

robot acts in critical states, a potential user may decide that

this robot is not trustworthy, and decline to use it. Or, in

human-in-the-loop setups—for instance, a passenger riding

in a self-driving car, or an engineer supervising robot arms

in a factory—this ensures users are well-equipped to decide

when they need to take control over the robot’s operation.

Our main contribution is a method for algorithmic assur-

ance [21], that enables end-users to more quickly establish

an appropriate level of trust in robots that they interact

with, rely on, or supervise. Our user studies suggest that

humans are indeed able to develop more appropriate trust in

a robot through observing how it acts in what it considers

to be critical states, compared to just observing it act over

time. We evaluate this through both self-reported measures

of trust, as well as through allowing users to take control

during execution of the policy [11]: if they have developed

an appropriate level of trust, they would only choose to take

control in critical states that the robot likely cannot handle.

II. BACKGROUND

A. Notation

We consider the setting of a Markov Decision Process

(MDP), defined by {S,A,P,R, γ}, where S is the state

space, A the action space, P : S×A×S → R the transition

probabilities, R : S × A× S → R the reward function, and

γ ∈ (0, 1] the discount factor.

A robot’s policy π is a stochastic function mapping each

state to a distribution over actions (π : S → ∆A, where ∆A

is the probability simplex on A). Its value function at state

s is

V π(s) = max
a

∫

s′
P (s, a, s′)[R(s, a, s′) + γV π(s′)], (1)

and its action-value function at state s and taking action a is

Qπ(s, a) =

∫

s′
P (s, a, s′)[R(s, a, s′) + γmax

a′

Qπ(s′, a′)].

(2)

In this framework, a critical state s is one for which

Qπ(s, a) varies greatly across different actions a: there are

a small number of actions for which Qπ(s, ·) is high, but

for most actions it is mediocre or low. We will define this

formally in the next section.

B. Maximum-Entropy Reinforcement Learning

Typically a robot’s goal is to maximize expected cumula-

tive discounted reward, or return:

Eπ,P

[

∑

t

γtR(st, at, st+1)

]

. (3)

Depending on the MDP, this may result in policies that are

essentially deterministic, treating all states as critical.

In contrast, in maximum-entropy reinforcement learning,

the policy is trained to not only maximize return, but also to

act as randomly as possible while doing so [22], [23], [24].

Concretely, the policy is trained to maximize

Eπ,P

[

∑

t

γt[R(st, at, st+1) + αH(π(·|st))]

]

, (4)

where α determines the tradeoff between maximizing return

and entropy, and H(π(·|st)) is the entropy of the policy’s

output action distribution at state st. This leads to a policy

with meaningful critical states, since it learns to acts ran-

domly in states where the action has little impact on return,

and to act purposefully in states where the action does have

a major impact on return.

We train our neural network policies using Soft Actor-

Critic1 (SAC) [24], a deep reinforcement learning method

that is based on maximum entropy reinforcement learning.

We find that in practice, training with SAC indeed produces

policies with meaningful critical states.

III. COMPUTING AND USING CRITICAL STATES

A. Computation of Critical States

Policy-Based. Recall that critical states are those in which

a policy (or human) greatly prefers a small set of possible

actions over all others. A natural definition of the set of

critical states Cπ for a stochastic policy π is thus

Cπ = {s |H(π(·|s)) < t}, (5)

where H(π(·|s)) is the entropy of the policy’s output action

distribution at state s, and t ∈ R is the threshold for being

considered “critical.” This definition of critical states can be

applied to both continuous and discrete action spaces.

Value-Based. Certain reinforcement learning approaches for

training policies, such as actor-critic methods, also learn a

value or action-value function in parallel to (or instead of)

learning a policy [25]. Value functions capture the long-

term consequences of a policy’s actions, so when they are

available, they are a reasonable alternative for computing

critical states.

If we define critical states more concretely as those in

which acting randomly will produce a much worse result

than acting optimally, then the set of critical states Cπ for a

stochastic policy π is:

Cπ = {s | (max
a

Qπ(s, a)−
1

|A|

∑

a

Qπ(s, a)) > t}, (6)

where Qπ is the learned action-value function. If the action

space is continuous, this can be applied after discretization.

Computing critical states based on a learned value function

V π is also possible, by using one-step rollouts to estimate

Qπ for each action.

We train our policies with SAC, which learns a policy

and an action-value function in parallel. In practice, we

found that computing critical states based on action-value

functions was more reliable, because the policy may learn to

exploit environment characteristics (e.g., action clipping) to

maximize entropy.

Note that with either of these two approaches, computing

the critical states of a policy is agnostic to the implementation

of the policy itself; only access to either the policy’s or

action-value function’s output is required, so this can be

directly applied to black-box policies.

1We use the implementation at github.com/haarnoja/sac.

Hypothesis.

H1. When Cπ contains false-negative, false-positive, or

incorrect-action critical states, users are less inclined to trust

the policy π, compared to if its critical states match Ch
perfectly (i.e., the correct condition).

H2. In states that are critical (i.e., in Ch), participants will

take control if a policy π’s critical states Cπ suggest that

this policy will not choose the correct action in this state.

For example, since the false-negative Cπ for Pong is missing

critical states in which the paddle needs to immediately move

upward to hit the ball, this should lead participants to take

control in similar states at execution time (e.g., query state

s5). But, they should not take control at state s6, since the

false-negative Cπ includes a similar critical state and chooses

the right action.

Subject Allocation. We used a between-subjects design. We

ran this experiment on a total of 72 participants across the

six conditions, recruited via Amazon Mechanical Turk. The

average age of the participants was 31.4 (SD = 6.7). The

gender ratio was 0.32 female.

B. Analysis

Subjective. We asked participants how much they trust

the robot, whether they would deploy it, and whether they

thought the robot needed their help (Fig. 3).

We found a significant difference between incorrect-action

and correct for all three subjective measures (Student’s t test,

p < 0.0001). However, false-positives and false-negatives

did not decrease users’ perception compared to correct (the

trend is in the right direction for the false positives). This

may be because Pong is a relatively simple domain, which

makes humans more inclined to give policies the benefit of

the doubt, in terms of being able to generalize to other critical

states (in the case of the false-negative Cπ).

Objective. We also asked participants, for each of the six

query states (Fig. 2), a yes/no question for whether they

would take control of the policy at that state (Fig. 4). In the

query phase, participants agreed that of the six states, only

s5 and s6 are truly critical (i.e., in Ch). We see that overall,

across all conditions, participants tend to take control in these

two critical states, and not in the others. This supports our

assumption that humans will tend to only take control of

policies in states that are within Ch.

However, this also indicates that participants are taking

control even when it is not necessary. For instance, users

who saw the correct Cπ saw it act correctly in states similar

to both critical query states, but still almost half of users

choose to take control in that state.

On the bright side, we saw a number of trends in line with

our hypothesis. First, we do notice that for these two critical

query states, users tend to be less likely to take control after

seeing correct Cπ , compared to just being told a summary

statistic about the policy, in the baseline condition.

Second, participants in the incorrect-action condition

again indicated low trust in the robot, by choosing to take

control more often, even in state s3, which is only weakly

critical. We found participants chose to take control signifi-

cantly more in the incorrect-action condition than the correct

condition for s3 (Student’s t, p < 0.01) and s5 (p = 0.05).

Third, participants who saw false-positive and false-

negative critical states actually tended to take control more

often than those who saw correct ones, suggesting that they

did pick up somewhat on the problems indicated by Cπ (with

weak significance, for s5 and s6, p = 0.11).

Summary. Overall, participants responded most strongly to

critical states that reveal incorrect actions. There, they would

intervene before deployment. For false negatives, they would

tend to take control away from the robot more compared to

participants who saw correct critical states. False positives

only benefited from slight improvements in how much par-

ticipants would take control, though at the same time false

positives are the smallest of errors, as we discussed in Sec.

III.

V. USER STUDY: UTILITY OF CRITICAL STATES

Our previous study analyzed how people respond to dif-

ferent errors that critical states might reveal. In our main user

study, we evaluate the utility of showing the critical states

of a policy π against other options of exposing end-users to

the policy, in terms of establishing appropriate trust.

We train two neural network policies for a driving domain,

and hypothesize that critical states are best at helping people

figure out which one is better. We train these policies

using SAC, and use Gaussian mixture policies with four

components [24].

In practice, critical states in Cπ may be very similar to each

other, so instead of showing all states in Cπ to the human,

we first cluster these states (with k-means++) and then show

the policy’s behavior in the most critical state from each

cluster. We take advantage of the fact that neural network

policies learn hidden-layer feature representations, and use

the output of the last hidden layer as features for clustering.

Concretely, we collect 10,000 timesteps by rolling out each

policy, cluster the 10% most critical states into ten clusters,

and show the most critical state from each cluster. So, we

end up showing ten critical states per policy.

A. Experimental Design

This study consists of the same three phases as the

previous study.

Domain. We train policies to drive in a top-down driving

simulator that mimics highway driving. The goal of the pol-

icy is to navigate down this road while passing other, slower

cars. Car dynamics follow the bicycle vehicle model [26].

The state space consists of an indicator for which lane

the robot car is currently in, its position and heading, and

the relative positions, heading, and speed of other nearby

cars. The action space is continuous and one-dimensional,

in the range [−1, 1]; it corresponds to the change in steering

angle.2 The reward function encourages forward progress and

2We discretize this action space evenly into 200 possible actions, in order
to compute critical states using the learned action-value function.

(p = 0.001), but this is not true for either of the baseline

conditions.

This suggests that by showing human end-users the critical

states of a policy, we not only lead them to trust the policy

more, but also enable them to appropriately calibrate their

trust for good and not-as-good policies.

VI. DISCUSSION AND FUTURE WORK

Our user studies suggest that showing the critical states of

a policy is a promising approach for not only building trust

in the policy, but also for revealing whether it is trustworthy

in the first place. This can be applied to any policy trained

with a maximum-entropy-based approach.

The question is, what if a policy has incorrect critical

states, but it performs very well, at least in the training

environment. Should we trust this policy? Or should we not

trust it, because the fact that it has incorrect critical states

implies that it does not truly understand the task? This is an

open question for future work. Our hunch is that the latter

is true—if a policy’s critical states do not make sense, there

are likely states (outside the training distribution) that it will

not be able to generalize to.

The primary drawback of our approach is that it places

significant responsibility and mental burden on the human

end-user. For instance, we assume this end-user has domain

knowledge about the task; this is likely true for supervising

a self-driving car or robots in a factory, but might not be

true for more complex tasks. In addition, identifying false-

negative critical states requires the end-user to generalize cor-

rectly about what other states the robot considers as critical,

given the ones they saw. One way to address this limitation

is to reason about how humans do this generalization, and

show the end-user how the robot acts in additional states

(critical or not) to correct their understanding.

Nonetheless, this approach of showing critical states is

a step toward giving human end-users a better chance of

knowing whether or not to deploy a robot, and when to take

control during deployment.

ACKNOWLEDGMENTS

This research was funded in part by DARPA and Intel.

Sandy Huang was supported by an NSF Fellowship.

REFERENCES

[1] M. J. Gielniak and A. L. Thomaz, “Generating anticipation in robot
motion,” in Proceedings of the Twentieth IEEE International Sympo-

sium on Robot and Human Interactive Communication (RO-MAN),
2011, pp. 449–454.

[2] A. D. Dragan, K. C. T. Lee, and S. S. Srinivasa, “Legibility and pre-
dictability of robot motion,” in Proceedings of the Eighth ACM/IEEE

International Conference on Human-Robot Interaction (HRI). ACM,
2013, pp. 301–308.

[3] D. Szafir, B. Mutlu, and T. Fong, “Communication of intent in assistive
free flyers,” in Proceedings of the Ninth ACM/IEEE International

Conference on Human-Robot Interaction (HRI). ACM, 2014, pp.
358–365.

[4] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan, “Enabling robots
to communicate their objectives,” in Proceedings of Robotics: Science

and Systems (RSS), 2017.

[5] S. Nikolaidis, S. Nath, A. D. Procaccia, and S. Srinivasa, “Game-
theoretic modeling of human adaptation in human-robot collabora-
tion,” in Proceedings of the Twelfth ACM/IEEE International Confer-

ence on Human-Robot Interaction (HRI). ACM, 2017, pp. 323–331.
[6] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing robot inca-

pability,” in Proceedings of the Thirteenth ACM/IEEE International

Conference on Human Robot Interaction (HRI). ACM, 2018.
[7] N. Wang, D. V. Pynadath, and S. G. Hill, “Trust calibration within a

human-robot team: Comparing automatically generated explanations,”
in Proceedings of the Eleventh ACM/IEEE International Conference

on Human Robot Interaction (HRI). ACM, 2016, pp. 109–116.
[8] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and

H. P. Beck, “The role of trust in automation reliance,” International

Journal of Human-Computer Studies, vol. 58, no. 6, pp. 697–718, June
2003.

[9] J. D. Lee and K. A. See, “Trust in automation: Designing for
appropriate reliance,” Human Factors, vol. 46, no. 1, pp. 50–80, 2004.

[10] S. Ososky, D. Schuster, E. Phillips, and F. Jentsch, “Building appropri-
ate trust in human-robot teams,” in Proceedings of the Twenty-Seventh

AAAI Conference on Artificial Intelligence, 2013.
[11] A. Freedy, E. DeVisser, G. Weltman, and N. Coeyman, “Measure-

ment of trust in human-robot collaboration,” in 2007 International

Symposium on Collaborative Technologies and Systems, May 2007,
pp. 106–114.

[12] E. Cha, A. D. Dragan, and S. S. Srinivasa, “Perceived robot capability,”
in Proceedings of the Twenty-Fourth IEEE International Symposium

on Robot and Human Interactive Communication (RO-MAN), 2015,
pp. 541–548.

[13] B. M. Muir, “Trust between humans and machines, and the design of
decision aids,” International Journal of Man-Machine Studies, vol. 27,
no. 5, pp. 527–539, 1987.

[14] D. H. McKnight and N. L. Chervany, “What trust means in e-
commerce customer relationships: An interdisciplinary conceptual
typology,” International Journal of Electronic Commerce, vol. 6, no. 2,
pp. 35–59, 2001.

[15] M. Lewis, K. Sycara, and P. Walker, “The role of trust in human-
robot interaction,” in Foundations of Trusted Autonomy, H. A. Abbass,
J. Scholz, and D. J. Reid, Eds. Springer International Publishing,
2018, pp. 135–159.

[16] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[17] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
arXiv preprint arXiv:1604.07316, 2016.

[18] A. Dragan and S. Srinivasa, “Familiarization to robot motion,” in
Proceedings of the Ninth ACM/IEEE International Conference on

Human-Robot Interaction (HRI). ACM, 2014.
[19] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understanding as

inverse planning,” Cognition, vol. 113, no. 3, p. 329–349, 2009.
[20] J. Jara-Ettinger, H. Gwen, L. E. Schulz, and J. B. Tenenbaum, “The

naı̈ve utility calculus: Computational principles underlying common-
sense psychology,” Trends in Cognitive Sciences, vol. 20, no. 8, p.
589–604, 2016.

[21] B. W. Israelsen and N. R. Ahmed, “‘Dave...I can assure you...that its
going to be all right..’ A definition, case for, and survey of algorithmic
assurances in human-autonomy trust relationships,” arXiv preprint

arXiv:1711.03846, 2017.
[22] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. Dey, “Maximum entropy

inverse reinforcement learning,” in Proceedings of the Twenty-Second

AAAI Conference on Artificial Intelligence, 2008.
[23] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement

learning with deep energy-based policies,” in International Conference

on Machine Learning, 2017.
[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a
stochastic actor.” in Neural Information Processing Systems (NIPS)

Deep Reinforcement Learning Symposium, 2017.
[25] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.
[26] S. Taheri and E. H. Law, “Investigation of a combined slip control

braking and closed loop four wheel steering system for an automobile
during combined hard braking and severe steering,” in Proceedings of

the American Control Conference, 1990.

	I Introduction
	II Background
	II-A Notation
	II-B Maximum-Entropy Reinforcement Learning

	III Computing and Using Critical States
	III-A Computation of Critical States
	III-B Using Critical States
	III-C Justification of Critical States

	IV User Study: Impact of Critical States
	IV-A Experiment Design
	IV-B Analysis

	V User Study: Utility of Critical States
	V-A Experimental Design
	V-B Analysis

	VI Discussion and Future Work
	References

