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Abstract

Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems
is well known to generate a large overhead as the amount of training generally scales with the number of
transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel
frequency response from uplink pilot estimates to the downlink frequency band, which completely
removes the training overhead. We first show that conventional estimators fail to achieve reasonable
accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower
bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths
are well separated, the LB is simplified in an expression that gives considerable physical insight. It
is then shown that the MSE is inversely proportional to the number of receive antennas while the
extrapolation performance penalty scales with the square of the ratio of the frequency offset and the
training bandwidth. The channel extrapolation performance is validated through numeric simulations
and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel
extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is

performed and favorable propagation conditions are present.
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I. INTRODUCTION

The deployment of massive multiple-input-multiple-output (MIMO) communications systems
strongly rely on the acquisition of accurate channel state information (CSI) at base station (BS)
[2]. Massive MIMO systems are typically characterized by a much larger number of antennas
at the BS than the sum of the antennas at the user equipments (UEs). This implies that channel
estimation is much less costly in the uplink (UL) than in the downlink (DL) [3]. In time division
duplex (TDD) systems, the BS can efficiently perform DL channel estimation from UL pilot
transmission from the UEs, since channel reciprocity holds as long as UL and DL transmission
occurs within a coherence time of the channel, and within the same frequency band. However, in
a frequency division duplex (FDD) scenario, reciprocity cannot be exploited as different bands,
usually separated by more than a coherence bandwidth, are used in UL and DL. On the other
hand, estimation of the channel by DL pilot transmission and feedback might result in a large
overhead.

A variety of methods have been proposed to solve this dilemma, such as channel correlations
in the spatial domain reflected in second-order statistics [4], [S], compression of the feedback
[6], combinations thereof [7], or compressed sensing methods [8], each of which have their
advantages and drawbacks. One of the most promising methods is channel extrapolation from
the UL to the DL band as it completely removes the overhead. The extrapolation range of
conventional extrapolators is very limited - typically to the order of one coherence bandwidth.
To overcome this limit, [9] suggested estimation of the multipath components (MPCs) via
high-resolution parameter estimation. Based on the extracted MPCs, extrapolation over large
bandwidths can be achieved. However, the paper only considered the single-input-single-output
(SISO) case, which resulted in a poor extrapolation performance. In [10], the authors extend the
study to the MIMO case and channel extrapolation in space. They perform multiple measurements
showing that they can reach a frequency extrapolation range larger than 5 times the coherence
bandwidth. In [11], the authors present the so-called R2-F2 system to extract path parameters and
infer CSI from a different training band. The authors show how to integrate the system into LTE
cellular networks and use experimental measurements for validation. Their study restricted the
frequency spacing between UL and DL band to be only 20-30 MHz. The authors in [12] compare
different extrapolation algorithms. Their study shows that a super-resolution can outperform

compressed sensing methods to perform channel extrapolation in frequency. In [13], only the



information about user angles is extracted from UL pilots using 2D unitary ESPRIT method [14].
Then, they perform directional training in the DL. In [15], the authors propose to train a neural
network to perform the channel extrapolation in frequency. Their approach does not require the
acquisition of the antenna array patterns through calibration but requires a large training dataset.
In [16], the authors propose to acquire DL CSI through UL pilots in combination with a limited
feedback from DL pilots.

Channel extrapolation in frequency also presents formal similarities to extrapolation in time.
In contrast to frequency-domain extrapolation, channel prediction in time has been extensively
investigated in the literature. A comprehensive review can be found in [17]. In [18], the authors
proposed performance bounds for prediction in time of MIMO channels. They later extended
their study to MIMO-OFDM channel estimation with interpolation and extrapolation being done
both in time and frequency [19]. The authors make the observation that MIMO provides much
longer prediction lengths than for SISO systems.

To provide understanding of the promise of low-overhead FDD massive MIMO systems, this
paper investigates the performance of channel extrapolation in frequency. The main originality of
our paper is that the analysis combines at the same time theoretical limits, numerical simulations
and experimental validations. We believe this joint approach gives much insight on the complex
problem at hand. In particular, most of the previous approaches were driven only numerically
and/or experimentally but not theoretically. This paper extends our previous work [1] by: (1)
considering a more general channel model taking into account the frequency dependence of the
pattern; (ii) analyzing the limitations of conventional channel estimators in terms of channel
extrapolation; (iii) deriving a closed-form expression of the extrapolation range; (iv) including a
comparison of theoretical and experimental results. More specifically, our contributions can be
summarized as follows. Section II first describes the considered transmission model.

Section III highlights the advantages of high-resolution channel estimation compared to con-
ventional least squares (LS) and linear minimum mean squared (LMMSE) channel estimation.
More specifically, we show that it results in potential large signal-to-noise (SNR) gains and
extrapolation range.

In Section IV, we formulate a theoretical lower bound (LB) on the mean squared error (MSE)
of the extrapolated channel, using a similar methodology as in [19]. The proposed LB differs
from [19] as it takes into account elevation angles, the frequency dependence of the pattern, and

the influence of the training pulse. Furthermore, a simplified LB is also proposed, giving more
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Fig. 1. Massive MIMO multipath propagation environment for channel extrapolation (UL: uplink, DL: downlink, BW: training

bandwidth, CSI: channel state information).

physical intuition on the extrapolation range and the SNR gain that can be expeeted! isgprdetioet interfering
The validity of the LB relies on the strong assumption that the paths are “medbivsepamadaditibns, cylindrical arr:
which makes particular sense in a massive MIMO context. Under this conditiggt}c;rgé]gpavaﬁg@
the MSE of the extrapolated channel frequency response is inversely proportionafte 2% BafhdeP
of receive antennas while the extrapolation performance penalty scales with the square of the
ratio of the frequency offset from the carrier frequency and the training bandwidth.

In Section V, we analyze the performance of the theoretical LB by numerical simulations using
a 3GPP channel model showing that the LB can be reached by practical high-resolution parameter
extraction algorithms such as the space-alternating generalized expectation-maximization (SAGE)
algorithm [20]. Our results show the very limited extrapolation range that is achieved in SISO
systems, while much more promising results are obtained in the MIMO setting as the paths can
be more easily separated in the delay-angle domain. We also show that the cylindrical array
manufactured in our lab reaches similar extrapolation performance as a synthetic rectangular
planar array.

Finally, in Section VI, using a cylindrical array and an omnidirectional transmit antenna, we
perform channel measurements in an anechoic chamber on a 400 MHz bandwidth at a carrier
frequency of 3.5 GHz. We perform high-resolution channel parameter estimation on 40 MHz
of the total 400 MHz band used as the “training bandwidth”. Then, we evaluate the channel
extrapolation performance by comparing the channel extrapolation relying on the extracted paths
to the directly measured “ground truth” channels in the remaining 360 MHz. These measurements

allow to evaluate the influence of calibration and channel modelling errors and demonstrate the

'The “well separated” assumption will be properly formalized in Section IV.



accuracy of the theoretical LB previously derived. In particular, the simplified LB derived from
Section IV is shown to provide accurate results even though its expression is very simple to
evaluate and does not require any a priori information on the path parameters and the antenna
array pattern.

Notations: Vectors and matrices are denoted by bold lowercase and uppercase letters, respec-
tively (resp.). Superscripts *, 7 and  stand for conjugate, transpose and Hermitian transpose
operators. The symbols 7, E(.), S(.) and $(.) denote the imaginary unit, expectation, imaginary
and real parts, respectively. The norm ||A|| is the Frobenius norm and §,, is the Kronecker delta.

The diag(.) operator applied to a vector returns a diagonal matrix whose k—th diagonal entry

is equal to the k—th entry of the argument vector.

II. SIMO TRANSMISSION MODEL

We consider FDD massive MIMO scenarios where each user has a single-antenna and transmits
an UL training sequence that is orthogonal to those of the other users. Thus, the estimations
for different users become independent and in particular, the extrapolation in frequency of the
SIMO channel of each user can be treated independently. Moreover, to highlight the gain of
having antenna arrays, the SISO case is studied in parallel.

Let us consider the transmission of a baseband equivalent pulse of bandwidth (BW) a priori
known by the receiver and whose Fourier transform is denoted by S(f), as depicted in Fig. 1.
We assume that the channel is quasi-static, i.e., constant for the duration of the transmission.
M denotes the number of antennas of the receive array. Antennas at transmit and receive
sides are assumed to be vertically polarized. We also assume that the propagation channel is
composed of L specular paths, where each path is completely characterized by its deterministic
parameters: complex gain oy = () + ) (), delay 7, azimuth angle ¢; and elevation angle
;. We denote by a,,(¢,0, f) the pattern of antenna m evaluated in the direction (¢, ) and
at frequency f. Note that the frequency dependence of the array pattern cannot generally be
omitted for our scenario, depending on the considered training and extrapolated frequency
range. More specifically, the frequency selectivity of a,,(¢, 0, f) comes from two contributions:
firstly the frequency dependence of each individual antenna pattern and secondly the frequency

dependent phase shift across the antenna array elements (beam squinting).> The receiver obtains

“This dependence is often neglected in the literature when the ratio of the dimension of the array to the speed of light is

much smaller than the inverse of the bandwidth of the signal.



K frequency samples and the baseband complex received sample at antenna m and baseband

frequency f; can be expressed as

L
R (fi) = Z (1, 01, fi)e 2 RS (fr) + Wan(fi), (D

=1
where W,,,(fx) is zero mean additive complex circularly symmetric Gaussian noise. We assume
that the noise samples are white, i.e., E (W,,,(fx)W (fi)) = 02 0m—m: Ok Note that the model
in (1) straightforwardly applies to OFDM systems.

The SISO case can be seen as a special case of the SIMO case where each ray is completely
characterized by its complex gain ¢; and its delay 7; while the information on the angles of
arrival is lost. In the following, the index “m” will be omitted when the single-antenna case is

considered. Equation (1) becomes

L
R(fi) =Y awe™ WS(fp) + W(fe). 2)
=1

Note that the SISO model in (2) relies on the underlying assumption that the receive antenna
pattern a(¢, 0, f) is frequency-angle separable, i.e., a(¢,0, f) = b(¢,0)G(f). This allows to
take the angle dependence of the pattern b(¢, ) into account in by the channel complex gains
&y = ayb(¢y, 0;) while the remaining frequency dependence G(f) can be taken into account by
the pulse S(fi) = S(fx)G(fx). Furthermore, both the models in (1) and (2) rely on a similar
assumption at the transmit side: the transmit antenna has a frequency-angle separable pattern so
that its dependence in the angles of departure can be accounted for in the coefficients «; while
the frequency dependence can be accounted for in the transmit pulse S(f).

We finally note that a number of straightforward generalizations of this model can be made:
(1) V and H polarizations can be taken into account by representing the path amplitudes as 2 x 1
vectors and the array patterns as 2 X 2 polarimetric matrices. (ii) multiple antenna elements
at the UEs can also be taken into account similarly; (iii) scatterers in the nearfield can be
described by replacing the plane wave model of each path by a spherical wave model, where
the wavefront curvature of each path is now an additional parameter of the model. However, for

ease of exposition we use the simplified models of (1) and (2) in the remainder of this paper.

III. CHANNEL EXTRAPOLATION

Let us define v = (7, ..., L) € ROX and 4, = (71, ¢y, 01, R(ay), S(ay))T € R>*! as the

vectors containing all real path parameters and the real parameters of each path respectively. We



define the channel frequency response evaluated at frequency f and antenna m as

L
H,.(f) £ Z aam (o, 0y, f)e_ﬂ“f”_ 3)
=1
and the MSE of an estimate H,,(f) of H,,(f) as

MSE(f7¢) éEH:Im(f) _Hm(f)|2’ (4)

where the expectation is taken over the noise realizations for deterministic path parameters 1. In
the following, we review two conventional low resolution channel estimators: LS and LMMSE
estimator. We will highlight that these estimations relying on a linear combination of the received
frequency samples results in an extrapolation range limited by the coherence bandwidth of the
channel. In the light of its limitations, we detail our motivations for going towards high-resolution

channel estimation.

A. Conventional Low-Resolution Estimation

1) LS estimator: LS estimators perform a simple per-antenna estimation at each frequency

point as

_ Rm(fk) _ Wm(fk)
S(fx) S(fr)

We can easily see that the LS estimator is unbiased and is only limited by additive noise. Since

HES(fr) Hy(fr) +

the noise samples w,,[n] have variance o2, we can write

2
2 g

MSEws (i ) 2 B () = HaF = 50

We define the total training energy as Er = > 1 ' [S(fi)]* and the SNR as SNR 2 Fr/o?2.
If the training signal is chosen so that the energy is uniformly distributed across the frequency
bins, i.e., |S(f)|* = ZL, the MSE becomes constant across frequency and

oK K
Er  SNR’

MSELS(fka¢) = o)

Let us assume that the received samples are uniformly spaced in frequency and their frequency
spacing is lower than the inverse of the maximal delay spread of the channel 7,,,x so that
no aliasing is present. Then, the Whittaker-Shannon formula can be used to interpolate every
frequency points in the training bandwidth. Furthermore, if the frequency samples are spaced

more closely than 1/7,,,«, their correlation might be leveraged to improve the MSE. This gain is
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Fig. 2. Channel extrapolation methods based on a linear combination of received frequency samples such as LMMSE estimators

give a very limited extrapolation range.

properly taken into account by the LMMSE estimator described below. This gain is also similar
to a multicarrier system that would convert its pilot-based frequency channel estimates to the
time domain, truncate the obtained impulse response to significant coefficients and finally convert
it back to frequency [21].

2) LMMSE estimator: Based on the LS frequency estimates, simple linear extrapolation
methods can be used. However, most of these methods would have a very limited extrapolation
range, on the order of the coherence bandwidth of the channel. To demonstrate this, we will
study the performance of the LMMSE estimator [22] in terms of channel extrapolation. The

LMMSE frequency estimate at frequency f is simply given by
HEMMS(f) = efs(f)Crghus m,

. . . ~ H ~ H
where by, = (HE(o), - FE(fic )", Cus = E(hus mhys,,) and cfs(f) = B (Ho(f)hi,, ).
The MSE is then given by

MSE =E (|Hw(f)]?) — cis(f)Crs
Lvmse(f) = (| m(f)] ) cs(f)Crsers(f),

where the expectation is taken here with respect to the statistics of both the noise and the
parameters 0. An implementation challenge of the LMMSE estimator is that it requires the

knowledge of the autocorrelation function of the channel frequency response
Crrm(Af) £ E (Hy(f + Af)Hu(£)"). 6)

This function depends on the joint distribution of the path parameters 0. To highlight the

limitations of the LMMSE estimator in terms of extrapolation, let us consider a simple optimistic



example where the receiver would have perfect knowledge of the noise variance o2 and the
frequency autocorrelation of the channel Cp ,,,(Af). As in [22], we assume that the paths gains
and delays are i.i.d. For the sake of simplicity, we here assume a frequency independent and
isotropic array pattern so that a,,(¢,60, f) = a,(¢,0) and |a,,(¢,0)| = 1. Furthermore, the
delay of each path 7; has a uniform distribution in [0, 7,..x] and the conditional distribution
of the variable «;;7; is a zero-mean complex circularly symmetric Gaussian with variance
p(7;) = e~™/™ms_ This gives (see Appendix VIII-A)
1 1 — e—Tmax/Trms—127A fTmax

1 _ e—Tmax/’Trms 1 + j27TAf7—rms

CH,m(Af) -

Fig. 2 shows the performance of the LS and LMMSE estimators. The training signal was
chosen to have uniform energy distribution across frequency. The training bandwidth is set to
BW = 5 MHz and the spacing between each frequency point is set to 0.8/7.x, Which is
slightly faster than the Nyquist rate 1/7,.cx. The delay parameters are fixed to Ty = 2.5us
and 7., = 0.5us. By definition, the LS estimator is restricted to the training bandwidth. On
the other hand, the extrapolation range of the LMMSE estimator is extremely limited and only
slightly improves the range of the LS estimator. The extrapolation range is on the order of the
coherence bandwidth or 1/7,,, = 400 kHz. Furthermore, we here assumed an optimistic case
where the receiver has perfect knowledge of Cp,,,(Af). This is generally not the case and we

do not make this assumption in the following derivations.

B. High-Resolution Estimation

In the light of the previous discussions, we are interested in finding better channel estimators,
which could extrapolate frequency way beyond one coherence bandwidth, to address typical FDD
massive MIMO systems. For instance, let us take a simple example where the channel only has
a few well separated specular multipath components, i.e., L. << K. Then, an intuitive reasoning
suggests to go for high-resolution estimation of the L different path parameters directly [9].
There are two main motivations for this: SNR gain and extrapolation. The SNR gain would
come from two sources. First, the receiver only has to estimate L. complex coefficients rather
than K, resulting in a potential SNR gain of % with respect to LS estimation. One should note
that this gain is stronger than the potential gain of using a frequency correlation filter as in [22].
It does not come from simply assuming that the channel impulse response has a finite length KT’

inducing correlation in the frequency domain but from its sparsity in the delay-angle domain.



Secondly, the received signal at each antenna can be coherently combined to jointly estimate and
separate all path parameters instead of performing per-antenna independent channel estimation
as in the LS case, which results in a potential total SNR gain of a factor % with respect to LS
estimation. One should here note that an improved LMMSE estimators leveraging correlation in
the spatial domain through the antennas could also achieve a similar gain.

By definition, low-resolution estimators are restricted to the bandwidth occupied by the training
signal. However, high-resolution estimates of the path parameters allow for simple channel
extrapolation in frequency possibly very far from the center frequency of the training band. If
we denote by 7y, ¢fl, él and ¢&; the high-resolution estimates of 7;, ¢;, 6, and «; respectively, we

can write the expression of the extrapolated channel as

L
Hy(f, ) =Y dutm (. 0y, f)e ™7 (7)
=1

Of course, intuitive reasoning tells us that the extrapolated channel will suffer from the estimation
errors on the path parameters, especially as the extrapolation range becomes large. We also
assume here that the parameters of the MPCs are independent of frequency. This is well fulfilled
in most practical situations [23], since the range over which these parameters change is on the
order of 10% of the carrier frequency, which is much larger than the extrapolation range we can

usually obtain, see Section V.

IV. PERFORMANCE ANALYSIS

This section aims at theoretically formalizing and analyzing the two potential gains of high-
resolution channel estimation previously described: SNR gain and extrapolation factor. To do
this, we will in a first step derive the Fisher information matrix of the estimated path parameters.
The second step will consist of deriving a lower bound on the MSE of the extrapolated channel.
In a third step, a simplified LB will be derived giving much more physical intuition. Finally, the

bounds for the MIMO case will be particularized to the SISO case.

A. Fisher Information Matrix

Let us define the vector r € CX**! ag containing all received samples for all antennas and
observation samples. Given the independence of the noise samples, the log-likelihood of vector

r becomes
K-1 M

Lr;p) =Y > L(Ru(fe)i®).

k=0 m=1



The elements of the Fisher information matrix I, € RSZ*°L

likelihood function as [24]

can be obtained from the log-

L (r; ¢)> ®

[y, , = —E (W
pEae

where the expectation is taken over the noise distribution. Since the random variable R,,(fx); ¥

follows a circularly symmetric complex normal distribution with variance o2 and mean /i, ; =

Zle Q1 (1,01, 1) S(fr)e ¥ /%7 equation (8) can be rewritten as

I 2 (= 5 Oty 1. Ot 9
Toloo = 02 22 2 R 50 o |- ©

W k=0 m=1

The full 5L x 5L Fisher information matrix I,, can be partitioned into L? submatrices Ly, 4, €

R5><5 as

) Ly, - lyw,

=
O-’LU

I, = , (10)

IwLn/u e I'¢'L7'¢’L

and the structure of the submatrices Iy, 4, is given by

Ity Ingy Iney  Inap  Ino

nal, T

Ingy ooy 10y Igan  Igal

Lywo = | I, Ig0, Ioo, Toar  Igat
Inaﬁ I(;ﬁlaﬁ Iﬁaﬁ ‘[oleole}2 IalRalI/
[TZOCZI, Iqblozll, IQOCI IalRaI [a{alI,

Defining d,, 4(6,0, f) = %ﬁ;e’” and dn,0(0,0,f) = W, we can write the partial

derivatives appearing in (9) as

Afirm o
/:iTl’k = o (b1, 01, fi) (=227 fr.) S(fr)e 927 from,

dlum,k:
dey

dum,k
do,

d m — 4T T
C/Zﬁaﬁk = am(¢l,91,fk)5(fk)e 227 freTy

A, -~
Pk :jam(¢lael7fk)s<fk)e JZﬂfle'

dozl]

= aldm,(b(gbv 07 fk:)S(fk)e_J27rfle

- aldm,9<¢) 07 fk)S(fk)e_]QWfle




Inserting these partial derivatives in (9) and for a specific array pattern a,,(¢, 0, f), the Fisher
information matrix in (10) can be easily constructed. In the following, we will make the following
assumption.

(Asl): the Fisher information matrix I, is nonsingular.

In practice, a rank deficiency of L could arise if two rays, or more, become extremely close
in delay and angle, which would cause the determinant of L, to go to zero. A solution in this
case can be to replace the two correlated rays with one ray whose amplitude is the sum of the
amplitudes of the components. It is intuitive that this operation will not cause a large information
loss if the rays are close enough. However, care must be taken not to merge paths whose distance

in the delay domain is comparable to or larger than the inverse of the extrapolation range.

B. Lower Bound on the MSE of the Extrapolated Channel

Let us denote by ¢ € R52*! an unbiased estimator of 1 with covariance matrix

cy=2((w-9) (v-4)").

where the expectation is taken over the noise distribution. The Cramer-Rao lower bound (CRLB)
tells us that the matrix C,, — I:pl is positive semidefinite, which implies that g’/ C,82 gl I;l g
for every vector g € CPL*! If vector g is chosen as an all zero vector except a one at u-th
entry, we get a LB for the variance of the estimated parameter ¢/,,. The CRLB only provides a
LB on the variance of the estimated parameters while we are interested on the variance on the
error of the extrapolated channel defined in (4). To obtain a performance limit, we would like

to lower bound the MSE by a certain quantity LB,,(f, ) so that

MSE,,(f,%) > LB (f, %),

where LB,,,(f, 1) would only depend on deterministic parameters. The following theorem gives a
closed-form expression of the LB on the extrapolated channel as a function of the path parameters

1 and the extrapolated frequency f.

Theorem 1. Under (Asl), the LB on the MSE of the extrapolation error LB,,(f, 1) for any

unbiased estimator I:Im( fy1) can be expressed as

LB (f. %) £ gl 1 o fe



with the following vector definitions

Bm.fp = (gﬁ,f,wp e >g§,f,¢L)T

8ty = (Gt G fs G0 Gt I )
Gnogm = (=927 ) (ér, 0y, f)e 224

Gm.for = Qm o(01, 01, f)e T

Gm, .0, = QUGm.o(¢P1, 01, f)eﬂ?wfn
G f.of = Am (1, 01, f)e—ﬂwfn

l

gm,fvalj = ]am(¢la 917 f)e_]ZTrle :

Proof. The proof is given in Appendix VIII-B and relies on the application of the CRLB formula

for transformation of parameters [24]. O

C. Separated Rays

The LB of Theorem 1 is in closed-form, which allows to easily evaluate it numerically. How-
ever, it requires the inversion of the Fisher information matrix and does not provide much intuition
on the exact SNR gain and extrapolation range that we can expect. To further characterize and
try to gain more insight, let us introduce the set of assumptions (As2) — (As4).

(As2): the array pattern is non frequency selective, i.e., a,,(®,0, f) = am(9,0).

This assumption makes sense if the antenna patterns are flat in the considered band and if the
ratio of the dimension of the array to the speed of light is much smaller than that the inverse
of the extrapolation range. In the remaining part of this section, we assume that (As2) holds,
and we drop the frequency dependence of the array. We define the following vectors in order to

introduce assumptions (As3) — (As4)
N T
S = <S(f0)€7j2ﬂf07l c. S(fK_l)BiﬂﬂfK_lTl)
S 2 _]27;-(]"05(]‘0)6—327#0777 s fK—lS(fK—l)e_ﬂwaflTwT
A T Mx1
a = <a1(¢l>9l) aM(¢l791)> eC
' r Mx1
a ¢y = <d17¢(¢l, 9;) - aM,qb(Cbla 91)> eC

. A . . T Mx1
Qg = <a1,9(¢l,91) aM,0(¢l79l>> e CV .



(As3): separation of the L specular rays in delay, azimuth angle and/or elevation angle. We
assume that, for each pair of rays [,I’ (I # '), at least one of the following two relationships is
verified:

(1) Separation in delay:
si'sy = 8/'sy = §/'sp = 0. (11)
(2) Separation in azimuth and/or elevation angle:
af{al/ = E‘if’]gal’g = éﬁ¢é117¢ = a{?;al = éﬁ¢él = E'l{’{d)allﬁ = 0.

The assumption (As3) is a strong assumption, whose accuracy will typically depend on
different parameters. The specular paths will generally become more separated in delay as the
bandwidth of S(f) increases, inducing higher resolution in delay. Similarly, the separation in
azimuth and elevation will be improved as the number of antenna elements A is increased.
More generally, the validity of (As3) will depend on the training signal S(f;), on the array
pattern a,,(¢,6) and on the extrapolation range.

(As4): the training signal S(f) has a symmetric energy distribution |[S(f)]* = |S(—f)|?
implying that

K-1
sfsi=(22m) > felS(f)IP =0, 1=1,..., L. (12)

k=0

Furthermore, the array pattern a,,(¢, ) satisfies the following symmetry condition
alay=afbay=0, 1=1,... L.

The symmetric condition on the array pattern is generally satisfied for symmetric array. For
instance, it is trivial to check that the condition is fulfilled if each antenna element has an
isotropic pattern according to (16) later studied in Section V. The following corollary gives a
particularization of the LB of Theorem 1 under additional assumptions (As2) — (As4) and for

the MSE averaged over the receive antennas, i.e.,

M
MSE(f, ) & % Z MSE,,(f, ).



Corollary 1. Under (As2) — (As4), the expression of the LB of Theorem 1 averaged over the

receive antennas simplifies to
M

1
LB(f,%) = - > LBu(f.9)
m=1
1L 1\
SRS 5(5) ) 1%
~~~  Loss factor ———
SNR gain

Extrapolation penalty
where o% is the mean squared bandwidth of the transmit signal
. K—
o 812 S RIS
@mllsl* SIS (P
Proof. The proof is given in Appendix VIII-C. [

2
Op

By adding some assumptions, the LB proposed in Theorem 1 can be greatly simplified and
Corollary 1 provides much insight into the physical meaning of the different terms of the LB. We

can clearly identify the two main advantages of high-resolution channel estimation. As expected,

MK

a SNR gain of a factor =7

can be observed with respect to the LS estimation performance
that we derived in (5). This gain comes from two contributions: the array gain M and the
estimation of only L channel paths instead of K as in the LS case. However, a loss factor of 2
appears, coming from the penalty of estimating the real and imaginary gains, the azimuth and
the elevations angles of each path. Secondly, the channel can be extrapolated in frequency at
the cost of a MSE penalty that quadratically scales with the ratio f/op where the denominator
indicates that the extrapolation range can be quantified in multiples of the signal bandwidth.

It is interesting to see that the dependence of LB( f, 1)) on the path parameters v vanishes. This
is in part explained by the fact that each path is well separated, which cancels the interdependence
between different paths. Additionally, the channel frequency response is evaluated in the direction
of the incoming specular waves, canceling the dependence on the parameters of each path as
well as the dependence on the array pattern.

Based on the simplified LB, we can find a closed-form expression of the extrapolation range.
We define the ~ extrapolation range as the frequency beyond which the extrapolation performance
falls « times below that of the conventional LS estimator given in (5). Inserting the expressions

of (5) and (13) in the equation LB(f, 1) = yMSELs, we easily find

MK~
fExtrapolf'y = 20p T -1 (14)



Note that this definition is independent on the SNR while the parameters K, L and op are
related to the training bandwidth BW. Depending on the system requirements, the value of

can be chosen differently and the actual useful extrapolation range can be larger or smaller.

D. Single-Input-Single-Output

The specialization of the above results to the SISO case is straightforward. As the angles of
arrival are not resolved, the Fisher information matrix becomes a 3L x 3L matrix. To simplify
the LB, we introduce the following adaptation of (As3) — (As4) to the SISO case:

(As3'): separation of the L specular rays in delay. We assume that, for each pair of rays [, [’
(I #1"), the condition (11) is verified.

(As4’): the training signal S(f) has a symmetric energy distribution |S(f)|* = |S(—f)[?
implying that (12) holds.

Corollary 2. Under (Asl), the LB on the channel extrapolation error for any unbiased estimator

H(f, ) in the SISO case is

LBsiso(f, %) = g, 1_p,15150gf,¢7

where gp ., = (&f -8y, ) and gy = (=2m fay, 1, 5)Te ™. Under (As3') — (Asd),
the LB simplifies to

L 1 2
LBsiso(f, %) = SNR (1 + 3 ((Ii) )
N~ Loss factor F
SNR gain

Extrapolation penalty
end the vy extrapolation range becomes

K~y 1
JExtrapol—y,81S0 = 20F T2 o (15)
Proof. The proof is omitted as it follows the same methodology as the proofs of Theorem 1 and

Corollary 1. 0

As could be expected, the only SNR gain now comes from estimating L coefficients rather
than K while the array gain has vanished. One can note that the loss factor is only one versus
two in the SIMO case as the azimuth and elevation angles of each path are not estimated. The
main difference of the SISO case with the SIMO case is the fact that far fewer observations of
the channel are available, especially compared to a massive MIMO scenario with a large M.

This not only eliminates the array gain but also makes L giso more ill-conditioned as the rays
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Fig. 3. Generated set of parameters (v, 7, ¢, 0;) for I = 1,..., L with L = 21 and following 3GPP 3D-UMa NLOS model.

The sum of gains is normalized to one.

Fig. 4. Cylindrical array manufactured in our lab. Each ring/row of the array has 16 antenna elements. Top and bottom rings
are composed of dummy/terminated elements while the four rings in the middle contain active elements, giving a total of

M =4 x 16 = 64 elements.

can only be separated in the delay domain. As a result, (As3’) is a stronger assumption than
(As3) and might only be valid for a small number of rays L and/or a very large bandwidth.
These factors tend to strongly limit the potential gains of high-resolution channel estimation in

SISO systems [9].

V. NUMERICAL VALIDATION

This section aims at assessing the accuracy of the theoretical LB of the extrapolated channel
through simulations. The training pulse shape S(f) is chosen to have uniform energy distribution
over the K frequency points f, which are uniformly spaced across the training bandwidth BW

with spacing 1/Tmax, i.e., fr = (k — £52) /Tmax for k =0,..., K — 1 and K = BWrp + 1.
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Fig. 5. Cylindrical array pattern a,,(¢,0, f). Normalization is arbitrary. (a) Azimuth cut of one ring/row of 16

elements. (b) Elevation cut of front column of 4 elements. (c) Frequency dependence of front column of 4 elements.

This assumption is consistent with, e.g., the Zhadoff-Chu training sequences in LTE and NR.
We set Trax = 2.5us. In the following we consider a SNR of 25 dB. We recall that our definition
of the SNR is the ratio of the total signal variance to the per-frequency tone noise variance, i.e.,
SNR = Er/c?. This implies that the per-frequency tone SNR is K times smaller.

The performance in the figures is shown as a function of frequency normalized to the training
bandwidth BW, as we expect form Corollary 1 that the extrapolation range scales accordingly.
In the legend of the figures, the full LB refers to the LB of Theorem 1 averaged over the receive
antennas and the simplified LB refers to the expression of Corollary 1. In the SISO case, the full
and simplified LB curves refer to the corresponding expressions in Corollary 2. The conventional
LS estimation performance derived (5) will be considered as a benchmark.

The MPC parameters were generated by the QuaDRiGa toolbox [25] according to the 3D-
UMa NLOS model defined by 3GPP TR 36.873 v12.5.0 specifications [26]. The same set of
parameters was used for all simulations and is depicted in Fig. 3. One can see that some rays
are very closely spaced in delay and angle. We took on purpose a non line of sight scenario to
consider a more challenging case as all paths need to be resolved to properly model the channel
instead of only a few in a line of sight case.

The center frequency f,. is set to 3.5 GHz. We consider two types of array at receive side:

« A synthetic rectangular planar array with an inter-antenna element spacing of \./2 where

Ac 1s the center wavelength. The antenna elements have an isotropic pattern so that the



pattern of each element becomes only a phase shift

(0,0, f) = e 92m elrme(60) (16)

where &(¢,0) is a unit vector in R3 pointing in the direction of the incoming ray [ and
the position of the m-th receive array element is denoted by r,, € R? with respect to an
reference point. The reference point is chosen to ensure that ) r,, = 0. Three rectangular
array geometries are considered: M = 8 (4 Horiz. x 2 Vert.), M = 16 (4 Horiz. x 4 Vert.)
and M = 64 (8 Horiz. x 8 Vert.).

A cylindrical array manufactured in our lab shown in Fig. 4. Each ring/row of the array has
16 antenna elements. Top and bottom rings are composed of dummy/terminated elements
while the four rings in the middle contain active elements, giving a total of M = 4x16 = 64
active elements. Each active element has one vertically and one horizontally polarized port
with high cross polarization discrimination ratio. We only used the vertically polarized ports
in this study. In the following, we will consider different subsets of the total array: M = 8
contains only one ring with one out of two elements, M/ = 16 contains one ring of elements
and M = 32 contains two rings of elements. The pattern of each array element a,,(¢, 9, f)
was obtained by careful calibration in our anechoic chamber over the band f € [3.3,3.7]
GHz, for an azimuth range ¢ € [0, 27| and elevation range 6 € [0, 7].> Azimuth, elevation
and frequency cuts of the array are shown in Fig. 5. Note that the pattern shows frequency

variations of about 6 dB on the 400 MHz bandwidth.

A. SAGE Performance versus Theoretical LB

For high resolution parameter extraction, we extend the SAGE algorithm introduced in [20]
to extract elevation angles. The algorithm works in the frequency domain taking into account
the frequency dependence of the pattern according to (1). The performance of the algorithm is
averaged over 100 noise realizations. A delay step size of 50% Hz and an angular grid size
of 1 degree are used as parameters of the SAGE grid search. For the parameters M = 16,
SNR = 25 dB and BW = 20 MHz, Fig. 6 shows that the SAGE-based parameter extraction and

channel extrapolation based on (7) can approach the performance of the theoretical LB. This

3During calibration, we sampled a., (¢, 6, f) with a 1 MHz frequency resolution and 5 degrees angular resolution. We obtain
the full pattern a (¢, 6, f) by linear interpolation in frequency and through the effective aperture distribution function (EADF)

in angle [27]. The EADF also allows simple evaluation of the angular derivatives of the pattern required for the LB computation.
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Fig. 7. Impact of the bandwidth on the extrapolation performance. As bandwidth increases, the full LB converges

to the simplified LB meaning that (As3) holds.

implies that the LB gives a good indicator of the achievable MSE. Furthermore, we can see in

the figure that the LB performs very close to the simplified one, implying that the paths are

well separated. As expected, high resolution parameter extraction provides a large SNR gain of a

factor MK

7~ ~ 46 ~ 16 dB with respect to the LS estimator. Moreover, the LS performance is very

poor, as expected according to (5). Note that our definition of the SNR is not the per-frequency

bin SNR, which is K = 51 ~ 17 dB times smaller.
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B. Influence of the Bandwidth

Fig. 7 (a) and (b) show the impact of the bandwidth in the SISO and the M = 64 rectangular
array cases respectively. As the bandwidth increases, the receiver has a larger resolution in time
and it can better resolve the different paths in the delay domain. As the bandwidth increases,
(As3') becomes more valid and the full LB converges to the simplified LB. The gap between the
full and simplified LB can be seen as an indicator of the separability of the path parameters. The
big difference of the SIMO case with the SISO case is that the extrapolation becomes possible
for a much smaller training bandwidth: 10 MHz versus 800 MHz.* This is explained by the
fact that the paths can be separated in the delay-angle domain instead of just the delay domain.
Moreover the SIMO system achieves a SNR gain of a factor M/2 = 64/2 ~ 15 dB.

In the light of these limitations, we can conclude that the price to pay for channel extrapolation
in SISO is to have a very large bandwidth at disposal and/or a channel that exhibits few
well separated paths in delay. These observations tends to strongly limit the applicability of
extrapolation for conventional SISO communication systems.

As opposed to high-resolution channel estimation, increasing the bandwidth with a fixed SNR
is detrimental to conventional LS estimation as the number of frequency bins K to estimate
becomes larger, as shown in (5). Another way to view this is that the energy is more spread out

in frequency and leads to a lower per-frequency bin SNR.

C. Influence of the Number of Antennas and the Array Type

Fig. 8 (a) depicts the extrapolation performance given a fixed training bandwidth of 20 MHz,
with different number of antenna elements. Both the rectangular and cylindrical arrays are
considered. The same effect previously described in terms of bandwidth occurs in terms of
antenna numbers, i.e., as the number of antennas increases, the resolution in the angle domain
increases and the full LB converges to the simplified LB. These observations imply that the
separability of the rays can be achieved by trading bandwidth against number of antennas. The
synthetic rectangular and the real cylindrical arrays seem to achieve similar performance. In the

SISO case, no extrapolation is possible given that the paths cannot be well separated using only

“Note that a number of our system model assumptions starts to be violated for a bandwidth of 800 MHz at 3.5 GHz carrier

frequency. Such limitations are not taken into account in the above figure for ease of interpretation.

>The factor 1/2 stands for the loss factor of estimating the azimuth and elevation parameters of each path in the SIMO case.
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Fig. 8. (a) As number of antennas increases, the LB reaches the simplified LB while achieving an additional SNR

gain. Synthetic rectangular and real cylindrical arrays exhibit very similar performance. (b) Extrapolation range

fExtrapol—~» Normalized in the training bandwidth BW, as a function of the number of antennas.
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Fig. 9. Four scenarios investigated in the anechoic chamber for the experimental validation. Transmit antenna and receive array

are spaced 5 meters apart. (a) is only line-of-sight (LOS). (b) is LOS + an aluminium ball. (c) is non-line-of-sight (NLOS) +

aluminium ball. (d) is NLOS + aluminium panel.

the delay domain. The simplified LB of Corollary 1 is very close to the full LB of Theorem 1

as soon as the array has at least 8 antennas, even though it does not depend on the array pattern

and the path parameters. In Fig. 8 (b), the extrapolation range fgxrapol—~ given in (14) is plotted

as a function of the number of antennas. As a reminder, the formula assumes that the paths are

well separated and is properlu defined just before (14).
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VI. EXPERIMENTAL VALIDATION

This section presents the validation of the extrapolation performance through experimental
measurements for a series of scenarios. There were multiple motivations for doing this validation
in an anechoic chamber. Firstly, using a vector network analyzer (VNA), we can obtain almost
noise free measurements of the channel frequency response. In practice, we obtain the ground
truth H,,(f) on a 400 MHz bandwidth ranging from 3.3 GHz to 3.7 GHz with a 1| MHz frequency
spacing and for all elements m = 1,..., M. We estimated the per-frequency tone SNR to be
on the order of 50 dB within the chamber, which we will refer to as almost noise-free in the
following.® Secondly, we can easily investigate the impact of additive noise by simply adding
it by post-processing the raw measurements according to a certain SNR figure. Furthermore,
we have the freedom to design measurement scenarios using point reflectors or planar reflectors
(aluminium balls or panels), at known locations, from which the path parameters can be inferred
for verification of the results. More specifically, we consider the four scenarios of Fig. 9.

The downside of using the anechoic chamber is mostly related to its dimension being relatively
small, with 5 meters between the transmitter and the receiver. This does not allow to model typical
propagation delay spreads. Furthermore, the far field assumption might not hold as ball/panel
reflections and diffraction around the absorbers take place very close to the receiver. Moreover,
the reflector surface was not completely smooth. This implies that the receiver might see the
effect of diffuse multipath components rather than specular components as assumed in our system
model in (1).

In the experiments, we used an omni-directional antenna at the transmit side with vertical
polarization and a high cross polarization discrimination ratio (> 20dB). At the receive side, we
used the cylindrical array that was described in Section V. For extracting the path parameters,
we used the SAGE algorithm using the same configuration as described in Section V-A. The
extrapolation is then simply performed by plugging the parameters estimates in (7).

In the following experiments, we define the VNA measurements H,,(f) on the 400 MHz
band as the ground truth. We normalize H,,(f) to have unit variance across antennas and
frequency points. To extract the path parameters, we use a training bandwidth of BW = 40
MHz, ranging from 3.3 GHz to 3.34 GHz, which corresponds to the iK' = 41 lower frequency
tones (frequency spacing of 1 MHz) and a center frequency f. = 3.32 GHz. We validate the

®Practical systems are usually working in a much lower SNR regime.
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Fig. 10. Channel extrapolation performance for the four scenarios of Fig. 9. Path parameters are extracted running SAGE
(L = 5) on the raw VNA measurements and a training bandwidth BW = 40 MHz. Different number of antennas of the array

are considered.

extrapolation performance using the ground truth on the remaining 360 MHz, which corresponds

to an extrapolation range of 9 times the training bandwidth BW.

A. Almost Noise-Free Performance

Using the raw VNA measurements, we run SAGE to extract parameters on a 40 MHz training
band and evaluate the extrapolation performance for the four scenarios of Fig. 9. The result is
shown in Fig. 10. As studied in Section. IV, the channel extrapolation performance is theoretically
only limited by the additive noise power and the separability of the multipath components.
Since the VNA measurements are almost noise free, one could expect a very high extrapolation
performance, especially for a large number of antennas. Unfortunately, in practice, additive noise
and path separability are not the only limiting factors as channel modeling and calibration errors
are also present, as discussed above.

In the LOS scenarios (a) and (b), we can see that the extrapolation performance always
increases as the number of antennas M decreases. We explain it by the fact that very few
reflections are present. Even in scenario (b), the reflected path coefficient has a power of about

25dB lower than the main LOS path. Hence, it is not necessary to have a high resolution in
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Fig. 11. Channel extrapolation performance based on SAGE extracted parameters for scenarios LOS (a) and NLOS (d) of Fig. 9
and a training bandwidth BW = 40 MHz. The VNA measurements are impacted by synthetic additive noise.

space to separate multipath components. Using a lower number of antennas actually reduces the
effect of calibration errors as the system model in (1) is less constrained.

In the NLOS scenarios (c) and (d), the extrapolation performance as a function of the number
antennas shows a different behavior. We should here emphasize that, in (¢) and (d), the reflecting
ball and panels were at the same height as the transmit and receive antennas. This implies that
elevation angles of arrival are relatively similar and close to 6 = 90° at the receiver. On the
other hand, the reflection on the ball, the reflection on the panel and the diffraction around the
absorber clearly have different azimuth angles or arrival. These remarks first explain why the
performance in the case M = 16 is better than in the case M = 64. Indeed, using only one ring
of antennas of the array is enough to separate the incoming waves in azimuth. Adding three other
rings of antennas (M = 64) gives more resolution in elevatio but is not required in our scenarios
and only leads to more calibration and/or modeling inaccuracy. Secondly, these remarks are in
accordance with the case M = 4 using only the front column of antennas of the array. Using a
column of the array gives high resolution in elevation and very poor resolution in azimuth. This
explains why the extrapolation performance degrades very quickly as the extrapolation range

increases as compared to the M = 16 case.

B. Performance under Additive Noise

In practice, we expect much more additive noise to be present so that the system would be

more likely to be in a noise limited regime. To study such scenario, we synthetically add noise
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on the VNA measurements based on the model in (1) with S(fx) = 1 and SNR = 25 dB. The
result, averaged over 100 noise realizations, is shown in Fig. 11 for scenarios LOS (a) and NLOS
(d). The channel extrapolation performance relying on SAGE extracted parameters is compared
to the LS estimator performance derived in (5) and the theoretical simplified LB of Corollary 1.
The full LB of Theorem 1 averaged over the antennas is also plotted. Note that the full LB
evaluation requires the ground truth path parameters 10, which can only be approximated for
real experiments. To avoid this and still get an approximation of the full LB, we assumed that
the ground truth 7 can be well approximated by the SAGE extracted parameters 12) on the raw
measurements without added noise. We can see in the figures that the SAGE performance in both
LOS and NLOS cases approach the theoretical LB. In the training band, the gap is larger due to
potential calibration and/or channel modeling errors while the gap decreases as the extrapolation

range increases, meaning that the performance enters a noise-limited regime.

VII. CONCLUSIONS

This paper investigated the frequency channel extrapolation performance for FDD massive
MIMO systems. We demonstrated the gain of applying high-resolution channel estimation as
compared to conventional low-resolution estimators. Theoretical LBs for the MSE of the ex-
trapolated channel were derived and validated through numerical simulations and experimental
measurements. In particular, we showed that a simplified LB, obtained as a special case when
paths are well separated, is very useful. It gives simplified yet accurate insight on the massive
MIMO extrapolation performance without requiring the knowledge of the antenna patterns and
the path parameters.

In conclusion, we demonstrated that, under a good calibration of the BS and favorable propaga-
tion conditions, channel extrapolation is a viable solution to deploy FDD massive MIMO systems
and completely removing the DL training overhead. Our future studies will include performance
assessment of extensive outdoor measurements. In particular, the impact of calibration errors
and channel modeling errors such as, e.g., diffuse multipath components, will require further

investigation.
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VIII. APPENDIX
A. Frequency Autocorrelation of the Channel

Using the definitions of Cy ,,,(Af) in (6), of H,,,(f) in (3) and the fact that the path parameters

are assumed 1.1.d, we can write

Crin(Af) = LE (e |am(¢1, 00) Pe™*m2/T)

= LCE (|al|26_32”Ale) ,

where we additionally used the fact that the array pattern was assumed frequency independent

and isotropic, i.e., |a,(¢,0)] = C where C' a normalization constant. We now use the fact
that 7; is uniformly distributed in [0, Ty.x] and that the conditional variable a;;7; has variance

p(m) = el

Lo [
Crrm(Af) = / p(m)e I dr
0

Tmax

LC T 1 — T/ T =327 v
- Tmax 1+ JQWAfTrms
We set ' = Jmax L to fix E(|H(f)]?) = 1.

LTyms 1—e—Tmax /Trms

B. Proof of Theorem 1

The extrapolated channel frequency response H,,(f, %) is a non linear function of the path
parameters ). A straightforward application of the CRLB for transformation of parameters [24]

gives the following bound for the extrapolation error MSE,,( f, ?2})

- aHm(fa/lp) . 718Hm(f7¢)
where
O (f. )] _ dHu(f.%)
oY " di, '
Using the vector definitions introduced in Theorem 1, we can write
gm,f,'z,b - 31,b )

which concludes the proof.
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C. Proof of Corollary 1

Using (9), we can compute the different elements of the full Fisher information matrix given
in (10). In the following, we use the notations ||s;||> = ||s||* and ||$;||* = ||$]|* given that the
dependence in the path index vanishes.

First, using (As3), we can show that the off-diagonal blocks of L vanish, i.e., I, 4, = 0
for [ # I'. Indeed, for the diagonal elements of Ly, ,» we find that

Lry = R (o avay aps"sy) = [ouf*[|al|*(|3]*6r-r
Iyg, = R (afavayargsi'sr) = |ail?[|a|*[Is]*6i-r
]glgl, = 3% (a?al/aﬁ,él/ﬂsﬁsl/) = |oq|2||al79||2||s||251_1,
[alRaﬁ = I I I =R (aiHal/slel/) = HaleHSHQ(Sl,l/.

Still using (As3), we find the same results for the off-diagonal elements of Ly 4, ,1 # I’
Actually, using (As4), we find that the result also holds when [ = [’ for the following elements

[Tl¢>1/ = (a ozyal al/ ¢Sl Sl/) =0
ITZGZ/ = (()4 al/al al/ QSZ Sl/) =0
Lon = —R (aja’ay §'sy) =0
Lo =S (afaays/'sy) =0

H o H
Lyor = R (ofa)aps{’sy) =0

One can further check that, under (As3), the elements I4,6, vanish for [ # I'. However, even

under (As4), Iy, does not vanish for [ =1', i.e

Lo, = R (o] avdyaues{'se) = |af*|s|*R (&7au0) 611



29

Taking into account the above simplifications, the full Fisher matrix I, becomes block diagonal

and each block on its diagonal is itself block diagonal

I ITsz
wl:’lpl
9 ) I¢>z¢>l [cbl@z
I"/’ = 0__2 . ’ I"»bh"»bl = ]¢191 I@@z
w *.
IO‘ZR"‘Z
Ly, Iy

ajaf
Using the fact the inverse of a block diagonal matrix is a block diagonal matrix with the inverse

of the original blocks on its diagonal, the LB of Theorem 1 averaged over the receive antennas

becomes
1 M
MZLB Z & fop Ly Bomrop
m=1 m=
0_2 M L "
w
W Z Zg Sy @bm/’zgmf‘ﬁl (17)
m=1 [=1
M L
izz |gmf,n| |9m,f,o<;*’~|2 n |G f,oclI|2
2M = =1 Inmy Lopar ool
1
% " I¢l¢z I¢191 9m, f,¢
T \Imsar Imron
Is0, 1o, I, £.0,
After some computations, we find that
i Z |gm f,al |2 4 |gm,f,a{|2 o 2L
S Lopar Logod 8]
1
Z (g* g ) I¢l¢z I¢191 Im.f.0 | 2L
b 9 9 )0 -
— m, f,é1 m, f,0 I¢>191 Ielel P HSH2
M L
3 gmgnl® _ L2mf)? L f?
= Iy s]]? Isl|? 0%’

S 2 . . . . . .
where 0% = % Inserting the result of these last equations into (17) and using the definition

SNR £ ” , we find the result of Corollary 1.
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