriate

diverse skills and talents. Our collaborative approach resonated with the

cohort philosophy of the SFS program. Inspiration also came from the

SCAMP (Summer Conference on Applied Mathematical Problems) summer

studies organized by the Institute for Defense Analyses, in which a team

collaboratively works on one or two research problems.

We reasoned that the most effective way to initiate new SFS scholars

(especially from CCs) into UMBC’s SFS cohort was to engage them in

CRYPTOLOGIA 3

solving a technical research problem. We decided to remain focused on

this task and not to spend any time on anything else, such as informational

presentations about UMBC.

We sought a problem that was rich and challenging, yet tractable in 1

week. Choosing a problem that directly benefited the UMBC community

was a major benefit, promoting the service tenet of the SFS program.

During the academic year, each SFS scholar at CC took a special research

course through which they solved IT security problems for their county

government. Analyzing the security of a focused aspect of the UMBC com-

puter systems offered all the elements we sought.

Focusing on custom scripts written at UMBC provided many attractive

properties. First, it was essential that the students be given all source code.

There would be much greater legal and administrative barriers to providing

source code written by third parties. Access to source code was important

because security should not be based on the obscurity of the NetAdmin

process, and we assume that an adversary could obtain the source code.

Second, the NetAdmin scripts are short; by contrast, dealing with UMBC’s

huge commercial products (e.g., PeopleSoft) would be difficult. Third, these

scripts had never undergone any critical technical security evaluation and

the likelihood of there being vulnerabilities seemed high.

Given the sensitive nature of the problem, each participant signed a non-

disclosure agreement with DoIT. Students acted responsibly and responded

positively to the trust bestowed on them. For DoIT, it was easy to trust the

students because they were carefully vetted into the SFS program, some

held top-secret clearances, and any malicious behavior would jeopardize

their scholarships.

DoIT staff gave students all relevant system information—including

source code, scripts, network architectures, protocols, and configurations—

and were available to answer questions about them. They also provided a

virtual machine of the relevant parts of the campus network, together with

the Kali Linux suite of cybersecurity tools.

The diverse in-person participants comprised six CC transfer students,

three UMBC undergraduates, and one PhD student. The problem-solving

process was entirely student driven. Two UMBC professors and two NSA

experts visited each day, to answer any questions about technical subjects

or use of tools.

The study took place from 9 a.m. to 5 p.m. Tuesday through Friday in a

large room with tables, whiteboard, and projector. Basing our approach on

the tenets of Project Based Learning (PBL) (Blumenfeld et al. 1991), we

presented the challenge and tasked the team to create a structure that

would achieve the desired goals of analyzing the security of NetAdmin. We

encouraged students to approach the project in any way they saw fit.

4 A. SHERMAN ET AL.

Replicating authentic scenarios of work places, our student-centered

approach forced students to negotiate group dynamics and to apply their

technical skills while fully engaging in a real-life task. This structure sup-

ported sustained inquiry and reflection.

Students self-selected into teams, each exploring some focused aspect of

the problem. For example, one team surveilled the landscape, identifying

the network topology, operating system, machines, and versions of compo-

nent software. Other teams focused on architectural issues, source code

analysis, and known vulnerabilities of the operating system and component

software in use. More experienced students emerged as leaders.

Late each afternoon, representatives from DoIT, including the primary

NetAdmin script author, joined the group for a discussion of the day’s

findings. To involve students who were unable to attend in person (e.g.,

due to required internships, some of which were out-of-state), one of the

students led a 1-hour evening chat session on Google Hangouts.

PBL is an instructional approach in which small groups of students

engage in authentic tasks and learning occurs through their consideration

of relevant problems. Students pursue solutions by asking and revising

questions, debating ideas, generating predictions, experimenting, collecting

data, drawing conclusions, communicating their ideas and findings, refining

approaches, and creating products (Blumenfeld et al. 1991).

PBL holds great promise in cybersecurity because there is a proliferation

of complex problems in the field and projects can support students to sus-

tain their effort and direct their learning. PBL supports students to develop

diverse approaches to solving real-world problems. Students are task

focused and they can try out a variety of solutions and receive timely feed-

back on their approaches. They engage in collaboration and reflection that

deepen their learning and enhance the transferability of skills.

There are many examples of PBL in cybersecurity (e.g., New Jersey

Institute of Technology’s [NJIT’s] Cyber-RWC Summer Camp1), though

there are relatively few scholarly articles on this subject (e.g., Conklin and

White 2005), whose graduate course includes some elements similar to our

study). We are strong believers in the value of PBL, as evidenced by our

participation in the INSuRE Project (Sherman et al. 2017).

The problem

We define our research problem by describing the UMBC campus network,

the origin and use of the NetAdmin tool, our research questions, and our

adversarial model. In short, our task is to analyze the security implications

1https://sci.njit.edu/gencyber/RWCCybersecurityCampBrochure-Summer2016.pdf.

CRYPTOLOGIA 5

of using the NetAdmin tool and to make appropriate recommendations

to DoIT.

The UMBC campus network

UMBC maintains a Palo Alto firewall on the network boundary that filters

traffic originating from, or destined for, addresses residing outside of the

campus network. All traffic between the Internet and the UMBC network

passes through the UMBC firewall. As shown in Figure 1, the NetAdmin

server is behind the UMBC firewall and is accessible from machines located

on the research subnet or via certain authenticated virtual private network

(VPN) connections. The research subnet connects faculty-operated servers

and machines. All users authenticate to the system through a single sign-on

myUMBC Sibboleth service.

Defending the UMBC network is a daunting challenge. There are over

10,000 users, including over 500 faculty and staff members, some of whose

credentials are lost or compromised on a daily basis. Over 15,000 devices

connect on any given day. As a university, UMBC must support an open

and collaborative environment—much more open than would be typically

found at a commercial institution. In recent years, the main goal of attack-

ers seems to be to compromise personal data. The Privacy Rights

Clearinghouse estimates that, since 2010, educational institutions have

experienced 411 data breaches impacting 18.7 million identities.2

For cybersecurity, DoIT employs five full-time professionals and 13 stu-

dents, of whom four are graduate assistants. Their total annual budget for

cybersecurity is approximately $900,000.

Origin and use of the NetAdmin tool

DoIT created the NetAdmin tool circa 2005, primarily to automate the pro-

cess of making certain exceptions to firewall policies. Motivation for the

Figure 1. Architecture of the UMBC network including the NetAdmin tool, which is accessible
to machines on the research subnet.

2https://www.privacyrights.org.

6 A. SHERMAN ET AL.

NetAdmin tool was to provide the protection that firewalls and intrusion-

prevention systems give commercial users, while enabling researchers the

ability to have an open network to perform their research unencumbered

by network security devices. In 2006, when DoIT launched NetAdmin,

UMBC was one of the first research universities to implement a default-

deny firewall policy. Typically, less than 200 machines are exempted from

firewall rules by faculty and staff.

Many researchers demanded the ability to connect from the outside,

including via SSH, FTP, and HTTP, to their research machines, which

ran web servers and research tools. Before NetAdmin, researchers would

submit a service ticket to be handled on a case-by-case basis by DoIT

staff, imposing significant delay and requiring DoIT staff hours.

Furthermore, this manual procedure made it difficult and error-prone to

monitor and audit firewall exceptions and to terminate these exceptions

upon expiration.

The real-time automatic NetAdmin tool addressed all of these issues,

allowing faculty and staff to open the UMBC firewall to allow access from

certain external systems to the machines they control on the research sub-

net. The tool also greatly facilitated DoIT’s ability to track firewall excep-

tions. DoIT used it extensively.

DoIT reasoned that the tool introduced little marginal risk to research

machines because machine owners could do whatever they pleased to their

own machines. As the students pointed out, however, there was risk to

other UMBC systems because the possibility loomed that NetAdmin could

introduce vulnerabilities allowing an adversary to modify the UMBC fire-

wall in a way that affected other machines, including machines outside of

the research subnet.

For over a decade, the tool ran untouched and seemed to work well.

There were no detected compromises, and state auditors were satisfied with

the process. No one, however, had ever subjected NetAdmin to a critical

technical security evaluation. No attempt was ever made to update or patch

any of the component subsystems on which NetAdmin depends.

Machines on the research subnet may have their own additional local

firewalls, but most do not or do not have them adequately configured.

Such local firewalls might add some additional protection in depth.

Regardless, the issue of local firewalls is mostly outside the scope of

this study.

Research questions

During the four-day research study, students focused on the follow-

ing questions.

CRYPTOLOGIA 7

1. What potential vulnerabilities (including from design, implementa-

tion, or configuration), if any, does NetAdmin introduce?

2. What potential attacks, if any, does NetAdmin enable?

3. What risks, if any, does NetAdmin introduce, especially beyond

those present without NetAdmin?

4. Can an adversary—possibly a corrupt faculty or staff member—use

NetAdmin to modify the firewall rules for any machine outside of

their control?

5. Is the NetAdmin architecture appropriate for its intended purpose?

6. Does NetAdmin use appropriate cryptographic functions and does it

use them appropriately? Are the key lengths appropriate and are

keys managed properly?

7. Does NetAdmin use appropriate protocols and does it use them

appropriately?

8. Is DoIT’s policy involving NetAdmin clear and appropriate?

Through discussions with DoIT in spring 2017, the study group came to

a consensus on the choice of the study topic. DoIT suggested targeting

NetAdmin and they suggested some of the initial research questions, in

much the way a client might engage a cybersecurity consultant for penetra-

tion testing. Through further discussions and over the course of the study,

students refined and augmented the initial questions.

In answering the research questions, the students could follow whatever

approach they deemed fit, using whatever tools they chose. Throughout,

the study group had access to DoIT staff, who gladly provided any appro-

priate information requested.

The role of the study group was to advise DoIT on the facts concerning

potential vulnerabilities, attacks, risks, and mitigations. As for the balance

of risks and benefits of NetAdmin, that was a judgement only for DoIT to

make in consultation with the UMBC administration. A compromise of

computer systems or data could expose UMBC to liabilities, diminished

reputation, and recovery costs.

Adversarial model

We explain our adversarial model and trust assumptions. In summary, our

primary adversary is an outsider with compromised faculty or staff creden-

tials with the knowledge, skills, and resources of an excellent graduate stu-

dent in computer science.

One way we characterize adversaries is by their level of access: (1) an

outsider with compromised UMBC faculty or staff credentials, (2) a

8 A. SHERMAN ET AL.

malicious faculty or staff member on the research subnet, and (3) a corrupt

DoIT administrator.

The current situation offers no technical protection against a corrupt

DoIT administrator: DoIT manages the networks, the UMBC firewall, and

NetAdmin, including the cryptographic keys and physical machines. They

control and monitor the log files. Safeguards against corrupt system admin-

istrators depend mainly on observation, logs, and personal trust. UMBC

would, however, like to protect against levels (1) and (2).

We also consider the adversary’s increasing level of capability: (a) a

“script kiddie” who can download and run basic malware and follow simple

instructions, (b) a computer science graduate student with access to the

university’s computing resources, and (c) a nation state. It would be impos-

sible for UMBC to defend against a nation state, but UMBC would like to

guard against levels (a) and (b).3

We do not consider attacks on the underlying cryptography, the physical

security of servers, nor social engineering of DoIT staff. Similarly, despite

their practical importance, we do not analyze existing procedures nor their

security implications for recovery after disaster or compromise, including

of the firewall API key or NetAdmin server. We do, however, consider

whether cryptography is properly used.

The main goal of the adversary is to make unauthorized changes to the

UMBC firewall without detection. The adversary may also wish to use

NetAdmin as a possible pivot for other attacks against the UMBC network.

How NetAdmin works

The NetAdmin tool is a custom web application that enables an authorized

user to create and manage rules for the UMBC firewall that pertain to

machines on the UMBC research subnetwork under the researcher’s con-

trol. It is responsible for enforcing network policies on user-created firewall

rules and authenticating users during this process. NetAdmin receives fire-

wall rules from clients and applies them to UMBC’s Palo Alto firewall

through application programming interface (API) calls. Additionally,

UMBC network administrators frequently use NetAdmin to maintain and

audit firewall policies for a variety of campus network services. We explain

how NetAdmin works by describing its placement and implementation,

authentication and authorization policies, user interface, interaction with

the UMBC firewall, and method for storing firewall rules.

As shown in Figure 1, NetAdmin resides on a dedicated restricted server

located on the UMBC network behind the UMBC firewall. The server is

3With the availability of increasingly sophisticated malware (e.g., flame), defending against even script kiddies is
becoming a daunting challenge.

CRYPTOLOGIA 9

configured to allow NetAdmin to be reachable only through connections

from the campus network, including by clients originating from authenti-

cated VPN connections. Clients wishing to make changes to the UMBC

firewall directly in real time communicate with the server through a web

browser to create and modify firewall rules. Alternatively, a client may send

a request to DoIT; if the request were approved, a DoIT staff member

would implement the request using NetAdmin. DoIT implemented

NetAdmin in PHP 5.1.6, running on a 2.2.3 Apache HTTP server.

NetAdmin recognizes several user groups including full-time faculty,

staff, and network administrator superusers. These groups are defined in a

file residing in the application directory on the NetAdmin server.

NetAdmin authenticates users and tokens they submit via UMBC’s single

sign-on Shibboleth service, which is a Kerberos-like system. Superusers

may create and modify arbitrary firewall rules for any IP address on the

UMBC network, and they may view any firewall rule created by any user.

Faculty and staff users may create and modify some firewall rules for cer-

tain common ports associated with their own network address.

Users specify firewall policies through a web-interface wherein the user’s

browser sends web forms defining firewall rules to the NetAdmin server. A

faculty or staff user may create, modify, or delete certain rules for any IP

address they own. Rules that specify ports to open must reference ports on

a list for commonly used services—for example, SSH (22), HTTP (80),

HTTPS (443), and DNS (53). Proposed rules violating these restrictions

must be submitted out-of-band to DoIT for special consideration. After 1

year, rules expire and are marked “inactive,” regardless of use. Users may

activate, deactivate, or renew their rules through NetAdmin.

Through API calls invoked by Perl scripts, NetAdmin pushes rules to the

UMBC firewall, which is physically and logically separated from

NetAdmin. The firewall authenticates API calls using a 360-bit symmetric

API key stored in a file on the application directory of the NetAdmin ser-

ver. The file is neither digitally signed nor hashed.

Figure 2. Architecture of the “HackTest” virtual testing environment for the research subnet.

10 A. SHERMAN ET AL.

NetAdmin stores firewall rules and logs in unstructured files on the

NetAdmin server. The rules file helps preserve state through failures and

restarts. In this file, each rule is described by one record. Newline char-

acters delimit records and pipe characters delimit fields within

any record.

Figure 2 shows the architecture of the virtual testing environment, called

HackTest, used in the study. This environment includes guest UMBC

accounts and allows access to all communications between the UMBC fire-

wall and the NetAdmin server.

Potential vulnerabilities, attacks, and risks

Our initial efforts focused on identifying potential vulnerabilities, which we

now summarize. We also identify potential attacks that exploit these vul-

nerabilities and discuss associated risks.

Potential vulnerabilities

1. The network architecture, and its use of a single firewall for the

entire campus network, does not provide a segmented layer of

defense for the research subnet. NetAdmin implements a capability

that is supposed to affect only the research subnet. However, if an

attacker could compromise NetAdmin, then there is no architec-

tural protection that would limit the attacker’s ability to affect the

entire campus network.

2. The NetAdmin server runs on an unpatched, out-of-date operating

system (OS)—CentOS 5.11—using Linux kernel (2.6.18), which is

known to have at least 451 vulnerabilities.4 As of March 2017,

CentOS 5.11 is no longer supported.5 Compromise of the NetAdmin

server could result in complete security failure of NetAdmin’s firewall

change process, allowing an attacker to issue arbitrary firewall rules,

modify log files, and exfiltrate the firewall API key.

3. NetAdmin authenticates the firewall (using a self-signed certificate),

but the firewall does not authenticate NetAdmin. The firewall

checks only that forms purportedly from NetAdmin have the fire-

wall API key. Anyone with the firewall API key could issue arbi-

trary firewall rules.

4. All communications between users and the NetAdmin server use

unencrypted HTTP without integrity protection, allowing an adver-

sary to read and modify traffic and to carry out possible man-in-

4https://www.cvedetails.com.
5https://wiki.centos.org/FAQ/General#head-fe8a0be91ee3e7dea812e8694491e1dde5b75e6d

CRYPTOLOGIA 11

the-middle (MitM) attacks. The user’s browser sends NetAdmin

rule changes via web forms, which the browser authenticates using

UMBC’s Shibboleth service. By modifying the web forms sent from

the user to the server, an adversary can cause NetAdmin to imple-

ment firewall rules that enable unauthorized access to the

user’s machines.

5. If an adversary could hijack an authorized user’s entire session

when the user logs into myUMBC, then they could masquerade as

the user to NetAdmin.

6. While communications between the NetAdmin server and the fire-

wall are protected by HTTPS, there seems to be an opportunity for

a possible additional MitM attack on the initial communication that

exchanges the self-signed authentication certificates

7. Because NetAdmin authenticates the firewall using a self-signed cer-

tificate, compromise of UMBC’s key used to sign certificates would

enable an adversary to forge certificates.

8. Committing some of the most common software security errors

(see Kaza, Taylor, and Hawthorne 2015), NetAdmin does not

adequately check and sanitize inputs and form fields, allowing the

possibility of attacks that inject code and/or manipulate form

field data.

9. NetAdmin permits firewall rules to include HTML and JavaScript

descriptions, allowing possible code injection attacks (The OWASP

Foundation, 2018). For example, such injections might permit the

execution of arbitrary code in the browser of a user or system

administrator using NetAdmin.

10. NetAdmin does not check the length of firewall rule descriptions, allow-

ing possible record-overflow attacks and/or denial-of-service (DoS)

attacks. In particular, NetAdmin’s use of the PHP command fgetcsv()

assumes that each record is at most 999 bytes long. The source code

does not verify this assumption, with the unintended result that any

bytes following any 999-byte record will be treated as a new record.

11. Violating the principle of least privilege (Bishop 2003), NetAdmin

uses a firewall API key with more permissions than are needed: this

key permits arbitrary changes to the firewall.

12. NetAdmin stores critical information, including the firewall API

key and log files, rules, in unstructured plaintext files on the

NetAdmin server. The file is relatively easy to exfiltrate and is

stored unencrypted. The integrity of the file is not protected.

13. NetAdmin permits VPN access via the UMBC network, facilitating

remote attacks.

12 A. SHERMAN ET AL.

Potential attacks

A variety of potential attacks are possible that exploit the identified vulner-

abilities. We list a few examples. Combinations of these attacks are also

possible. Because NetAdmin allows VPN connections via the campus net-

work, adversaries can mount many of these attacks remotely. To demon-

strate the feasibility of these attacks, students implemented a record-

overflow and injection attack.

1. (record overflow) An authorized user (or an adversary with compro-

mised credentials of an authorized user) enters a long malicious rule

that causes NetAdmin to implement an arbitrary rule for the UMBC

firewall affecting any machine. Failure to check field lengths in user

inputs results in NetAdmin accepting data beginning with byte 1000

as a new and valid firewall rule. See Figure 3.

2. (injection attack) Similar to the record-overflow attack, but the payload

is a firewall rule with malicious HTML and/or JavaScript. Victims can

include users and administrators. The JavaScript can submit arbitrary

rules to NetAdmin without the user knowing. It can submit rules via

AJAX and then, when viewing the rules, simply delete that row from

the HTML table, so the user never notices. Alternatively, this attack

might cause the web front-end to steal credentials or trick the victim to

perform actions they do not wish to perform. The malicious code can

also execute arbitrary commands on the NetAdmin server, for example,

exfiltrating the firewall API key.

3. (server attack) Exploiting known vulnerabilities of the Linux kernel

version 2.6.18, the adversary learns the firewall API key and executes

arbitrary commands on the NetAdmin server.

Figure 3. Screenshot of NetAdmin web interface with record overflow.

CRYPTOLOGIA 13

4. (network attack) Because the communications between users and

NetAdmin are not protected for confidentiality or integrity, a passive

adversary can monitor all such communications. An active adversary

can modify messages to implement firewall rules affecting the user’s

machine or to launch an injection or record-overflow attack

described above. For example, an adversary can mutate form fields

to submit firewall rules that do not correspond to IP addresses for

which they are authorized.

5. (MitM session hijacking) An adversary on the research subnet can

attempt to hijack an authorized user’s entire session as the user logs

into myUMBC. For example, the adversary might try to do so by

redirecting the user’s traffic to the adversary’s machine using ARP

poisoning or by posting a fake access point. Easily available malware,

such as SSL Strip, might facilitate such an attack.6 Thereby, the

adversary might be able to obtain a cookie that the adversary could

use to authenticate to NetAdmin and to other UMBC services.

6. (MitM attack during initial key establishment) A sophisticated MitM

attack between NetAdmin and the firewall can likely intercept the

firewall API key and cause NetAdmin to accept an erroneous public-

key certificate of the firewall. This attack requires access at the cru-

cial key-establishment time.

Potential risks

The attacks listed above are feasible and well within the capabilities of com-

puter science graduate students. The adversary could learn the firewall API

key, from which the adversary could implement arbitrary rules on the

UMBC firewall. Thus, the adversary could open any port for any machine

on the UMBC firewall. By opening ports, the adversary might move

throughout the campus network, exfiltrate data, steal credentials, steal intel-

lectual property, sabotage research, disrupt services, and launch DoS

attacks. By manipulating log files on NetAdmin, the adversary could try to

remain unnoticed.

The UMBC network is under constant attack. DoIT believes that most of

the current attacks aim to steal personal information, including credit card

numbers. DoIT is not aware of any attack having been mounted on

NetAdmin. Perhaps this situation reflects that no adversary bothered to

explore possible vulnerabilities in NetAdmin and that there may be other

more attractive avenues of attack.

6https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf.

14 A. SHERMAN ET AL.

Recommendations

To address the potential vulnerabilities, attacks, and risks identified above,

the students recommend that DoIT carry out the following mitigations and

additional actions.

Recommended mitigations

1. (keep software up-to-date) The NetAdmin server should run a well-

patched and maintained operating system. For example, replace

CentOS 5.11 (which is deprecated) with the most recent version

(CentOS 7 as of March 2018). All software used by NetAdmin, par-

ticularly the Apache HTTP server, PHP engine, and Perl interpreter,

should be up-to-date. Doing so reduces the ability of an adversary

from using easily available known attacks.

2. (sanitize inputs) Sanitize all form inputs on the server side. Special

characters, particularly the pipe character used to delimit records in

the data file, should be prohibited in firewall rule descriptions. Form

fields should not accept HTML or Javascript values.

3. (check IP addresses) For nonsuperusers, the server should ensure

that the IP address of a firewall rule corresponds to the IP address

of the user. Although an adversary might be able to spoof her IP

address, it would be prudent to add this check.

4. (check record sizes) In firewall rules, enforce maximum sizes for

fields including server names and rule descriptions. For example,

one might impose a 128-byte limit on server names and a 256-byte

limit on rule descriptions. Doing so prevents an adversary from

mounting record-overflow attacks to create arbitrary firewall rules.

Read data files in such a way that records larger than 999 bytes are

rejected, or truncated, rather than interpreted as multiple records.

5. (encrypt communications) To protect confidentiality and integrity,

communications between the NetAdmin server and NetAdmin users

should use end-to-end encryption with authentication and integrity

protection, such as that offered by implementations of OpenSSL.

6. (limit capabilities of firewall API key) Limit the capabilities of the API

key used to communicate with the UMBC firewall so that it can only

create, modify, and delete firewall rules pertinent to the UMBC research

subnet. Different API keys should be used for pushing firewall rules

defined by users versus pushing firewall rules defined by superusers.

7. (improve key management) The firewall and NetAdmin each should

have a certificate signed by a trusted third party. Each machine

should authenticate the other. Improve the initial establishment and

storage of the firewall API key by NetAdmin. Use a key-

CRYPTOLOGIA 15

establishment protocol that is not vulnerable to MitM attack. Do not

store the API key in plaintext in an unprotected file. Consider using

a trusted platform module (TPM).7 Some database products might

provide some degree of protection for key storage.

8. (deny VPN access to NetAdmin) Require all connections to

NetAdmin to originate from campus, as enforced in part through

physical network connections to the NetAdmin server. To reduce the

risk of remote attacks, VPN access to NetAdmin should be denied.

Doing so, however, would still allow the possibility of a user con-

necting to NetAdmin indirectly after remotely connecting to another

campus machine, an unfortunate reality that would be hard

to prevent.

9. (segment NetAdmin) For defense-in-depth, segment NetAdmin into

two services: a web front-end, and a back-end that communicates

with the firewall. The front-end accepts input, validates whom it

came from, sanitizes it, and passes it to the back-end. The back-end

performs additional validation and sends instructions to the firewall.

Only the second service is permitted to read sensitive data (e.g., fire-

wall API key). The services should run under separate accounts. The

front-end should be unable to run shell scripts, and the back-end

should be permitted to communicate only with the front-end and

the firewall.

Additional recommendations

1. (deploy a segmented architecture) To limit the possible scope of fail-

ures in NetAdmin, deploy a segmented architecture as shown in

Figure 4, so that the architecture will prevent NetAdmin from affect-

ing any machine outside of the research subnet.

2. (physically secure NetAdmin and firewall in same room) Improve

the security of the connection between NetAdmin and the proposed

Figure 4. Recommended architecture to provide compartmentalized defense, architecturally
limiting the scope of NetAdmin functionality to the research subnet.

7Trusted Platform Module (TPM).

16 A. SHERMAN ET AL.

separate firewall by placing both machines in the same physically

secure room physically connected by a dedicated subnet. Enforce

this architecture in part through physical network connections

between the NetAdmin server and the proposed separate firewall for

the research subnet.

3. (conduct technical security audits) In addition to periodic adminis-

trative audits, DoIT should also commission technical security audits

carried out by qualified independent cybersecurity consultants.

Discussion

We now discuss a number of issues raised by our experiences, including

vulnerabilities discovered, takeaways for study organizers, UMBC’s exten-

sion of SFS scholarships to two community colleges, and reflections from a

UMBC system administrator.

Observations on vulnerabilities discovered

Our case study exposes why certain common vulnerabilities arose and the

costs and complexities needed to avoid or mitigate these vulnerabilities. For

example, the NetAdmin server ran an obsolete and unpatched OS partly

because DoIT did not invest the staff resources to keep the system current.

DoIT feared that updates to the OS might break the custom system, requir-

ing more staff time to fix. There is no escaping the harsh reality that main-

taining a secure system demands considerable ongoing attention and

resources, and any changes to the system (including ones mitigating known

vulnerabilities) also risk the possibly of introducing new vulnerabilities.

Takeaways for study organizers

Overall the study went very smoothly. Project-based learning sustained

inquiry and critical thinking. The virtual environment enabled the students

to work on an essentially identical copy of the network environment with-

out interfering with the actual network. The evening chat sessions provided

a way for students to participate, even if they could not attend the regular

session. We found that chat worked better than video conferencing because

it created a written record and it more easily enabled students to enter the

session late. Using the study room’s data projector and whiteboard facili-

tated discussions. Throughout each day, the group posed questions to

DoIT and received written answers via a GoogleDoc. Talking with the

developer was very useful. The study room could have benefited from

more electrical outlets and power strips.

CRYPTOLOGIA 17

Participants completed surveys at the end of the summer project in

which they all reported that the project increased their cybersecurity know-

ledge and skills (86% responded strongly agree, 14% responded agree).

Participants identified the following elements as valuable: teamwork,

hands-on nature of the task, real-world challenge, critical thinking, and

problem solving. All participants reported that they would recommend the

summer study project to other cybersecurity students.

At UMBC, we were fortunate to enjoy strong support and cooperation

from DoIT. Some other schools, however, might face a defensive adminis-

tration fearing embarrassment or unwilling to trust students with sensitive

system security information. We commend UMBC’s DoIT for their con-

structive attitude which, through encouraging analysis of their systems,

helps them enhance the security of their operations. Most SFS students are

highly trustworthy: schools select SFS students carefully and the students

are expected to be able to attain at least a secret clearance (many hold top-

secret clearances).

Our choice to schedule the study in early summer immediately after

commencement created a conflict with several students who were starting

required summer internships. To avoid such conflicts, this year we held the

study in January, the week before classes resume. While better for most

students, this new schedule created conflicts with some students who took

classes in January.

Extending SFS scholarships to community colleges

So far, the new venture to extend SFS scholarships to community colleges

appears to be working well. We are attracting highly qualified students and,

for some students from modest backgrounds, the scholarship is a life-

changing opportunity. There is an opportunity cost in that, given finite

budgets, a scholarship awarded to a CC student who transfers to UMBC is

a scholarship not awarded to a nontransfer student at UMBC. Awarding

one SFS scholarship to each of two CCs per year seems like an appropriate

balance for UMBC.

Among CC students, we restrict our attention to CC students pursing

associate’s (AS) degrees who intend to transfer to a 4-year school. UMBC’s

articulation agreement with Maryland CCs ensures that any student who

earns an AS degree at any Maryland CC with a GPA of at least 3.0 will be

admitted to UMBC. There remains the issue, however, that many CCs tar-

get their cybersecurity courses at associate of applied science (AAS) stu-

dents who intend to enter the workforce after 2 years at a CC. Typically,

the AAS students are not prepared to transfer to 4-year schools and, often,

AS students have limited available time to take many cybersecurity courses.

18 A. SHERMAN ET AL.

Reflections from a UMBC system administrator

Jack Suess, Vice President of Information Technology and Chief

Information Officer (CIO) at UMBC, remarks:

“As the CIO and a former student IT employee (1979–1981), I greatly

value this experience for our staff and students. For staff, we are forced to

move out of our imagined protective bubble and look at the consequences

of our decisions if we have a motivated and highly skilled attacker. In this

case, we can ‘imagine’ that no one will ever take the effort to dig deep

enough to find our flaws; when the students unmask these flaws, it shows

that we need to be more conscious of flaws! For students, they are able to

leave the academic bubble of the theoretical and operate in the real world

of people writing code that needs to be secure and to think about what can

go wrong. This effort will make those who program much better at think-

ing about security from the beginning of their design. As a CIO, I love that

we have repeated this exercise with the SFS scholars and, in both exercises,

we gained valuable feedback that improved the security of our services

for free!”

Conclusion

In only 4 days, SFS scholars in the UMBC summer study identified signifi-

cant security vulnerabilities with UMBC’s NetAdmin system that enables

faculty and staff to open the UMBC firewall for machines they control on

the research subnet. These vulnerabilities include unpatched systems,

record overflow, uncompartmentalized architecture, and failure to sanitize

inputs. Students also suggested mitigations. The details provide an instruct-

ive authentic case study in cybersecurity.

As evidenced by responses from the student exit questionnaire, the

experience engaged and motivated students. The participants who had tran-

sitioned from community colleges demonstrated that there are highly cap-

able students at community colleges who can contribute to our nation

through cybersecurity.

The study illustrated advantages that can arise when educators partner

with university system administrators to allow qualified students to use the

university’s computer systems as a learning laboratory. Students gained

exciting, concrete, hands-on collaborative experience. Educators were given

a rich and inspiring detailed realistic case study to support project-based

learning. The university’s system administrators received a free cybersecur-

ity consultation and hired several of the SFS scholars to join their secur-

ity team.

We look forward to continuing the research study experience each year,

and we hope that other schools can also benefit from such collaborations.

CRYPTOLOGIA 19

Acknowledgments

We thank Jack Suess and Damian Doyle (UMBC Division of Information Technology) for

their enthusiastic cooperation and for providing a virtual machine of the software environ-

ment. We thank Michael Oehler and Edward Zieglar (National Security Agency) for inter-

acting with the study participants. Mykah Rather drew the figures. Peter Peterson and

Travis Scheponik offered helpful comments. Thanks also to programmer Ray Soellner

(UMBC) for bravely attending daily briefings. This project was supported in part by the

NSF grant 1241576. Sherman was also supported by the U.S. Department of Defense under

CAE-R grant H98230-17-1-0349 and DoD grant H98230-17-1-0387.

ORCID

Alan Sherman http://orcid.org/0000-0003-1130-4678

References

Bishop, M. 2003. Computer security: Art and science. Boston, MA: Addison-Wesley.

Blumenfeld, P. C., E. Soloway, R. W. Marx, J. S. Krajcik, M. Guzdial, and A. Palincsar.

1991. Motivating project-based learning: Sustaining the doing, supporting the learning.

Educational Psychologist 26 (3–4):369–98.

Conklin, A., and G. White. 2005. A graduate level assessment course: A model for safe vul-

nerability assessment. In Proceedings of the 9th Colloquium for Information Systems

Security Education (CISSE), 1–114.

Kaza S., B. Taylor, and E. K. Hawthorne. 2015. Introducing secure coding in CS0, CS1, and

CS2: Conference workshop. Journal of Computing Sciences in Colleges 3 :11–2.

Kim, D., and M. G. Solomon. 2014. Fundamentals of information systems security, 2nd ed.

Burlinton, MA: Jone & Bartlett Learning.

Sherman, A. T., D. DeLatte, G. L. Herman, M. Neary, L. Oliva, D. Phatak, T. Scheponik,

and J. Thompson. 2018. Cybersecurity: Exploring core concepts through six scenarios.

Cryptologia 42 :337–77.

Sherman, A. T., M. Dark, A. Chan, T. Morris, L. Oliva, J. Springer, B. Thuraisingham, C.

Vatcher, R. Verma, and S. Wetzel. 2017. The INSuRE project: CAE-Rs collaborate to

engage students in cybersecurity research. IEEE Security & Privacy.

The OWASP Foundation. 2018. The free and open software security community. [Online].

(Accessed September 16, 2018.) https://www.owasp.org/index.php/Main_Page

20 A. SHERMAN ET AL.

	Abstract
	Introduction
	The SFS summer study at UMBC
	The problem
	The UMBC campus network
	Origin and use of the NetAdmin tool
	Research questions
	Adversarial model

	How NetAdmin works
	Potential vulnerabilities, attacks, and risks
	Potential vulnerabilities
	Potential attacks
	Potential risks

	Recommendations
	Recommended mitigations
	Additional recommendations

	Discussion
	Observations on vulnerabilities discovered
	Takeaways for study organizers
	Extending SFS scholarships to community colleges
	Reflections from a UMBC system administrator

	Conclusion
	Acknowledgments
	References

