


find this model surprisingly rich and fascinating. It captures

the heart of collaboration: information asymmetry and the cost

of equalizing it. As the human learns about their preferences,

they are compelled to communicate them to the robot as it

decides their eventual reward. Analyzing this model allows us

to understand the theoretical limits to assisting learning agents

and the properties that make learners easier to assist.

Our contributions are the following: 1) we formalize the

assistive multi-armed bandit; 2) we give weak sufficient

conditions under which a human and robot team learns

consistently, a lower bound on the cost of assuming noisy-

optimality, and a mutual-information based upper bound on

team performance; and 3) we use policy optimization [23]

to conduct an in-depth empirical validation of our theoretical

results and investigate the effect of incorrectly modeling the

human’s learning strategy. We train A against a fixed learning

strategy, e.g., ǫ-greedy, and test it against a different learning

strategy, e.g., Thompson sampling. Our analysis shows a person

that is better at learning does not necessarily lead to the human-

robot team performing better - there are human learning

strategies that are ineffective in isolation but communicate

well and enable the robot to effectively assist. In fact, human

learning strategies that are inconsistent in isolation, that is,

failing a weak notion of asymptotic optimality, can allow

the human-robot team to match optimal performance in a

standard multi-armed bandit. Our results advance the theory

behind algorithmic preference learning and provide guidance

for structuring algorithms for human-robot interaction.

II. A FAMILY OF BANDITS

A. The Standard Multi-Armed Bandit

A multi-armed bandit (MAB) M is defined by:

• Θ: a space of reward distributions parameters; θ ∈ Θ;

• N : an integer representing the number of arms;

• p: a distribution over Θ.

At the start of the game, θ is sampled from Θ according

to the prior p. At each timestep t, an arm at ∈ [1, . . . , N ] is

chosen. A reward rt ∼ θat
is sampled from the corresponding

arm distribution. A strategy is a mapping that determines the

correct distribution to sample from given a history of reward ob-

servations and previous arm pulls: Kt(a1, r1, . . . , at−1, rt−1).
We use µk to represent the mean of arm k, with parameters

θk. We use j∗ to represent the index of the best arm and µ∗

to represent its mean. Tk(t) represents the number of pulls of

arm k up to and including time t. The goal of this game is to

maximize the sum of rewards over time, or alternatively, to

minimize the expectation of the regret R̄(t), defined as:

R̄(t) =
∑

t

(µ∗ − µat
) =

∑

k

(µ∗ − µk)Tk(t). (1)

B. Stationary Inverse Optimal Control

In preference learning, e.g., inverse reinforcement learning

(IRL) [24], [25] and inverse optimal control (IOC) [17], an

AI system observes (noisily-)optimal behavior and infers the

reward function or preferences of that agent. This relies on a

key assumption that the agent being observed knows the value

of actions it can take, at least in the sense that they are able to

select optimal actions. In a multi-armed bandit setting, this set

of assumptions corresponds to assuming that the human knows

the parameters of the bandit, but has some small probability

of picking a suboptimal arm. We refer to a human with this

knowledge state and policy as implementing the ǫ-optimal

policy. Inferring the reward of an ǫ-optimal, or noisily-optimal,

human can be thought of as solving a stationary IOC problem.

C. The Inverse Multi-Armed Bandit

Before formalizing the problem of assisting a human who

is learning, rather than noisily-optimal, we look at passively

inferring the reward from their actions. We call this the inverse

bandit problem. Each Inverse Bandit problem is defined by:

• M: a multi-armed bandit problem

• H: a bandit strategy employed by the human, that maps

histories of past actions and rewards to distributions over

arm indices. Ht : h1 × r1 × · · · × ht−1 × rt−1 → Π(N)

The goal is to recover the reward parameter θ by observing

only the arm pulls of the human over time h1, ..., ht.

Unlike the stationary IOC case, H does not have access to

the true reward parameters. H receives the reward signal rt
sampled according to θ. As a consequence, the human arm

pulls are not i.i.d.; the distribution of human arm pulls changes

as they learn more about their preferences.

D. The Assistive Multi-Armed Bandit

In the assistive multi-armed bandit, we have a joint system

A ◦ H that aims to do well in an MAB M. This strategy

consists of two parts: the human player H and robot player A.

As in an MAB, the goal is to minimize the expected regret.

The key difference between an assistive MAB and the standard

MAB is that the policy is decomposed into a human component

and a robot component. The goal is to capture scenarios where

our goal, as designers of the robot At, is to optimize a reward

signal which is only observed implicitly through the actions of

a human who is themselves learning about the reward function.

The human and robot components of the policy are arranged

in a setup similar to teleoperation. In each round:

1) The human player H selects an arm to suggest based

on the history of previous arm pulls and rewards:

Ht(a1, r1, . . . , at−1, rt−1) ∈ [1, . . . , N ].
2) The robot player A selects which arm to actually execute

based on the history of the human’s attempts and the

actual arms chosen: At(h1, a1, . . . , ht−1, at−1, ht) ∈
[1, . . . , N ].

3) The human player H observes the current round’s arm

and corresponding reward: (at, rt ∼ θAt
).

Unlike the inverse MAB or (stationary) IOC, the assistive

MAB formalizes the problem of actually using learned pref-

erence knowledge to assist a human. Even if we are able to

solve the inverse MAB, this is not useful if we can’t actually

help a learner reduce regret. We expect an optimal solution to

the assistive MAB to improve on suboptimal learning, guide

exploration, and correct for noise.
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III. THEORETICAL RESULTS

A. Hardness of Assistive MABs

We consider the relative difficulty of assisting a person that

knows what they want with assisting a person that is learning.

We model the first situation as an assistive stationary IOC

problem, and the second as an assistive MAB. First, we show

that assistive stationary IOC is, as one might expect, quite easy

in theory; we show that it is possible to infer the correct arm

while making finitely many mistakes in expectation.

Proposition 1. Suppose that H’s arm pulls are i.i.d and let fi
be the probability H pulls arm i. If H is noisily optimal, that

is, fj∗ > fi for all sub-optimal i, there exists a robot policy

A that has finite expected regret for every value of θ:

E[R̄(T )] ≤
∑

i 6=j∗

µ∗ − µi

(
√

fj∗ −
√
fi)2

Proof. (Sketch) Our robot policy A simply pulls the most

commonly pulled arm.

Let f̂i(t) =
1
t

∑t

k=1[ht = i] be the empirical frequency of

H’s pulls of arm i up to time t. Note that At = i only if

f̂j∗(t) ≤ f̂i(t). We apply a Chernoff bound to the random

variable f̂j∗(t)− f̂i(t). This gives that, for each i,

Pr(f̂i(t) ≤ f̂j(t)) ≤ e−t(
√
fi−
√

fj)
2

. (2)

Summing Eq. 2 over t and suboptimal arms gives the result.

This is in contrast to the standard results about regret in

an MAB: for a fixed, nontrivial MAB problem M, any MAB

policy has expected regret at least logarithmic in time on some

choice of parameter θ [26], [27]:

E[R̄(T )] ≥ Ω(log(T )).
Several approaches based on Upper Confidence Bounds (UCB)

have been shown to achieve this bound, implying that this

bound is tight [26], [28], [29]. Nonetheless, this suggests that

the problem of assisting a noisily-optimal human is significantly

easier than solving a standard MAB.

The assistive MAB is at least as hard as a standard MAB.

For the same sequence of arm pulls and observed rewards, the

amount of information available to A about the true reward

parameters is upper bounded by the corresponding information

available in a standard MAB. From a certain perspective,

actually improving on human performance in isolation is

hopelessly difficult – A does not get access to the reward

signal, and somehow must still assist a person who does.

B. Consistent Assisted Learning

We begin with the simplest success criterion from the

bandit literature: consistency. Informally, consistency is the

property that the player eventually pulls suboptimal arms with

probability 0. This can be stated formally as the average regret

going to 0 in the limit: limt→∞ R̄(t)/t = 0. In an MAB,

achieving consistency is relatively straightforward: any policy

that is greedy in the limit with infinite exploration (GLIE) is

consistent [30], [31]. In contrast, in an assistive MAB, it is

not obvious that the robot can implement such a policy when

the H strategy is inconsistent. The robot observes no rewards

and thus cannot estimate the best arm in hindsight.

However, it turns out a weak condition on the human allows

the robot-human joint system to guarantee consistency:

Proposition 2. If the human H implements a noisily greedy

policy, that is, a policy that pulls the arm with highest sample

mean strictly most often, then there exists a robot policy A
such that A ◦H is consistent.

Proof. (Sketch) Fix a set of decaying disjoint exploration

sequences Ek, one per arm, such that limt→∞
1
t
|Ek ∩

{1, ..., t}| → 0 and limt→∞ |Ek ∩ {1, ..., t}| → ∞. In other

words, each arm is pulled infinitely often, but at a decaying

rate over time.

Let it be the arm most commonly pulled by H up until time

t, and A be defined by

at =

{

k t ∈ Ek

it otherwise
.

Note that this implies that for suboptimal k, 1
t
Tk(t) → 0 in

probability as t → ∞, as the sample means of all the arms

converge to the true means, and the rate of exploration decays to

zero. This in turn implies that A ◦H achieves consistency.

In other words, assistance is possible if the human picks the

best actions in hindsight. This robot A assists the human H in

two ways. First, it helps the human explore their preferences

– A ◦H pulls every arm infinitely often. This fixes possible

under-exploration in the human. Second, it stabilizes their

actions and helps ensure that H does not take too many

suboptimal actions - eventually, A ◦ H converges to only

pulling the best arm. This helps mitigate the effect of noise

from the human.

1) modeling learning as ǫ-optimality leads to inconsistency:

We now investigate what occurs when mistakenly we model

learning behavior as noisy-optimality.

A simple way to make A ◦H consistent when H is noisily

optimal is for A to pull the arm most frequently pulled by H .

Proposition 3. If H plays a strategy that pulls the best arm

most often and A plays H’s most frequently pulled arm, then

A ◦H is consistent.

Proof. (Sketch) Eventually, H’s most frequent arm converges

to the best arm with probability 1 by hypothesis. At this point,

A will pull the best arm going forward and achieve a per-round

regret of 0.

Next we consider the impact of applying this strategy when

its assumptions are incorrect, i.e., H is learning. For simplicity,

we assume H is greedy and pulls the best arm given the rewards

so far. We will consider a 1 1
2 -arm bandit: a bandit with two

arms, where one has a known expected value and the other is

unknown. We show that pairing this suboptimal-learner with

the ‘most-frequent-arm’ strategy leads the joint system A ◦H
to be inconsistent:
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Figure 3 compares a rollout of this A ◦H(we describe the

approach in Section V-B1) with a rollout of a near-optimal

policy for a standard MAB.

2) Communication upper bounds team performance: The

WSLS policy is not unique in that it allows A ◦H to obtain

logarithmic regret. A less interesting, but similarly effective

policy, is for the human to directly encode their reward

observations into their actions; the human need not implement

a sensible bandit policy. For example, the following purely

communicative H also works for a Beta-Bernoulli bandit:

ht =

{

0 rt−1 = 0
1 rt−1 = 1

(4)

We can generalize the results regarding communicative poli-

cies using the notion of mutual information, which quantifies

the amount of information obtained through observing the

human arm pulls.

Let I(X;Y ) be the mutual information between X and Y ,

H(X) be the entropy of X , and H(X|Y ) be the entropy of

X given Y .

Proposition 6. Suppose that the probability the robot pulls a

suboptimal arm at time t is bounded above by some function

f(t), that is P (At 6= j∗) ≤ f(t). Then the mutual information

I(j∗;h1 × · · · × ht) between the human actions up to time t

and the optimal arm must be at least (1− f(t)) logN − 1.

Proof. We can consider the multi-armed bandit task as one of

deducing the best arm from the human’s actions. This allows

us to apply Fano’s inequality [33] to P (At 6= j∗), and using

the fact that the entropy of a Bernoulli random variable is

bounded above by 1, we get

P (At 6= j∗) log(N − 1) ≥ H(ĵ∗|j∗)− log 2

= H(ĵ∗)− I(ĵ∗; j∗)− 1

≥ logN − I(j∗;h1 × · · · × ht)− 1.
Rearranging terms and using P (At 6= j∗) ≤ f(t), we get

I(j∗;h1 × · · · × ht) ≥ logN − f(t) log(N − 1)− 1

≥ (1− f(t)) logN − 1.

Intuitively, since the probability of error is bounded by

f(t), in (1− f(t)) cases the human actions conveyed enough

information for A to successfully choose the best action out of

N options. This corresponds to logN bits, so there needs to

be at least (1− f(t)) logN bits of information in H’s actions.

Corollary 7. Suppose that the probability the robot pulls a

suboptimal arm at time t is bounded above by some function

f(t), that is P (At 6= j∗) ≤ f(t). Then the mutual information

I(a1×r1×· · ·×at−1×rt−1;h1×· · ·×ht) between the human

actions up to time t and the human observations must be at

least (1− f(t)) logN − 1.

Proof. Since the best arm is independent of the human actions

given the human observations, this follows immediately from

the data processing inequality and proposition 6.

In order to achieve regret logarithmic in time, we must have

that P (Kt 6= j∗) ≤ C
t

for some C > 0. Applying proposition

6 above implies that we must have

I(j∗;h1 × · · · × ht) ≥ (1− C

t
) logN − 1

Note that the term I(ĵ∗;h1 × · · · × ht) depends on both the

human policy and the robot policy - no learning human policy

can achieve this bound unless the human-robot system A ◦H
samples each arm sufficiently often. As a consequence, simple

strategies such as inferring the best arm at each timestep and

pulling it, cannot achieve the Θ(log T ) lower bound on regret.

IV. ALGORITHMS FOR ASSISTIVE MULTI-ARMED BANDITS

The optimal response to a given human strategy can be

computed by solving a partially observed Markov decision

process (POMDP) [34]. The state is the reward parameters

θ and H’s internal state. The observations are the human

arm pulls. In this framing, a variety of approaches can be

used to compute policies or plans, e.g., online Monte-Carlo

planning [35], [36] or point-based value iteration [37].

In order to run experiments with large sample sizes, our

primary design criterion was fast online performance. This lead

us to use a direct policy optimization approach. The high per-

action cost of Monte-Carlo planners makes them impractical

for this problem. Further, explicitly tracking θ and H’s internal

state is strictly harder than solving the inverse MAB.

Algorithm 1 Policy Optimization for the Assistive MAB

human policy H
initialize parameterized policy π(w; ·), policy parameters w
for i ≤ nItrs do

ξs, rs← SAMPLE-TRAJECTORIES(π(w; ·), Size, T )

∂̂w ← POLICY-GRADIENT(ξs, π(w; ·)) ⊲ [38]

w ← w + ∂̂w
end for

procedure SAMPLE-TRAJECTORIES(π(w, ·), Size, T )

initialize empty array ξs

for i ≤ Size do

θ ∼ Θ
for t ≤ T do

ht ∼ Ht(h1, r1, . . . , at−1, rt−1)
at ∼ π(w;h1, a1, . . . , ht−1, at−1, ht)
rt ∼ θat

end for

ξ ← ξ = [(h1, a1, r1), ..., (hT , aT , rT )]
ξs ← ξs+[ξ]

end for

return ξs

end procedure

Our approach applies the policy optimization algorithm of

[23] to assistive MABs. Given an assistive MAB (M, H), we

sample a batch of reward parameters θ from the prior p(Θ); gen-

erate trajectories of the form ξ = [(h1, a1, r1), ..., (ht, at, rt)]
from H and the current robot policy A(i); and use the
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