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Abstract— Accurate state estimation is a fundamental compo-
nent of robotic control. In robotic manipulation tasks, as is our
focus in this work, state estimation is essential for identifying
the positions of objects in the scene, forming the basis of the
manipulation plan. However, pose estimation typically requires
expensive 3D cameras or additional instrumentation such as
fiducial markers to perform accurately. Recently, Tobin et
al. introduced an approach to pose estimation based on domain
randomization, where a neural network is trained to predict
pose directly from a 2D image of the scene. The network is
trained on computer generated images with a high variation in
textures and lighting, thereby generalizing to real world images.
In this work, we investigate how to improve the accuracy of
domain randomization based pose estimation. Our main idea
is that active perception – moving the robot to get a better
estimate of pose – can be trained in simulation and transferred
to real using domain randomization. In our approach, the robot
trains in a domain-randomized simulation how to estimate pose
from a sequence of images. We show that our approach can
significantly improve the accuracy of standard pose estimation
in several scenarios: when the robot holding an object moves,
when reference objects are moved in the scene, or when the
camera is moved around the object.

I. INTRODUCTION

In the past decades, robots have become dominant in

industrial automation. A recent trend in manufacturing is

the move toward small production volumes and high product

variability [1], where reducing the manual engineering for

automation becomes important. For automating many indus-

trial tasks, such as picking, binning, or assembly, accurate

pose estimation is essential. In this work, we focus on model

based pose estimation from RGB cameras. This setting is

relevant to many industrial applications, where a 3D model of

the objects can easily be obtained, while it does not require

expensive hardware such as high-precision depth cameras [2],

[3], nor making modifications to the object such as adding

markers [4]. Methods using markers often require significant

human effort and have limited accuracy when the marker is

far away or perpendicular to the image plane.

While a number of methods have been proposed for model-

based pose estimation using expensive depth cameras or

extensive labelled datasets in the real world [5], [6], the cost

and manual effort required for these methods prevent them

from being widely and easily applicable. Recently proposed

methods proposing leveraging simulation as a tool for model-

based pose estimation given accurate models of objects in

an environment [7], [8], [9]. These methods are typically

Fig. 1: Inverse Transform Domain Randomization: We show that
we can improve the accuracy of real world pose prediction with
multiple images of a scene with known geometric transformations
between object poses in the scenes.

trained by leveraging known poses in simulation and training

pose estimators which transfer effectively to the real world,

bridging the simulation to reality gap.

In [7], it was shown that domain randomization was able

to reach a 1.5 cm error on 3D pose estimation. Many robotic

tasks, such as assembly or bin placing, require a much higher

precision. In this work, we investigate how to improve the

accuracy of pose estimation based on domain randomization

such that it is suitable for high precision robotic assembly

tasks.

In this work, we aim to improve the accuracy of domain ran-

domization based pose estimation by making the observation

that robots don’t have to be passive observers of a scene and

can in fact interact with objects in the scene. We can perform

a known geometrical transformation to the scene, such as

moving objects in the scene, moving the arm or distractors, or

changing the camera angle. Since this transformation between

scenes is known and applied by the robot, all of these data-

points can be used in order to imporve the accuracy of pose

predictions. We use this idea to propose a method for active

pose estimation, which exploits the fact that being able to

see an object from different angles and in different positions

leads to a more accurate and robust predictions. In this way,
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we find that actually leveraging consistency among multiple

different images of a scene ensures a much more accurate

pose estimation compared to standard ensemble methods such

as domain randomization.

Using models for active pose estimation transferred from

simulation, we are able to decrease the average error predicted

on real camera image from 2 cm to under 0.5cm, which

is sufficient to enable a variety of high precision robotic

manipulation tasks which were otherwise very challenging

with current methods.

II. RELATED WORK

Our work has several connections to a number of prior

works from various fields

a) 2D model based pose estimation: Model based pose

estimation of rigid objects from a 2D image has been

studied extensively, largely building on a predefined feature

points [10], [11], [12], [13], edge detectors [14], [15], or

image templates [16]. We refer to [17] for an extensive survey.

Most of these algorithms rely on careful selection of the

features to track, or on textured surfaces for points matching,

and a careful calibration of the RGB camera. Our approach

is agnostic to these factors.

b) 3D model based pose estimation: Using a depth

camera, high precision pose estimation can be obtained [2],

[3]. However, accurate depth cameras (e. g. a Photoneo) can

be very expensive, limiting their use in many applications.

Our approach only requires a 2D RGB image.

c) Fiducial markers: The use of fiducial markers

has become popular in augmented reality and robotics

applications [18], [4], [19]. However, in realistic industrial

applications, adding fiducials to objects may be undesirable,

and the accuracy of fiducial based pose detection is limited for

certain poses (for example, when the fiducial is perpendicular

to the image plane). Our approach does not require any

external modification of the object for pose detection.

d) Pose estimation based on supervised learning:

Several recent studies learned to map an image directly to

pose using deep convolutional neural networks (CNNs) [5],

[6]. While the CNN structure in these works is similar to

ours, these works require a labeled training set for learning,

which can be difficult to obtain. The domain randomization

approach, in contrast, generates its own training data by

rendering in simulation.

e) Active perception: The study of active percep-

tion [20], [21] concerns how a robot should take actions

to better estimate parameters of its environment. To our

knowledge, our work is the first to study active perception

in a simulation-to-real setting.

f) Domain randomization: The gap between simulation

and reality has been challenging robotics for decades. Recent

work on trying to bridge this gap learns a decision making

policy in simulation that works well under a wide variation in

the simulation parameters, with the hope of learning a robust

policy that transfers well to the real world. This idea has been

explored for navigation [8] and pose estimation [7], by varying

visual properties in the scene, and also for locomotion [22]

and grasping [23], by varying dynamics in simulation. In

this work, we consider variation in the visual domain, and

combine domain randomization with active perception, to

improve its accuracy in pose detection.

III. PROBLEM FORMULATION AND PRELIMINARIES

We consider a model-based rigid body pose estimation

problem. In our setting, we assume that we have geometrical

3D models of an object x and some reference object y. Let

Oy denote a coordinate frame relative to y, and let Px denote

the 6D pose of x in the coordinate frame Oy . We are given

an image of the scene I , that contains x and y, and our goal

is to estimate Px from the image.

A. Pose estimation based on Domain Randomization

Tobin et al. [7] proposed a domain randomization method

for solving the pose estimation problem described above.

In this method, a 3D rendering software is used to render

scene images with different poses of x and y, and random

textures, lighting conditions, camera orientations, and camera

parameters. Let D = {I1, P 1
x ..., IN , PN

x } denote the data set

of the rendered images and matching object poses (which

are known, by construction). Supervised learning is then

used to train a deep neural network mapping I to Px. Since

the network is trained to work on various texture, camera,

and lighting conditions, it is expected that it also works on

real world images since their statistics would roughly fall

under the extremely wide distribution that was trained on.

By making the training distribution extremely broad in terms

of components such as texture, camera, and lighting, this

method is able to ensure generalization to real world test

environments by reducing the covariate shift. Indeed, the

method in [7] reportedly obtained an average 1.5 cm error in

predicting 3D pose on real world test images.

IV. METHOD

In this work, we propose an active perception approach

based on domain randomization. To motivate our approach,

we start by discussing the working hypothesis underlying

domain randomization:

Working Hypothesis (Domain Randomization). There exist

a set of features that can be extracted from all images in the

data and are sufficient for predicting the image label (pose).

These features can also be extracted from real images and

are sufficient for predicting the real label.

This working hypothesis means that if the training data is

sufficiently randomized, and the neural network is expressive

enough, then with enough data, the model has to discover

the features which are common to all images, and base its

prediction only on these features (otherwise it would suffer

a higher training loss on spurious correlations that it picks

up on). In that case, the network predictions are likely to

transfer well to the real world.

One may question whether such features should even exist.

However, for pose prediction, we know that the relative

pose Px is a purely geometrical property of the objects,



and since we assume an accurate 3D model of x, then

geometrical properties (e.g., relative sizes and shapes) should

be maintained in all the rendered images and also in the

real images. Thus, the network has the potential to learn

predictions based solely on geometrical properties of objects,

abstracting away any other visual cues such as textures and

lighting, and such features should transfer well to real images.

As discussed thus far, this pose estimation process is done

completely passively. The robot does not interact with objects

in the scene, but simply observes a single image of the scene

and needs to predict the pose. In this work, we provide a

key insight that we can in-fact interact with the scene, and

apply known geometric transformations to objects in the

scene. These transformations allow us to obtain a number of

different images of the scene to estimate the pose of the object

as the transformations are all applied by us. In this sense,

we propose an active procedure to improve pose estimation

by interacting with the scene and using multiple images to

make a better prediction.

A. Active Perception based on Domain Randomization with

Geometric Transformations

Recall that in the standard domain randomization problem

(Section III-A), training data is in the form of image-pose

pairs, {I, Px}. Following the active perception paradigm [20],

we can apply to the scene some known geometric transforma-

tion, with the hope that it improves our perception capabilities.

For example, consider a robotic arm grasping an object, and

the problem of estimating the position of the object within

the robot’s gripper. In this case, we can move the gripper

closer to the camera to obtain a better pose estimate. Since

we know the transformation applied when moving the gripper,

we can potentially combine several images to obtain a better

prediction. As another example, consider moving the camera

to obtain a better view of the object.

Concretely, we define the Domain Randomization

with Geometric Transformations problem (DR-GT). let

T1, . . . , Tk denote a set of k transformations that can actively

be applied to the geometry of the scene both in the real

world and in simulation. In particular, we consider rigid body

transformations applied to objects in the scene and to the

camera [24]. We propose to generate training data in the form

of tuples {I, T1(I), . . . , Tk(I), Px, T1(Px), Tk(Px)}, where,

slightly abusing notation, we denote by Ti(I) and Ti(Px) the

rendered image and pose when applying transformation Ti to

the scene. The supervised learning problem we consider now

is learning a mapping from I, T1(I), . . . , Tk(I), T1, . . . , Tk

to Px.

B. Inverse Transform based Domain Randomization

To solve the DR-GT problem, we propose the following

method, based on inverse transforms. Let T−1
i denote the

inverse transform of Ti.
1 Let f be the standard domain

1We restrict our approach to transformations with a well-defined inverse,
such as rotations and translations.

randomization mapping from I to Px. Then, we propose

to calculate

Px;0 = f(I),

Px;1 = T−1
1 (f(T1(I))),

. . . ,

Px;k = T−1
k (f(Tk(I))).

(1)

Note that for each i ∈ 0, . . . , k, the inverse transformation

in (1) means that the prediction Px;i is an estimate of Px.

Therefore, we can predict Px as the sample average:

P̂x =
1

k + 1

k∑

i=0

Px;i.

We term this method Inverse Transform based Domain

Randomization (ITDR). We expect that as we enlarge the

number of transformations k, the precision of ITDR improves.

While it is seemingly naive to use the sample average as a

prediction, we found that it is surprisingly effective compared

to more complicated methods with models which consider

several images at once as input and produce a single pose

estimate directly.

The key intuition behind using ITDR for improved estima-

tion is that using known transformations in an environment

allows us to use a wider data distribution to make several

predictions of the same pose. Since several of these trans-

formations provide easier to model prediction problems than

the original problem, it makes the accuracy of the model

significantly higher in the real world.

V. MODEL ARCHITECTURE

In order to perform accurate pose estimation directly

from images, we used a convolutional neural network ar-

chitecture [25]. The neural network takes a single image as

input, and generates a pose as output. In our experiments

we investigated predicting 3DoF pose composed of 2DoF

translation and 1DoF rotation. The model architecture takes

in an RGB image through 16 convolutional layers, each two

convolutional layers is followed by a max-pooling operation

and a ReLU nonlinearity. These convolutional layers are

followed by 3 fully connected layers with decreasing hidden

units and ReLU nonlinearity. This architecture is similar to

the one used in [7], based on the VGG architecture [26] using

convolution layers pretrained on ImageNet. The loss function

for training this model is a combination of L1 regression loss

for the 2DoF translation, and a cosine loss for the orientation,

given by

L(x, θ) = ||x− x̂||+ ||cos(θ − θ̂)− 1||,

where x and x̂ are the true and predicted pose, and θ and θ̂

are true and predicted orientation.

For active pose estimation, we pass a number of different

images through the same network and then average the

predictions after applying a known rigid transform between

them, as described in the ITDR algorithm.





In Simulation In Real Life

Fig. 4: Simulation to reality transfer with active gripper motion. Left: simulated images with domain randomization. Right: real images.
Active perception here is based on moving the robot gripper.

Fig. 5: Different transform applied to the reference object as
described in Section VI-A. The green cylinder is the reference
object and we are estimating the pose of the black peg. As seen
from these figures we can transform the position of the green cylinder
to four different positions and use multiple images to improve pose
estimation

grasped, but its position within the gripper is not known

accurately. This would be a typical case when the pose

estimation before grasping is not perfect. It is also important in

robotic reinforcement learning experiments [27], where during

learning, interaction with other objects in the environment

can move an object that is grasped within the gripper.

Fig. 6: Different transform applied to the gripper with an object
gripper in it. We want to estimate the exact relative position of
the peg with respect to the gripper. As seen from these figures
we can move the gripper to many different positions, with known
transformations. We can use the additional viewpoints to improve
the accuracy of pose estimation

As in the previous section, the object x is peg-shaped,

while the reference object y in this case is the robot gripper.

We estimate a 2-dimensional pose: the distance of the center

of the object from the gripper, and its orientation within

the gripper. The measured quantities are depicted in Fig 3b.

These are challenging to estimate with extreme precision but

are extremely important for the tasks we consider.

For active perception, in this case we move the robot

Average error x [cm] θ [radians]

one image 0.30 0.129

five images 0.26 0.047

two images 0.27 0.086

TABLE II: Table showing the mean prediction error for pose
prediction for moving gripper scenario described in Section VI-B. We
see that using multiple images with known geometric transformations
is able to significantly reduce the angle error and provide some
improvements in the estimation of the offset of the gripped object
as well.

gripper between a set of 5 fixed positions, and use ITDR to

estimate the pose from all images. The different movements of

the gripper show the camera different elements of the object

itself, which is likely to help with better pose estimation

since the model can latch on to different parts of the object.

We find that this strategy indeed helps with pose estimation

in the real world. We are able to identify the offset and the

angle of the object grasped within the gripper significantly

more accurately. ITDR performs significantly better than the

baseline of simply using a single image and a model trained

with domain randomization. As we can see from Table II, the

x position error is improved by around 20% and the angle

accuracy is improved by around 3×, from 0.129 to 0.047.

Additionally, we find that using fewer gripper locations leads

to worse performance. This suggests that using the multiple

images does indeed improve performance and scales with

using more images for estimation.

Note that in this setting, the object does not change

pose with respect to the gripper, therefore the inverse

transformations in ITDR are just the identity.

Fig. 7: Different camera angles of the same setting with target object
boxed up. We want to estimate the position and orientation of the
target object relative table corner. We can use multiple observing
angles to explore the geometric properties of the target object and
achieve a better pose estimation.

C. Moving a Robot-Held Camera

In this experiment, we demonstrate that actively moving

the camera can improve the pose prediction performance.

Figure 7 depicts our experimental setup.
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