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ABSTRACT
Over the last decade, research has revealed the high prevalence of
cyberbullying among youth and raised serious concerns in society.
Information on the social media platforms where cyberbullying is
most prevalent (e.g., Instagram, Facebook, Twitter) is inherently
multi-modal, yet most existing work on cyberbullying identifica-
tion has focused solely on building generic classification models
that rely exclusively on text analysis of online social media sessions
(e.g., posts). Despite their empirical success, these efforts ignore
the multi-modal information manifested in social media data (e.g.,
image, video, user profile, time, and location), and thus fail to offer
a comprehensive understanding of cyberbullying. Conventionally,
when information from different modalities is presented together, it
often reveals complementary insights about the application domain
and facilitates better learning performance. In this paper, we study
the novel problem of cyberbullying detection within a multi-modal
context by exploiting social media data in a collaborative way. This
task, however, is challenging due to the complex combination of
both cross-modal correlations among various modalities and struc-
tural dependencies between different social media sessions, and
the diverse attribute information of different modalities. To ad-
dress these challenges, we propose XBully, a novel cyberbullying
detection framework, that first reformulates multi-modal social me-
dia data as a heterogeneous network and then aims to learn node
embedding representations upon it. Extensive experimental evalua-
tions on real-world multi-modal social media datasets show that the
XBully framework is superior to the state-of-the-art cyberbullying
detection models.
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Figure 1: Illustration of cyberbullying detection within a
multi-modal context: the left side figure represents a so-
cial media session (e.g., post) with rich user-generated in-
formation such as an image, video, user profile, time, loca-
tion and comments. In addition, different sessions are in-
herently connected with each other through user-user so-
cial relations. The goal is to predict if a particular session
is bullying or not by leveraging its multi-modal context in-
formation.

1 INTRODUCTION
Cyberbullying, commonly defined as the electronic transmission of
insulting or embarrassing comments, photos, or videos, has become
increasingly prevalent on social networks. Reports from the Ameri-
can Psychological Association and the White House, for example,
reveal that more than 40% of teenagers in the US indicate that they
have been bullied on social media platforms [7]. The growing preva-
lence and severity of cyberbullying on social media and the link
between cyberbullying and such negative outcomes as depression,
low self-esteem, and suicidal thoughts and behaviors have led to
the identification of cyberbullying as a serious national health con-
cern. It has also motivated a surge in research in psychology and
computer science aimed at better understanding the nature and key
characteristics of cyberbullying in social networks.

Within the computer science literature, existing efforts toward
detecting cyberbullying have primarily focused on text analysis.
These works attempt to build a generic binary classifier by taking
high-dimensional text features as the input and make predictions
accordingly. Despite their satisfactory detection performance in
practice, these models inevitably ignore critical information in-
cluded in the various social media modalities such as image, video,
user profile, time, and location. For example, Instagram1 allows
users to post and comment on any public image to express their
opinions and preferences. In light of this, bullies can post humiliat-
ing images or insulting comments, captions, or hashtags, edit and
then re-post someone else’s images, and even create fake profiles
pretending to other individuals altogether [13]. Therefore, it is criti-
cal to exploit the rich user-generated content within a multi-modal

1https://www.instagram.com
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context to gain greater insight into cyberbullying behaviors and
generate more accurate predictions. Fig. 1 illustrates the cyberbul-
lying detection problem within a multi-modal context.

Despite the potential benefit, performing cyberbullying detec-
tion within a multi-modal context presents multiple challenges.
First, information from different modalities might be complemen-
tary, thereby facilitating better learning performance, especially
when the data is sparse. However, heterogeneous information from
different modalities might not be compatible and, in the worst
case, some modalities may be entirely independent. Thus, a key
problem that has not been sufficiently addressed in cyberbullying
detection is how to effectively encode the cross-modal correlation
among different types of modalities. Second, social media data are
often not independent and identically distributed (i.i.d.) but rather
intrinsically correlated, either directly or indirectly, limiting the
applicability of conventional text analysis approaches. For example,
if two social media sessions (e.g., posts) are from the same user or
are posted by a pair of friends, their content similarity is expected
to be high based on the homophily principle [20]. Considering this,
it is important to model structural dependencies among different
social media sessions when performing cyberbullying detection.
Third, although multi-modal social media data can be useful in un-
derstanding human behavior, it is difficult to directly make use of it
because different modalities are frequently associated with rather
diverse feature types (e.g., nominal, ordinal, interval, ratio, etc.), and
in some cases, some modalities that identify particular entities (e.g.,
users) cannot be simply represented as feature vectors2. Therefore,
it is crucial that the solution framework uses an expressive way to
represent modalities with diverse feature types.

To address the above challenges, we propose a novel cyberbully-
ing detection framework, XBully, that models multi-modal social
media data in a collaborative way. Specifically, to capture cross-
modal correlation among modalities as well as the structural de-
pendencies among different social media sessions, we model the
multi-modal social media data as a heterogeneous network by ex-
ploiting co-existence and neighborhood relations (explained later)
and aim at learning the embedding representations for nodes in the
network. Due to data sparsity, we identify a number of hotspots for
each mode, which provide a succinct high-level summarization of
similar modality attribute values. For nominals (modalities with-
out attributes), we form nodes in the constructed heterogeneous
network using their meta information, e.g., user IDs. After learn-
ing the embedding representation for nodes in the heterogeneous
network, each social media session can be represented as a numeri-
cal vector by concatenating the node embeddings in that session.
Using these vectors, various off-the-shelf machine learning models
can be directly applied to provide accurate cyberbullying detection
and a deeper understanding of cyberbullying behaviors. The main
contributions of this work are:

• Problem Formulation: We formally define the problem of
cyberbullying detection within a multi-modal context. The
definition is a result of multiple modalities exploited in a
collaborative fashion.

2We refer to modalities with attributes and without attributes as modes and nominals,
respectively.

• Algorithms: We propose a novel cyberbullying detection
framework (XBully) with three core components: (1) a hotspot
detector that identifies centroids for each mode; (2) a module
that constructs a heterogeneous network by leveraging co-
existence and neighborhood relations of the detected hotspots
and instances of nominals; and (3) a principled joint embed-
ding module that effectively encodes cross-modal correlation
and structural dependencies among different social media
sessions to learn noise-resilient embedding representations.
The resulting embeddings enable better detection and un-
derstanding of cyberbullying behaviors.

• Evaluations: We perform experiments on two real-world
social media datasets to corroborate the efficacy of the pro-
posed framework.

2 PROBLEM DEFINITION
In this section, we first introduce the problem of cyberbullying de-
tection within a multi-modal context, briefly describe our approach
to solve it via network representation learning, and highlight key
challenges.

2.1 Multi-Modal Cyberbullying Detection
Definition 1. CyberbullyingDetectionwithin aMulti-Modal
Context Given a corpus of social media sessions C (e.g., posts) with
M modalities, cyberbullying detection within a multi-modal context
aims at identifying instances of cyberbullying by leveraging multiple
modalities such as textual features, spatial locations, and visual cues,
as well as the relations among sessions.

The definition of multi-modal cyberbullying detection builds on
the concept of multi-modality learning in machine learning [2].
Here, we emphasize the multi-modal context of social media ses-
sions. In our experiments, we use the following modalities extracted
from an Instagram session:

• User - It is a typical type of nominals and we use the relations
among users to decode the dependencies between social
media sessions.

• Image - The associated meta-information of an image forms
a tuple composed of the number of shares, the number of
likes, and the labels describing the category of this image.

• Profile - The meta-information of a user forms a tuple with
the number of followers, the number of follows, the total
number of comments, and the total number of likes received.

• Time - The timestamp of posting an image. We consider the
time of the day (24h range) and convert the raw time to the
range of [0, 86400] by calculating its offset (in seconds) w.r.t.
12:00 am.

• Text - We perform psychometric analysis on the textual
information of the session, i.e., description of the image and
comments, and obtain the psychological features through
LIWC [24]. We base this on previous research indicating
that such psychometric analysis can provide insights about
cyberbullying behaviors [22].
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2.2 Cyberbullying Detection via Multi-Modal
Network Representation Learning

Let C be a corpus of social media sessions. We define each session
s ∈ C as a tuple < xs1, xs2, ..., xsM ,ys1, ...,ysN > where M and
N denote the number of modes and nominals, respectively. xsm
is the feature vector of s in mode m ∈ (1, 2, 3...M). For example,
a geo-tagged social media session may have location information
xsm = [34.0489, 111.0937]. In addition, different sessions are inher-
ently connected with each other via social relations among users.
Our goal is to represent the original corpus C as a heterogeneous
network G by capturing its multi-modal nature and learn high-
quality embeddings for each node in this network.

In contrast to simply concatenating the raw multi-modal feature
vectors of each modality, the learned node embeddings in the resul-
tant heterogeneous network capture both structural dependencies
among different social media sessions and cross-modal correlations
among different modalities in a joint framework.

2.3 Challenges
• Number of Distinct Feature Values. Social media data
usually comes in complex forms and exhibits considerable
variations due to its multi-modal nature. We are often con-
fronted with diverse feature types and the number of unique
feature values each mode can take is often exceedingly large,
which can cause the problem of data sparsity. Furthermore,
the available training data for each node in the network is
often limited, further complicating the training process.

• Cross-ModalCorrelation and StructuralDependencies.
An effective network embedding model for multi-modal so-
cial media data should preserve the node proximities in terms
of both cross-modal correlation and structural dependencies
among different sessions. Conventional network embedding
models such as Deepwalk [25], LINE [32], and node2vec [10],
which primarily focus on encoding structural information
of homogeneous networks, cannot be effectively applied in
our problem. Metapath2vec [9] is a recently proposed het-
erogeneous network embedding model that relies on a set
of predefined meta-paths to find the neighborhoods around
nodes. However, in our problem, the number of meta-paths
is often very large, making metapath2vec inapplicable.

• Information Noise. While the rich multi-modal data can
provide valuable and complementary insights for identifying
cyberbullying behaviors, such data can also be cluttered and
noisy, thus complicating the process of gaining actionable
knowledge from it.

To address these challenges, we propose mode hotspots detection
using kernel density estimation (KDE) [23] to reduce the number of
unique feature values. Motivated by [39], after the hotspots are iden-
tified, we then construct a heterogeneous network by leveraging
co-existence relations, to exploit the connections among different
modalities in the same session, and neighborhood relations, to con-
nect nodes of the same modality in different sessions. We develop
a graph-based joint embedding module to capture the cross-modal
correlation and structural dependencies in a joint framework. This
embedding module maps all the mode hotspots and nominal nodes
in a heterogeneous network into a common latent space. To alleviate

the negative impacts of noise, we also identify the most informative
neighbors for each node to refine the learned embeddings. The
overall framework is further explained in Fig. 2.

3 THE XBULLY FRAMEWORK
This section presents the proposed XBully model in detail. Specif-
ically, we first show how to identify succinct yet accurate sum-
marizations of groups of similar feature values (mode hotspots).
Then, we present a principled way to capture both cross-modal
correlation and structural dependencies in a joint framework for
embedding representation learning. We also discuss how to alle-
viate the negative impact of noise during the embedding training
phase by allowing nodes to borrow strength from each other in a
collaborative way.

3.1 Mode Hotspot Detection
Previous work has shown that high-dimensional feature repre-
sentation not only suffers from data sparsity but also poses great
challenges to downstream learning tasks due to the curse of di-
mensionality [18]. To address this issue, we propose the concept
of mode hotspots based on KDE [23], which is a non-parametric
method to estimate the density function from a collection of data
samples. With KDE, we do not need to establish any prior knowl-
edge about the data distribution, as it provides automatic discovery
of arbitrary modes from complex data spaces [39].

Definition 2. Mode Hotspots Given a corpus of social media ses-
sions C , the mode hotspots for modem (m = 1, 2...,M) are the set of
local maximums of the kernel density function estimated fromm.

Then, given n sessions containing modem in a d-dimensional
feature space Xm = (x1m , x2m , ..., xnm ), the kernel density at any
point x with modem is given by:

f (x) = 1
nδdm

n∑
i=1

K(x − xim
δm

), (1)

where K(·) is a predefined kernel function, and δm is the kernel
bandwidth for modem. We further leverage the advanced mean-
shift algorithm used in [39] to identify the mode hopspots.

3.2 Network Representation Learning
Following [39], now we investigate how to build a heterogeneous
network by exploiting the co-existence and neighborhood relations,
such that both the cross-modal correlations and structural depen-
dencies are properly captured. The co-existence relation is estab-
lished between two nodes when they co-exist in the same social
media session and the neighborhood relations amongmode hotspots
are built upon the idea of modality continuity [33] which relies on
the idea that nearby objects are more closely related than distant
objects. We first define the node kernel, based on which the neigh-
borhood relations are formed:

Definition 3. Node Kernel For two mode hotspots ui and uj in
modem with feature vectors xi and xj , the kernel strength between
them is :

w(ui ,uj ) =

exp(−∥xi−xj ∥2/2δ 2

m )
2πδ 2

m
, if ∥xi − xj ∥ ≤ δm

0, otherwise.
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Figure 2: The proposed XBully framework. Given a corpus of social media sessions, we first attempt to discover hotspots
for each mode (Phase I). Then, based on the detected hotspots and instances of nominals, we leverage the co-existence and
neighborhood relations to construct a heterogeneous network that is later divided into several modality subnetworks (Phase
II). Each subnetwork consists of two modalities. Nodes in these subnetworks are then mapped into the same latent space
through network representation learning. Finally, we concatenate embeddings of nodes in each session and apply off-the-
shelf machine learning models for cyberbullying detection (Phase III).

Therefore, the neighbors of a mode hotspot v in the heterogeneous
network are the set of mode hotspots that produce a non-zero ker-
nel strength value with hotspot v . In addition to that, for nominal
nodes, we define the neighborhood relations based on their struc-
tural information by making use of the dependencies (e.g., social
relations) between different sessions. For example, an Instagram ses-
sion could have five different modalities - user, image, profile, time,
and comments (text). From the definition of co-existence relations,
we construct the following 10 types of edges in the heterogeneous
network: user-image, user-profile, user-time, user-text, image-profile,
image-text, image-text, profile-time, profile-text and time-text. More-
over, the neighborhood relations also generate the following 4 edge
types: image-image, profile-profile, time-time and text-text using
Definition 3 and user-user edges with nominal nodes are built using
the social relations among users. With the above defined edge types,
we define the weight of an edge considering the following three
scenarios: (a) the normalized co-existence count (between 0 and
1); (b) kernel strength (between 0 and 1); and (c) the dependencies
between nominal nodes (0 or 1). Since the resultant network has
different types of nodes and edges, it would be inappropriate to
directly apply a conventional network embedding algorithm such
as Deepwalk [25] or node2vec [10] to learn the embeddings for
each node. Instead, we build on [31] to decompose the heteroge-
neous networks into multiple modality subnetworks (using two
modalities) and learn embeddings within each subnetwork. This
approach, the learned embeddings can capture the node proximity
across different types of edges. In what follows, we provide the
details of the joint embedding model.

First, let us denote GS as the set of all modality subnetworks.
For any two different modalities A,B ∈ (1, 2, ...,M + N ), we can
construct a modality subnetwork GAB ∈ GS . Then, the probability
of node j with modality B generated from node i with modality A

is defined by the following conditional probability:

p(j |i) =
exp(vTj · vi )∑

k ∈B exp(vTk · vi )
, (2)

where vj denotes the embedding representation of node j with
modality B and vi is the embedding vector of node i with modality
A. Next, we learn embeddings by minimizing the distance between
the conditional distribution of the context nodes given the center
node and the empirical distribution. The empirical distribution of
node i is defined as p′(j |i) = wi j

di
, where wi j is the weight of the

edge i − j and di is the out-degree of node i , i.e., di =
∑
j ∈B wi j .

Therefore, we define the loss function as follows:

OAB =
∑
i ∈A

diKL
(
p′(·|i)| |p(·|i)

)
, (3)

where theKL(·) denotes the KL-divergence between two probability
distributions. By omitting the constants, the above loss function
can be reformulated as follows:

OAB = −
∑

i ∈A, j ∈B
wi j log p(vj |vi ). (4)

As each modality subnetwork is composed of four different types
of edges, A−A, A− B, B −A, and B − B, the overall loss function of
a modality subnetwork GAB is computed as follows:

ZAB = OAA +OAB +OBB +OBA . (5)

3.3 Embedding Refinement
While multi-modal information is useful in improving the embed-
ding quality, the above model can be problematic when the network
is very sparse. In addition, when the discovered mode hotspots are
very noisy, the embedding representation learning phase may be
adversely affected. To address these problems, we propose a noise-
resilient embedding refinement approach to adaptively choose the
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most informative neighbors for each node. The core idea of the re-
finement method is to find the best locally weighted context vectors
(predictors) to reconstruct the embedding of the center node. Specifi-
cally, givenn embedding vectorsv1, ...,vj , ...,vn ∈ Rd , the problem
is to estimate v̂i using an estimator of the form v̂i =

∑n
j=1,i,j α jivj ,

s.t.
∑
j α ji = 1, where α ji denotes the extent to which the embed-

ding vi is influenced by vj . Our solution builds on the algorithm
presented in [1] to adaptively learn the optimal neighborhood struc-
ture for each center node and automatically quantify the influence
from other nodes. This can be formulated as follows:

Ri = |vi−
|VAB |∑
j=1,i,j

α jivj |, i ∈ VAB ,

s.t.
|VAB |∑
j=1, j,i

α ji = 1,

(6)

where VAB represents the node set in modality subnetwork GAB .
By integrating the above embedding refinement component, the
new objective function for embedding representation learning is:

ZAB = OAA +OAB +OBA +OBB + λ

|VAB |∑
i=1

Ri , (7)

where λ is a parameter that balances the contribution of the refine-
ment component. As a result, the overall objective function of our
multi-modal network embedding is:

O =
∑
GS

ZAB , GAB ∈ GS . (8)

To solve the final objective function, we alternate between the up-
dates of embedding variables and the influential matrix with entry
αi j . To update the embedding vectors, we use the stochastic gra-
dient descent (SGD) to optimize different modality subnetworks
with negative sampling [21]. Specifically, for an edge ei j , we ran-
domly selectK nodes that are not connected with node i as negative
samples. The influential matrix is then updated via the algorithm
proposed in [1] with the input of updated embedding vectors.

4 EXPERIMENTS
In this section, we aim to answer the following research questions:
(1) Is the proposed XBully framework superior to existing models
that solely rely on text information for cyberbullying detection? (2)
How effective is the noise-resilient embedding refinement compo-
nent for embedding representation learning? (3) Does the proposed
multi-modal network embedding method help achieve better detec-
tion performance than those of conventional network embedding
methods? (4) What kind of insights can XBully provide for psychol-
ogy and social scientists? (5) How robust is the proposed model
w.r.t the different model parameters? Each experiment was run 10
times. This section reports the averaged experimental results.

4.1 Experimental Setup
Datasets. Our experiments are performed using two real-world
social media datasets3. Each social media session in the Instagram
dataset [13] includes image descriptions, user comments, and the
3Available at https://sites.google.com/site/cucybersafety/home/cyberbullying-
detection-project/dataset

Table 1: Dataset statistics.

Datasets # Sessions # Bullying # Normal # Comments
Instagram 2,218 678 1,540 155,260

Vine 970 304 666 78,250

creation time of the session. The dataset also has user profile infor-
mation and social relations among users. The second dataset [26]
was collected from Vine, a mobile application website that allows
users to record and edit six-second looping videos. Each Vine ses-
sion is associated with video descriptions, user comments, and the
creation time of the session. Basic statistics of these datasets are
shown in Table 1. Please refer to [14, 26] for additional details.
Baseline Methods. To answer the first two research questions, we
compare XBully with the commonly used feature engineering ap-
proach, two recently proposed cyberbullying models, and a variant
of XBully without the noise-resilient embedding refinement.

• Raw Features (Raw): This is a concatenation of all the multi-
modal features such as network feature and text feature.

• Bully [37]: A pretrained classifier4 based on textual analysis.
• SICD [6]: The state-of-the-art cyberbullying detection model
which uses sentiment information embedded in the user-
generated content to guide the prediction.

• XBully variant (Variant): A variant of XBully without the
noise-resilient embedding refinement.

We also compare the proposed model with three widely used net-
work embedding models - DeepWalk [25], Node2vec [10] and Gra-
Rep [3]. To reduce the effect of model variances on performance
evaluation, we tested these methods on three classification mod-
els, including Random Forest, Linear SVM and Logistic Regression.
Multiple training datasets are generated by extracting increasing
fractions (10% to 90%) of the entire datasets and the remaining parts
are used as the test datasets.
Parameter Settings. The XBully framework has the following
parameters: (1) the hotspot detection bandwidth hm for each mode
m ∈ M ; (2) the weight of the noise-resilient component λ; and (3)
the embedding dimension d . By default, we set parameters for the
Instagram dataset as ht = 150 (time), hi = 100 (image), hl = 100
(LIWC), hu = 500 (user profile), λ = 0.01 and d = 500. For the Vine
dataset, we set ht = 50 (time), hl = 5 (LIWC), λ = 0.01 and d = 500.
A detailed parameter sensitivity analysis is presented later in this
section.

4.2 Performance Evaluation
In this subsection we aim to answer the first three research ques-
tions. To this end, two common evaluation metrics are calculated -
Macro F1 (Mac F1) and Micro F1 (Mic F1). A macro-average com-
putes the metric independently for each class and then takes the
average as the output, whereas a micro-average will aggregate the
contributions of all classes to compute the average metric. In binary
classification, Micro F1 is equal to Accuracy. Table 2 and Table 3
report the cyberbullying detection performance of various methods

4http://research.cs.wisc.edu/bullying/

Session 6: Networks and Social Behavior WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

343



on the two datasets. We make the following observations from
these results:

• In most cases and with both datasets, XBully significantly
outperforms the method that works with concatenated multi-
modal features (Raw) and the methods with homogeneous
network embedding (Deepwalk, Node2vec and GraRep). The
better performance of XBully against the other methods
shows the effectiveness of performing cyberbullying detec-
tion with multi-modal network representation learning as
it captures both the cross-modal correlations and structural
dependencies.

• XBully is also superior to the two cyberbullying detection
methods (Bully and SICD) under Macro F1 in both datasets
and under Micro F1 in the Instagram dataset. Observe that, in
the few experiments where SICD outperforms XBully under
Micro F1 in the Vine dataset, XBully’s Macro F1 scores are
significantly higher (more than 50% higher). These results
show that multi-modal information can indeed provide com-
plementary insights to achieve better learning performance.

• The improvements of XBully over baseline methods are con-
sistent across different classifiers. This indicates that the
learned embedding representations are effective and can be
easily generalized to various off-the-shelf machine learning
models.

• XBully achieves better detection performance than the vari-
ant without the embedding refinement component. This
result highlights the benefit of collaboratively refining the
embeddings by integrating information from similar nodes
during the learning process, which in turn makes the learned
embedding representation more robust to noise.

4.3 Qualitative Analysis
We are also interested in findings that offer insight into common so-
cial behaviors of users who have experienced cyberbullying versus
users who have not. To this end, we interpret the confidence level
of each label in the datasets as an indicator of the probability that
the session is cyberbullying (p).5 To understand how XBully can
provide insights for social scientists and psychologists, we incor-
porated the new type of node into the previous model by treating
it as another modality and retrained all of the embeddings. After-
wards, we made queries w.r.t. p in the range of (0.1, 0.2, ..., 1.0) and
XBully returned the most similar mode hotspots based on the cosine
similarity. The question we aim to answer is how user behavior
in social media platforms varies in relation to the probability of
cyberbullying. The following analysis is based on the experiments
on the Instagram dataset.

As shown in Fig. 3(a), #follows gets larger as p increases, i.e.,
the number of users a session owner follows increases when the
probability of cyberbullying increases. This may indicate that users
who are more active in following others on social media have a
higher probability of experiencing cyberbullying. In Fig. 3(b), the
shape of the distribution of #followers at different probability levels
of cyberbullying approximately follows a normal distribution. This
pattern suggests that the difference between #followers of users
who experienced cyberbullying and users who did not is small. Fig.
5For details of the confidence level, please refer to [14]

(a) #follows vs p (b) #followers vs p

(c) #likes vs p (d) #shares vs p

Figure 3: Qualitative analysis

3(c)-(d) shed light on the relationships between the popularity of a
social media session and p, as indicated by the number of likes a
post receives in Fig. 3(c) and the number of times a post is shared
in Fig. 3(d). In Fig. 3(c), three peaks can be seen, at p = 0.1, 0.5,
and 1.0. In this figure, #likes at p = 0.1 is twice as large as those at
p = 0.5 and 1.0. In Fig. 3(d), #shares decreases as p gets larger. One
possible explanation is thatmost social media users are normal users
who are not specifically interested in cyberbullying-related content.
Although tentative, the trends in Fig. 3 elucidate a potentially novel
way for interdisciplinary researchers to measure social influence
within the context of social media interactions, particularly as they
relate to cyberbullying risk.

4.4 Parameter Study
The XBully framework has four parameters (ht ,hi ,hl ,hu ) for mode
hotspot detection, and two parameters (d and λ) for the joint embed-
ding module. To investigate the effect of these parameters, we run
experiments on the Instagram dataset to vary one parameter at a
time and evaluate how it affects the classification performance. The
results presented in Fig. 4 show that XBully is not very sensitive
to kernel bandwidth parameters except for hl . The performance
of XBully increases moderately when hl becomes larger, i.e., the
number of detected text hotspots is relatively small. In Fig. 4(e), we
can see that when embedding dimensionality increases, the perfor-
mance of XBully first improves and then remains stable. Fig. 4(f)
shows that the best performance is achieved when λ is around 0.01.
In general, XBully is not sensitive to most of the model parameters,
and consequently can be tuned for various application purposes.

5 RELATED WORK
Cyberbullying Detection Prior work on cyberbullying detection
has relied primarily on text analysis to identify cyberbullying cases
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Table 2: Performance comparison of various methods on the Instagram dataset.

Percentages 10% 30% 50% 70% 90%
Metrics Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1

Random
Forest

Raw 0.528 0.838 0.573 0.835 0.517 0.830 0.532 0.827 0.543 0.860
DeepWalk 0.461 0.668 0.445 0.680 0.450 0.678 0.470 0.679 0.432 0.716
Node2vec 0.519 0.714 0.550 0.712 0.584 0.717 0.562 0.716 0.599 0.770
GraRep 0.459 0.671 0.456 0.680 0.464 0.680 0.460 0.671 0.455 0.707
Variant 0.551 0.844 0.680 0.874 0.778 0.905 0.854 0.926 0.932 0.959
XBully 0.566 0.853 0.702 0.887 0.814 0.920 0.865 0.937 0.963 0.982

Linear
SVM

Raw 0.459 0.559 0.459 0.564 0.515 0.692 0.540 0.793 0.582 0.847
DeepWalk 0.523 0.598 0.518 0.581 0.522 0.591 0.508 0.593 0.540 0.635
Node2vec 0.586 0.663 0.577 0.635 0.612 0.665 0.582 0.643 0.622 0.680
GraRep 0.513 0.585 0.534 0.603 0.515 0.621 0.505 0.626 0.568 0.712
Variant 0.568 0.812 0.659 0.828 0.747 0.863 0.796 0.890 0.782 0.914
XBully 0.570 0.819 0.668 0.840 0.781 0.886 0.821 0.904 0.837 0.928

Logistic
Regres-
sion

Raw 0.459 0.828 0.460 0.830 0.465 0.819 0.451 0.82 0.461 0.856
DeepWalk 0.512 0.634 0.523 0.620 0.508 0.618 0.491 0.602 0.514 0.644
Node2vec 0.581 0.681 0.584 0.661 0.602 0.675 0.572 0.656 0.610 0.707
GraRep 0.506 0.623 0.538 0.648 0.499 0.638 0.495 0.646 0.494 0.698
Variant 0.495 0.837 0.522 0.832 0.536 0.835 0.543 0.826 0.615 0.874
XBully 0.497 0.841 0.528 0.836 0.593 0.849 0.599 0.848 0.621 0.878

Cyberbully
models

Bully 0.274 0.331 0.271 0.325 0.267 0.318 0.277 0.334 0.278 0.335
SICD 0.447 0.646 0.443 0.604 0.383 0.537 0.438 0.512 0.358 0.559

Table 3: Performance comparison of various methods on the Vine dataset.

Percentages 10% 30% 50% 70% 90%
Metrics Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1

Random
Forest

Raw 0.651 0.716 0.663 0.729 0.641 0.709 0.663 0.725 0.749 0.784
DeepWalk 0.575 0.695 0.635 0.738 0.677 0.763 0.683 0.759 0.638 0.691
Node2vec 0.576 0.704 0.626 0.733 0.655 0.746 0.679 0.753 0.638 0.691
GraRep 0.589 0.703 0.633 0.723 0.671 0.751 0.694 0.763 0.650 0.691
Variant 0.659 0.738 0.676 0.733 0.682 0.738 0.709 0.766 0.705 0.753
XBully 0.661 0.740 0.678 0.758 0.711 0.779 0.717 0.777 0.757 0.784

Linear
SVM

Raw 0.409 0.683 0.432 0.439 0.575 0.701 0.578 0.588 0.547 0.557
DeepWalk 0.568 0.646 0.582 0.661 0.597 0.643 0.571 0.639 0.528 0.557
Node2vec 0.569 0.659 0.592 0.658 0.579 0.627 0.599 0.649 0.620 0.649
GraRep 0.590 0.664 0.610 0.669 0.634 0.689 0.644 0.715 0.629 0.649
Variant 0.636 0.715 0.622 0.689 0.650 0.711 0.678 0.732 0.671 0.722
XBully 0.657 0.717 0.641 0.704 0.651 0.733 0.678 0.742 0.700 0.753

Logistic
Regres-
sion

Raw 0.648 0.732 0.683 0.748 0.684 0.755 0.676 0.746 0.705 0.753
DeepWalk 0.554 0.668 0.581 0.691 0.631 0.705 0.598 0.680 0.589 0.639
Node2vec 0.535 0.672 0.603 0.705 0.641 0.715 0.629 0.708 0.612 0.660
GraRep 0.578 0.672 0.626 0.717 0.650 0.732 0.644 0.725 0.633 0.670
Variant 0.618 0.724 0.663 0.741 0.696 0.757 0.705 0.770 0.658 0.732
XBully 0.670 0.737 0.700 0.756 0.700 0.759 0.706 0.790 0.769 0.804

Cyberbully
models

Bully 0.283 0.354 0.314 0.417 0.350 0.480 0.389 0.533 0.481 0.619
SICD 0.417 0.715 0.436 0.773 0.506 0.775 0.474 0.900 0.473 0.897
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Figure 4: Parameter sensitivity study
(with 50% dataset for training)

in online social networks like YouTube, Formspring, MySpace, In-
stagram, and Twitter [6, 7, 13, 37]. For example, Dinakar et al. [7]
concatenated TF-IDF features, POS tags of frequent bigrams, and
profane words as content features to investigate both explicit and
implicit cyberbullying behaviors in negative text comments in
YouTube and Formspring profiles [7, 8]. Xu et al. [37] presented
several off-the-shelf tools such as Bag-of-Words models and LSA-
and LDA-based representation to predict bullying traces on Twit-
ter. Sanchez and Kumar [27] proposed the use of a Naïve Bayes
classifier to identify instances of cyberbullying in Twitter. Dani
et al. [6] proposed the SICD model, which leverages sentiment
information to facilitate cyberbullying detection by capturing sen-
timent consistency of normal and bullying tweets. In [4, 5], the
authors made use of gender-specific features and contextual fea-
tures such as users’ previous posts and the use of profane words to
improve the performance of cyberbullying detection. Yao et al. [38]
formulated cyberbullying detection on Instagram as a sequential
hypothesis testing problem and gradually added text-based features
based on the feature scores. With the increasing prevalence of so-
cial networking platforms, network-based features such as number
of friends, network structure, and relational centrality have also
been used more frequently to detect cyberbullying behaviors. For
example, Homan et al. [12] studied the social structure of LGBT
youthwith depression in the TrevorSpace social network6. Huang et
al. [15] studied a number of graph properties and found that cyber-
bullying detection performance was significantly improved when

6https://www.trevorspace.org/

both network-based features and textual features were exploited.
Tomkins et al. [34] proposed a socio-linguistic model that jointly
detects cyberbullying content in messages, identifies participant
roles, and exploits social interactions. Additional advances have
come from newly-developed systems and applications to help iden-
tify cyberbullying risk on social network platforms, such as [28, 29].
These models aim to estimate the probability that an individual is
experiencing cyberbullying from streams of received messages as
well as various vulnerability (i.e., risk) factors. A similar work is
discussed in [30], in which the authors studied the effectiveness of
simply concatenating visual features and textual features.
Network Embedding Network embedding, which seeks to learn
low-dimensional vector representations of nodes by exploiting dif-
ferent properties of the underlying network, has been successful in
advancing a number of downstream learning tasks [11]. Significant
advances have also resulted from the foundational work of Deep-
Walk [25], which makes an analogy between truncated random
walk in the network and short sliding window across sentences in
a text corpus, node2vec [10], which proposes a flexible notion of
node neighborhood and employs a biased random walk procedure
to explore neighborhoods of each node in a diversified way, and
Tang et.al [32], who have proposed embedding large-scale infor-
mation networks by carefully designing an objective function that
preserves the first- and second-order node proximities. Notably,
however, these prior contributions have focused on representation
learning for homogeneous networks.

In recognition that many real-world information systems can
be modeled as a heterogeneous information network, Dong et al.
[9] proposed a heterogeneous network embedding model, meta-
path2vec, that formalizes meta-path-based random walks to con-
struct the heterogeneous neighborhood of a node, and then lever-
ages a heterogeneous Skip-gram model [21] to learn embeddings.
Tang et al. [31] first presented a large-scale heterogeneous text
network by jointly training a word-word co-occurrence network, a
word-document bipartite network, and a word-label bipartite net-
work with both labeled and unlabeled text data. Most recently, there
has been growing interest in performing network embedding on
attributed networks [16, 17], dynamic networks [19, 40], signed
networks [36], and hypernetworks [35]. Because social media plat-
forms have become a leading environment in which cyberbullying
occurs, cyberbullying detection frameworks that take the rich multi-
modal nature of social media data into account are imperative. To
our knowledge, we are the first to study the multi-modal cyber-
bullying detection problem using network representation learning.
Due to the simplicity, scalability, and effectiveness of embedding
models, our approach can significantly improve the quality of the
features for cyberbullying detection.

6 CONCLUSIONS AND FUTUREWORK
With the growing popularity of social media platforms and in-
creased social media use among teens, in particular, cyberbullying
has become more prevalent and begun to raise serious societal
concerns. Although they mark an important step forward, most
previous efforts aimed at detecting cyberbullying have been based
primarily on text analysis, and have thus failed to consider themulti-
modal nature of social media data (e.g., texts, images, likes/shares,
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etc.). Our proposed model is based on the belief that multi-modal
information can offer valuable insights for characterizing and de-
tecting cyberbullying behaviors that both complement and extend
previous work.

In this paper, we study the novel problem of cyberbullying detec-
tion within a multi-modal context. To address the challenges tied
to multi-modal social media information, we propose an innova-
tive cyberbullying detection framework, XBully, based on network
representation learning. XBully first identifies representative mode
hotspots to handle diverse feature types and then jointly maps both
attributed and nominal nodes in a heterogeneous network into
the same latent space by exploiting the cross-modal correlations
and structural dependencies. Extensive experimental results on
real-world datasets corroborate the effectiveness of the proposed
framework. Future work directed towards building a deeper un-
derstanding of different modalities in characterizing cyberbullying
behaviors will not only improve cyberbullying detection, but may
also shed light on behaviors that are unique to users with differ-
ent roles (e.g., victims, bullies) within cyberbullying interactions.
Furthermore, we believe that the most promising and efficient path
forward entails interdisciplinary collaboration among researchers
in computer science and psychology to address this major social
issue.
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