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Abstract: In this paper we study the physical and statistical properties of the periodic
Lorentz gas with finite horizon driven to a non-equilibrium steady state by the combi-
nation of non-conservative external forces and deterministic thermostats. A version of
this model was introduced by Chernov, Eyink, Lebowitz, and Sinai and subsequently
generalized by Chernov and the third author. Non-equilibrium steady states for these
models are SRB measures and they are characterized by the positivity of the steady state
entropy production rate. Our main result is to establish that the entropy production, in this
context equal to the phase space contraction, satisfies the Gallavotti—-Cohen fluctuation
relation. The main tool needed in the proof is the family of anisotropic Banach spaces
introduced by the first and third authors to study the ergodic and statistical properties of
billiards using transfer operator techniques.

1. Introduction

The periodic Lorentz gas (or Sinai billiard) is obtained by placing finitely many disjoint
scatterers with smooth boundaries of strictly positive curvature on the 2-torus. The
dynamics is the motion of a point particle traveling at unit speed and undergoing elastic
reflections at the boundaries and is purely Hamiltonian. The associated two-dimensional
collision map (the billiard map) preserves a smooth invariant measure (. with very strong
ergodic properties: see the works by Sinai, Bunimovich and Chernov [S,BS,BSC,Chl]
on ergodicity, mixing and the central limit theorem, the proof by Young [ Y] of exponential
decay of correlations, and many other statistical properties [RY,MN1,MNZ2] as well as
the recent proof by Baladi, Liverani and one of the authors [BDL] for the exponential
decay of correlations for the billiard flow. Of particular importance for this paper are
the recent papers by two of the authors [DZ1,DZ2,DZ3] who introduced Banach spaces
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suitable for a direct analysis of the dynamics by transfer operators, which bypasses
the construction of symbolic dynamics (Markov partitions and Young towers). These
functional analytic tools will turn out to be crucial to prove the large deviation theorems
needed in this paper.

Suitable perturbations of this model where the particle is submitted to external non-
conservative forces in between or during collisions and to a suitable thermostatting
mechanism have been put forward as simple, yet realistic, models in non-equilibrium
statistical mechanics. With a constant external electric field and an iso-energetic ther-
mostat, this kind of model was first studied by Chernov, Eyink, Lebowitz and Sinai
[CELS1,CELS2] who proved the existence of a unique SRB measure 11, for the system:
for pp-almost-every initial condition the system converges to an invariant measure /(.
which is ergodic and mixing, and singular with respect to (. In addition, they estab-
lished linear response formulas for this system. In subsequent papers, Chernov and one
of the authors [Ch2,Ch4,CZZ,Z] generalized and strengthened these results to cover
a large class of perturbations and our work will rely on these results extensively. In a
more general context the use of thermostats and SRB measures as good models of non-
equilibrium steady states has been advocated, see e.g. the book by Evans and Morriss
[EM] and the papers by Gallavotti and Cohen [GC1,GC2] and Ruelle [R3] (more on
this in Sect. 1.1.)

One of the main results in this paper is to establish a version of the so-called
Gallavotti-Cohen fluctuation theorem [GC1,GC2] for the entropy production for the
Lorentz gas driven out of equilibrium by external forces. The concept of entropy pro-
duction in non-equilibrium statistical mechanics, in this context, was best formalized
by Ruelle [R1,R2,R3] (see also the earlier work by Andrey [A]) and we will discuss it
in Sect. 1.1. The fluctuation theorem asserts that for time-reversible systems the time
fluctuations (of large deviation type) of the entropy production have a universal symme-
try: the ratio of the probabilities of observing an average entropy production rate over a
time interval of length T equal to a and equal to —a is equal to ¢’ . The study of the
fluctuations of the entropy production for systems driven out of equilibrium originated
in the numerical observation by Evans, Cohen, and Morris [ECM] for a thermostatted
system driven by external shear. The symmetry of the transient fluctuations of entropy
production, that is when the system starts in the equilibrium (but not stationary) state
(mo in our notation) was first noted by Evans and Searles [ES1] (see Proposition 1.4
in Sect. 1.1). On the other hand, using Markov partitions, in [GC1,GC2] Cohen and
Gallavotti established the fluctuation symmetry for time-reversible smooth uniformly
hyperbolic systems starting in a stationary non-equilibrium state. The relation between
the transient and stationary fluctuation theorem is discussed further in [CG,ES2,JPR].
From a slightly different point of view, Kurchan [Ku], Lebowitz and Spohn [LS] proved
the fluctuation theorem for general stochastic (Markovian and/or Gibbsian) dynamics
and Maes [M1] recast the fluctuation theorem as following from the Gibbs property of
an equilibrium state by considering the distribution of the time series of the process.
Also in a related work, Jarzynski [Ja] established a very influential transient relation for
the fluctuations of work of a system driven by time-dependent forces. These (and other)
seminal works have given rise to a substantial amount of research in the past 20 years,
and the fluctuation theorems and relations now stand as one of the pillars in the modern
theory of non-equilibrium statistical mechanics. There have been a number of recent
reviews, among them [M2,MN, ChGa,JPR], to which we direct the reader for some of
the recent developments in this subject. Among these reviews, Jaksic, Pillet, and one of
the authors [JPR] present a general formalism to understand the transient and station-
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ary fluctuation theorems, and the relation between them, in the general framework of
dynamical systems; to some extent, we will follow the approach taken in that paper.

In this paper, we prove the steady state fluctuation relations for the periodic Lorentz
gas with an external electric field and an iso-energetic thermostat [CELS1,CELS2] as
well as several classes of related models with different forcing mechanisms [Ch2,Ch4,
CZZ,Z]. While the models at hand are uniformly hyperbolic, the singularities of the
billiard dynamics (due to grazing collisions) preclude the use of Markov partitions to
study the fluctuation properties of ergodic averages. Instead, we follow a direct approach
using suitable transfer operators to express the cumulant generating function of ergodic
averages. This approach to large deviations was used for hyperbolic dynamical systems
in [RY] using Young towers [Y], especially for the Lorentz gas with finite horizon. Our
approach consists of proving that the fluctuation properties of ergodic averages are the
same for a large class of initial distributions, which contains both the stationary distribu-
tion g of the Lorentz gas without external forces used to verify the transient fluctuation
theorem, and the invariant SRB measure for the perturbed Lorentz gas. Since the sym-
metry of fluctuations when starting from p is easy to establish (see Proposition 1.4) a
proof of the fluctuation theorem follows then immediately. The key new tool needed is
the family of Banach spaces introduced by two of the authors [DZ1,DZ2,DZ3] to study
the ergodic properties of billiards without using the symbolic dynamics tools used in ear-
lier approaches (Markov partitions [BS], Markov sieves [BSC], Young towers [Y,Chl]).
These Banach spaces are devised for the exact purpose to be large enough to contain
the SRB invariant measure, singular with respect to 1o but smooth along unstable direc-
tions, yet small enough for the transfer operator to have a spectral gap. They also have the
advantage of being stable under perturbations: since all the relevant transfer operators
act on a single Banach space, we are able to show that important spectral quantities vary
smoothly as functions of certain system parameters, and from these properties we derive
the necessary control to prove the desired limit theorems.

This paper is organized as follows. In Sect. 1.1 we give a brief overview of the ideas
and concepts of non-equilibrium statistical mechanics needed for the paper. In Sect. 2 we
introduce our model and state our main results. In Sect. 2.2, following [DZ2], we discuss
a general family of maps with singularities, to which our dynamical results apply. In
Sect. 3 we introduce the Banach spaces and transfer operators needed in our analysis. In
Sect. 4 we prove the key analytical estimates needed to establish a spectral gap for the
family of transfer operators associated with the entropy production. Finally, in Sect. 5
we establish the analyticity and (strict) convexity of the logarithmic moment generating
function, allowing us to conclude the proof of the fluctuation theorem. In Appendix A
we provide the Lasota—Yorke estimates needed to establish a spectral gap for the relevant
operators.

1.1. Entropy production and fluctuation theorems. In this section, for the convenience
of the reader, we provide a general (and somewhat informal) discussion, following [JPR],
of the concepts of non-equilibrium steady states, entropy production, and the fluctuation
relations.

The starting point is an invertible dynamical system (M, T), i.e. a measurable space
M and an invertible measurable map T : M — M. We also postulate the existence of a
reference measure (1o which, in general, is not an invariant measure for 7'.

In a physical context one may write T = Tg depending on some external non-
equilibrium forces E with Ty (for E = 0) being the equilibrium dynamics without
external forces. One may think of o as the invariant measure for the dynamics T
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without external forces; in this context, o is the equilibrium steady state. If we think
of o as describing the initial state of the system, we then define w, as the state of the
system at time n € Z, i.e. we have

pn(f) = po(foT"), (1.1)

for any bounded measurable f.
We introduce next the concept of a non-equilibrium steady state following Ruelle
[R3].

Definition 1.1. A probability measure . is called a non-equilibrium steady state for

the dynamical system (M, T') with reference measure p if:

(1) the measure u; is an ergodic invariant measure for 7';

(2) for pp-almost every initial condition x € M the empirical measure rll ZZ;& 87k (x)
converges weakly to ;4 asn — o0;

(3) the measure p. is singular with respect to 1.

Item (2) in the definition selects one invariant measure w4 among the usually many
invariant measures of the dynamical system (M, T) and it is essentially equivalent to the
SRB property in the theory of hyperbolic dynamical systems if M is a smooth manifold
and po is Lebesgue measure. Measures satisfying (2) are also often called “physical
measures” as they describe the statistics of “most” initial conditions. Item (3) in the
definition ensures that the invariant measure is truly a “non-equilibrium” steady state in
the sense of statistical mechanics, while if 14 were equivalent to ¢ it should rather be
called an equilibrium steady state. Finally in a physical context where T = Tg depends
on external forces, the non-equilibrium steady state ;. depends on E and we will use
the notation pg in that case.

Next we turn to the concept of the entropy production observable s : M — R which
plays a central role in non-equilibrium statistical mechanics. We make the (rather weak)
regularity assumption that p,, and p¢ are mutually absolutely continuous and denote by
[, the logarithm of the Radon-Nykodym derivative,

din
I, = log .
d o
Since pim (f) = pm (f 0 T") = po(e™ f o T") = o (el ™" f) = po(elneT" f),
we have the chain rule, /4, = I,, +1,, 0T ~", and in particular,/_; = —[; o T. Therefore,

we have

n—1
I, = le o Tk,
k=0

For two probability measures ¢ and v on M, let us denote by R(u|v) the relative entropy
of u with respect to v (also known as the Kullback—Leibler divergence) which is defined
by

log Wdp  if < v
R _ | [logZhdu if '
(V) { +o<l>) otherwise

We have then

n—1 n
R(nlio) = pn(l) = pn (Zh o T") = 1o (le o Tk> ,
k=0 k=1

using (1.1). This leads to the following definition.
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Definition 1.2. The entropy production observable for the dynamical (M, T') with ref-
erence measure [Lg is is given by

s=1Il1oT.

If we assume the existence of a non-equilibrium steady state and if the entropy production
observable s is regular enough we have

1 1 n—1
lim —R(unlpo) = lim_ pg (—Zs o T") = 14(s) = 0,
n—-oon n—o00 n =0

since the relative entropy is non-negative. This general fact is known as the non-negativity
of the entropy production rate in non-equilibrium steady states. It is shown in [JPR,
Section 5] that, under quite general conditions, we have

u+(s) > 0 if and only if u4 is singular with respect to .

We expectin any case that, for abona fide non-equilibrium steady state, we have positivity
of entropy production, i.e., u4+(s) > 0, a fact which usually requires some non-trivial
analysis. We prove this result in the context of the Lorentz gas under external forces as
part of Theorem 2.4.

An important example in the context of this paper is when the state space M is
a smooth manifold, ©g is a measure with a smooth density with respect to Lebesgue
measure on M, and T is a (piecewise) smooth transformation. In this case the change of
variable formula gives

! 1

e” — —
JyogT" o T

where J,,, T is the Jacobian of the map 7" with respect to 1o and therefore
s =—log Jy,,T,

which can be interpreted as describing a phase space contraction rate. We refer to [JPR]
for various other examples.

The fluctuation theorem asserts that the fluctuations of the ergodic averages of the
entropy production have a universal symmetry under the condition that the system is
invariant under-time reversal.

Definition 1.3. The dynamical system (M, T') with reference measure ¢ is time-reversal
invariant if there exists an involution i : M — M (that is, i o is the identity) such that,

(1) o is invariant under i, i.e., uo(f oi) = uo(f);
(2) ioToi=T"1

Using the time reversal property, we have for any bounded measurable f,

poe " f) = po(f o T™") = uo(f o T™" 0i) = po(f oi o T") = po(e" f o)
= po(e° f),
and hence
I, =1,0i. (1.2)

Using this it is straightforward to derive the so-called transient fluctuation theorem
[ES1,JPR] (also called the Evans-Searles fluctuation theorem). We give a proof here for
the convenience of the reader.
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Proposition 1.4 (Transient fluctuation theorem). Suppose the dynamical system (M, T)
with reference measure [ is time-reversal invariant and s is the entropy production
observable. Then we have the symmetry

o (e_a sl sork) — o (e—(l—a) zz;ssm) ’

for any a € R for which both integrals are finite.

Proof. First we use that by the chain rule,

n n—1
l_n :—anTn :—le OTk:—ZSOTk.
k=1 k=0

Thus without the assumption of time reversal, we have by (1.1)

n—1 n
jo(e Zimo oy = 1o(e™noT"y = 1,y (e M) = po(e=).  (1.3)

On the other hand time reversal implies by (1.2) that,

— — ol _ _(1_ n—1 ° k
po(e 1=y = pug(e 1010y = g (1= 0r) = pg(e 17O Ziz0 T (1.4)
Combining (1.3) and (1.4) gives the desired symmetry. O

The transient fluctuation theorem has the following interpretation (Proposition 3.3
of [JPR]): if P,(z) denotes the probability distribution of ZZ;(]) s o T* with initial
distribution pg and t(z) = —z then we have

dp,
dP,ot

nz
)

which gives a universal ratio for the probabilities to observe an average entropy produc-
tion rate equal to +z or —z.

By contrast the Gallavotti-Cohen (steady state) fluctuation relation deals with the
fluctuation starting in the non-equilibrium steady state 1. To state it we define, for any
probability measure v, the logarithmic moment generating function

1 n—1
ey(a) = lim —logv (e_“ Y=o ‘“’Tk) ,
n—oon
provided the limit exists.
Steady state fluctuation relation. The dynamical system (M, T ) with reference measure

o and non-equilibrium steady state |1, satisfies the steady state fluctuation relation if
for some ap > 0 and all a € [—agp, 1 + ag]-

(1) the limit defining the logarithmic moment generating function exists,
1 n—1
e, (@) = lim —logpu, (e_“ Y=o SOTk) ;
n—oon
(2) the moment generating function has the following symmetry,

ey (a) =ey, (1 —a).
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The transient and steady state fluctuation relations look similar, yet are distinct state-
ments. In particular, the transient fluctuation theorem is a finite time statement, valid
even in the absence of a steady state. Even if we assume that the limit e, (a) exists
(a nontrivial statement), one cannot expect, in general, that e, (a) = e, (a) even if
W+ 18 a steady state (with reference measure o) (see e.g. [CG] for a counterexample).
There certainly are examples where these two functions coincide, e.g. for Anosov diffe-
ormorphisms (see e.g. [JPR]) and indeed one of the main contributions of this paper is
to prove that for billiards under small external forces the limits e;,,(a) and e, (a) exist
and coincide for a non-perturbative range of values of the parameter a.

To conclude we briefly discuss the large deviation interpretation of the symmetries.
From the theory of large deviations, it is well known that if e, (a) is C! on an interval
a € [—agp, 1+ag], then by the Gartner-Ellis theorem (see [DZe]) we have a large deviation
principle for the ergodic averages %ZZ;(I) s o TX, with initial condition distributed
according to v, i.e.,

1 1n—l
lim lim — logv (x i=Y soT ez —8,z+8]> =—1(2),
§—>0n—oon n =0

for any z € [e],(—ao), €,,(1 + ap)], where I : R — [0, oo] is the rate function given by
the Legendre transform

I(z) = sup  {az —ey(a)}.

—ap<a<l+ap

The symmetry e, (a) = e, (1 — a) implies that rate function / (z) has the symmetry

I(z)=sup {az—ey(@}= sup {az—e(l—a)}
—ap<a<l+ag —ap<a<l+ag (1 5)
= sup {(I-Dbz—ed)} = I(-2)—z '
—ap<b=<l+ay
The symmetry of the rate function /(z) — I(—z) = —z implies that the ratio of prob-

abilities to observe an entropy production rate equal to z and equal to —z over a time
interval of length n is asymptotically equal to e"*.

One can also show that the fluctuation relation does imply the Kubo formula for the
linear response of currents, but we shall not discuss this further here (see e.g. [LS,MI1,
M2,JPR]).

2. Description of Model and Main Results

Letting d > 1, we define a periodic Lorentz gas by placing finitely many closed, convex
regions (scatterers) I';,i = 1, ...d,ona Torus T> = R?/Z?, which are pairwise disjoint
and have C? boundaries with strictly positive curvature. The classical billiard flow on
the table T2\ U; {interior I';} is defined by the motion of a particle traveling at unit speed
and undergoing elastic collisions at the boundaries. In this paper we will also consider
the motion of particles subject to external forces, as well as certain types of collisions
which do not obey the usual law of reflection.

The discrete-time billiard map 7' associated with the flow is the Poincaré map cor-
responding to collisions with the scatterers. At each collision, we record the position
according to an arclength parameter » (oriented clockwise on the boundary of each
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scatterer) and the angle ¢ made by the outgoing (post-collision) velocity with the unit
normal to the boundary at the point of collision. The phase space of the map is thus
M = Uf’zl I; x [—m/2, /2], where each [; is an interval with endpoints identified and
with length equal to the arclength of aT;.

For any x = (r,¢) € M, define t(x) to be the free path of the first collision of
the trajectory starting at x under the billiard flow. The billiard map is defined wherever
T(x) < o0o. We say that the billiard has finite horizon if there is an upper bound on the
function 7. Otherwise, we say the billiard has infinite horizon. Notice that the function t
depends on the (possibly curved) trajectories of particles in T2, while M is independent
of the trajectories; thus we may study many classes of perturbations of a billiard flow
while fixing M.

We will denote by dig = co cos pdrde the smooth invariant probability measure
which is preserved by the unperturbed billiard map, where ¢ is the normalizing constant.

2.1. Assumptions. In this subsection we first state the assumptions on the model, fol-
lowing [CZZ] (which in turn combines the assumptions in [CZ,Z,DZ2]).

Let q = (x, y) be the position of a particle in the billiard table Q := T2\ (U;T;)
and p be the velocity vector. We may define a perturbed billiard flow on Q as follows.
Between collisions, the position and velocity obey the following differential equation,

dq

dp .
P pt), ——=F(q,p), 2.1

dt

where F : T? x R? — R? is a C? stationary external force. At collisions, the trajectory
experiences possibly nonelastic reflections with slipping along the boundary,

(q ), p (1)) = (@ (1), Rp~ (1) + G(q~ (), p~ (1)), (2.2)

where Rp~ (t;) = p~ (¢;) + 2(n(q™) - p~ )n(q~) is the usual reflection operator, n(q)
is the unit normal vector to the billiard wall 9 Q at ¢ pointing inside the table Q, and
q~ @), p~ (), q" (t;) and p* (1;) refer to the incoming and outgoing position and velocity
vectors, respectively.! G is an external force acting on the incoming trajectories. We allow
G to change both the position and the velocity of the particle at the moment of collision.
The change in velocity can be thought of as a kick or twist while a change in position
can model a slip along the boundary at collision, or even reflection by a soft billiard
potential [BT].

In [Ch2,Ch4], Chernov considered billiards under small external forces F with G = 0,
and F to be stationary. In [Z] a twist force was considered assuming F = 0 and G
depending on and affecting only the velocity, not the position. Here we follow [DZ2,
CZZ] and consider a combination of these two cases for systems under more general
forces F and G.

Let E = (F, G), where F and G are the two external forces during the flight and at
collisions, respectively. Let <Di3 be the induced billiard flow on Q x R? and denote by
Tg = Ty G the corresponding billiard map.

(A1) (Invariant space) The perturbed flow ®% preserves a smooth function £(q, p), such
that the level surface M := {£(q, p) = ¢} is a compact 3-D manifold, for some ¢ > 0.

I Since we identify T2 with R2 /Zz, we define addition of vectors (q, p) € T2 x R? as addition mod 1 in
each coordinate of q and standard vector addition for p.



Fluctuation of the Entropy Production for the Lorentz Gas Under Small External Forces 707

Moreover; ||p|l > 0 on M, and for each q € Q and p € S', the ray {(q, tp),t > 0}
intersects the manifold M in exactly one point.

Under assumption (A1), the system has an additional integral of motion and we will
consider the restricted system on a compact phase space, M C Q x RZ2. For example,
if we add a Gaussian thermostat (a heat bath) to the system such that the billiard moves
at constant speed (constant temperature if there are a large number of particles), then
M = {||pll = ¢} is an invariant compact level set. More generally, the speed p = ||p||
of the billiard along all trajectories on M at time ¢ satisfies

0 < pmin < p(t) < Pmax < 00,

for some constants ppin < pPmax. In addition, M admits a global coordinate system
{(x,y,0) : (x,y) € 0,0 <6 < 2}, where 6 is the angle between p and the positive
x-axis. Thus the speed p = ||p|| on M can be represented as a function p = p(x, y, 6)
and the velocity p at q can be expressed as p = pv, where v = (cos 8, sin #) is the unit
vector in the direction of p. We can then rewrite Eq. (2.1) for the dynamics between
collisions as

q=p, pv+pv=F. (2.3)

Multiplying both sides of the second equation in (2.3) by v using the dot product and
cross product respectively, we obtain

p=v-F, and pvxv=vxF. 2.4)

Therefore, using the notation F = (Fj, F3), the equations in (2.1) have the following
coordinate representations at any (x, y, 0) € M,

X = pcoso,
y:psm@ (2.5)
6 = (—F; sin6 + Frcos0)/p

Next, consider a trajectory y C M of the flow passing through the point (x, y, 6) € M,

which projects down to a smooth curve y C Q. We denote by x = «(x, y, 6) the

(signed) geometric curvature of y at (x, y) € Q. It follows that

laxql  llvxF| —F;sin6+ F,cos6
4l p? p? ’

k(x,y, 0) ==+ (2.6)

where the sign should be chosen accordingly. Combining this with (2.5), we have
6 = PK. 2.7

Note that the angle & = 6(¢) is discontinuous at reflection times: it jumps from 6~ to 6%,
In the case of elastic collisions, the quantities x, y and p remain unchanged. By contrast,
under the twisting force G, all quantities may change at collisions.

For any point (x, y, 8) € M, lett(x, y, ) be the time for the trajectory starting from
(x, y, 0) to make its next non-tangential collision at 9 Q.

(A2) (Finite horizon) There exist Tmax > Tmin > 0 such that free paths between suc-
cessive non-tangential reflections are uniformly bounded: Tmin < T(x, ¥, 0) < Tmax, for
all (x,y,0) € M with (x,y) € 90.
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(A3) (Smallness of the external forces). There exists ¢ > 0 small enough such that the
forces E = (F, G) satisfy

IFllct <&, [IGllcr <e.

Moreover, there exist constants oy > 1/3 and Cg > 0 such that ||F||c1eeg, |Gl c1tay <
CE.

Remark 2.1. Note that (A2) also puts some implicit constraints on the smallness of forces.
In fact, the existence of i, not only prevents touching scatterers, but also implies the
trajectory cannot be bent too much such that the particle falls back to the same scatterer
immediately.

LetZ : M — M be the involution defined by Z(x, y,0) = (x,y, 7 +0). For a
general flow ®' : M — M, the reversed flow of @' is defined by & =Z o &' o 7.
The flow @ is said to be time-reversible, if @ = ®. It is well known that the unforced
billiard flow is time-reversible.

(A4) (Time-reversibility) Both forces F and G are stationary, and the forced billiard flow
CD% is time-reversible. Moreover, we assume that the addition of G preserves tangential
collisions: G(r, £%) = (0, 0).

Note that due to (A4), the singularity set of TFT(I; is the same as that of the untwisted

map TFT&. It also implies that the billiard map TE is time-reversible.

Fix g9 > 0, 7, € (0, 1), and Cg > 0. For the fixed billiard table Q, let F(eg, t«, Co)
denote the collection of all forced billiard maps defined by the dynamics (2.1) and (2.2)
under the external forces E = (F, G) and satisfying assumptions (A1)—(A4), such that
To < Tmin < Tmax < 7; |, Cg < Co, and & < g in (A3).

In Sect. 2.2.1 we define a class of maps satisfying uniform properties regarding
hyperbolicity and singularities, (H1)—(HS). The following lemma from [DZ2] is crucial
in that respect.

Lemma 2.2 ([DZ2, Theorem 2.10]). Fix t, € (0, 1). There exist gy, Co > 0 such that
the family of maps F (g9, t«, Co) satisfy (HI )—(HS) with uniform constants.

2.2. Abstract framework. In this section, we identify a set of uniform properties (H1)-
(H5) enjoyed by the class of perturbed billiard maps defined in Sect. 2.1; these properties
guarantee the Lasota—Yorke inequalities (2.17) with uniform constants. These conditions
are a simplified version of the abstract framework appearing in [DZ2] since here we
consider only finite horizon billiards, so the technical difficulties associated with the
infinite horizon case are excluded.

We also introduce general conditions (C1)-(C4) to verify that a perturbation is small
in the sense required for Theorem 2.3. These conditions are sufficient to establish the
framework of [KL]. As mentioned above, the fact that the specific classes of perturbations
we consider in Sect. 2.1 satisfy (H1)—(HS) follows from Lemma 2.2.

2.2.1. A class of maps with uniform properties. We fix the phase space M = U?zll,- X
[—%, %] of a billiard map associated with a periodic Lorentz gas as in Sect. 2.4. We

will denote (normalized) Lebesgue measure on M by m, i.e., dm = ﬁdrd(p, where
L=yl

We define the set Sop = {¢ = :i:%} and for a fixed kg € N, we define for k > kg, the
homogeneity strips,
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Hy ={(r,@) /2 —k 2 <@ <m/2—(+1)"2}. (2.8)

The strips H_j are defined similarly near ¢ = —m /2. We also define Hy = {(r, ¢) :
/2 +ky? < ¢ < 7/2 —ky?). The set So.n = So U (Up»k,dHax) is therefore
fixed and will give rise to the singularity sets for the maps that we define below, i.e. for
any map T that we consider, we define S1, = U!_,T¥' S to be the singularity sets
for T*", n > 0. We assume that Sszn comprises finitely many smooth curves for each

n € N. We also define the extended singularity sets SjTE;lH = U'_,TF S i to include
the boundaries of the homogeneity strips. When the map 7T is fixed, we sometimes write
SI to simplify notation.

Suppose there exists a class of invertible maps F such that foreach T € F, T :
M \SIT - M \SZ1 is a C? diffeomorphism on each connected component of M\S 1T .
We assume that elements of F enjoy the following uniform properties.

(H1) Hyperbolicity and singularities. There exist continuous families of stable and
unstable cones C*(x) and C*(x), defined on all of M, which are strictly invariant for the
class F,i.e., DT (x)C*(x) C C*(Tx) and DT 1 (x)CS(x) c C5(T'x) forall T € F
wherever DT and DT ! are defined.

The cones C*(x) and C*(x) are uniformly transverse on M and an is uniformly
transverse to C*(x) foreachn € N and all T € F. We assume in addition that C*(x) is
uniformly transverse to the horizontal and vertical directions on all of M .2

Moreover, there exist constants C, > 0 and A > 1 such that forall T € F,

IDT" (x)v]| = C; A" [v]l, Yo € C*(x), and |[DT™"(x)v]| = C;'A™||v]|, Vv € C*(x),
(2.9)
for all n > 0, where || - || is the Euclidean norm on the tangent space 7, M.
We also assume a similar unbounded expansion in a neighborhood of Sp. We assume
there exists C. > 0 such that

Celeos (T )17 vl < IDT ' x)w)l < €7 eos (T~ )17 wll,
Vx € M\ST,, Vv € C*(x), (2.10)

where ¢(y) denotes the angle at the point y = (r, ¢) € M. Let exp, denote the expo-
nential map from 7, M to M. We require the following bound on the second derivative,

Celcos (T3 < |ID*T ' (x)v| < €M ecosp(T7'x)173,  va e M\ST,,
(2.11)
for all v € 7, M such that 7! (exp, (v)) and T~ 'x lie in the same homogeneity strip.

(H2) Families of stable and unstable curves. We call W a stable curve foramap T € F
if the tangent line to W, 7, W lies in C*(x) for all x € W. We call W homogeneous if
W is contained in one homogeneity strip H. Unstable curves are defined similarly.

Let WS denote the set of C2 homogeneous stable curves in M whose curvature is bounded
above by a uniform constant B > 0. We assume there exists a choice of B such that W
is invariant under }" in the following sense: For any W € WS and T € F, the connected
components of 7' W are again elements of WS, A family of unstable curves W i

2 This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones ¢’ and
C" for the billiard map satisfy this property (see for example [CM, Section 4.5]); the common cones C¥ (x)
and C*(x) shared by all maps in the class F must therefore lie inside €% (x) and C*(x) and therefore satisfy
this property.
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defined analogously, with obvious modifications: For example, we require the connected
components of 7W to be elements of W* forall W e W"* and T € F.

(H3) Complexity bounds (One-step expansion).®> We assume that there exists an
adapted norm || - ||, uniformly equivalent to || - ||, in which the constant C, in (2.9)
can be taken to be 1, i.e. we have expansion and contraction in one step in the adapted
norm for all maps in the class F (for example, the norm from [CM, Sect. 5. 10])

Let W € W*. For any T € F, we partition the connected components of 7' W into
maximal pieces V; = V;(T') such that each V; is a homogeneous stable curve in some
Hy, k > ko, or Hy. Let |Jy, T|, denote the minimum contraction on V; under T in the
metric induced by the adapted norm || - ||.. We assume that for some choice of k),

lim sup sup sup Z [Jv, T« < 1, (2.12)
8—>0 TeF|W|<s

where |W| denotes the arclength of W.

(H4) Bounded distortion. There exists a constant Cy > 0 with the following properties.
Let W' € W* and for any T € F,n € N, letx, y € W for some connected component
W C T~"W’ such that T'W is a homogeneous stable curve for each 0 < i < n. Then,

Jan(x)

J/L()Tn (x)
JwT"(y)

1/3

JnaT70) < Cadw(x, )",
(2.13)

where as before J;,, 7" is the Jacobian of T" with respect to the smooth measure d o =

ccosedrde.

We assume the analogous bound along unstable leaves: If W € W*" is an unstable curve

such that T'W is a homogeneous unstable curve for 0 < i < n, then for any x, y € W,

—1’ < Cudw(x,y)'? and ‘ —1'

Jyy T" (x)
J;LOT"()’)

— 1| < Cqd(T"x, T"y)'/3. (2.14)

(H5) Control of Jacobian. Let 8, y, p < 1 be from the definition of the norms in
Sect. 3 and let 6, < 1 be from (2.15). Assume there exists a constant 1 < n <

min{A?, A7, Qf_l} such that forany T € F,
(JHOT()C))71 <n  wherever J,,,T is defined.

Recall the family of stable curves W* defined by (H2). We define a subset W* C W
as follows. By (H3) we may choose §p > 0 for which there exists 0, < 1 such that

sup sup Y|y, Ty < 6. (2.15)
TeF |W|<éy

We shrink &y further if necessary so that the graph transform argument needed in the
proof of Lemma A.2(a) holds. The set W*® comprises all those stable curves W € ws
such that |W| < §.

3 In‘[DZ2], a ‘weakened one-step expansion” was als.o as.sumed: lim SUPs—( SUPT ¢ F SUP|W| <5 > IJv; T|S
< oo for some ¢ < 1, where the norm of the Jacobian is measured in the Euclidean norm. Since here we
restrict to finite horizon, however, this property follows from (H1).
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2.2.2. Distance in F. We define a distance in F as follows. For 71, T, € F and ¢ > 0,
let N, (Sil) denote the e-neighborhood in M of the singularity set Si_l of Ti_l, i=1,2.
We say dz(T1, To) = ¢ if the maps are close away from their singularity sets in the
following sense: ¢’ is the infimum over & > 0 such that for all x ¢ N, (Sl_l U 331),

(CY) AT (), T, () <&

T T;
€2 [Tl oo
Juo Tj(x)
JwT;
3 | forany W e W%, i, j = 1,2, and x € W;
TwT;(x)

(C4) DT, (x)v — DT, ' (x)v]| < /e, for any unit vector v € T,W, W € W*.

We remark that while this notion of distance requires 77 and 75 to be C I_close outside
an e-neighborhood of st . S? |» it does not require St | and S2 | to be close as subsets
of M.

Due to the exclusion of x € Ny(S! U SEI ), our notion of distance between maps
does not satisfy the triangle inequality: to compare the relevant quantities for 3 maps
T1, T and T3, we would have to exclude the e-neighborhoods of all three singularity
sets. Nevertheless, as in [DZ2], this does not create problems in our use of this distance:
we fix a map Ty for which the associated transfer operator has a spectral gap, then
compare transfer operators for maps 7 near to Ty with respect to the quantity d (7T, Tp).
Lemma 4.6 summarizes the key use of this distance.

2.3. Transfer operators. Inthis section, we fix a class of maps F with uniform properties
(H1)—(HS5) as defined Sect. 2.2.1. Later, we will specialize to a particular family F =
F (e, 1y, Co) satisfying (A1)-(A4) above.

Let WW* be the set of stable curves invariant under maps in F according to (H2), and
let W¥ C W* denote those stable curves having length less than §y, where §¢ is from
(2.15). For any T € F, we define scales of spaces using the set of stable curves W*
on which the transfer operator L1 associated with T will act. Define 77"WW?* to be the
set of homogeneous stable curves W such that 7" is smooth on W and T'W € W for
0 <i < n. Itfollows from (H2) that T~"W* C WS,

For W € T7"W9, a complex-valued test function  : M — C,and 0 < a < 1
define Hy, (y) to be the Holder constant of ¥ on W with exponent @ measured in
the Euclidean metric. Define HY () = supycr-nyys HE () and let C¥(T"W*) =
{y : M — C| HY(Y) < oo}, denote the set of complex-valued functions which are
Hoélder continuous on elements of 7" W* . The set C% (T ~"W*) equipped with the norm
[V lce(r-nwsy = [¥ oo + H () is a Banach space. Similarly, we define (f“(W”) to be
the set of functions which are Holder continuous with exponent « on unstable curves
)47

It follows from the uniform hyperbolicity of T (see (H1)) thatif ¢ € Co(T~=Dyys),
then ¥ o T € C*(T~"W*). Thus if h € (C*(T~"W?))/, is an element of the dual of
CU(T"W*), then L7 : (CU(T"W*)) — (C*(T~"~DWS)) acts on h by

Lrh() ==h( o T) Yy € CHT™"DW?).
Recall that dpg = ccos edrdg denotes the smooth invariant measure for the billiard

map corresponding to the unperturbed periodic Lorentz gas. If h € L'(M, ), then h is
canonically identified with a signed measure absolutely continuous with respect to wo,
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which we shall also call 4, i.e., h({) = f y Vhdpo. With the above identification, we

write L' (M, o) C (é“(T_"WS))/ for each n € N. Then restricted to L' (M, no), L1
acts according to the familiar expression

foranyn > 0and h € Ll(M, o),

where J;, T is the Jacobian of T with respect to fig.

In Sect. 3, we define Banach spaces of distributions (B, || - ||5) and (By, | - |w),
preserved under the action of L7, such that the unit ball of B is compactly embedded in
By. It follows from [DZ2, Corollary 2.4] that for ¢ sufficiently small, L7 has a spectral
gap on B.

To study large deviations we will need a suitable weighted transfer operator. In order to
have a well defined operator on 5 we will assume that g : M — R s (piecewise) Holder
continous on the connected components of M\S IT where S IT is the set of discontinuities
of T (see Sects. 2.2 and 3.1 for details). Under these assumptions itis shown in Lemma 3.3
that we can define the weighted transfer operator L7 , associated with T and g on B
and B, by

L7 gh(Y) = Ly (he®)(Y) = h(ef -y oT), forh e B, and suitable test functions .

(2.16)
The family of transfer operators L7 o parametrized by a € R occurs naturally in
studying the large deviations of Birkhoff sums S,g = g+---+g o 7"~ ! since we have

L 4gh (W) = h(e™ 8y o T"),

the logarithmic moment generating function of S,g with initial distribution v € B is
then given by

log v(e*58) =log L. ,,v(1).

Suitable spectral gap conditions on L7 4, imply that the limit
.1 as 1 n
ey(a) = lim —logv(e"®) = lim —log L} agV(D)
n—oon n—oon ’

exists and is smooth and then large deviation estimates follow from the Girtner-Ellis
theorem [DZe]. In this paper we shall be interested in particular in the choices v = o,
the SRB measure for the unperturbed Lorentz gas, and v = ug, the SRB measure for
the perturbed Lorentz gas Tg, both measures belonging to 5.

2.4. Statement of results. In [DZ2], local large deviation estimates for (piecewise)
smooth observables g were obtained for small ¢ (small forces) and small a (deviations
very close to the mean of g); these were essentially perturbative results in a and €. By
contrast here we concentrate on the observable s = —log J,, Tg, which is the entropy
production observable defined in Sect. 1.1. For the fluctuation symmetry to make sense
we will need the moment generating function to be well-defined for a in a neighborhood
of [0, 1]. To this end, we will fix ag > 0 and consider the interval a € [—ag, 1 + ag].
We study the dependence of the spectral gap of L1 _, as a function of the two param-
eters, € and a. Since s is fixed, in what follows we will use the more concise notation,
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L1, = L1,—4s. Note also that in the absence of external forces, 1o is an invariant
measure and J,,Tp = 1. More generally, for Tg = T(y,G), we show in Lemma 4.2 that

JuoTeg =1+¢H,

where H is bounded uniformly in ¢, a key fact in our analysis.
The following spectral result is key to proving the existence and smoothness of the
limiting logarithmic moment generating function.

Theorem 2.3 (Spectral gap). Choose ag > 0 and fix the parameters Cy, T, from Sect. 2.1.
There exists g > 0 such that forany T € F := F(eo, 1+, Co), the operator L , is well
defined as a bounded linear operator on B for all a € [—aq, 1 + aol. In addition, there
exists C > 0, such that forany T € F andn > 0,

L% Jhlw < C(1+sign(a — NCpe)"“"Vihly  forallh € By,

L5 kg < Co™ (1 +sign(a — HDCpe)"“ Vllh|g+Cy"|hly  forallh € B,
(2.17)
where Cy > 0 is from Lemma 4.2 and o € (0, 1) is from (4.4). Moreover, for each
T eF,

(1) Lr.4 is quasi-compact as an operator on B: The spectral radius p(Lr ,) lies in
[(1 —sign(a—1)Chen)* ", (1+sign(a—1)Cyeo)® 11, while the essential spectral
radius Pess(L1 q) is atmost o (1+sign(a—1 )Cren)* ! < (1—sign(a—1)Crep)* .

(i1) There exists &1 < eg such that for all T € F(e1, 14, Co) and all a € [—ap, 1 + ap],
L7 4 has a spectral gap: there exists exactly one simple real eigenvalue A, =
P (L1 .4); the corresponding eigenfunction h, is a positive Borel measure.

For Ty, € F(e1, t«, Co), we discuss next the existence and properties of the logarith-
mic moment generating function for the entropy production observable s = —log J,,, T
with respect to the non-equilibrium steady state ug,

1
er(a) = lim ~log g ((Juy THY) . (2.18)

We denote by 0]% the diffusion constant for the sequence {log J,,, Tg o Ty },>0 distributed

according to ug, and by 01%1 the diffusion constant for the sequence {H o Tjj'},,>¢ dis-
tributed according to p. Our main results are summarized in the following theorem.

Theorem 2.4 (Logarithmic moment generating function and fluctuation relation). Under
the assumptions of Theorem 2.3, we have the following.

(1) The map Tg has a unique SRB measure (non-equilibrium steady state) |LE.
(2) The logarithmic moment generating function eg(a) for the entropy production
exists and is analytic in the disk |a| < 1 + ag. Moreover we have

. l n\a . 1 n\a
ep(a) = lim ~logug (U Tg)") = lim_ ~log o (Vo TE))
and, as a consequence, for a € [—aq, 1 + ag] we have the non-equilibrium steady

state fluctuation relation
eg(a) = eg(l — a). (2.19)
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(3) The logarithmic moment generating function eg(a) is strictly convex if and only if
log J,,, T, is not a coboundary for some r € L%(ug), in which case we have

0> eﬁ(O) = ug(og J,, Tg) = euo(H) + o(e) (Positivity of entropy production),

and

0 < eg(0) = cré = 012182 +o(e?) (Positivity of diffusion coefficients).
Remark 2.5. The expansion of g (log J,,Tg) in item (3) of Theorem 2.4 is related to
the linear response of the periodic Lorentz gas to the external forces E = (F, G). For
more explicit relations valid for this class of perturbations, see [CELS2,CZZ].

We prove Theorem 2.4 in Sect. 5. The main technical elements in the proof are first
to establish the spectral gap, and then to derive the existence of the relevant limit(s)
and the analyticity of the moment generating function. The proof of strict convexity
also requires substantial work related to the Central Limit Theorem. Once these two
properties are established, the fluctuation relation (2.19) follows immediately from the
transient fluctuation relation, Proposition 1.4.

By using standard large deviation techniques [DZe] we obtain immediately a version
of the Gallavotti—Cohen fluctuation theorem.

Theorem 2.6. Under the assumptions of Theorem 2.3, forall 7 € [eﬁ(—ao), ei;(l +ap)],
we have

1 mm(v St e - 8,2+6))
lim lim —log

= Z.

SO g (x s LSus (@) € [z — 8, —2+8])

The proof is immediate as soon as we recall that the symmetry of the logarithmic

moment generating function implies the symmetry 7 (z) = I (—z) — z from (1.5) for the
rate function.

3. Definition of the Norms

The norms we will use are defined via integration on the set of stable curves JV*. Before
defining the norms, we define the notion of a distance dyys (-, -) between such curves as
well as a distance dg (-, -) defined among functions supported on these curves.

Due to the transversality condition on the stable cones C*(x) given by (H1), each
stable curve W can be viewed as the graph of a function gy (r) of the arc length parameter
r.Foreach W € W*, let I denote the interval on which ¢y is defined and set Gy (rr) =
(r, ow (r)) to be its graph so that W = {Gw(r) : r € Iw}. We let my denote the
unnormalized arclength measure on W, defined using the Euclidean metric.

Let Wi, Wo € W* and identify them with the graphs Gw, of their functions g,
defined on Iy, i = 1, 2. Suppose Wi, W5 lie in the same component of M and denote
by £(Iw, Alw,) the length of the symmetric difference between Iw, and Iw,. Let Hy,
be the homogeneity strip containing W;. We define the distance* between W; and W> to
be,

4 Notice that dyys is not a metric since it does not satisfy the triangle inequality. However, we have

low, — ‘PW2|CI(1WIQIW2)§‘(/’W1 — ¥w; |C|(1W| m1W3)+|‘/7W3 _(/’W2|C1(1W301W2)+K£(1W1 N Iy, \Iws),
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dyys (Wi, Wa) = n(ky, k2) + E(Tw, Alw,) + 9wy — @wsle iy, niw,)

where n(ky, ko) = 0 if ky = kp and n(ky, ko) = oo otherwise, i.e., we only compare
curves which lie in the same homogeneity strip.

For 0 < o < 1, denote by é“(W) the set of continuous complex-valued functions
on W with Holder exponent «, measured in the Euclidean metric, which we denote by
dw (-, ). We then denote by C*(W) the closure of C*°(W) in the C%-norm®: [Vlcewy =
|1p|co(W) + Hy, (), where Hy, () is the Holder constant of v along W. Notice that
with this definition, |12 ]cew) < [¥1lcewyl¥2lce(w). We define CY(M) and C¥(M)
similarly.

Given two functions ¥; € cP (W;, ©), B > 0, we define the distance between V1, ¥
as

dp(Yr1, ¥2) = |1 0 Gwy — Y20 Gw,lekay, niy,)-

We will define the required Banach spaces by closing C! (M) with respect to the following
set of norms.

Fix0 < o < min{%, 0‘71}, where 1 is from Lemma 4.2. Given a function & € C'(M),
define the weak norm of h by

|hly := sup sup [ hyr dmyy . (3.1)
WeWs yeC*(W) JW
[¥lcew)=<1

Choose B, y, p > Osuchthat 8 <o, p <1/3and y < min{p, o« — B, 1/7}. We define
the strong stable norm of h as

Ihlls == sup sup / hyr dmy (3.2)
wews veCh(w) w
\W\”IWICﬂ(W)Sl

and the strong unstable norm as

1
721l := sup sup sup  —
e<e0 Wi, WheW* 4 eCO(W;) €

dyys (Wi, Wa)<e |Yilce (w;) =<1

dg(Y1,92)<e

/ /’ll/fl de—/ hl/fzde’ (3.3)
Wi W

where g9 > 0 is chosen less than §p, the maximum length of W € W*® which is
determined by (2.15). We then define the strong norm of h by

I7llg = llAlls + DAl
where b is a small constant chosen in (4.4).

Footnote 4 continued 5
where K = 2supyeyys lowler. If we define dyys (Wi, Wa) = n(ki. ko) + Ly, Alw,) + +low, —

ow, et (I, NIy’ then Jw.v does satisfy the triangle inequality. We do not introduce such a modification

since we do not need this property: the unstable norm defined in (3.3) satisfies the triangle inequality with the
current definition.

5 While C¥ (W) may not contain all of C* (W), it does contain CO‘/(W) for all o’ > a. Defining C%(W) in
this manner ensures the injectivity of the inclusion B < B,.
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We define BB to be the completion of C'(M) in the strong norm and B,, to be the
completion of C 1(M) in the weak norm. We remark that as a measure, h € C' (M) is
identified with hd o according to our earlier convention. As a consequence, Lebesgue
measure dm = (cos @) 'dug is not automatically included in B since (cos o)~ ¢
C'(M). Tt follows from [DZ2, Lemma 5.5] that in fact, m € B (and By,).

3.1. Properties of the Banach spaces. We recall some properties of our Banach spaces
which demonstrate that although they are spaces of distributions defined as closures of
C! functions in the stated norms, they enjoy some natural relations with more familiar
spaces of functions and distributions. Recall Hy (V) := supycy-nyys Hyy () from
Sect. 2.3.

Lemma 3.1. The following properties hold.

(1) ([DZ2, Lemma 5.4]) There exists C > 0 such that forany h € By, T € F,n >0
and Yy € CE(T™"W9),

Ih()| = Clhlw (¥ loo + Hy ().

(ii) ([DZ3, Lemma 2.1]) There is a sequence of continuous inclusions C1 (M) — B —
By — (C*(M))Y, for all ¢ > y/(1 — y). The inclusions are injective, except
possibly the last.°

(iii) ([DZ1, Lemma 3.10]) The unit ball of (B, || - ||B) is compactly embedded in (B,,, | -
w)-

We shall need the following result, which is [DZ3, Lemma 3.5]. Let N, (-) denote the
e-neighborhood of a set in M.

Lemma 3.2. Let P be a (mod 0) countable partition of M into open, simply connected
sets such that:
(1) There are constants K, C1 > 0 such that for each P € P and W € WS, PN\ W
consists of at most K connected components and for any € > 0, my (N.(0P) N W) <
C1¢; (2) Each homogeneity strip H intersects at most finitely many P € P.

Letq > y /(1 —y). Suppose f is a function on M such that suppp | flcap) < 00
and leth € B. Then hf € B and

IhfliB < Cllhllg sup | flcap)
PeP

for some uniform constant C.

We call a potential g admissible foramap T € F if g is at least 1/3 Holder contin-

uous’ on connected components of M \SlT D Suppep, 18lci/3py < 00, where Py is the

partition of M into connected components of M\S 1T .
Our final lemma of this section shows that L7 , is well-defined as an operator from
B to B. Its proof is similar to [DZ1, Lemma 2.1], generalized to include potentials.

Lemma 3.3. If g is an admissible potential for T, then Ly g is well-defined as a contin-
uous linear operator on both B and B,.

6 This last inclusion can be made injective by introducting a weight p’ in the weak norm similar to the role
of p in the strong stable norm, and requiring that p’ > «. This is carried out in [DZ3, Lemma 3.8].

7 One can decrease the Holder exponent 1/3 by placing another restriction on « and y in the definition of
the norms.
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Proof. Let h € C'(M). The Lasota—Yorke inequalities of Proposition 4.1 show that
L7, gh has finite norm in both B and B,,. In order to show that L7 ¢/ belongs to B,
we must approximate L7 ¢h by C ! functions in the norm || - || 5. Note that L7, g¢hhasa
countable number of smooth discontinuity curves given by Sﬂ_ﬂl (we include the images
of boundaries of the homogeneity strips). These curves define a countable partition P of
M into open simply connected sets, and each Hj can intersect countably many P € P.
In addition, the C! norm of L1, 4h blows up near the curves T'Sp.

For j > ko let P/ denote an element of PP such that 7~! P/ C H;. Again, the labeling
is notunique, but for each j, the number of elements in P which are assigned the label j is
finite (even in the infinite horizon case). Let P/ = U j>J P/ . We claim that || Lt ghlpsls
is arbitrarily small for J sufficiently large. On the finite set of P/ with j < J, the C!
norm of L7 ¢h is finite and the modified partition P* = (P} j<s U{P 7} satisfies the
requirements of Lemma 3.2. So we may approximate L7 ¢h using Lemma 3.2 on M\ P 4
and approximate L7 ¢h by Oon P /. Thus the lemma follows once we establish our claim.

Indeed, the claim is trivial using the estimates contained in Appendix A. For example,
we must estimate ||(L7 ¢h)|pslls = 1ps L1 ghlls. Taking W € W* and ¢ € ch(w)
with [W[P[¥]csw) < 1, we write

/ 1ps L7 ghr dmy = / h(JuyT) " eS8 Jpoiyy T o T dmyy,
1% T-1Y(WnP7)

and the homogeneous stable components of 7~ (W N P7) correspond precisely to the
tail of the series considered in (A.2) and following and so can be made arbitrarily small
by choosing J large (notice that we do not need contraction here so that we may use the
simpler estimate similar to Sect. A.2 applied to the strong stable norm rather than the
estimate of Sect. A.3.)

Similarly, in estimating || £ 4/]|,., one can see that the contribution from P corre-
sponds to the tail of the series from the estimates of Sect. A.4, and so this too can be
made arbitrarily small by choosing J large. O

4. Proof of Theorem 2.3

The proof of Theorem 2.3 relies on the following more general proposition. Recall that an
admissible potential g for 7' € F is one that satisfies [g]c1/3(p,) = suppep, 1&lc1/3p) <

00, where P is the partition of M into connected components of M\S IT . For an admis-
sible potential g, define Cq := 1 + C.|g|ce(p)) Z?io AT,

Proposition 4.1. There exists C > 0, depending only on (H1)—(HS), such that for any
T € F, admissible potential g, h € Bandn > 0,

1Ll < CCol(Jug T ™" €% oo ], (4.1)
1L hlls < CCol(Jug T ™ €% |og ((93"’)” + AP R + C(SO_”|h|w) , (4.2)
1L5 ghllu < CCol (T T "€ oo (AT |1l + CCH|1R5) . (4.3)

where C3 is from Lemma A.1(d).
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The proof of this proposition is fairly technical, but has a lot of similarity with the
corresponding inequalities proved in [DZ1] and [DZ2] in the case g = 0. We put the
proof in Appendix A for completeness and to draw out the explicit dependence on the
added potential.

Choose max{@fp, AP, A77} < 0 < 1. Then there exists N > 1 such that
L7 1l = 1LY hlls +BILY Jhllu
_ GN _
< CCyl (g TN) SN o <7||h||s +C8y P |hly +ba™ ||, +bCC§V||h||s)

< CCyl (g ™) e log (o™l + Caylhl ) (4.4)

providing b is chosen sufficiently small so that bC Cév < o /2. This is the standard
Lasota—Yorke inequality for L7 , for a general potential g. In order to specialize to the
case g = alog J,,T, we recall the following lemma about the form of the Jacobian
Jyuo T derived in [CZZ].

In what follows, we define G = (Gl, G2) to be the map on M induced by the twist
G, where G! and G? are C? functions on M. Due to (2.2) and (A4), if we denote

(r1, 1) = Ty 0(r, ), then
Tr,g(r, @) = (r1, 1) + G(r1, 01) = (I + G)(Tw,0(r, ). (4.5)

Lemma 4.2 ([CZZ, Lemmas 3.2 and 4.2]). Fix ¢, v« and Cqy and consider Tr.g €
F (e, 1%, Cp).

First, assume there is no twist force G = 0 and denote Ty o = Tg. Then the Jacobian
of Ty with respect to g is given by

F(X)
JuoTr = exp fo p¥ar|, (4.6)

where TF is the free path for the system Ty and k is from (2.6).
Next, assume G # 0. Then by Assumption (A4) the Jacobian of Ty, = Ty, satisfies,

JuoTe = JugU + G)(Tr) J 11y Ty 4.7)
Moreover, we may write,
JuoTe =1+eH, where H=1(J,Tg—1), (4.8)
|H|oo < Cy forsome Cy > 0independent of € and H is C*' for some® oy € (1/3,1/2]
on each component of S]T E

Proof. The representation of J,, Tg given by (4.6) is proved in [CZZ, Lemma 3.2] under
precisely the same assumptions as here. Since the coordinates and assumptions used in
[CZZ, Lemma 4.2] differ slightly from ours, we proceed to verify the case G # 0
directly.

8 The restriction on a1 comes from the fact that H is at least C*0 for some o > 1/3 by Assumption (A3),
but in general not smoother than tg, which is only 1/2-Holder continuous.
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Due to (A4), Eq. (4.7) follows immediately from the chain rule and (4.5) at any point
x=(r,¢) ¢ SITF (see also [DZ2, Sect. 7.2]). Then using the fact that d g = ¢ cos pdm,
we have

cos(p1 + G2(r1, ¢1))

JuoI +G)(r1, 1) = cos o1 det(/ + DG)(r1, ¢1)- (4.9)

By (A4), G*(ri, £%) = 0, so using (A3)
| cos(pr + G2(r1, @1)) — cos 1| < |G (r1. 1) < elgn — 5.
where without loss of generality we consider ¢ near 7 /2, rather than — /2. Thus,

cos(p1 + G2(r1, ¢1)) lp1 — /2]
=1t 7020
Cos @1 CoSs @1

and the last fraction is bounded by /2 for ¢ € [0, 7/2]. This, together with (A3) and
the fact that det(/ + DG) = 1 + Trace(DG) + det(DG), yields (4.8) with H bounded
by a uniform constant Cy independent of . O

4.1. A Spectral Gap for L1 4. Now we fix ap > 0 and the interval [—ag, 1 + ag] as in
the statement of Theorem 2.3. Choose g9 > 0 so small that for all @ € [—ag, 1 + ag],

(1 —sign(a — 1)Cyep)?~!
(1 +sign(a — 1)Cyep)?!

o, (4.10)

where o is from (4.4).
The next lemma establishes the quasi-compactness of L7 4.

Lemma 4.3. Let a € [—ao, 1 + ag] and &y be as chosen in (4.10). Then for all T €
F (o, T, Co), LT.4 is quasi-compact as an operator on B.

Proof. When g = alogJ,,T, we have (JHOTN)_leSNg = (JMOTN)“_1 and so (4.4)
together with Lemma 4.2 yield the required inequalities (2.17) for Theorem 2.3. Due
to the compactness of the unit ball of B in 5,, [DZ1, Lemma 3.10], this implies the
essential spectral radius of L7 4, Pess(L7.4) is at most o (1 + sign(a — 1)Crep)® L. To
prove that Lr , is quasi-compact, it remains to show that the spectral radius of L 4,
P (LT .4), is strictly larger than pess (L7 4).

To obtain a lower bound on p (L7 ), note that

. 1/ . 1/
p(Lra) = lim L5 1" = tim (£} 111",

Then we have

I1£7 ,1lls = sup sup / Ly - dmy
Wews veCPl(W) w
IWIP 10 gy <1
> sup sup infﬁ'}’al/‘ vdmwy > inf(1+eoH)“ D" 1],
wWeWws YeCh (W) w

WIP1] o gy =1
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using Lemma 4.2 and the identity £7. ,1 = (Jy, T")%~! o T=". This implies that
p(Lra) = lim [I£ % = (1 = sign@ — DCpe)*™".
n—oo ’

Combining this with the upper bound on the essential spectrum of L7 , and the choice
of &g from (4.10), we conclude

Pess(L1.4) < o(1+sign(a — 1)Creo)*™' < (1 —sign(a — NCre)* ™" < p(Lr.a).
]
Recall from Sect. 3.1 that a function g : M — R s an admissible potential for 7 € F
if[glciap,) = suppep, 18lc13(py < 00, where P is the partition of M into connected
components of M \SIT .

Lemma 4.4. Suppose g is an admissible potential for T € F(eq, T4, Co). Then the map
2> L7 54 is analytic for all z € C.

Proof. Define the operator A,h = Lr(g"h) = g" o T~'Lrh, for h € B. Notice
that since g is Holder continuous on elements of 71, it follows that g o 7! is Holder
continuous on elements of 7_1, the partition of M into connected components of M\S” 1

Since Szl consists of finitely many curves that are uniformly transverse to the stable

cone, we claim that g o T satisfies the assumptions of Lemma 3.2. Indeed, we have
the following estimate for the Holder regularity of g o 7~!. For any x, y in the same
component of ST s

lgoT ') —goT' M| _1goT ') —goT'WIdT '), T y)'?
d(x, y)i/ AT ), T o)A d(x, y)l/e

(4.11)
The first factor is bounded by |g|c1/3(p,), While the second factor is uniformly bounded
due to the fact that |7~ 'W| < C|W|'/? for any W € W* by (H3) (see, for example, [CM,
Exercise 4.50]). Thus g o 7~ ! is 1/6-Holder continuous on P and 1/6 > y /(1 — y)
since y < 1/7 so that g o T~ ! satisfies the conditions of Lemma 3.2.
Now Lemma 3.2 implies that g” o T~'L7h € B and moreover,

I Auhlis = lIg" o T Lrhlls < CILrhlBIE" o T Ievop_yy < CIRIBIEE 3 p).

where we used (4.11) along with the simple fact that | fg|ce < | f|cs|glce to estimate
18" lca =< 18-

Therefore, the operator Y oo Z—’;A,, is well defined on BB and equals L7 ., since once
we know the sum converges,

X(:) i—!Anh(w) =h (X(:) %g" Yo T) =h(e®¥y oT) = Lr ch(Y),

for yr € C*W°).
O

With the analyticity of z > L, established, it follows from analytic perturbation
theory [Ka] that both the discrete spectrum and the corresponding spectral projectors of
L ;¢ vary smoothly with z. We will use the smooth dependence of the spectrum on z
to prove that L7 , has a spectral gap.
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Lemma 4.5. Fix ag, t«, Co > 0 and let ey be as in (4.10). Then there exists 0 < €1 < g
such that for all T = Tg € F(e1, t«, Co), L1.4 has a simple eigenvalue . = p(Lr.4)
and all other eigenvalues have modulus strictly smaller than X, i.e. Lt 4 has a spectral
gap as an operator on B.

Proof. Fix a uniform family F(eg, 74, Co) satisfying (H1)-(H5) and (4.10) such that
L7 has a spectral gap for all T € F(gg, 74, Co) by [DZ2].
Fixing T = Tg € F (&0, 14, Cp) and using Lemma 4.2, we know —s is an admissible
n—1

potential for 7. According to Lemma 4.4, the derivative,d%ET,, 5 = an] ﬁfln is
well-defined as a bounded linear operator on 53, and

[zllsl o173
”EACT,fzs g < ClLrlIBlslcyspye € P,

for a uniform constant C (depending only on F). Thus for any a € [—ao, 1 + aol,

lalls|-1/3
ILr — L1.allg < CILTIBISIC1APpe €/ P]al

log(1+¢ H)|1!
< ClallLr sl log(1 +eH)leiagpye e @n - (4.12)

where we have used Lemma 4.2 and ¢ is the optimal ¢ for E.

Itfollows from [DZ2] that the spectrum of L, varies continuously in E and converges
to the spectrum Lz, as E shrinks to 0 (in C 1 norm). Thus there exists 0 < &3, &2 < &g
such that all Tg € F (&2, 14, Cp) enjoy a uniform spectral gap, i.e., the distance between
1 and the second largest eigenvalue of L7, is bounded below by a uniform constant; call
this constant § > 0. Then by (4.12), there exists & > 0 such that L7 , has a spectral
gap for any Tg € F(e1, 74, Co) and all a € [—ag, 1 +ap]. O

We will also find it convenient to have the following continuity in ¢.

Lemma 4.6. Fix a € [—ag, 1 + ag] and To = To 0 € F (&1, T«, Co). There exists C > 0
such that for all ¢ < &1 and all Ty, € F(¢1, T4, Co) with dr(Ty, Tg) < &, we have

sSup{|Lry.ah — L1y altlw : Ihlg < 1} < Ce?/2.

This implies in particular that the leading eigenvalue and associated spectral projectors
of L1y;,a vary continuously with E in the g1 neighborhood of T.

Proof. The proof is essentially the same as the proof of [DZ1, Theorem 2.3], except
with the added potential (J,, T)%~!. We just sketch the proof here, noting the necessary
additions.

Fixing Tp and Tg as in the statement of the lemma, we choose & € C L(M) with
lhllp < 1and W € W*. Let ¥ € C*(W) satisfy |y/|ce(w) < 1. For the weak norm of
the difference, we must estimate

/ ([:To,ah - LTE,ah)W dmy = / hJT_'WT YoTy
w T(;IW 0
-1
— /T*IW h(JMOTE)a JTEIWT Yo Tg,
E

where we have used the fact that J,,Tp = 1. The required estimate is similar to the
estimate for the strong unstable norm in contained in Sect. A.4, except that we have one
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stable curve iterated under two different maps instead of two close stable curves iterated
under the same map. However, the decomposition is the same: we subdivide TO_] w
and T "W into matched and unmatched pieces. The matched pieces can be connected
by a transverse foliation of unstable curves, while the unmatched pieces are short. The
estimates proceed precisely as in [DZ2, Section 5], with [DZ2, Lemma 5.1] providing
the bounds on all the relevant quantities. The only additional piece in the present estimate
is the presence of the potential (J, Te)* L.

For the sum over unmatched unmatched pieces, it is bounded by
C‘€7’/2|(J,L0 Tg)* ! lcs ¢y lIA|ls using the strong stable norm precisely as in (A.13), with
n = 1, since each unmatched piece has length at most &'/2.

Suppose U; and U, are two matched pieces of TO_1 W and Ty 'w, respectively. By
construction, they are defined over a common r-interval /, i.e. they can be written as
graphs of functions

Uj=Gy;I) ={(r.ey;(r)) :r € I}

and dyys (Up, Up) < C el/? ([DZ2, Lemma 5.1(a)]). The estimate over matched pieces
proceeds precisely as in (A.14) and the only difference in test functions unaccounted for
in (A.19) is | (Jio TE) ™" = 1lcs (1) We will show that

|(Juo Te) ™" = 1les,) < Ce' P, (4.13)

for some uniform constant C depending on ag. Indeed |(J, Tg)* ' — leow,) < Cla—
1]¢ follows from Lemma 4.2. For the Holder constant, we take x, y € U, and estimate
on the one hand using (H4),

(T Te)* ™ () = (o TE) ' D < Cl(Jy Te)* oy d (e, P < Cld(x, '3
While on the other hand,
|(J TE) () — (o Te)* ™ ()] < Ce,

using Lemma 4.2 once again. So the Holder constant is bounded by the minimum of
these two expressions,

min{C'd(x, )38, C"ed(x, y)7P}.

This bound can be no worse than when the two quantities are equal, i.e. ¢ = (C'/C")
d(x, y)'/3. Thus HY ((J,,,Tg)*~' — 1) < C&'=38. This proves (4.13).

Now gathering terms over matched and unmatched pieces as in (A.21) or [DZ2, Eq.
(5.9)], we see that the least power of ¢ is /2, from the unmatched pieces (notice that

173 < ¢37F and y<a—p=< % — pB). This completes the proof of the lemma. O

Fix T € F(e1, 1+, Co). Let h, € B be the eigenvector of Lr , corresponding to the
eigenvalue A, of maximum modulus, and v, € B* be the corresponding eigenvector of
the dual ﬁ’}’a. That is, L1 4hq = Aghg, and L£}v, = A4v,. Due to the spectral gap for
L7 4, we have the following spectral decomposition,

Ll b =Tk + RIA, (4.14)

where I1,R, = R,I1, = 0 and the spectral radius of R, is strictly smaller than A,.
Also, forany i € B, 1 h = c,(h)h,, where ¢, : B — R is a bounded linear functional.
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Notice that A, must be real since Lr 4 is a real operator and the spectral gap for L7, is
obtained as a perturbation of L7 o, which has 19 = 1.
The following lemma completes the proof of Theorem 2.3.

Lemma 4.7. Both eigenvectors h, and v, are positive measures. Moreover, the pairing
Uaq = hg ® v, defines an invariant measure for T.

Proof. Due to (4.14), for any ¢ € C*(M),
ca(Dha(¥)] = Tim 13" L5 1@ < Tim [¥]oclAg" £, 1(D)]
= |¥loclca(D|ha(1)].

Now c¢o(1) = 1 and ¢, (1) is continuous in a by Lemma 4.4, so by (4.12), ¢, (1) > 0 for
¢ € [0, e1]. This, together with the above estimate, implies that &, is a measure. Then it
is evident that A, is a positive measure due to the positivity of L7 4.

Similarly, one can show that v, is also a positive measure since

Tim A" (L5 )" 1) = ¢ (Dva (),

for some linear functional c.

By Lemma 3.2, if ¥ is a piecewise Holder continuous function on M, then ¥ h, € B.
So we may define a measure on M via the pairing pur , = hy ® vq, i.e. pur (Y) =
(Whg, vq), where (-, -) denotes the pairing between B and its dual. Moreover, the measure
IT,q 18 invariant under 7'

1raWoT)= (Yol ha A Lo va) = 2" Lra( o T - ha), va)
= A W LT 0 (ha), va) = (Wha, va) = pr.a(¥), forany ¢ € C3(M),
where we have used Lemma 3.2 to conclude that Y o T - h, € B. O

Remark 4.8. Notice that when a = 0, the smooth measure ¢ is the conformal measure
with respect to L7, i.e. E’},Ouo = o, so that vg = g and (hg, no) = 1. It then
follows from Lemma 4.4 and (4.12) that that we may choose &1 > 0 sufficently small
so that (h,, o) > 0 and ¢, (hg) > O forall a € [—ag, 1 +ap].

5. Proof of Theorem 2.4

In this section, we shall be more explicit about the dependence of the various objects on
the forces E = (F, G). We shall use the following notation for the map T = Tg and the
potential ¢“89. We have the following decomposition according to (4.14):

»CTE,a - AE,a 1_IE,a + RE,a-

Denote by ug., = hEg.« ® VE,, the Tg-invariant measure constructed using the left and
right eigenvectors of Lr; ,. When a = 0, in what follows, we will drop the subscript
corresponding to a, and simply write ug = hg ® vg for the SRB measure of the
perturbed system Tg € F(e1, T«, Co). Note this notation is consistent with our use of
1o = Moo as both the conformal measure for L7 ¢ as well as the smooth invariant
measure corresponding to the classical billiard map Tp ¢, with F = G = 0. Indeed,
when E = (0, 0), then 9o = 1.
The moment generating function eg(a) is defined as in (2.18),

1
ep(a) = lim - log g (V1o Tg) ).
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Proof of Theorem 2.4. The existence and uniqueness of ug for Item (1) follow from the
spectral gap of Ly, established by Theorem 2.3.

To prove item (2), first recall that (hg 4, (o) > 0 and cg 4(hEg,0) > 0 by choice of g;
and Remark 4.8. Then

o1 o1
ep(a) = lim - log g ((Ju Tg)") = Jlim - log(hg - (J,,y Tg)", 110)

.1 ,
= lim —log(ﬁ}E’ahE,uo)

n—oon

. 1
= lim —log(Ag ,CE.a(hE)IE, o + RE ,hE, o) = lOg AR 4.
n—oo n ’ ’

Thus by Lemma 4.4, since Ag, is simple, eg(a) is analytic as a function of a for
a € [—ag, 1 +agp].
Now let v € 3 be a probability measure with cg ,(v) > 0. Then the limit

M l n\a
nlggozlog V(o Tg)®)

exists and has the value log Ag , by precisely the same calculation as above. Thus the
moment generating function can be defined using v in place of the invariant measure ug.
Note that since cg o(v) = 1 for any probability measure v € B, and due to the inequality

(Mg, — Heo)vip < Mg — HeglBlIVIE,

Lemma 4.4 implies that if we fix a ball of radius » > 0 in B, then we may choose
€1 so that cg 4(v) > O for all v in this ball of radius r, all @ € [—ap, | + ap] and all
Tg € F(e1, T4, Cp). For this range of parameters, it follows that Lebesgue measure
m, the smooth measure 1o and the (possibly singular) SRB measure ug all yield the
same logarithmic moment generating function eg(a). From this and Proposition 1.4 we
conclude the symmetry eg(a) = eg(l — a) fora € [—ag, 1 + apl.

To prove item (3), we compute the derivatives of eg(a) at a = 0, following [RY]
(see also [D]). The sequence {% log g ((Jy, TE)“)},ZGN is uniformly bounded for a in
a complex neighborhood of the origin. Thus by the Vitali convergence theorem we can
freely exchange derivative and limits. Thus

1
eg(0) = lim e (10g Jy Ty) = ne(log Ju, Te),

due to the invariance of ug with respect to Tg. Now using Lemma 4.2, we have
JuoTe(x) =1+ ¢eH (x). Thus for small |¢] < 1,

e (0) = pg(log(l +eH)) = su(H) + O(°).
Next, using Lemma 4.6 and [KL, Corollary 1], we have

e — polw < Ce, (5.1

for some n > 0. Putting these estimates together, we conclude,

ep(0) = epno(H) +o(e).
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For the second derivative, setting s = — log J,, T as before, and 5 = s — ug(s), we
have
/" I 2 T | -2
eg(0) = lim —(ug(($y$)7) — uE(Sps)?) = lim —ug((S,$)7)
n—-oon n—-oon
n—1
e i _ s soTd
= pE(T) +2 lim .El(l J/mpE(s -5 o Ty)
j:

oo
= pEG?) +2) eGS0 T).
j=1

The last equality follows from the exponential decay of correlations and dominated
convergence.

Let 01% denote the limit of the variance of n=1/2S,s as n — oo where {so TF{}jeN
is distributed according to the invariant measure pg. (Such a og exists and is finite

whenever the auto-correlations ug(s - s o T]g) are summable.) The above Green Kubo
formula then gives the diffusion coefficient:

o0
e (0) :ME(§2)+2ZME(§.50T]§) = of. (5.2)
j=1
We denote H = H — uE(H), where H is from Lemma 4.2 and J,,Tg = 1 +&H. Then,
—5 = log Juy Te — pelog Ju, Te) = e(H — pg(H)) + O(e?),
and also,

nEG%) = pe((og(l +eH))?) — up(log(l +eH))>
= e>Var(H) + O(&%) = e?ug(H?) + O(&).

It follows that

o0 o0 o0
Y upG 5o T :ZME(E-EOT({)+Z<ME(E-EOTE’)—/LE(E-EOTOJ)>
j=1 j=1 j=1

[o)e]
=g2 ZME(I:I “HoTy)+o(e?).
=1

By exponential decay of correlations, the series in the last expression converges. Finally,
we use (5.1) to change the measure from ug to g since all the functions involved are
admissible with respect to the norms we have defined. Thus

ep(0) = %07 +0(e?),
where 0, = o(H%) +2 Y52 po(H - H o TY).

Next, we show that in fact eg(a) is strictly convex for a € [—ag, 1 + ag] whenever
2
opn > 0.
E
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In order to compute eg(a) and eg(a) at a # 0, let

— i l] —tSys
eq(t) = Jm 0g UE,q(e ),

i.e. e, is the moment generating function for ug ,. Note that

—t, —tSys — —t5,
ME,a (e "S) = (e 1on 'hE,a, VE,a> = )‘Eﬁl (e nS‘CZhE,as VE,a)

= )”]sz <£?+ahE,av vE,a)-

Therefore,

.1 _ o1
eq(t) = nhﬁn&) - log g (LYsahB.a, VE.a) = lim —log(Ly, B as VE.a) —10g M.

n—oon

. 1
= nll{go ;l 1Og<)‘z“,a+tcE,a+t (hE,a)hE,a+t + RE,Q.F[ (hE,a)» VE,a) —log AE.,q

=eg(a+t) —eg(a),

where we have used the fact that eg(a) = log Ag .. Differentiating with respect to ¢
gives e (a) = €, (0) and eg(a) = e, (0). The computation of ¢, (0) and ¢;;(0) are the
same as the case ey (0) and ef; (0), with ug 4 in place of uE.

Notice that L7, , = L7,,0 for each a € R since when E = (0, 0), s = 0. It follows
that o, = po for all @ € R. Thus by the continuity of ug, in E for each fixed a
(Lemma 4.6), we have ¢/,(0) > 0 for all @ € [—ap, 1 +ap] and ¢ < ¢y if & is chosen
sufficiently small.

The positivity of the entropy production rate follows then from the symmetry and
strict convexity. Indeed, suppose the entropy production rate —ej(0) = 0. Then since
eg(0) = eg(1) = 0 by the symmetry proved in item (2), convexity and analyticity imply
that eg(a) = O for all a € [0, 1]. This contradicts strict convexity, i.e. it contradicts that
eg(a) > Oforalla € [0, 1].

It remains to prove that a]% > (Qifandonlyifsisnotacoboundary.Ifs = Y oTg—y+C
for some y then eg(a) = aC and so trivially e, (a) = 0 for all a. The converse requires a
more substantial proof. In order to prove it, we will invoke the following abstract version
of the Central Limit Theorem for invertible systems, following the classical martingale
approach of Gordin [G].

Theorem 5.1 ([V]). Let (X, A, ) be a probability space, ¢ € Lz(,u,) be such that
f(l)du =0, and 6 : X — X be an invertible map such that both 0 and 6~ are
measurable, and . is 0-invariant and ergodic. Let Ay C A be such that A,, = 67" (Ayp),
n € 7, is a non-increasing sequence of o -algebras. Assume that

D NE@IAD 2 < 00 and Y |l — E@IA_) 12 < 00 (5.3)
n=0 n=0

and let 0% = f¢2d,u+22?°=1 [¢-pob/dpu.
Then o is finite, and o = 0 if and only if ¢ = uob —u for some u € L*(w). Moreover,
ifo? > 0, then n=Y/%S,¢ converges weakly to N (0, 62).
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We will apply this theorem with § = Tg, u = ug, » = § and 0 = og. Let A be the
sigma-algebra generated by the (ug-mod 0) partition of M into maximal homogeneous
local stable manifolds for T.” Then A, = Ty " (Ap) is a decreasing sequence of sigma-
algebras, as required.

With these definitions, the second condition in (5.3) is a simple consequence of the
uniform contraction of stable manifolds. Denoting by V*(x) the maximal local stable
manifold of x, we note that E(5|.A_,) is constant on curves of the form T (V¥ (x)); these
are the elements of A _,, and their length is bounded by C A™" for some uniform C > 0
since stable manifolds have length uniformly bounded above due to the discontinuities
of Tg. In fact, since 5 is continuous on such curves,'® E(5|.A_,)(x) = 5(y) for some
y € A_,(x), the element of A_, containing x. Thus

15(x) = EGS|A-) ()] = [5(x) = 5(y)| = [log(1 + e H (x)) — log(1 + e H(y))|

&
< Cal H d , (3] <C/A7na]9
< T O D)

where we have used Lemma 4.2 and CZ' (-) denotes the Holder constant along stable
manifolds with exponent «. This estimate implies that the L°°-norm, and therefore the
L2-norm, of 5(x) — E(5|.A_p) decays at an exponential rate and so the second sum in
(5.3) converges.

The first sum in (5.3) entails a more subtle calculation. In principle, it follows from
exponential decay of correlations for ug; however, it requires exponential decay of
correlations against observables in L?*(Ap, ug), which is a larger class than is at first
available in the framework of our Banach spaces; here, L*(Ag, ug) is the set of L2
functions that are measurable with respect to Ag. To see this, we will use the dual
version of the L2-norm,

IEGTADIN L2 1) = sUP {/MduE L ¢ € L*(Ay, pg) with @120 = 1}

= sup {/sw o T dug : ¥ € L2(Ag, up) with 1]l 2(,p) = 1} .
(5.4)

In order for this last integral to decay exponentially in n as a result of the spectral gap for
L1z = L1i,0, we would like 5 € B and ¢ € B, the dual to 3. Unfortunately, the first
statement is false and the second statement needs some work to justify. Also, note that
we can expect the correlations to decay to 0 in the above expression since ug(s) = 0. It
is not necessary that ug(y¥) = 0 as well.

As noted in the proof of Lemma 4.4, as an admissible potential s is Holder contin-
uous on connected components of M \SIT £ and so does not satisfy the assumptions of
Lemma 3.2; however, 5 o T, Vis o /2-Holder continuous on connected components of

M\SZFi by (4.11). Thus by Lemma 3.2, since y < 1/7 < «1/(ce; + 2) in the definition

9 This partition is measurable since it is has a countable generator: U,>1{connected components of
Tg H N .
M\S,E ). See for example, [CM, Section 5.1].
U, . T .
10 Indeed, 5 is Holder continuous on each connected component of M\ S I E_andlocal stable manifolds cannot

Cross SIF‘, otherwise they would be cut in forward time under 7g, which would contradict the definition of
stable manifold.



728 M. F. Demers, L. Rey-Bellet, H.-K. Zhang

of the norms, both 50 Ty’ land 5o Ty ! hg € B, where hg is the right eigenvector of Lr;;.

Since (5 o Tjf dug = [§o TE_1 ¥ o T]f:’_l dug, it suffices to work with 5 o TE_I.
Notice also that since we are in the case a = 0, the conformal measure is g, i.e.

E’}Euo = po. Thus for n > 0 and ¢ € C*(Tg"W*), we have ug = hg ® po and

HE(Y) = (hE, ¥ 1o).

In order to estimate the expression in (5.4), we shall need two lemmas. Let By(Ag)
denote the set of bounded functions on M, which are measurable with respect to A.

Lemma 5.2. Suppose there exist C > 0 (depending on g) and p < 1 such that

BEG - ¥ o Tg) < Cp" Yoo, forall Y € By(Ao), (5.5)

where |V |oo = SUD,cpy | (x)|. Then there exists C' > 0 such that
PG Y o Tg) < C'p" Y Ia ), forall yr & L2(Ao, ).

The following lemma is a strengthening of Lemma 3.1(i). It shows that the estimate
of that lemma holds true in the limit as n — oo.

Lemma 5.3. There exists C > O such that for any h € B,, and any bounded function ¥,
Ih(Y)] = Clhlw (¥ loo + CH, (W),

where Cf‘% (+) denotes the Holder constant of r with exponent o measured along curves

in Ag.

We postpone the proofs of the lemmas and first show how they allow us to complete
the proof of Theorem 2.4. For ¢ € By(Ayp) , Cf‘% () = O since ¥ is constant on curves
in Ag. We estimate the correlations using Lemma 5.3,

‘fEIﬁoTé’duo =‘(50T};1hE,¢ng”MO>‘

2’/50TE‘ong‘duE

G 0T he. (L5, o)) = (€55 G o T e, wrno)|
< CILE G o T 'h)lw (1Y oo + HY, (¥))

< ClIRy "G o Tg 'he)lIBIY oo

< Cp"hElIBIS © T Mew 2p_ ) ¥ loo- (5.6)

forsome p < 1 where |soTg ! learrep_ ) denotes the Holder constant of 5 on elements of
the partition formed by the connected components of M \SEE, and we have used (4.14)
and the fact that T (5o Ty, ' i) = Osince (5oTy 'hE, o) = upGoTy ') = ug(s) = 0.

From (5.6), we see that § has uniform exponential decay of correlations against
¥ € Bo(Ap) and so satisfies the hypotheses of Lemma 5.2. It follows that § enjoys a
uniform exponential rate of decay of correlations against i € L2(Ap, UE), S0 by (5.4),
this yields an exponential decay in the LZ-norm of E (5].A,). We conclude that the first
series in (5.3) converges. Since the hypotheses of Theorem 5.1 are verified, it follows

that a]% = 0ifand only if 5§ = u o Tg — u for some u € L?(ug), and the proof of
Theorem 2.4 is complete. O
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Proof of Lemma 5.2. Let ¢ € L2( Ay, uE) be arbitrary. For L € R*, define ¢y (x) =
¥ (x) when |y (x)| < L and ¥ (x) = 0 otherwise. Clearly, /1, € Bo(Ap) and |/ |oo <
L. Now forn € N,

=

'/§-¢0Té’d,u1;

/f'lﬁLoT{;’duE +|§|oo/|¢f—1/fL|dME- (5.7

To bound the second term on the right side of (5.7), note that
fw —Yrldug < / Lyisz - 1Wldpe < pe(W| > L)' 2191200

while u(|y/| > L) = p(y* > L?) < L72|y7,, by Markov’s inequality. Using (5.5)
for the first term on the right side of (5.7), we obtain,

‘ff-lﬁoTﬁduE < CP"L+ L7 5lacl V172 () < 0" (C+5lcl¥ 172, ))s (5:8)

(e

—n/2

ifweset L = p , and the lemma is proved. O

Proof of Lemma 5.3. Due to the density of C! (M) in B,, it suffices to prove the lemma
for h € CH(M).

On each component M; of M, i = 1,...,d, we disintegrate the smooth measure
o on elements of Ay. Since elements of Ay are homogeneous stable manifolds, the
decomposition respects the boundaries of the homogeneity strips. Let Ao ; = {We}eeg,
denote the set of homogeneous local stable manifolds in M; with index set Z;. The
disintegration of 1 on elements of Ag ; yields conditional densities 7¢ on Wg, normal-
ized so that st ne dm we = 1, and a factor measure [i9 on the index set E;. By [CM,

Corollary 5.30], n¢ is (uniformly in &) log-Holder continuous with exponent 1/3. Now,

hw) = /thduo -y

On each Wg, we estimate using the weak norm.

/ hr ne dmg
We

Due to the log-Holder regularity of ne, there exists a constant C;, > 0 such that

[ v dmy,diioe). (59)
We

=1

i

< |hlwl¥lexwe) Ing lce(we)-

e (x) — 1 ()] < Cylne ()1d (x, W3 < C'|We| 7t (x, )3,

where the bound on the sup-norm of 1 comes from the normalization of the conditional
measures. Putting these estimates into (5.9) we obtain,

)1 = (Wl + HE, ) D [ 1Wel ™ dito(®).

1

This last integral is precisely the integral that characterizes the Z-function for a standard
family [CM, Section 7.4] which measures the prevalence of short curves in that fam-
ily. Since the disintegration of (¢ on maximal homogeneous stable manifolds creates a



730 M. F. Demers, L. Rey-Bellet, H.-K. Zhang

proper family,!! this integral is finite (see [CM, Exercise 7.22] for the decomposition us-
ing stable manifolds for the unperturbed billiard 7y and [CZ,CZZ] for the decomposition
using stable manifolds for the perturbed billiard 7g). O

Appendix A. Lasota—Yorke Estimates

A.l. Preliminary estimates. Before proving the Lasota—Yorke inequalities, we show
how (H1)-(HS) imply several other uniform properties for our class of maps F. In
particular, we will be interested in iterating the one-step expansion given by (H3). We
recall the estimates we need from [DZ1, Section 3.2].

Let T € Fand W € W*. Let V; denote the maximal connected components of
T~'W after cutting due to singularities and the boundaries of the homogeneity strips.
To ensure that each component of 7~! W is in W*, we subdivide any of the long pieces
Vi whose length is > §p, where §¢ is chosen in (2.15). This process is then iterated
so that given W € W?*, we construct the components of 7" W, which we call the nth
generation G, (W), inductively as follows. Let Go(W) = {W} and suppose we have
defined G,_1 (W) C W*. First, for any W’ € G,_1(W), we partition 7~'W’ into at
most countably many pieces W/ so that T is smooth on each W/ and each W/ is a
homogeneous stable curve. If any W/ have length greater than 8y, we subdivide those
pieces into pieces of length between §y/2 and §y. We define G, (W) to be the collection
of all pieces W' C T™"W obtained in this way. Note that each W/ is in W* by (H2).

At each iterate of T~!, typical curves in G, (W) grow in size, but there exist a portion
of curves which are trapped in tiny homogeneity strips and in the infinite horizon case,
stay too close to the infinite horizon points. In Lemma A.1, we make precise the sense
in which the proportion of curves that never grow to a fixed length decays exponentially
fast.

For W e W, n>0,and 0 < k < n, let Gx(W) = {Wl.k} denote the k™ generation
pieces in T~¥W. Let By (W) = {i : |[WF| < 80/3) and Ly(W) = {i : |[WK| > §0/3)
denote the index of the short and long elements of G (W), respectively. We consider
{gk};;zo as a tree with W as its root and Gy as the k™ level.

At level n, we group the pieces as follows. Let Wﬁ’) € Gn(W) and let Wj]? € Ly (W)
denote the most recent long “ancestor” of Wi’(’) e k=max{0 <l <n: T”_E(Wl-’(‘) ) C
Wf and j € Ly}. If no such ancestor exists, set k = 0 and WJ].‘ = W. Note that if Wl.'(’) is

long, then W;‘ = Wi’é. Let
In(Wj]»‘) ={i: Wj]»‘ € Li(W) is the most recent long ancestor of W;' € G,(W)}.

The set Z,, (W) represents those curves W' that belong to short pieces in Gi (W) at each
time step 1 < k < n, i.e. such W/ are never part of a piece that has grown to length
> 8o/3.

We collect the necessary complexity estimates in the following lemma.

Lemma A.l. Let W € W, T € F and for n > 0, let T,(W) and G,(W) be defined
as above. There exist constants C1, C2, C3 > 0, independent of W and T, such that for
anyn > 0,

1T In fact, Example 7.21 and Exercise 7.22 of [CM] are stated in terms of the disintegration of 1. on maximal
homogeneous unstable manifolds. Using the reversibility of Tg, the analogous properties hold for maximal
homogeneous stable manifolds.
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(a) Z |JWin Tn'CO(Wl”) < C]Q:,'

€T, (W)
® > MUwaT ooy < Ca;

Wlnegn(W)

wh|s _
(c) forany0 < ¢ <1, Z % IJWinT”|C0(W?“) =< C21 S
Wlnegn(w)
) for ¢ > 1/2, Z | Ty Tn|é0(W?l) < C%, where C3 depends on .
Wi eG, (W) l

Proof. Ttem (a) follows from the one-step expansion (H3) by induction as in [DZI,
Lemma 3.1]. Items (b) and (c) are precisley [DZ1, Lemmas 3.2 and 3.3].

For item (d), we first prove that the claimed estimate holds for » = 1. Indeed, due to
(H1), the expansion for each stable curve landing in a homogeneity strip Hj under 7!
is of the order of k=2. If T~!'W crosses a countable number of singularity curves, the
sum of the expansion factors is uniformly bounded as long as ¢ > 1/2. Since there are
only finitely many genuine singularity curves in SZI (not counting homogeneity strips),
the required sum is uniformly bounded for all W € W?* with |W| < §p. The estimate
for general n follows by induction as in [DZ1, Lemma 3.4]. O

Next we state a distortion bound for the stable Jacobian of 7" along different stable
curves in the following context. Let W', W2 € W?* and suppose there exist U* C
T~"W*, k= 1,2, such that for 0 <i < n,

(i) T'U* € W* and the curves T'U" and T?U? lie in the same homogeneity strip;
(i) U' and U? can be put into a 1-1 correspondence by a smooth foliation {y,} reU!
of curves y, € W such that {T"y,} C W creates a 1-1 correspondence between
T"U" and T"U?;
(i) |T7y,| < 2max{|T'UY|, |T'U?|}, forallx € U'.
Let Jy;x T™ denote the stable Jacobian of 7" along the curve U k with respect to arclength.
The following lemma was proved in [DZ2].

Lemma A.2. In the setting above, forx € U, define x* € y, NU?>. There exists Cy > 0,
independent of T € F, W € WS and n > 0 such that

(@) dyys (U, U?) < CoA™"dyys (W', W2);

Jgn T"
(b) JUIT—”(():‘))_I‘ < Cold(T"x, T"x*)'/* +6(T"x, T"x"),
U2 X

where 0(T"x, T"x*) is the angle formed by the tangent lines of T"U" and T" U, at T"x
and T"x*, respectively.

To prove Proposition 4.1, we fix T € F and prove the required Lasota—Yorke in-
equalities (4.1)-(4.3). It is shown in Lemma 3.3 that L7, is a continuous operator on
both B and B3,, so that it suffices to prove the inequalities for & € C!(M). They extend to
the completions by continuity. Our purpose now is to show how they depend explicitly
on the uniform constants given by (H1)—(HS) and do not require additional information.

A.2. Estimating the weak norm. Leth € C'(M), W € W* and ¢ € C*(W) such that
[V |ce(wy < 1. For brevity, we define

g=g—logJ,T, sothat ¢%8=¢58(J, T\
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For n > 0, we write,

/c vdmy = > /heSngJWnTon"den (A.1)
w

W' eGn(W)

where Jy» T " denotes the Jacobian of 7" along W'.
Using the definition of the weak norm on each W” we estimate (A.1) by

/Wﬁ';,ghwdmw < Y 1kl Jwr T e €58 loaqym ¥ o T" |caquny. (A2)
WleG,

Using the bounded distortion property (H4), we estimate,
|JWin Tn|C“(W[.”) <1+ Cd)|JW’_'l Tn'CO(Wi”)’ (A.3)
and similarly for |(J,, 7)1 lce(wn)- Next, for the potential g and x, y € wt,

|e58C) — 580N < 58] o gyny [ Sng (x) — Sug (V)]
n—1

< 1% leoqwnlgleacpy D CeA™1x — yI%,
i=0

so that |eS"g|Ca(W’_n) < Cgles"g|co(win), where Cy := 1+ Celglce(p)) Z?io A~ This,
together with (A.3) applied to (Jy, T™)~!, yields,

€58 caqwry < Cele® 8oy (1+Ca) | (Tug T Heowmy < Co(1+Ca)* e |eoqyn),

(A.4)

where we have used again the bounded distortion of J,,, 7" to combine the two C O-norms.
Finally, we esimate the norm of v o 7", again using (H1). For x, y € Wi”,

[ (T"x) =y (T"y)| dw(T"x, T"y)*
dw(T"x, T"y)® dw(x, y)*

< Wlcean wp T [goyny < CeA™" ¥ leaqw).

(AS)
so that |y o Tn|Ca(Win) < Cel¥lcewy < C.. We use this estimate together with (A.3)
and (A.4) to bound (A.2) by

fw.c';,ghwdmw < Coll +Cy*Cole™ sl Y s T o)
wi'eG,

< C'CyleS ool
where C' = C.(1 + Cd)3 C> and we have used Lemma A.1(b) for the last inequality.

Taking the supremum over all W € W* and ¢ € C*(W) with | |ce(w) < 1 yields (4.1)
expressed with uniform constants given by (H1)-(HS).
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A.3. Estimating the strong stable norm. Let W < W* and let W/ denote the el-
ements of G,(W) as defined above. For v e CP(W), [¥lesowy < IWI™P, define
v = W |~1 fW” Y o T" dmw. Using equation (A.1), we write

/W E’%’ghwdmw = Z/ ) R JWinT” (W oT" —¥,)dmy
; i

+Vi | heSE -y T dmy. (A.6)
wr

To estimate the first term of (A.6), we first estimate | o T" — Ei lcswny- If Hv‘i, W)
denotes the Holder constant of i along W, then Eq. (A.5) implies

[y (T"x) — ¢ (T"y)|
dw (x, y)P

<C AT HE ) (A7)

for any x,y € W/. Since Ei is constant on W/, we have H{;n (Y oT" — Ei) <

CEA_ﬂ”Hé, (). To estimate the C° norm, note that v; = v o T”(y;) for some y; € Wi
Thus for each x € W/,

W o T" () = Wil = 1 o T"(x) = o T" ()| < Hypu (9 o T WP
< CHjy () A™P",
This estimate together with (A.7) and the fact that [W|?[v/|cs ) < 1, implies
W o T" = Yilesawny < CeA ™ [Wleswy < CeA™P WP (A.8)

We apply (A.3), (A.4) and (A.8) and the definition of the strong stable norm to the
first term of (A.6),

Z/ heS’ngW[n T" (Yo T" —Y,)dmy
i i

LA
< Ce Y Wby ey T
]

€580 Cy (1 + Ca)>CeCe AP 1)1 D
i

CyCqleSré | AP | Ry, (A.9)

AP
cBw!h

Wiy

|w|»

A

[ Twr T  lcowy)

IA

where Cy = (1+Cy)3C, C;_p and in the second line we have used Lemma A.1(c) with
g=p- _

For the second term of (A.6), we use the fact that [y;| < [W |7 since |WI|” [/ |cpwy <
1. Recall the notation introduced before the statement of Lemma A. 1. Grouping the pieces
W € G, (W) according to most recent long ancestors Wj’.‘ € L (W), we have
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ZIWr”/ heS - Jyp T" dmyy
- wr !

—Z oY P/ heSn8 . JwnT" dmw

k=1 jeLi(W) ieZ, (W)
+ Y wT P/ heS& Jyn T" dmyw
i€Zy(W)

where we have split up the terms involving k = 0 and £k > 1. We estimate the terms
with £ > 1 by the weak norm and the terms with k = 0 by the strong stable norm. Using
again (A.3) and (A.4),

Z|W| Pf hené . Jwn T" dmyy

n
= 1" 1ooCe(1+C* Y5 30 3 AW Ikl s T leoqwy)
k=1 jELL(W) ieZ, (W)
|\wi'\r
(WP

+ 158 Co(1+ Ca)* Y
i€Z,(W)

I2lls1 wn T" cocwny-

In the first sum above corresponding to k > 1, we write
—k k
wr T lcoqwy < Mwp T leoqwm 1wk T eo gy -
Thus using Lemma A.1(a) from time & to time n,

ZZ D WP wp T leogw

k=1 jeLy lEIn(Wk

k — —k
>y s T leoquy W77 30w " leog)

k=1 jeLp(W) €L, (W))
e wie
<375, Z > |JWkT levcwty g €108
k=1 jeLy(W)

since |Wk| > 380/3. The inner sum is bounded by C2 “P for each k by Lemma A.1(c)

while the outer sum is bounded by C; /(1 — 6,) 1ndependently of n.
Finally, for the sum corresponding to £ = 0, since

[T T ooy < (1+ C)l T"WITIWEI™Y < (14 C) T T leogny,

we use Jensen’s inequality and Lemma A.1(a) to estimate,
I=p

s n(1—p)
< (1+Cy)Cr0:" P,

W
> |W| [ Jwn T lcogwny < L+ Ca) | Y

i€Z,(W) i€Z, (W)

7" W

Wi
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Gathering these estimates together, we have

Z'Wi P
(A.10)

where Cs = 37(1 + cd)3clc;*l’/(1 —0,) and Cs = (1 + C4)*C;. Putting together
(A.9) and (A.10) proves (4.2),

= CyleS81oo(Csdq "l + Colln1l 0,

/ he ”gJWnT" dmy

. " .
125 ghlls = C'ColeSE g (AT 40277 Y 1l +C'CleS R ooyl

with C’ = max{Cy, Cs, Cg}, a uniform constant depending only on (H1)-(H5).

A.4. Estimating the strong unstable norm. Fixe < ggand consider two curves wl w2 e
WS with dWs(Wl, Wz) < ¢. For n > 1, we describe how to partition 7" w¥t into
“matched” pieces U f and “unmatched” pieces V,f, ¢ = 1, 2. In the what follows, we
use C; to denote a transversality constant which depends only on the minimum angle
between various transverse directions: the minimum angle between C*(x) and C*(x),
between SZn and C*(x), and between C*(x) and the vertical and horizontal directions.

Let w be a connected component of Wl\Szn such that T™"w € G, (W). We define
a smooth local foliation {y;},e7-n,, about 7" w such that for each x € T™"w: (1) yx
is centered at x, (2) yx € W¥; (3) |yx| < 2BC;C.A "¢ such that its image 7" y,, if not
cut by a singularity or the boundary of a homogeneity strip, will have a projection on the
vertical direction of length 2¢. By item (3) and the definition of dys (WL w2, it follows
that any curve 7"y, that is not cut by a singularity or the boundary of a homogeneity
strip must necessarily intersect W2, except possibly if 7"y, lies near the endpoints of
wt. By (H2), Ty, € W for eachl > 0.

Doing this for each connected component of W!\S7, . we subdivide W!'\ST, into
a countable collection of subintervals of points for which 7"y, intersects W2\Szn and
subintervals for which this is not the case. This in turn induces a corresponding partition
on WAHST,.

We denote by Vkl the pieces in 7~ W* which are not matched up by this process and
note that the images 7" V,f occur either at the endpoints of W* or because the curve y,
has been cut by a singularity or the boundary of a homogeneity strip. In both cases, the
length of the curves 7" V,f can be at most C;¢ due to the uniform transversality of ST,
with C*(x), of C*(x) with C*(x) and of C*(x) with the horizontal.

In the remaining pieces the foliation {T"yy},.r-ny1 provides a one to one corre-
spondence between points in W! and W?2. We partition these pieces in such a way that
the lengths of their images under 7" are less than &g for each 0 < i < n and the pieces
are pairwise matched by the foliation {y,}. We call these matched pieces U; ¢ and note

that T'U f € Gn_i (W ) foreachi = 0, 1, ... n. For convenience, we further tnm the U f
to pieces U ¢ 5o that U !'and U 2 are both defined on the same arclength interval I;. The

at most two components of T ”(U é\U e) have length less than C;e due to the uniform

transversality of C* (x) with the Vertlcal direction. We attach these trimmed pieces to
the adjacent Ul or V as appropriate so as not to create any additional components in
the partition.
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We further relabel any pieces U f as Vje and consider them unmatched if for some
i,0 <1i < n, and for some x € Uf, |Tiyx| > 2|TiUf|. i.e. we only consider pieces
matched if at each intermediate step, the distance between them is at most of the same
order as their length. We do this in order to be able to apply Lemma A.2 to the matched
pieces. Notice that since the distance between the curves at each intermediate step is at
most C;C,¢ and due to the uniform contraction of stable curves going forward, we have
|T" V,f| <C Cezs for all such pieces considered unmatched by this last criterion.

In this way we write W* = (U; T"Ujf) U (UeT" V). Note that the images 7"V, of
the unmatched pieces must have length < C, ¢ for some uniform constant C,, while the
images of the matched pieces U ]e may be long or short.

Recalling the notation of Sect. 3, we have arranged a pairing of the pieces U f with
the following property:

If U} = Gy1Uj) = {(r,@y1(M) :r € I}, then Ui = Gy = {(r,@2(m) i € 1},
(A.11)

sothatthe pointx = (r, ¢;;1(r)) € U ]1 can be associated with the pointx = (r, ¢;2(r)) €
J J

U]? by the vertical line {(r, s)}se[—x/2,7/2], for each r € I;. In addition, the Uf satisfy
the assumptions of Lemma A.2.

Given v, on Wt with [Yelcewey < 1 and dg (Y1, ¥2) < &, with the above construc-
tion we must estimate

5>

> /Z heS 80y T e o T" dmyy

k

’/Wl E'%’gh Yidmy — /W2 E'},gh Yo dmyy

"2

. (A.12)

/lhes’ngU} T o T" dmy —/zhes”g’JU]gT”l/fon” dmy
U: U;
J

J

First we estimate the unmatched pieces V,f using the strong stable norm. Note that by
(A.5), Yy o Tn|cﬂ(vk€) < Cel¥ilgaqwty < Ce. We estimate as in Sect. A.3, using the

fact that | 7" V,f| < Cyé, as noted above,

Z‘/ heS"‘éJVAgT"weoT”de‘
ITRRAL

< Ce ) WRISIVEIP 15 s ve ao | Tye T lesve s
£,k
< Ce(1+ Ca)’Cyle®Eoolillls D IV 1 1 ye T ooty
£,k

i o )
< C'ePCyle™Elocllhlls D 1ye T" oo e, < 2C'e" Cole™Fos 11155, (A13)
£,k

with C’ = C,(1+Cy)*C}, where we have applied Lemma A.1(d) with¢ = 1—p > 1/2
since there are at most two V,f corresponding to each element Wie’" € G, (WY as defined
in Sect. Al and |7y T"coqysy < [yyenT"|go gyen, Whenever Vi € whn.
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Next, we must estimate

2

J

/lhesng’JUjl_ T" Wl oTnde—/zhelS]’an 1//20T" dmy| .
U U; J
J

J
We fix j and estimate the difference. Define

¢; = (esnéju} T" Y1 0T" o Gy o Gl—];
J

The function ¢; is well-defined on U} and we can write,

‘/Ul hes”g’JU} T" o T" — /Uz hes"g’JU]gT” YroT"
j ' j '

< +

heS S T T" Yy o T" — | h; @) — e8I T Y20 T
Ul J U2 U2 /
J J

j
(A.14)
We estimate the first term on the right hand side of (A.14) using the strong unstable
norm. Using (A.3), (A.4) and (A.5),

58T T" 1 0 T gugrty < Cell+ CaY*Cle ool I T ooty (AL15)

Notice that

1+ oy /dr)?

IGy1 oG et g2y < Sup <V1+TI2=:C,, (A.16)
U] sz (U]) VEUJZ /1+(d§0U/2/dr)2 “

where I" is the maximum slope of curves in W* given by (H1). Using this, we estimate
as in (A.15),

1$)lcaw2) < CaCe(l+ Ca) Cole™ S ool 1 T leo 1)

By the definition of ¢; and dg(-, -),

dﬂ(eSng'JU; T"wl o Tn’ (p/) = ’I:esnng} Tn'lp] o Tn:| (¢] GUJI - ¢/ o GUJZ Cﬂ(l )
. J

By Lemma A.2(a), we have dW.?(U}, U]Z) < CoA™"e =: e1. In view of (A.15)
and following, we renormalize the test functions by R; = C7C, |eS"g’ looJg1 T"| oW
J J

where C7 = C,C,(1 + C)3. Then we apply the definition of the strong unstable norm
with &1 in place of ¢. Thus,

Z/ heS"g]JU;anloTn—/ hoj
7 U J U7

< C1CH e ATV Cyle™Eloollhlly Y 11 T oo (A.17)
: |
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where the sum is < C» by Lemma A.1(b) since there is at most one matched piece U}
corresponding to each element Wil’” € G,(W!) and [J1 Tn|CU(U!) < [ Jyin T”|C0(W1,n)
J J i i
whenever U} c Wil’".
It remains to estimate the second term in (A.14) using the strong stable norm.

< IRlsIUF1P (&) — €382 T"ga 0 T

/ h(pj — 8 T 2T Y o T")
Uj? J

crwn’
(A.18)
In order to estimate the C#-norm of the function in (A.18), we split it up into two

differences. Since |G ¢lg1 < Cq and |G;}|cl <1,¢4=1,2, we write
J J

8 — @ E T2 T") 2 0 T gne2,

< ‘[(es"gJU} ) ¥ o T”] 0 Gy — [(es”g’JU]gT”) o T"] ° Gy

CP(I})
< ‘(esnéju} T") o Gy: [wl oT" o Gy1 —ynoT"o GUj;]

CA(I))
+|[@ 20T 0 Gy = €302 T") 0 Gy |2 0 T" 0 G
J J J J

J

Cﬂ(lj)
<C,(1+ Cd)3Cg|eS"§JU} Tn'CO(U/!) ’% oT"o GU} —YpoT" o GU}

Ch(I})

+CyC, (A.19)

@8I T") 0 Gy1 — (€582 T™) 0 G2
J 7 J J

chuy

To bound the two differences above, we need the following lemma, which was proved

in [DZ2] Lemma 4.2. The only difference is the factor eS¢ which does not play any
significant role in the proof, so we omit the proof here.

Lemma A.3. There exist constants Cg, Co9 > 0, depending only on (H1)-(HS), such
that,

(a) |(eS”§JU} T")oGy: —eS"§JU%T”)oGU%|C,s(1/_) < C8Cg|e5n§JUl;T"|CO(U%)81/3*/3;
®) [y10T" o Gy1 =20 T" o Gualeva,) < CoCae®P.
It follows from Lemma A.3(a) that
158 Ty T ooty < (1+ CCae P P)1e58 Ja T o2,

which we will use to simplify (A.19). Starting from (A.18), we apply Lemma A.3 to
(A.19) to obtain,

3 ‘ /2 h(p; — 58 1o T o T”)dmw‘
X U* J
j j

< CCellhlls Y IUFIP 1% 12 T" o) €7 (A20)
J

< CCole™Eloollhllse ™ 3 112" leo g2,
J
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for some uniform constant C where again the sum is finite as in (A.17). This completes
the estimate on the second term in (A.14). Now we use this bound, together with (A.13)
and (A.17) to estimate (A.12)

< CCC,y1e5 8 ||l se?

‘fwl ﬁ'})gh Yy dmy — fWZ /:,'},gh Yy dmy

+ Cl A" Cyle™8loge? A2

+ CCyleS o567,
where again C depends only on (H1)—(HS) through the estimates above. Sincea —f > y

and p > y, we divide through by &” and take the appropriate suprema to complete the
proof of (4.3).
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