
Dex-Net as a Service (DNaaS):

A Cloud-Based Robust Robot Grasp Planning System
Pusong Li1, Bill DeRose2, Jeffrey Mahler1, Juan Aparicio Ojea3, Ajay Kumar Tanwani1,2, Ken Goldberg1,2

Abstract— Accessing software resources via the Cloud has
become increasingly popular as a means to configure and man-
age automation systems with reduced infrastructure overhead.
Dex-Net as a Service (DNaaS) is a cloud-based grasp planning
system for parallel-jaw grippers that provides a graphical user
interface and API access to Dex-Net 1.0, a robust grasp planning
system based on wrench mechanics and stochastic sampling.
DNaaS allows anyone online to compute parallel-jaw grasps
on triangular meshes and visualize the results. This paper
presents system architecture, examples of generated grasps,
and timing data for DNaaS. DNaaS takes under 75 seconds
on average to process grasp requests. DNaaS is available at
http://automation.berkeley.edu/dex-net.

I. INTRODUCTION

The ability to compute robust robot grasps remains a

grand challenge for robotics in manufacturing, agriculture,

and home care. Today, most robots and automation systems

operate independently using onboard computation and mem-

ory. The development of Cloud Robotics [32] highlights the

role that collective robot learning, Cloud Computing, and

open-source software can play in achieving robust robotic

manipulation of everyday objects [38]. Whether leveraging

analytic methods or learning based approaches to achieve

dextrous robotic manipulation, the increasing ubiquity of

Cloud resources suggests new approaches to robot grasping,

where processing is performed remotely with access to large

shared datasets, can increase the reliability, performance, and

cross-platform flexibility of robotic systems.

Robotics and Automation as a Service (RAaaS) [38] can

play an important role in a Cloud Robotics framework by

avoiding complex software installation and maintenance, al-

lowing remote robots to scale beyond their onboard hardware

limitations, and facilitating the sharing of robot trajectories

and outcomes. RAaaS benefits users building robotics ap-

plications by making state-of-the-art algorithms and training

datasets available without the need to perform data collection

or algorithm implementation themselves.

The Dexterity-Network 1.0 (Dex-Net) [45] is an algo-

rithm for robust grasp planning which relies on Unix-based

libraries and operating systems. We present Dex-Net as a

Service (DNaaS), an HTTP API which uses Dex-Net 1.0

[45] to compute and rank parallel-jaw grasps on triangular-

faced, 3D object meshes using parametric parallel-jaw grip-

pers under user-specified physics and robustness parameters.

1 Dept. of Electrical Engineering and Computer Science;
2 Dept. of Industrial Engineering and Operations Research;
AUTOLab at University of California, Berkeley,

USA {alanpusongli, bderose, jmahler,
ajay.tanwani, goldberg}@berkeley.edu

3 Siemens Corporation; juan.aparicio@siemens.com

Fig. 1: Four ”adversarial” (difficult to grasp) objects (top) and the corre-
sponding grasps (bottom) generated by DNaaS for the parallel-jaw gripper
shown (gripper width and depth are adjustable parameters). Candidate grasps
are represented by oriented line segments along the grasp axis, colored by
their robustness (green more robust, red less robust).

Grasps generated by DNaaS can be viewed in a web-based

graphical user interface where users may choose their desired

gripper parameters, explore grasps on example watertight 3D

object meshes, and upload custom objects to evaluate DNaaS

on their own meshes. Users interact with mesh objects and

candidate grasps in a 3D scene with the ability to filter grasps

to specific stable poses. This allows industrial practitioners

to easily access Dex-Net 1.0 through the Web. Examples of

grasps generated by DNaaS are shown in Figure 1.

This paper makes three contributions:

1) DNaaS, a RAaaS architecture for Dex-Net 1.0 and

public HTTP API which takes as input a 3D object

mesh (in .obj format with triangular faces) and

computes stable poses, grasps, and robust grasp quality

metrics for parallel-jaw grippers under uncertainty in

object pose, gripper pose, and friction,

2) An implemented graphical interface where users up-

load object meshes and visualize the quality of can-

didate grasps to better understand or debug grasping

models, and

3) Experiments evaluating failure modes of the system,

the real-time performance of the DNaaS API across

multiple parallel-jaw grippers and adversarial meshes,

and the effect of gripper width on predicted grasp

quality.

II. RELATED WORK

Cloud robotics. The term “Cloud Robotics” was coined

GET /api/{MESH_ID}/stable_poses

Enqueue successful

return { filtered_stable_poses: [...] }

return { stable_poses: [...] }

GET /api/{MESH_ID}/processing-progess

return { mesh_id: <UUID> }

Grasp Computation
Server

API
Consumer

POST /api/upload-mesh

return { state: "pre-processing" | "sampling" |
 "collision_checking" | "metric_computation" | "done" }

GET /api/{MESH_ID}/grasps
return { grasps: [...] }

Preprocess Mesh

GET /api/{MESH_ID}/stable_poses/{POSE_ID}/filtered_grasps

Sample Grasps
Collision Checking

API
Server

Fetch progress

Current state

Enqueue grasp sampling job

Computed grasps, metrics, stable poses
Cache computed results

Retrieve from cache

Compute Metrics

Retrieve from cache

Retrieve from cache

Fig. 5: DNaaS API sequence diagram. This workflow depicts the steps necessary to initiate, monitor, and retrieve a grasp computation request for a given
object and parallel-jaw gripper as well as the back-end steps executed during such a request . ”API Consumer” denotes the end user, ”API Server” denotes
the public-facing HTTP API, and ”Grasp Computation Server” denotes the back-end worker process. An end-user following this workflow would POST
the mesh and gripper parameters to the server, follow progress with GET, then retrieve the newly cached results with GET after computation is completed.

grasp computation. We estimate the center of mass for the

object by assuming a uniform density when the mesh is

watertight and taking the centroid of the mesh bounding box

otherwise. Next, we compute the stable resting poses of the

object on a planar worksurface under quasi-static physics and

a uniform initial object orientation [29].

Grasp planning: The second stage in our pipeline samples

an initial set of antipodal grasps using an implementation of

the grasp sampling algorithm of Dex-Net 1.0 that operates on

triangular meshes. First, we sample a set of candidate contact

points from the surface of the mesh that are approximately

evenly spaced using the trimesh library’s [17] implementa-

tion of the triangle point picking algorithm [54]. For each

candidate contact point, we search for a second contact

point to form an antipodal pair by sampling a direction

uniformly at random from the friction cone around the

contact normal (inward-pointing surface normal). We then

trace a ray along the sampled direction to find the most

distant point of intersection with the mesh surface that is

within the maximum opening width of the gripper. If no

such intersection point exists, the candidate contact point

is discarded. If one exists, we compute the surface normal

and friction cone at the point of intersection and determine

whether the candidate contact point and point of intersection

form an antipodal pair. If the pair is antipodal, we construct

a candidate grasp with center at the midpoint between the

pair of contact points and grasp axis along the line between

the contacts and add the candidate grasp to the set.

Collision checking: The set of antipodal contact points

is then pruned by checking for collision-free configurations

of the gripper relative to the object that reach the contact

points. We search over all rotations of the gripper about the

grasp axis (line between the contact points). For each grasp

and stable resting pose, we also check whether or not the

grasp axis is parallel to the planar worksurface to mark valid

crane grasps.

Metric computation: Finally, we compute grasp robust-

ness for the set of candidate grasps using Monte-Carlo

sampling. For each grasp we iteratively sample an object

pose, a gripper pose, and a friction coefficient from Gaussian

distributions using the graphical model of [52]. We then

compute the contact points for the perturbed grasp and

evaluate the grasp quality metric. The backend implements

force closure using a soft finger contact model by computing

the angle between the line segment joining the contacts and

the friction cone. We also implement the epsilon metric

by Ferrari and Canny [25] using a Python implementation

based on pyhull [14]. We estimate the mean and standard

deviation of the quality metric over all samples. We stop

sampling when either (a) the 95% upper confidence bound

on the quality metric is less than a threshold value, or (b) the

maximum number of samples has been reached. The final set

of grasps and metrics are JSON-encoded and returned to the

end user when queried.

B. HTTP API

The full API specification implemented by DNaaS is

available online [5] with an accompanying example of how

to query DNaaS for grasp candidates [6] and stable poses.

Figure 5 depicts the HTTP sequence workflow of a

typical request to the service. Users initiate requests for

grasp computation by submitting a POST request to the

upload-mesh API endpoint with their desired object mesh

and gripper parameters attached as files. Each request to

process a mesh is associated with a globally unique iden-

tifier which is returned in the HTTP response to the initial

request. Grasp computation progress can be monitored by

querying the processing-progress endpoint with the

corresponding mesh identifier to receive fine-grained updates

on the state of a given request.

Once computation is complete, any future requests made

to the grasps endpoint associated with the unique mesh

Bar Clamp Endstop Holder Spray Bottle

1000 10000 1000 10000 1000 10000

0

50

100

Triangular Faces

T
o
ta

l
E

la
p
s
e
d
 T

im
e
 (

s
)

Processing Stage

collision checking

grasp sampling

mesh preprocessing

metric computation

Fig. 7: Data on computation time vs mesh complexity. We measure the elapsed time of the major stages in the grasp generation pipeline, segmented by
mesh, and colored by the processing stage. Timing measurements are given for three adversarial object meshes: a bar clamp, an endstop holder, and a
spray bottle. Cloud overhead remained less than 1.5 seconds and is not visible on the graph. Note: x-scale is log-transformed.

reaches the longest dimension of the target object’s bounding

box. Beyond that, any additional width of the parallel-

jaws does not enable additional grasps that were previously

infeasible.

Concretely, we can see these three phases in Figure 6

where we generate grasps on a spray bottle object using

parallel-jaw grippers of different widths. On the far left we

begin with a gripper too narrow to grasp the spray bottle

robustly. As the width is increased from 2cm to 4cm, the

parallel-jaw gripper begins to fit around parts of the bottle

that allow for more robust grasps. The maximum width of

the bottle is approximately 5cm, so although the increase in

width from 4cm to 6cm continues to shift the distribution of

grasp quality out to the right tail, it does not have the same

magnitude of effect as the jump from 2cm to 4cm does.

B. Processing Time Analysis

We gather system timing measurements to evaluate the

performance of DNaaS as a software system and benchmark

the speed of our grasping service. A single trial measures

the time from the initial incoming request for grasps on a

given mesh until DNaaS has completed all stages of the grasp

generation pipeline and is ready to return a set of candidate

grasps to the user. When measuring the performance of

DNaaS, we consider two criteria: overall timing and timing

of the individual steps in the grasp generation pipeline. We

conduct 25 trials across 4 objects whose triangular faces

are subdivided to simulate increased mesh complexity. The

resulting meshes ranged from 284 to 72704 triangular faces.

We find that on average DNaaS takes under 75 seconds

to process grasp requests on adversarial meshes using a

parameterized gripper model.

The individual steps of the DNaaS grasp generation

pipeline are dependent on both object geometry and mesh

complexity (measured by the number of triangular faces in a

mesh). Figure 8 depicts the difference in timing across object

geometries by splitting out the distributions of processing

time across three example meshes. Figure 7 shows the

positive relationship between the number of triangular faces

in the target object’s mesh and grasp generation runtime.

Although there is an upfront cost in the initial grasp

computation step, the grasps computed by DNaaS are cached

●●●●

50

75

100

125

Bar Clamp Endstop Holder Spray Bottle

Mesh Name

T
o
ta

l
E

la
s
p
e
d
 T

im
e
 (

s
)

Mesh Name

Bar Clamp

Endstop Holder

Spray Bottle

Mesh Avg. Processing Time (s) Std. Dev. Avg. Num. Faces

Bar Clamp 49 16 14747

Endstop Holder 61 23 19368

Spray Bottle 81 30 17255

Overall 72 35 13271

Fig. 8: Measuring the elapsed time of the major stages in the grasp
generation pipeline, segmented by mesh. Timing measurements are again
given for three adversarial object meshes: a bar clamp, an endstop holder,
and a spray bottle.

on the server and may be queried quickly thereafter. This

suggests that DNaaS could be a feasible solution to grasping

scenarios where the target objects are known in advance

so grasps can be pre-computed and cached for faster on-

the-fly access. In its current form, DNaaS is unsuitable for

applications where grasping of previously unknown objects

is required. For high-throughput applications a grasp planner

co-located with robot hardware may be necessary to ensure

all service-level latency constraints are satisfied by the grasp-

ing system.

C. Failure Modes

We present a series of failure modes encountered during

the development of DNaaS in hopes of galvanizing users to

further test the system’s capabilities.

Perturbation During metric robustness computation, we

perturb candidate grasps with random noise. For parallel-jaw

grippers with small widths, the contact points of the grasp

can be close to the surface of the object. When we attempt

to perturb such grasps, sometimes the contact point is moved

inside the object mesh, resulting in an infeasible grasp whose

metric score should be zero. However, as collision checking

each perturbation would take a prohibitive amount of time,

these grasps receive non-zero scores. This means that even

though this type of grasp is not robust, they can potentially

receive relatively high metric scores.

Stable Poses During our performance testing, we noticed

an anomalous result on a spherical adversarial object. For

low face-count spherical meshes, one stable pose exists for

every face. This results in a large number of symmetric

stable poses. Due to collision checking being run for each

stable pose, this causes low triangle count spheres to have

significantly longer runtimes when compared to other meshes

with a similar number of triangular faces. As the number of

faces increases and the mesh more closely approximates a

true sphere, the faces become smaller and the probabilities

of the associated stable poses decrease. Once this probability

becomes small enough, the poses associated with each face

are no longer considered stable, and the object has zero

stable poses. This means that once the spherical mesh has

enough faces, its collision checking runtime drops instead of

increasing. Figure 9 depicts this effect.

Uniform Density Center of Mass When computing the

center of mass (COM) for an object mesh, we assume

uniform density. This can lead to counter-intuitive grasps,

for example the ones in Figure 6, where the most robust

grasps are around the uniform-density COM. Humans may

see the spray bottle and infer that there is likely liquid inside

which leads to a lower COM and an entirely different set

of robust grasps. Thus, DNaaS may counter-intuitively rank

certain grasps as robust when given objects of non-uniform

density.

D. Usage Data

The DNaaS frontend web interface and backend API

server are instrumented to record usage data to improve

future versions of the service. Over the past three months,

the DNaaS web interface has received 182 page-views from

32 unique users located across North America, Europe, and

Asia. The backend DNaaS API server logged 96 requests

for grasp computation on 33 unique user-uploaded object

meshes. 15 users made grasp requests with one gripper

configuration for the uploaded mesh, 10 users requested with

two configurations, and 8 users requested with three or more

gripper configuration for their specific mesh.

VI. DISCUSSION AND FUTURE WORK

We present DNaaS, a RAaaS architecture, which combines

a public HTTP API and graphical web user interface to

Dex-Net 1.0. We report example grasps generated by DNaaS

across multiple parallel-jaw gripper hardware configurations

and adversarial objects. The distribution of grasp quality pre-

sented for the experimental hardware configurations allows

us to make qualitative observations about the space of grasp-

enabling parallel-jaw grippers.

System timing measurements suggest that DNaaS could

be used in industrial settings such as multi-item, single-line

production lines where the up-front cost of grasp compu-

tation for objects can be pushed to the change-over times

Sphere

100 1000 10000

0

50

100

150

Triangular Faces

T
o
ta

l
E

la
p
s
e
d
 T

im
e
 (

s
)

Processing Stage

collision checking

grasp sampling

mesh preprocessing

metric computation

Fig. 9: Timing measurements for a spherical mesh, which has many equally
likely stable poses. This leads to a peak in the time it takes to collision
check around 100 triangular faces.

between items and subsequent computations can make use

of DNaaS’s grasp caching or some home decluttering settings

where the set of objects encountered is limited.

By making Dex-Net 1.0 widely accessible, we invite

research and industrial users to experiment with the sys-

tem, evaluate performance, and identify new failure modes.

DNaaS hopes to motivate future data-driven grasping al-

gorithms by including objects submitted to DNaaS in the

growing collection of 10,000 unique 3D objects models and

2.5 million associated parallel-jaw grasps in the Dex-Net

database.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC

Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab,

and the CITRIS ”People and Robots” (CPAR) Initiative.

and by the Scalable Collaborative Human-Robot Learning

(SCHooL) Project, NSF National Robotics Initiative Award

1734633.

The authors were supported in part by donations from

Siemens, Google, Amazon Robotics, Toyota Research In-

stitute, Autodesk, ABB, Samsung, Knapp, Loccioni Honda,

Intel, Comcast, Cisco, HP, and PhotoNeo, as well as GPU

donations from NVIDIA. Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the Sponsors. We thank our colleagues who provided

helpful feedback, code, and suggestions, in particular Roy

Fox, David Gealy, Sanjay Krishnan, Animesh Garg, Michael

Laskey, Matt Matl, and Vishal Satish.

REFERENCES

[1] “Apache web server.” [Online]. Available: https://httpd.apache.org/
[2] “Asynchronous operations in javascript using promises.” [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global Objects/Promise

[3] “Autonomous solutions (asi).” [Online]. Available: https://www.
asirobots.com/research/

[4] “Bootstrap front-end component library.” [Online]. Available: http:
//getbootstrap.com/

[5] “Dnaas api documentation.” [Online]. Available: https://gist.github.
com/bderose/61d70384d159af3715865b35b75e96e0

[6] “Dnaas api example.” [Online]. Available: https://gist.github.com/
bderose/0c1c2cad2d4291b16a9a24d4b271da1f

[7] “Document object model.” [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/API/Document Object Model/
Introduction

[8] “Dropblet home automation.” [Online]. Available: http://smartdroplet.
com/

[9] “Emerald cloud labs.” [Online]. Available: https://www.
emeraldcloudlab.com/about/

[10] “Flexbox.” [Online]. Available: https://www.w3.org/TR/css-flexbox-1/

[11] “graspit - ros wiki.” [Online]. Available: http://wiki.ros.org/graspit

[12] “Jquery javascript library.” [Online]. Available: https://jquery.com/

[13] “Jquery ui library.” [Online]. Available: https://jqueryui.com/

[14] “Pyhull.” [Online]. Available: http://pythonhosted.org/pyhull/

[15] “Tempo automation.” [Online]. Available: https://www.
tempoautomation.com/capabilities

[16] “three.js.” [Online]. Available: https://threejs.org/

[17] “Trimesh.” [Online]. Available: https://github.com/mikedh/trimesh

[18] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
3084–3089.

[19] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Physical human interactive guidance: Identifying grasping principles
from human-planned grasps,” IEEE Trans. Robotics, vol. 28, no. 4,
pp. 899–910, 2012.

[20] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesisa survey,” IEEE Trans. Robotics, vol. 30, no. 2, pp. 289–309,
2014.

[21] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp plan-
ning with multiple object representations,” in Proc. IEEE Int. Conf.

Robotics and Automation (ICRA). IEEE, 2011, pp. 2851–2858.

[22] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Şucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics. Springer, 2014, pp. 241–
252.

[23] R. Detry, C. H. Ek, M. Madry, and D. Kragic, “Learning a dictionary
of prototypical grasp-predicting parts from grasping experience,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE, 2013,
pp. 601–608.

[24] K. Fang, Y. Bai, S. Hinterstoisser, and M. Kalakrishnan, “Multi-task
domain adaptation for deep learning of instance grasping from
simulation,” CoRR, vol. abs/1710.06422, 2017. [Online]. Available:
http://arxiv.org/abs/1710.06422

[25] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE Int.

Conf. Robotics and Automation (ICRA), 1992, pp. 2290–2295.

[26] R. T. Fielding and R. N. Taylor, Architectural styles and the design

of network-based software architectures. University of California,
Irvine Doctoral dissertation, 2000, vol. 7.

[27] K. Goldberg, May 2018, in TechCrunch Robotics Symposium, Berke-
ley, CA.

[28] K. Goldberg and B. Kehoe, “Cloud robotics and automation: A
survey of related work,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2013-5, 2013.

[29] K. Goldberg, B. V. Mirtich, Y. Zhuang, J. Craig, B. R. Carlisle, and
J. Canny, “Part pose statistics: Estimators and experiments,” IEEE

Trans. Robotics and Automation, vol. 15, no. 5, pp. 849–857, 1999.

[30] C. Goldfeder and P. K. Allen, “Data-driven grasping,” Autonomous

Robots, vol. 31, no. 1, pp. 1–20, 2011.

[31] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in Proc. IEEE Int. Conf. Robotics and Automation

(ICRA). IEEE, 2009, pp. 1710–1716.

[32] E. Guizzo, “Cloud robotics: Connected to the cloud, robots get
smarter,” Jan 2011. [Online]. Available: https://spectrum.ieee.org/
automaton/robotics/robotics-software/cloud-robotics

[33] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger, et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,”
arXiv preprint arXiv:1610.05514, 2016.

[34] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour,
and S. Schaal, “Learning of grasp selection based on shape-templates,”
Autonomous Robots, vol. 36, no. 1-2, pp. 51–65, 2014.

[35] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time detec-
tion of texture-less objects in heavily cluttered scenes,” in Proc. IEEE

Int. Conf. on Computer Vision (ICCV). IEEE, 2011, pp. 858–865.

[36] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2015.

[37] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition en-
gine,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE, 2013, pp. 4263–4270.

[38] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation

science and engineering, vol. 12, no. 2, pp. 398–409, 2015.
[39] J. Kuffner, “Cloud-enabled robots,” in IEEE-RAW International Con-

ference on Humanoid Robots, 2010.
[40] S. Kumra and C. Kanan, “Robotic grasp detection using deep

convolutional neural networks,” CoRR, vol. abs/1611.08036, 2016.
[Online]. Available: http://arxiv.org/abs/1611.08036

[41] M. Laskey, J. Mahler, Z. McCarthy, F. T. Pokorny, S. Patil, J. van den
Berg, D. Kragic, P. Abbeel, and K. Goldberg, “Multi-armed bandit
models for 2d grasp planning with uncertainty.” in Proc. IEEE Conf.

on Automation Science and Engineering (CASE). IEEE, 2015.
[42] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic

grasps,” Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5, pp.
705–724, 2015.

[43] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, et al., “Opengrasp: a
toolkit for robot grasping simulation,” in Proc. IEEE Int. Conf.

on Simulation, Modeling, and Programming of Autonomous Robots

(SIMPAR). Springer, 2010, pp. 109–120.
[44] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.

Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” in Proc.

Robotics: Science and Systems (RSS), 2017.
[45] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,

K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in Proc. IEEE

Int. Conf. Robotics and Automation (ICRA). IEEE, 2016.
[46] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic

grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

[47] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE Int. Conf.

Robotics and Automation (ICRA), 2016.
[48] F. T. Pokorny and D. Kragic, “Classical grasp quality evaluation: New

algorithms and theory,” in Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS). IEEE, 2013, pp. 3493–3500.
[49] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook

of robotics. Springer, 2008, pp. 671–700.
[50] J. Redmon and A. Angelova, “Real-time grasp detection using con-

volutional neural networks,” in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA). IEEE, 2015, pp. 1316–1322.
[51] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”

Int. Journal of Robotics Research (IJRR), p. 0278364912442972, 2012.
[52] D. Seita, F. T. Pokorny, J. Mahler, D. Kragic, M. Franklin, J. Canny,

and K. Goldberg, “Large-scale supervised learning of the grasp robust-
ness of surface patch pairs,” in Proc. IEEE Int. Conf. on Simulation,

Modeling, and Programming of Autonomous Robots (SIMPAR). IEEE,
2016.

[53] N. Tian, M. Matl, J. Mahler, Y. X. Zhou, S. Staszak, C. Correa,
S. Zheng, Q. Li, R. Zhang, and K. Goldberg, “A cloud robot system
using the dexterity network and berkeley robotics and automation
as a service (brass),” in 2017 IEEE International Conference

on Robotics and Automation, ICRA 2017, Singapore, Singapore, May

29 - June 3, 2017, 2017, pp. 1615–1622. [Online]. Available:
https://doi.org/10.1109/ICRA.2017.7989192

[54] E. W. Weisstein. Triangle point picking. From MathWorld–A
Wolfram Web Resource. Last visited 3/14/18. [Online]. Available:
http://mathworld.wolfram.com/TrianglePointPicking.html

[55] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” in Proc. IEEE Int. Conf. Robotics and Au-

tomation (ICRA). IEEE, 2012, pp. 557–562.

	Introduction
	Related Work
	Problem Statement
	Assumptions

	Dex-Net as a Service (DNaaS) Architecture
	Grasp Computation
	HTTP API
	Web Interface

	Experiments
	Grasp Quality and Gripper Width
	Processing Time Analysis
	Failure Modes
	Usage Data

	Discussion and Future Work
	References

