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Abstract

Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems

is well known to generate a large overhead as the amount of training generally scales with the number of

transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel

frequency response from uplink pilot estimates to the downlink frequency band, which completely

removes the training overhead. We first show that conventional estimators fail to achieve reasonable

accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower

bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths

are well separated, the LB is simplified in an expression that gives considerable physical insight. It

is then shown that the MSE is inversely proportional to the number of receive antennas while the

extrapolation performance penalty scales with the square of the ratio of the frequency offset and the

training bandwidth. The channel extrapolation performance is validated through numeric simulations

and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel

extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is

performed and favorable propagation conditions are present.
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I. INTRODUCTION

The deployment of massive multiple-input-multiple-output (MIMO) communications systems

strongly rely on the acquisition of accurate channel state information (CSI) at base station (BS)

[2]. Massive MIMO systems are typically characterized by a much larger number of antennas

at the BS than the sum of the antennas at the user equipments (UEs). This implies that channel

estimation is much less costly in the uplink (UL) than in the downlink (DL) [3]. In time division

duplex (TDD) systems, the BS can efficiently perform DL channel estimation from UL pilot

transmission from the UEs, since channel reciprocity holds as long as UL and DL transmission

occurs within a coherence time of the channel, and within the same frequency band. However, in

a frequency division duplex (FDD) scenario, reciprocity cannot be exploited as different bands,

usually separated by more than a coherence bandwidth, are used in UL and DL. On the other

hand, estimation of the channel by DL pilot transmission and feedback might result in a large

overhead.

A variety of methods have been proposed to solve this dilemma, such as channel correlations

in the spatial domain reflected in second-order statistics [4], [5], compression of the feedback

[6], combinations thereof [7], or compressed sensing methods [8], each of which have their

advantages and drawbacks. One of the most promising methods is channel extrapolation from

the UL to the DL band as it completely removes the overhead. The extrapolation range of

conventional extrapolators is very limited - typically to the order of one coherence bandwidth.

To overcome this limit, [9] suggested estimation of the multipath components (MPCs) via

high-resolution parameter estimation. Based on the extracted MPCs, extrapolation over large

bandwidths can be achieved. However, the paper only considered the single-input-single-output

(SISO) case, which resulted in a poor extrapolation performance. In [10], the authors extend the

study to the MIMO case and channel extrapolation in space. They perform multiple measurements

showing that they can reach a frequency extrapolation range larger than 5 times the coherence

bandwidth. In [11], the authors present the so-called R2-F2 system to extract path parameters and

infer CSI from a different training band. The authors show how to integrate the system into LTE

cellular networks and use experimental measurements for validation. Their study restricted the

frequency spacing between UL and DL band to be only 20-30 MHz. The authors in [12] compare

different extrapolation algorithms. Their study shows that a super-resolution can outperform

compressed sensing methods to perform channel extrapolation in frequency. In [13], only the
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information about user angles is extracted from UL pilots using 2D unitary ESPRIT method [14].

Then, they perform directional training in the DL. In [15], the authors propose to train a neural

network to perform the channel extrapolation in frequency. Their approach does not require the

acquisition of the antenna array patterns through calibration but requires a large training dataset.

In [16], the authors propose to acquire DL CSI through UL pilots in combination with a limited

feedback from DL pilots.

Channel extrapolation in frequency also presents formal similarities to extrapolation in time.

In contrast to frequency-domain extrapolation, channel prediction in time has been extensively

investigated in the literature. A comprehensive review can be found in [17]. In [18], the authors

proposed performance bounds for prediction in time of MIMO channels. They later extended

their study to MIMO-OFDM channel estimation with interpolation and extrapolation being done

both in time and frequency [19]. The authors make the observation that MIMO provides much

longer prediction lengths than for SISO systems.

To provide understanding of the promise of low-overhead FDD massive MIMO systems, this

paper investigates the performance of channel extrapolation in frequency. The main originality of

our paper is that the analysis combines at the same time theoretical limits, numerical simulations

and experimental validations. We believe this joint approach gives much insight on the complex

problem at hand. In particular, most of the previous approaches were driven only numerically

and/or experimentally but not theoretically. This paper extends our previous work [1] by: (i)

considering a more general channel model taking into account the frequency dependence of the

pattern; (ii) analyzing the limitations of conventional channel estimators in terms of channel

extrapolation; (iii) deriving a closed-form expression of the extrapolation range; (iv) including a

comparison of theoretical and experimental results. More specifically, our contributions can be

summarized as follows. Section II first describes the considered transmission model.

Section III highlights the advantages of high-resolution channel estimation compared to con-

ventional least squares (LS) and linear minimum mean squared (LMMSE) channel estimation.

More specifically, we show that it results in potential large signal-to-noise (SNR) gains and

extrapolation range.

In Section IV, we formulate a theoretical lower bound (LB) on the mean squared error (MSE)

of the extrapolated channel, using a similar methodology as in [19]. The proposed LB differs

from [19] as it takes into account elevation angles, the frequency dependence of the pattern, and

the influence of the training pulse. Furthermore, a simplified LB is also proposed, giving more
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Fig. 1. Massive MIMO multipath propagation environment for channel extrapolation (UL: uplink, DL: downlink, BW: training

bandwidth, CSI: channel state information).

physical intuition on the extrapolation range and the SNR gain that can be expected in practice.

The validity of the LB relies on the strong assumption that the paths are “well separated”,1

which makes particular sense in a massive MIMO context. Under this condition, we show that

the MSE of the extrapolated channel frequency response is inversely proportional to the number

of receive antennas while the extrapolation performance penalty scales with the square of the

ratio of the frequency offset from the carrier frequency and the training bandwidth.

In Section V, we analyze the performance of the theoretical LB by numerical simulations using

a 3GPP channel model showing that the LB can be reached by practical high-resolution parameter

extraction algorithms such as the space-alternating generalized expectation-maximization (SAGE)

algorithm [20]. Our results show the very limited extrapolation range that is achieved in SISO

systems, while much more promising results are obtained in the MIMO setting as the paths can

be more easily separated in the delay-angle domain. We also show that the cylindrical array

manufactured in our lab reaches similar extrapolation performance as a synthetic rectangular

planar array.

Finally, in Section VI, using a cylindrical array and an omnidirectional transmit antenna, we

perform channel measurements in an anechoic chamber on a 400 MHz bandwidth at a carrier

frequency of 3.5 GHz. We perform high-resolution channel parameter estimation on 40 MHz

of the total 400 MHz band used as the “training bandwidth”. Then, we evaluate the channel

extrapolation performance by comparing the channel extrapolation relying on the extracted paths

to the directly measured “ground truth” channels in the remaining 360 MHz. These measurements

allow to evaluate the influence of calibration and channel modelling errors and demonstrate the

1The “well separated” assumption will be properly formalized in Section IV.
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accuracy of the theoretical LB previously derived. In particular, the simplified LB derived from

Section IV is shown to provide accurate results even though its expression is very simple to

evaluate and does not require any a priori information on the path parameters and the antenna

array pattern.

Notations: Vectors and matrices are denoted by bold lowercase and uppercase letters, respec-

tively (resp.). Superscripts ∗, T and H stand for conjugate, transpose and Hermitian transpose

operators. The symbols , E(.), =(.) and <(.) denote the imaginary unit, expectation, imaginary

and real parts, respectively. The norm ‖A‖ is the Frobenius norm and δn is the Kronecker delta.

The diag(.) operator applied to a vector returns a diagonal matrix whose k−th diagonal entry

is equal to the k−th entry of the argument vector.

II. SIMO TRANSMISSION MODEL

We consider FDD massive MIMO scenarios where each user has a single-antenna and transmits

an UL training sequence that is orthogonal to those of the other users. Thus, the estimations

for different users become independent and in particular, the extrapolation in frequency of the

SIMO channel of each user can be treated independently. Moreover, to highlight the gain of

having antenna arrays, the SISO case is studied in parallel.

Let us consider the transmission of a baseband equivalent pulse of bandwidth (BW) a priori

known by the receiver and whose Fourier transform is denoted by S(f), as depicted in Fig. 1.

We assume that the channel is quasi-static, i.e., constant for the duration of the transmission.

M denotes the number of antennas of the receive array. Antennas at transmit and receive

sides are assumed to be vertically polarized. We also assume that the propagation channel is

composed of L specular paths, where each path is completely characterized by its deterministic

parameters: complex gain αl = <(αl) + =(αl), delay τl, azimuth angle φl and elevation angle

θl. We denote by am(φ, θ, f) the pattern of antenna m evaluated in the direction (φ, θ) and

at frequency f . Note that the frequency dependence of the array pattern cannot generally be

omitted for our scenario, depending on the considered training and extrapolated frequency

range. More specifically, the frequency selectivity of am(φ, θ, f) comes from two contributions:

firstly the frequency dependence of each individual antenna pattern and secondly the frequency

dependent phase shift across the antenna array elements (beam squinting).2 The receiver obtains

2This dependence is often neglected in the literature when the ratio of the dimension of the array to the speed of light is

much smaller than the inverse of the bandwidth of the signal.
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K frequency samples and the baseband complex received sample at antenna m and baseband

frequency fk can be expressed as

Rm(fk) =
L∑
l=1

αlam(φl, θl, fk)e
−2πfkτlS(fk) +Wm(fk), (1)

where Wm(fk) is zero mean additive complex circularly symmetric Gaussian noise. We assume

that the noise samples are white, i.e., E (Wm(fk)W
∗
m(fk′)) = σ2

wδm−m′δk−k′ . Note that the model

in (1) straightforwardly applies to OFDM systems.

The SISO case can be seen as a special case of the SIMO case where each ray is completely

characterized by its complex gain α̃l and its delay τl while the information on the angles of

arrival is lost. In the following, the index “m” will be omitted when the single-antenna case is

considered. Equation (1) becomes

R(fk) =
L∑
l=1

α̃le
−2πfkτlS̃(fk) +W (fk). (2)

Note that the SISO model in (2) relies on the underlying assumption that the receive antenna

pattern a(φ, θ, f) is frequency-angle separable, i.e., a(φ, θ, f) = b(φ, θ)G(f). This allows to

take the angle dependence of the pattern b(φ, θ) into account in by the channel complex gains

α̃l = αlb(φl, θl) while the remaining frequency dependence G(f) can be taken into account by

the pulse S̃(fk) = S(fk)G(fk). Furthermore, both the models in (1) and (2) rely on a similar

assumption at the transmit side: the transmit antenna has a frequency-angle separable pattern so

that its dependence in the angles of departure can be accounted for in the coefficients αl while

the frequency dependence can be accounted for in the transmit pulse S(f).

We finally note that a number of straightforward generalizations of this model can be made:

(i) V and H polarizations can be taken into account by representing the path amplitudes as 2×1

vectors and the array patterns as 2 × 2 polarimetric matrices. (ii) multiple antenna elements

at the UEs can also be taken into account similarly; (iii) scatterers in the nearfield can be

described by replacing the plane wave model of each path by a spherical wave model, where

the wavefront curvature of each path is now an additional parameter of the model. However, for

ease of exposition we use the simplified models of (1) and (2) in the remainder of this paper.

III. CHANNEL EXTRAPOLATION

Let us define ψ = (ψT
1 , . . . ,ψ

T
L)T ∈ R5L×1 and ψl = (τl, φl, θl,<(αl),=(αl))

T ∈ R5×1 as the

vectors containing all real path parameters and the real parameters of each path respectively. We
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define the channel frequency response evaluated at frequency f and antenna m as

Hm(f) ,
L∑
l=1

αlam(φl, θl, f)e−2πfτl . (3)

and the MSE of an estimate Ĥm(f) of Hm(f) as

MSE(f,ψ) , E|Ĥm(f)−Hm(f)|2, (4)

where the expectation is taken over the noise realizations for deterministic path parameters ψ. In

the following, we review two conventional low resolution channel estimators: LS and LMMSE

estimator. We will highlight that these estimations relying on a linear combination of the received

frequency samples results in an extrapolation range limited by the coherence bandwidth of the

channel. In the light of its limitations, we detail our motivations for going towards high-resolution

channel estimation.

A. Conventional Low-Resolution Estimation

1) LS estimator: LS estimators perform a simple per-antenna estimation at each frequency

point as

ĤLS
m (fk) =

Rm(fk)

S(fk)
= Hm(fk) +

Wm(fk)

S(fk)
.

We can easily see that the LS estimator is unbiased and is only limited by additive noise. Since

the noise samples wm[n] have variance σ2
w, we can write

MSELS(fk,ψ) , E|ĤLS
m (fk)−Hm(fk)|2 =

σ2
w

|S(fk)|2
.

We define the total training energy as ET =
∑K−1

k=0 |S(fk)|2 and the SNR as SNR , ET/σ
2
w.

If the training signal is chosen so that the energy is uniformly distributed across the frequency

bins, i.e., |S(fk)|2 = ET
K

, the MSE becomes constant across frequency and

MSELS(fk,ψ) =
σ2
wK

ET
=

K

SNR
. (5)

Let us assume that the received samples are uniformly spaced in frequency and their frequency

spacing is lower than the inverse of the maximal delay spread of the channel τmax so that

no aliasing is present. Then, the Whittaker-Shannon formula can be used to interpolate every

frequency points in the training bandwidth. Furthermore, if the frequency samples are spaced

more closely than 1/τmax, their correlation might be leveraged to improve the MSE. This gain is
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Fig. 2. Channel extrapolation methods based on a linear combination of received frequency samples such as LMMSE estimators

give a very limited extrapolation range.

properly taken into account by the LMMSE estimator described below. This gain is also similar

to a multicarrier system that would convert its pilot-based frequency channel estimates to the

time domain, truncate the obtained impulse response to significant coefficients and finally convert

it back to frequency [21].

2) LMMSE estimator: Based on the LS frequency estimates, simple linear extrapolation

methods can be used. However, most of these methods would have a very limited extrapolation

range, on the order of the coherence bandwidth of the channel. To demonstrate this, we will

study the performance of the LMMSE estimator [22] in terms of channel extrapolation. The

LMMSE frequency estimate at frequency f is simply given by

ĤLMMSE
m (f) = cHLS(f)C−1

LS ĥLS,m,

where ĥLS,m = (ĤLS
m (f0), . . . , ĤLS

m (fK−1))T , CLS = E(ĥLS,mĥ
H

LS,m) and cHLS(f) = E
(
Hm(f)ĥ

H

LS,m

)
.

The MSE is then given by

MSELMMSE(f) = E
(
|Hm(f)|2

)
− cHLS(f)C−1

LScLS(f),

where the expectation is taken here with respect to the statistics of both the noise and the

parameters ψ. An implementation challenge of the LMMSE estimator is that it requires the

knowledge of the autocorrelation function of the channel frequency response

CH,m(∆f) , E (Hm(f + ∆f)Hm(f)∗) . (6)

This function depends on the joint distribution of the path parameters ψ. To highlight the

limitations of the LMMSE estimator in terms of extrapolation, let us consider a simple optimistic
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example where the receiver would have perfect knowledge of the noise variance σ2
w and the

frequency autocorrelation of the channel CH,m(∆f). As in [22], we assume that the paths gains

and delays are i.i.d. For the sake of simplicity, we here assume a frequency independent and

isotropic array pattern so that am(φ, θ, f) = am(φ, θ) and |am(φ, θ)| = 1. Furthermore, the

delay of each path τl has a uniform distribution in [0, τmax] and the conditional distribution

of the variable αl; τl is a zero-mean complex circularly symmetric Gaussian with variance

p(τl) = e−τl/τrms . This gives (see Appendix VIII-A)

CH,m(∆f) =
1

1− e−τmax/τrms

1− e−τmax/τrms−2π∆fτmax

1 + 2π∆fτrms

.

Fig. 2 shows the performance of the LS and LMMSE estimators. The training signal was

chosen to have uniform energy distribution across frequency. The training bandwidth is set to

BW = 5 MHz and the spacing between each frequency point is set to 0.8/τmax, which is

slightly faster than the Nyquist rate 1/τmax. The delay parameters are fixed to τmax = 2.5µs

and τrms = 0.5µs. By definition, the LS estimator is restricted to the training bandwidth. On

the other hand, the extrapolation range of the LMMSE estimator is extremely limited and only

slightly improves the range of the LS estimator. The extrapolation range is on the order of the

coherence bandwidth or 1/τmax = 400 kHz. Furthermore, we here assumed an optimistic case

where the receiver has perfect knowledge of CH,m(∆f). This is generally not the case and we

do not make this assumption in the following derivations.

B. High-Resolution Estimation

In the light of the previous discussions, we are interested in finding better channel estimators,

which could extrapolate frequency way beyond one coherence bandwidth, to address typical FDD

massive MIMO systems. For instance, let us take a simple example where the channel only has

a few well separated specular multipath components, i.e., L << K. Then, an intuitive reasoning

suggests to go for high-resolution estimation of the L different path parameters directly [9].

There are two main motivations for this: SNR gain and extrapolation. The SNR gain would

come from two sources. First, the receiver only has to estimate L complex coefficients rather

than K, resulting in a potential SNR gain of K
L

with respect to LS estimation. One should note

that this gain is stronger than the potential gain of using a frequency correlation filter as in [22].

It does not come from simply assuming that the channel impulse response has a finite length KT

inducing correlation in the frequency domain but from its sparsity in the delay-angle domain.



10

Secondly, the received signal at each antenna can be coherently combined to jointly estimate and

separate all path parameters instead of performing per-antenna independent channel estimation

as in the LS case, which results in a potential total SNR gain of a factor MK
L

with respect to LS

estimation. One should here note that an improved LMMSE estimators leveraging correlation in

the spatial domain through the antennas could also achieve a similar gain.

By definition, low-resolution estimators are restricted to the bandwidth occupied by the training

signal. However, high-resolution estimates of the path parameters allow for simple channel

extrapolation in frequency possibly very far from the center frequency of the training band. If

we denote by τ̂l, φ̂l, θ̂l and α̂l the high-resolution estimates of τl, φl, θl and αl respectively, we

can write the expression of the extrapolated channel as

Ĥm(f, ψ̂) =
L∑
l=1

α̂lam(φ̂l, θ̂l, f)e−2πfτ̂l . (7)

Of course, intuitive reasoning tells us that the extrapolated channel will suffer from the estimation

errors on the path parameters, especially as the extrapolation range becomes large. We also

assume here that the parameters of the MPCs are independent of frequency. This is well fulfilled

in most practical situations [23], since the range over which these parameters change is on the

order of 10% of the carrier frequency, which is much larger than the extrapolation range we can

usually obtain, see Section V.

IV. PERFORMANCE ANALYSIS

This section aims at theoretically formalizing and analyzing the two potential gains of high-

resolution channel estimation previously described: SNR gain and extrapolation factor. To do

this, we will in a first step derive the Fisher information matrix of the estimated path parameters.

The second step will consist of deriving a lower bound on the MSE of the extrapolated channel.

In a third step, a simplified LB will be derived giving much more physical intuition. Finally, the

bounds for the MIMO case will be particularized to the SISO case.

A. Fisher Information Matrix

Let us define the vector r ∈ CKM×1 as containing all received samples for all antennas and

observation samples. Given the independence of the noise samples, the log-likelihood of vector

r becomes

L (r;ψ) =
K−1∑
k=0

M∑
m=1

L (Rm(fk);ψ) .
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The elements of the Fisher information matrix Iψ ∈ R5L×5L can be obtained from the log-

likelihood function as [24]

[Iψ]u,v = −E
(
∂2L (r;ψ)

∂ψu∂ψv

)
(8)

= −
K−1∑
k=0

M∑
m=1

E
(
∂2L (Rm(fk);ψ)

∂ψu∂ψv

)
,

where the expectation is taken over the noise distribution. Since the random variable Rm(fk);ψ

follows a circularly symmetric complex normal distribution with variance σ2
w and mean µm,k ,∑L

l=1 αlam(φl, θl, fk)S(fk)e
−2πfkτl , equation (8) can be rewritten as

[Iψ]u,v =
2

σ2
w

K−1∑
k=0

M∑
m=1

<
{
∂µ∗m,k
∂ψu

∂µm,k
∂ψv

}
. (9)

The full 5L× 5L Fisher information matrix Iψ can be partitioned into L2 submatrices Iψl,ψl′ ∈

R5×5 as

Iψ =
2

σ2
w


Iψ1,ψ1

. . . Iψ1,ψL
... . . . ...

IψL,ψ1
. . . IψL,ψL

 , (10)

and the structure of the submatrices Iψl,ψl′ is given by

Iψl,ψl′ =



Iτlτl′ Iτlφl′ Iτlθl′ IτlαRl′
IτlαIl′

Iτlφl′ Iφlφl′ Iφlθl′ IφlαRl′
IφlαIl′

Iτlθl′ Iφlθl′ Iθθl′ IθαR
l′

IθαI
l′

IτlαRl′
IφlαRl′

IθαR
l′

IαRl αRl′
IαRl αIl′

IτlαIl′
IφlαIl′

IθαI
l′

IαRl αIl′
IαIl αIl′


.

Defining ȧm,φ(φ, θ, f) , dam(φ,θ,f)
dφ

and ȧm,θ(φ, θ, f) , dam(φ,θ,f)
dθ

, we can write the partial

derivatives appearing in (9) as

dµm,k
dτl

= αlam(φl, θl, fk)(−2πfk)S(fk)e
−2πfkτl

dµm,k
dφl

= αlȧm,φ(φ, θ, fk)S(fk)e
−2πfkτl

dµm,k
dθl

= αlȧm,θ(φ, θ, fk)S(fk)e
−2πfkτl

dµm,k
dαRl

= am(φl, θl, fk)S(fk)e
−2πfkτl

dµm,k
dαIl

= am(φl, θl, fk)S(fk)e
−2πfkτl .
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Inserting these partial derivatives in (9) and for a specific array pattern am(φ, θ, f), the Fisher

information matrix in (10) can be easily constructed. In the following, we will make the following

assumption.

(As1): the Fisher information matrix Iψ is nonsingular.

In practice, a rank deficiency of Iψ could arise if two rays, or more, become extremely close

in delay and angle, which would cause the determinant of Iψ to go to zero. A solution in this

case can be to replace the two correlated rays with one ray whose amplitude is the sum of the

amplitudes of the components. It is intuitive that this operation will not cause a large information

loss if the rays are close enough. However, care must be taken not to merge paths whose distance

in the delay domain is comparable to or larger than the inverse of the extrapolation range.

B. Lower Bound on the MSE of the Extrapolated Channel

Let us denote by ψ̂ ∈ R5L×1 an unbiased estimator of ψ with covariance matrix

Cψ̂ = E
((
ψ − ψ̂

)(
ψ − ψ̂

)T)
,

where the expectation is taken over the noise distribution. The Cramer-Rao lower bound (CRLB)

tells us that the matrix Cψ̂− I−1
ψ is positive semidefinite, which implies that gHCψ̂g ≥ gHI−1

ψ g

for every vector g ∈ C5L×1. If vector g is chosen as an all zero vector except a one at u-th

entry, we get a LB for the variance of the estimated parameter ψu. The CRLB only provides a

LB on the variance of the estimated parameters while we are interested on the variance on the

error of the extrapolated channel defined in (4). To obtain a performance limit, we would like

to lower bound the MSE by a certain quantity LBm(f, ψ̂) so that

MSEm(f, ψ̂) ≥ LBm(f,ψ),

where LBm(f,ψ) would only depend on deterministic parameters. The following theorem gives a

closed-form expression of the LB on the extrapolated channel as a function of the path parameters

ψ and the extrapolated frequency f .

Theorem 1. Under (As1), the LB on the MSE of the extrapolation error LBm(f,ψ) for any

unbiased estimator Ĥm(f,ψ) can be expressed as

LBm(f,ψ) , gHm,f,ψI
−1
ψ gm,f,ψ,
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with the following vector definitions

gm,f,ψ = (gTm,f,ψ1
, . . . ,gTm,f,ψL)T

gm,f,ψl = (gm,f,τl , gm,f,φl , gm,f,θl , gm,f,αIl , gm,f,αRl )T

gm,f,τl = (−2πf)αlam(φl, θl, f)e−2πfτl

gm,f,φl = αlȧm,φ(φl, θl, f)e−2πfτl

gm,f,θl = αlȧm,θ(φl, θl, f)e−2πfτl

gm,f,αRl = am(φl, θl, f)e−2πfτl

gm,f,αIl = am(φl, θl, f)e−2πfτl .

Proof. The proof is given in Appendix VIII-B and relies on the application of the CRLB formula

for transformation of parameters [24].

C. Separated Rays

The LB of Theorem 1 is in closed-form, which allows to easily evaluate it numerically. How-

ever, it requires the inversion of the Fisher information matrix and does not provide much intuition

on the exact SNR gain and extrapolation range that we can expect. To further characterize and

try to gain more insight, let us introduce the set of assumptions (As2)− (As4).

(As2): the array pattern is non frequency selective, i.e., am(φ, θ, f) = am(φ, θ).

This assumption makes sense if the antenna patterns are flat in the considered band and if the

ratio of the dimension of the array to the speed of light is much smaller than that the inverse

of the extrapolation range. In the remaining part of this section, we assume that (As2) holds,

and we drop the frequency dependence of the array. We define the following vectors in order to

introduce assumptions (As3)− (As4)

sl ,
(
S(f0)e−2πf0τl . . . S(fK−1)e−2πfK−1τl

)T
ṡl , −2π(f0S(f0)e−2πf0τl , ..., fK−1S(fK−1)e−2πfK−1τl)T

al ,
(
a1(φl, θl) . . . aM(φl, θl)

)T
∈ CM×1

ȧl,φ ,
(
ȧ1,φ(φl, θl) . . . ȧM,φ(φl, θl)

)T
∈ CM×1

ȧl,θ ,
(
ȧ1,θ(φl, θl) . . . ȧM,θ(φl, θl)

)T
∈ CM×1.



14

(As3): separation of the L specular rays in delay, azimuth angle and/or elevation angle. We

assume that, for each pair of rays l, l′ (l 6= l′), at least one of the following two relationships is

verified:

(1) Separation in delay:

sHl sl′ = ṡHl ṡl′ = ṡHl sl′ = 0. (11)

(2) Separation in azimuth and/or elevation angle:

aHl al′ = ȧHl,θȧl,θ = ȧHl,φȧl,φ = ȧHl,θȧl = ȧHl,φȧl = ȧHl,φȧl′,θ = 0.

The assumption (As3) is a strong assumption, whose accuracy will typically depend on

different parameters. The specular paths will generally become more separated in delay as the

bandwidth of S(f) increases, inducing higher resolution in delay. Similarly, the separation in

azimuth and elevation will be improved as the number of antenna elements M is increased.

More generally, the validity of (As3) will depend on the training signal S(fk), on the array

pattern am(φ, θ) and on the extrapolation range.

(As4): the training signal S(f) has a symmetric energy distribution |S(f)|2 = |S(−f)|2

implying that

ṡHl sl = (2π)
K−1∑
k=0

fk|S(fk)|2 = 0, l = 1, . . . , L. (12)

Furthermore, the array pattern am(φ, θ) satisfies the following symmetry condition

ȧHl,φȧl = ȧHl,θȧl = 0, l = 1, . . . , L.

The symmetric condition on the array pattern is generally satisfied for symmetric array. For

instance, it is trivial to check that the condition is fulfilled if each antenna element has an

isotropic pattern according to (16) later studied in Section V. The following corollary gives a

particularization of the LB of Theorem 1 under additional assumptions (As2)− (As4) and for

the MSE averaged over the receive antennas, i.e.,

MSE(f, ψ̂) ,
1

M

M∑
m=1

MSEm(f, ψ̂).
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Corollary 1. Under (As2)− (As4), the expression of the LB of Theorem 1 averaged over the

receive antennas simplifies to

LB(f,ψ) ,
1

M

M∑
m=1

LBm(f,ψ)

=
1

SNR

L

M︸︷︷︸
SNR gain

( 2︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation penalty

), (13)

where σ2
F is the mean squared bandwidth of the transmit signal

σ2
F ,

‖ṡ‖2

(2π)2‖s‖2
=

∑K−1
k=0 f

2
k |S(fk)|2∑K−1

k=0 |S(fk)|2
.

Proof. The proof is given in Appendix VIII-C.

By adding some assumptions, the LB proposed in Theorem 1 can be greatly simplified and

Corollary 1 provides much insight into the physical meaning of the different terms of the LB. We

can clearly identify the two main advantages of high-resolution channel estimation. As expected,

a SNR gain of a factor MK
L

can be observed with respect to the LS estimation performance

that we derived in (5). This gain comes from two contributions: the array gain M and the

estimation of only L channel paths instead of K as in the LS case. However, a loss factor of 2

appears, coming from the penalty of estimating the real and imaginary gains, the azimuth and

the elevations angles of each path. Secondly, the channel can be extrapolated in frequency at

the cost of a MSE penalty that quadratically scales with the ratio f/σF where the denominator

indicates that the extrapolation range can be quantified in multiples of the signal bandwidth.

It is interesting to see that the dependence of LB(f,ψ) on the path parameters ψ vanishes. This

is in part explained by the fact that each path is well separated, which cancels the interdependence

between different paths. Additionally, the channel frequency response is evaluated in the direction

of the incoming specular waves, canceling the dependence on the parameters of each path as

well as the dependence on the array pattern.

Based on the simplified LB, we can find a closed-form expression of the extrapolation range.

We define the γ extrapolation range as the frequency beyond which the extrapolation performance

falls γ times below that of the conventional LS estimator given in (5). Inserting the expressions

of (5) and (13) in the equation LB(f,ψ) = γMSELS, we easily find

fExtrapol−γ = 2σF

√
MKγ

2L
− 1. (14)
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Note that this definition is independent on the SNR while the parameters K, L and σF are

related to the training bandwidth BW. Depending on the system requirements, the value of γ

can be chosen differently and the actual useful extrapolation range can be larger or smaller.

D. Single-Input-Single-Output

The specialization of the above results to the SISO case is straightforward. As the angles of

arrival are not resolved, the Fisher information matrix becomes a 3L× 3L matrix. To simplify

the LB, we introduce the following adaptation of (As3)− (As4) to the SISO case:

(As3′): separation of the L specular rays in delay. We assume that, for each pair of rays l, l′

(l 6= l′), the condition (11) is verified.

(As4′): the training signal S(f) has a symmetric energy distribution |S(f)|2 = |S(−f)|2

implying that (12) holds.

Corollary 2. Under (As1), the LB on the channel extrapolation error for any unbiased estimator

Ĥ(f, ψ̂) in the SISO case is

LBSISO(f,ψ) , gHf,ψI
−1
ψ,SISOgf,ψ,

where gf,ψ = (gTf,ψ1
, . . . ,gf,ψL)T and gf,ψl = (−2πfαl, 1, )T e−2πfτl . Under (As3′)− (As4′),

the LB simplifies to

LBSISO(f,ψ) =
L

SNR︸ ︷︷ ︸
SNR gain

( 1︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation penalty

)

end the γ extrapolation range becomes

fExtrapol−γ,SISO = 2σF

√
Kγ

L2
− 1

2
. (15)

Proof. The proof is omitted as it follows the same methodology as the proofs of Theorem 1 and

Corollary 1.

As could be expected, the only SNR gain now comes from estimating L coefficients rather

than K while the array gain has vanished. One can note that the loss factor is only one versus

two in the SIMO case as the azimuth and elevation angles of each path are not estimated. The

main difference of the SISO case with the SIMO case is the fact that far fewer observations of

the channel are available, especially compared to a massive MIMO scenario with a large M .

This not only eliminates the array gain but also makes Iψ,SISO more ill-conditioned as the rays
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Fig. 3. Generated set of parameters (αl, τl, φl, θl) for l = 1, ..., L with L = 21 and following 3GPP 3D-UMa NLOS model.

The sum of gains is normalized to one.

Fig. 4. Cylindrical array manufactured in our lab. Each ring/row of the array has 16 antenna elements. Top and bottom rings

are composed of dummy/terminated elements while the four rings in the middle contain active elements, giving a total of

M = 4× 16 = 64 elements.

can only be separated in the delay domain. As a result, (As3′) is a stronger assumption than

(As3) and might only be valid for a small number of rays L and/or a very large bandwidth.

These factors tend to strongly limit the potential gains of high-resolution channel estimation in

SISO systems [9].

V. NUMERICAL VALIDATION

This section aims at assessing the accuracy of the theoretical LB of the extrapolated channel

through simulations. The training pulse shape S(f) is chosen to have uniform energy distribution

over the K frequency points fk, which are uniformly spaced across the training bandwidth BW

with spacing 1/τmax, i.e., fk =
(
k − K−1

2

)
/τmax for k = 0, . . . , K − 1 and K = BWτmax + 1.
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(b) φ = 0◦, f = 3.3 GHz, m = 1, 2, 3, 4.

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7
−1
0

1

2

3

4

5

6

7

Frequency f [GHz]

M
ag

ni
tu

de
[d

B
]

(c) φ = 0◦, θ = 90◦, m = 1, 2, 3, 4.

Fig. 5. Cylindrical array pattern am(φ, θ, f). Normalization is arbitrary. (a) Azimuth cut of one ring/row of 16

elements. (b) Elevation cut of front column of 4 elements. (c) Frequency dependence of front column of 4 elements.

This assumption is consistent with, e.g., the Zhadoff-Chu training sequences in LTE and NR.

We set τmax = 2.5µs. In the following we consider a SNR of 25 dB. We recall that our definition

of the SNR is the ratio of the total signal variance to the per-frequency tone noise variance, i.e.,

SNR = ET/σ
2
w. This implies that the per-frequency tone SNR is K times smaller.

The performance in the figures is shown as a function of frequency normalized to the training

bandwidth BW, as we expect form Corollary 1 that the extrapolation range scales accordingly.

In the legend of the figures, the full LB refers to the LB of Theorem 1 averaged over the receive

antennas and the simplified LB refers to the expression of Corollary 1. In the SISO case, the full

and simplified LB curves refer to the corresponding expressions in Corollary 2. The conventional

LS estimation performance derived (5) will be considered as a benchmark.

The MPC parameters were generated by the QuaDRiGa toolbox [25] according to the 3D-

UMa NLOS model defined by 3GPP TR 36.873 v12.5.0 specifications [26]. The same set of

parameters was used for all simulations and is depicted in Fig. 3. One can see that some rays

are very closely spaced in delay and angle. We took on purpose a non line of sight scenario to

consider a more challenging case as all paths need to be resolved to properly model the channel

instead of only a few in a line of sight case.

The center frequency fc is set to 3.5 GHz. We consider two types of array at receive side:

• A synthetic rectangular planar array with an inter-antenna element spacing of λc/2 where

λc is the center wavelength. The antenna elements have an isotropic pattern so that the
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pattern of each element becomes only a phase shift

am(φ, θ, f) = e−2π
fc+f
c

rm·ê(φ,θ), (16)

where ê(φ, θ) is a unit vector in R3 pointing in the direction of the incoming ray l and

the position of the m-th receive array element is denoted by rm ∈ R3 with respect to an

reference point. The reference point is chosen to ensure that
∑

m rm = 0. Three rectangular

array geometries are considered: M = 8 (4 Horiz.× 2 Vert.), M = 16 (4 Horiz.× 4 Vert.)

and M = 64 (8 Horiz.× 8 Vert.).

• A cylindrical array manufactured in our lab shown in Fig. 4. Each ring/row of the array has

16 antenna elements. Top and bottom rings are composed of dummy/terminated elements

while the four rings in the middle contain active elements, giving a total of M = 4×16 = 64

active elements. Each active element has one vertically and one horizontally polarized port

with high cross polarization discrimination ratio. We only used the vertically polarized ports

in this study. In the following, we will consider different subsets of the total array: M = 8

contains only one ring with one out of two elements, M = 16 contains one ring of elements

and M = 32 contains two rings of elements. The pattern of each array element am(φ, θ, f)

was obtained by careful calibration in our anechoic chamber over the band f ∈ [3.3, 3.7]

GHz, for an azimuth range φ ∈ [0, 2π] and elevation range θ ∈ [0, π].3 Azimuth, elevation

and frequency cuts of the array are shown in Fig. 5. Note that the pattern shows frequency

variations of about 6 dB on the 400 MHz bandwidth.

A. SAGE Performance versus Theoretical LB

For high resolution parameter extraction, we extend the SAGE algorithm introduced in [20]

to extract elevation angles. The algorithm works in the frequency domain taking into account

the frequency dependence of the pattern according to (1). The performance of the algorithm is

averaged over 100 noise realizations. A delay step size of 1
50BW Hz and an angular grid size

of 1 degree are used as parameters of the SAGE grid search. For the parameters M = 16,

SNR = 25 dB and BW = 20 MHz, Fig. 6 shows that the SAGE-based parameter extraction and

channel extrapolation based on (7) can approach the performance of the theoretical LB. This

3During calibration, we sampled am(φ, θ, f) with a 1 MHz frequency resolution and 5 degrees angular resolution. We obtain

the full pattern am(φ, θ, f) by linear interpolation in frequency and through the effective aperture distribution function (EADF)

in angle [27]. The EADF also allows simple evaluation of the angular derivatives of the pattern required for the LB computation.
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Fig. 6. The SAGE algorithm can approach the performance of the full LB (Theorem 1) and the simplified LB (Corollary 1).
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Fig. 7. Impact of the bandwidth on the extrapolation performance. As bandwidth increases, the full LB converges

to the simplified LB meaning that (As3) holds.

implies that the LB gives a good indicator of the achievable MSE. Furthermore, we can see in

the figure that the LB performs very close to the simplified one, implying that the paths are

well separated. As expected, high resolution parameter extraction provides a large SNR gain of a

factor MK
L
≈ 46 ≈ 16 dB with respect to the LS estimator. Moreover, the LS performance is very

poor, as expected according to (5). Note that our definition of the SNR is not the per-frequency

bin SNR, which is K = 51 ≈ 17 dB times smaller.
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B. Influence of the Bandwidth

Fig. 7 (a) and (b) show the impact of the bandwidth in the SISO and the M = 64 rectangular

array cases respectively. As the bandwidth increases, the receiver has a larger resolution in time

and it can better resolve the different paths in the delay domain. As the bandwidth increases,

(As3′) becomes more valid and the full LB converges to the simplified LB. The gap between the

full and simplified LB can be seen as an indicator of the separability of the path parameters. The

big difference of the SIMO case with the SISO case is that the extrapolation becomes possible

for a much smaller training bandwidth: 10 MHz versus 800 MHz.4 This is explained by the

fact that the paths can be separated in the delay-angle domain instead of just the delay domain.

Moreover the SIMO system achieves a SNR gain of a factor M/2 = 64/2 ≈ 15 dB.5

In the light of these limitations, we can conclude that the price to pay for channel extrapolation

in SISO is to have a very large bandwidth at disposal and/or a channel that exhibits few

well separated paths in delay. These observations tends to strongly limit the applicability of

extrapolation for conventional SISO communication systems.

As opposed to high-resolution channel estimation, increasing the bandwidth with a fixed SNR

is detrimental to conventional LS estimation as the number of frequency bins K to estimate

becomes larger, as shown in (5). Another way to view this is that the energy is more spread out

in frequency and leads to a lower per-frequency bin SNR.

C. Influence of the Number of Antennas and the Array Type

Fig. 8 (a) depicts the extrapolation performance given a fixed training bandwidth of 20 MHz,

with different number of antenna elements. Both the rectangular and cylindrical arrays are

considered. The same effect previously described in terms of bandwidth occurs in terms of

antenna numbers, i.e., as the number of antennas increases, the resolution in the angle domain

increases and the full LB converges to the simplified LB. These observations imply that the

separability of the rays can be achieved by trading bandwidth against number of antennas. The

synthetic rectangular and the real cylindrical arrays seem to achieve similar performance. In the

SISO case, no extrapolation is possible given that the paths cannot be well separated using only

4Note that a number of our system model assumptions starts to be violated for a bandwidth of 800 MHz at 3.5 GHz carrier

frequency. Such limitations are not taken into account in the above figure for ease of interpretation.
5The factor 1/2 stands for the loss factor of estimating the azimuth and elevation parameters of each path in the SIMO case.
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gain. Synthetic rectangular and real cylindrical arrays exhibit very similar performance. (b) Extrapolation range
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Fig. 9. Four scenarios investigated in the anechoic chamber for the experimental validation. Transmit antenna and receive array

are spaced 5 meters apart. (a) is only line-of-sight (LOS). (b) is LOS + an aluminium ball. (c) is non-line-of-sight (NLOS) +

aluminium ball. (d) is NLOS + aluminium panel.

the delay domain. The simplified LB of Corollary 1 is very close to the full LB of Theorem 1

as soon as the array has at least 8 antennas, even though it does not depend on the array pattern

and the path parameters. In Fig. 8 (b), the extrapolation range fExtrapol−γ given in (14) is plotted

as a function of the number of antennas. As a reminder, the formula assumes that the paths are

well separated and is properlu defined just before (14).
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VI. EXPERIMENTAL VALIDATION

This section presents the validation of the extrapolation performance through experimental

measurements for a series of scenarios. There were multiple motivations for doing this validation

in an anechoic chamber. Firstly, using a vector network analyzer (VNA), we can obtain almost

noise free measurements of the channel frequency response. In practice, we obtain the ground

truth Hm(f) on a 400 MHz bandwidth ranging from 3.3 GHz to 3.7 GHz with a 1 MHz frequency

spacing and for all elements m = 1, . . . ,M . We estimated the per-frequency tone SNR to be

on the order of 50 dB within the chamber, which we will refer to as almost noise-free in the

following.6 Secondly, we can easily investigate the impact of additive noise by simply adding

it by post-processing the raw measurements according to a certain SNR figure. Furthermore,

we have the freedom to design measurement scenarios using point reflectors or planar reflectors

(aluminium balls or panels), at known locations, from which the path parameters can be inferred

for verification of the results. More specifically, we consider the four scenarios of Fig. 9.

The downside of using the anechoic chamber is mostly related to its dimension being relatively

small, with 5 meters between the transmitter and the receiver. This does not allow to model typical

propagation delay spreads. Furthermore, the far field assumption might not hold as ball/panel

reflections and diffraction around the absorbers take place very close to the receiver. Moreover,

the reflector surface was not completely smooth. This implies that the receiver might see the

effect of diffuse multipath components rather than specular components as assumed in our system

model in (1).

In the experiments, we used an omni-directional antenna at the transmit side with vertical

polarization and a high cross polarization discrimination ratio (> 20dB). At the receive side, we

used the cylindrical array that was described in Section V. For extracting the path parameters,

we used the SAGE algorithm using the same configuration as described in Section V-A. The

extrapolation is then simply performed by plugging the parameters estimates in (7).

In the following experiments, we define the VNA measurements Hm(f) on the 400 MHz

band as the ground truth. We normalize Hm(f) to have unit variance across antennas and

frequency points. To extract the path parameters, we use a training bandwidth of BW = 40

MHz, ranging from 3.3 GHz to 3.34 GHz, which corresponds to the K = 41 lower frequency

tones (frequency spacing of 1 MHz) and a center frequency fc = 3.32 GHz. We validate the

6Practical systems are usually working in a much lower SNR regime.
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Fig. 10. Channel extrapolation performance for the four scenarios of Fig. 9. Path parameters are extracted running SAGE

(L = 5) on the raw VNA measurements and a training bandwidth BW = 40 MHz. Different number of antennas of the array

are considered.

extrapolation performance using the ground truth on the remaining 360 MHz, which corresponds

to an extrapolation range of 9 times the training bandwidth BW.

A. Almost Noise-Free Performance

Using the raw VNA measurements, we run SAGE to extract parameters on a 40 MHz training

band and evaluate the extrapolation performance for the four scenarios of Fig. 9. The result is

shown in Fig. 10. As studied in Section. IV, the channel extrapolation performance is theoretically

only limited by the additive noise power and the separability of the multipath components.

Since the VNA measurements are almost noise free, one could expect a very high extrapolation

performance, especially for a large number of antennas. Unfortunately, in practice, additive noise

and path separability are not the only limiting factors as channel modeling and calibration errors

are also present, as discussed above.

In the LOS scenarios (a) and (b), we can see that the extrapolation performance always

increases as the number of antennas M decreases. We explain it by the fact that very few

reflections are present. Even in scenario (b), the reflected path coefficient has a power of about

25dB lower than the main LOS path. Hence, it is not necessary to have a high resolution in
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Fig. 11. Channel extrapolation performance based on SAGE extracted parameters for scenarios LOS (a) and NLOS (d) of Fig. 9

and a training bandwidth BW = 40 MHz. The VNA measurements are impacted by synthetic additive noise.

space to separate multipath components. Using a lower number of antennas actually reduces the

effect of calibration errors as the system model in (1) is less constrained.

In the NLOS scenarios (c) and (d), the extrapolation performance as a function of the number

antennas shows a different behavior. We should here emphasize that, in (c) and (d), the reflecting

ball and panels were at the same height as the transmit and receive antennas. This implies that

elevation angles of arrival are relatively similar and close to θ = 90◦ at the receiver. On the

other hand, the reflection on the ball, the reflection on the panel and the diffraction around the

absorber clearly have different azimuth angles or arrival. These remarks first explain why the

performance in the case M = 16 is better than in the case M = 64. Indeed, using only one ring

of antennas of the array is enough to separate the incoming waves in azimuth. Adding three other

rings of antennas (M = 64) gives more resolution in elevatio but is not required in our scenarios

and only leads to more calibration and/or modeling inaccuracy. Secondly, these remarks are in

accordance with the case M = 4 using only the front column of antennas of the array. Using a

column of the array gives high resolution in elevation and very poor resolution in azimuth. This

explains why the extrapolation performance degrades very quickly as the extrapolation range

increases as compared to the M = 16 case.

B. Performance under Additive Noise

In practice, we expect much more additive noise to be present so that the system would be

more likely to be in a noise limited regime. To study such scenario, we synthetically add noise
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on the VNA measurements based on the model in (1) with S(fk) = 1 and SNR = 25 dB. The

result, averaged over 100 noise realizations, is shown in Fig. 11 for scenarios LOS (a) and NLOS

(d). The channel extrapolation performance relying on SAGE extracted parameters is compared

to the LS estimator performance derived in (5) and the theoretical simplified LB of Corollary 1.

The full LB of Theorem 1 averaged over the antennas is also plotted. Note that the full LB

evaluation requires the ground truth path parameters ψ, which can only be approximated for

real experiments. To avoid this and still get an approximation of the full LB, we assumed that

the ground truth ψ can be well approximated by the SAGE extracted parameters ψ̂ on the raw

measurements without added noise. We can see in the figures that the SAGE performance in both

LOS and NLOS cases approach the theoretical LB. In the training band, the gap is larger due to

potential calibration and/or channel modeling errors while the gap decreases as the extrapolation

range increases, meaning that the performance enters a noise-limited regime.

VII. CONCLUSIONS

This paper investigated the frequency channel extrapolation performance for FDD massive

MIMO systems. We demonstrated the gain of applying high-resolution channel estimation as

compared to conventional low-resolution estimators. Theoretical LBs for the MSE of the ex-

trapolated channel were derived and validated through numerical simulations and experimental

measurements. In particular, we showed that a simplified LB, obtained as a special case when

paths are well separated, is very useful. It gives simplified yet accurate insight on the massive

MIMO extrapolation performance without requiring the knowledge of the antenna patterns and

the path parameters.

In conclusion, we demonstrated that, under a good calibration of the BS and favorable propaga-

tion conditions, channel extrapolation is a viable solution to deploy FDD massive MIMO systems

and completely removing the DL training overhead. Our future studies will include performance

assessment of extensive outdoor measurements. In particular, the impact of calibration errors

and channel modeling errors such as, e.g., diffuse multipath components, will require further

investigation.
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VIII. APPENDIX

A. Frequency Autocorrelation of the Channel

Using the definitions of CH,m(∆f) in (6), of Hm(f) in (3) and the fact that the path parameters

are assumed i.i.d, we can write

CH,m(∆f) = LE
(
|αl|2|am(φl, θl)|2e−2π∆fτl

)
= LCE

(
|αl|2e−2π∆fτl

)
,

where we additionally used the fact that the array pattern was assumed frequency independent

and isotropic, i.e., |am(φ, θ)| = C where C a normalization constant. We now use the fact

that τl is uniformly distributed in [0, τmax] and that the conditional variable αl; τl has variance

p(τl) = e−τl/τrms

CH,m(∆f) =
LC

τmax

∫ τmax

0

p(τl)e
−2π∆fτldτl

=
LCτrms

τmax

1− e−τmax/τrms−2π∆fτmax

1 + 2π∆fτrms

.

We set C = τmax

Lτrms

1
1−e−τmax/τrms

to fix E(|Hm(f)|2) = 1.

B. Proof of Theorem 1

The extrapolated channel frequency response Hm(f,ψ) is a non linear function of the path

parameters ψ. A straightforward application of the CRLB for transformation of parameters [24]

gives the following bound for the extrapolation error MSEm(f, ψ̂)

LBm(f,ψ) =

(
∂Hm(f,ψ)

∂ψ

)H
I−1
ψ

∂Hm(f,ψ)

∂ψ
.

where [
∂Hm(f,ψ)

∂ψ

]
u

=
dHm(f,ψ)

dψu
.

Using the vector definitions introduced in Theorem 1, we can write

gm,f,ψ ,
∂Hm(f,ψ)

∂ψ
,

which concludes the proof.
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C. Proof of Corollary 1

Using (9), we can compute the different elements of the full Fisher information matrix given

in (10). In the following, we use the notations ‖sl‖2 = ‖s‖2 and ‖ṡl‖2 = ‖ṡ‖2 given that the

dependence in the path index vanishes.

First, using (As3), we can show that the off-diagonal blocks of Iψ vanish, i.e., Iψl,ψl′ = 0

for l 6= l′. Indeed, for the diagonal elements of Iψl,ψl′ , we find that

Iτlτl′ = <
(
α∗l αl′a

H
l al′ ṡ

H
l ṡl′

)
= |αl|2‖al‖2‖ṡ‖2δl−l′

Iφlφl′ = <
(
α∗l αl′ ȧ

H
l,φȧl′,φs

H
l sl′

)
= |αl|2‖ȧl,φ‖2‖s‖2δl−l′

Iθlθl′ = <
(
α∗l αl′ ȧ

H
l,θȧl′,θs

H
l sl′

)
= |αl|2‖ȧl,θ‖2‖s‖2δl−l′

IαRl αRl′
= IαIl αIl′

= <
(
aHl al′s

H
l sl′

)
= ‖al‖2‖s‖2δl−l′ .

Still using (As3), we find the same results for the off-diagonal elements of Iψl,ψl′ , l 6= l′.

Actually, using (As4), we find that the result also holds when l = l′ for the following elements

Iτlφl′ = −<
(
α∗l αl′a

H
l ȧl′,φṡ

H
l sl′

)
= 0

Iτlθl′ = −<
(
α∗l αl′a

H
l ȧl′,θṡ

H
l sl′

)
= 0

IτlαRl′
= −<

(
α∗l a

H
l al′,ṡ

H
l sl′

)
= 0

IτlαIl′
= =

(
α∗l a

H
l al′,ṡ

H
l sl′

)
= 0

IφlαR = <
(
α∗l ȧ

H
l,φal′s

H
l sl′

)
= 0

IφlαI = −=
(
α∗l ȧ

H
l,φal′s

H
l sl′

)
= 0

IθlαRl′
= <

(
α∗l ȧ

H
l,θal′s

H
l sl′

)
= 0

IθlαIl′
= −=

(
α∗l ȧ

H
l,θal′s

H
l sl′

)
= 0

IαRl αIl′
= −=

(
aHl al′s

H
l sl′

)
= 0.

One can further check that, under (As3), the elements Iφlθl′ vanish for l 6= l′. However, even

under (As4), Iφlθl′ does not vanish for l = l′, i.e.,

Iφlθl′ = <
(
α∗l αl′ ȧ

H
l,φȧl,θs

H
l sl′

)
= |αl|2‖s‖2<

(
ȧHl,φȧl,θ

)
δl−l′ .
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Taking into account the above simplifications, the full Fisher matrix Iψ becomes block diagonal

and each block on its diagonal is itself block diagonal

Iψ =
2

σ2
w


Iψ1,ψ1

. . .
. . .

IψL,ψL

 , Iψl,ψl =



Iτlτl

Iφlφl Iφlθl

Iφlθl Iθθl

IαRl αRl

IαIl αIl


.

Using the fact the inverse of a block diagonal matrix is a block diagonal matrix with the inverse

of the original blocks on its diagonal, the LB of Theorem 1 averaged over the receive antennas

becomes

1

M

M∑
m=1

L̂Bm(f,ψ) =
1

M

M∑
m=1

gHm,f,ψI
−1
ψ gm,f,ψ

=
σ2
w

2M

M∑
m=1

L∑
l=1

gHm,f,ψlI
−1
ψl,ψl

gm,f,ψl (17)

=
σ2
w

2M

M∑
m=1

L∑
l=1

[
|gm,f,τl |2

Iτlτl
+
|gm,f,αRl |

2

IαRl αRl
+
|gm,f,αIl |

2

IαIl αIl

+
(
g∗m,f,φl g∗m,f,θl

)Iφlφl Iφlθl

Iφlθl Iθlθl

−1gm,f,φl
gm,f,θl

 .
After some computations, we find that

M∑
m=1

L∑
l=1

|gm,f,αRl |
2

IαRl αRl
+
|gm,f,αIl |

2

IαIl αIl
=

2L

‖s‖2

∑
m,l

(
g∗m,f,φl g∗m,f,θl

)Iφlφl Iφlθl

Iφlθl Iθlθl

−1gm,f,φl
gm,f,θl

 =
2L

‖s‖2

M∑
m=1

L∑
l=1

|gm,f,τl |2

Iτlτl
=
L(2πf)2

‖ṡ‖2
=

L

‖s‖2

f 2

σ2
F

,

where σ2
F = ‖ṡ‖2

(2π)2‖s‖2 . Inserting the result of these last equations into (17) and using the definition

SNR , ‖s‖2
σ2
w

, we find the result of Corollary 1.
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