


prior approaches that train and evaluate on two different

distributions. To guide data collection towards successful

grasps, the distribution samples a mixture of grasps from

the action space of the robot policy and from an algorithmic

robust grasping supervisor that leverages the known geome-

try and pose of 3D objects to index pre-computed grasps. We

use this to train an efficient single-shot grasping policy based

on Fully Convolutional Networks, an architecture introduced

in computer vision for image segmentation [19] that has re-

cently shown promising results for learning grasping policies

from human labeled datasets [25], [38]. We develop a novel

variant of this architecture that evaluates grasps in 4-DOF

(3D position and planar orientation) by parallelizing standard

Grasp Quality Convolutional Neural Networks (GQ-CNNs).

The architecture can rapidly produce dense and reliable grasp

predictions by evaluating millions of grasps in parallel.

This paper contributes:

1) A novel dataset collection policy for sampling syn-

thetic training datasets that reflects the distribution of

actions that the learned policy evaluates at runtime

utilizing guidance from a robust supervisor.

2) Experimental data from a physical robot comparing the

performance of this approach to current state-of-the-art

approaches for training a policy based on a 4-DOF (3D

position and gripper orientation) Fully Convolutional

Grasp Quality CNN (FC-GQ-CNN).

3) Experimental data in simulation exploring the sensitiv-

ity of policy performance to supervisor guidance level

and action space granularity.

Physical robot experiments suggest that a policy based on

Fully Convolutional Grasp Quality CNNs (FC-GQ-CNNs)

can plan grasps in 0.625s, considering 5000x more grasps

than a policy based on iterative grasp sampling and evalua-

tion. This computational efficiency improves rate and relia-

bility, achieving 296 mean picks per hour (MPPH) compared

to 250 MPPH for iterative policies.

II. RELATED WORK

A. Learning for Grasp Planning

The goal of grasp planning is to find a gripper config-

uration that maximizes a quality metric. Initial approaches

to the problem utilized analytic approaches (see [29] for a

survey). However, the difficulty in using these approaches to

generalize to novel objects has lead to the use of empirical

and hybrid approaches, the latter of which utilizes massive

synthetic training datasets generated with analytic models.

Combined with advances in deep learning, these ap-

proaches utilize policies that query a neural network to locate

the highest quality grasp. These fall into two categories.

Discriminative approaches utilize a neural network to rank

grasps based on a quality metric and optimization techniques

to search for high quality grasp candidates [21], [34]. Gener-

ative approaches instead directly generate a grasp set given

sensor data, and may use heuristics to select the optimal

grasp from this set. One popular approach is to regress to

grasp coordinates in image space [16], [30].

These deep approaches have been trained on mas-

sive datasets of human-labeled [13], [16], [30], self-

supervised [8], [18], [26], [28] or synthetic [3], [6], [11],

[21], [36] grasps, images, and quality labels. A popular

human-labeled dataset is the Cornell Grasping Dataset de-

veloped by Lenz et al. [16], which consists of 1k RGB-D

images labeled with grasps parametrized by oriented bound-

ing boxes. This has been extensively used to train CNN-

based models for singulated objects [14], [25], [30]. Self-

supervised datasets have been collected from grasp attempts

on a physical robot. Pinto and Gupta [28] collected over 40k

grasp attempts on a Baxter to train a CNN, whereas Levine

et al. [18] expanded this approach even further by collecting

over 800k datapoints using numerous robot arms. Synthetic

datasets such as Dex-Net [21] have been used to train state-

of-the-art hybrid approaches. We explore the effect of the

distribution of synthetic training examples on the rate and

reliability of learned policies.

B. Dense Predictions and Fully Convolutional Networks

Recent approaches to grasping have leveraged dense eval-

uations of the entire grasp action space instead of selectively

choosing grasps to evaluate based on heuristics or iterative

optimization techniques [21]. These approaches utilize deep

neural networks to rapidly evaluate millions of grasps by

offloading computation to specialized GPU hardware. Johns

et al. [11] evaluated a dense set of output poses and applied

a function to this output to make it robust to gripper pose

uncertainty. However, the standard CNN architecture they

chose limited them to a pre-determined image size and

required the final layer of the network to scale with this

image size, which can become large and computationally

expensive.

The need for dense evaluations with smaller networks

that scale to arbitrary image sizes led to the development

of Fully Convolutional Networks (FCNs) in the field of

computer vision for tasks requiring pixel-wise discrimination

such as image segmentation [19], object detection [4], and

visual tracking [37]. Several successful empirical grasping

approaches have taken advantage of FCNs. Zeng et al. [38]

trained FCNs on hundreds of human-labeled images to

predict the probability of success for four grasp primitive

actions. Morrison et al. [25] used FCNs to increase grasp

planning frequency to 50Hz, using a discriminative head to

predict the probability of grasp success and separate network

heads to generate the grasp angle and gripper width.

The approaches used by [11], [38], [25] all evaluate

grasps based on 3-DOF (planar position and orientation). We

extend this approach to 4-DOF, including the grasp height

in evaluation.

C. Training Distribution

Learning-based approaches to grasp planning require a

large labeled dataset of training data, and the distribution of

the training data may affect the performance of the learned

policy. Prior approaches have used a distribution based on

human labels [16], [38], random exploration [18], [28], or the



set of antipodal grasps on 3D mesh surfaces [21]. The fields

of IL [32] and RL [33] have considered how to optimize the

distribution of training data to improve learning efficiency

and to reduce covariate shift. In IL, approaches are either

on-policy, using supervisor labels on actions taken by the

current learned policy [32], or off-policy [15], using actions

taken by the supervisor. In RL, a common approach is to

sample actions using epsilon greedy, which mixes random

actions from the action set with actions preferred by the

current trained policy [33]. Supervised actor-critic [31] ap-

proaches to RL, such as Actor-Mimic [27], use a supervisor

policy to guide the distribution of actions taken to train a

policy. Several methods incorporate similarity to supervisor

actions into the RL reward function, such as Deep Learning

from Demonstrations [10] and Guided Policy Search [17].

In comparison, we consider data collection for supervised

learning and use a training dataset distribution based on a

robust grasping supervisor that uses a database of 3D object

models to index grasps.

III. PROBLEM STATEMENT

We consider the problem of learning a robot grasping

policy for a wide variety of novel objects as measured by

Mean Picks Per Hour (MPPH) [23], the number of objects

that are successfully grasped per hour. This depends on rate,

or frequency of grasp planning and execution, and reliability,

or percentage of successful grasps.

The goal is for a robot to iteratively grasp and transport a

single object from a bin to a receptacle based on point clouds

from a depth camera. The state x includes the geometry,

pose, and material properties of each object. The robot

acquires a point cloud observation y represented as a depth

image. Then the robot uses a grasp policy πθ with parameters

θ that takes as input an observation y and returns a grasp

u = πθ(y). A grasp is specified as the 3D position and planar

orientation of a parallel-jaw gripper. Upon executing the

grasp, the robot receives a binary reward R(x,u) ∈ {0, 1}
based on whether or not an object is successfully grasped

and transported to the receptacle. The grasp attempt has a

duration consisting of the combined sensing time ts, grasp

computation time (GCT) tc, and grasp execution time te, in

fraction of hours, which we assume to be constant.

The objective is MPPH:

max
θ∈Θ

E

[
R(x, πθ(y))

ts + tc + te

]

= max
θ∈Θ

E [R(x, πθ(y))]

The expectation is taken with respect to the grasping en-

vironment, a distribution over possible states, observations,

rewards, and actions based on the policy:

p(R,x,y,u | θ) = π(u | y, θ)
︸ ︷︷ ︸

policy

p(R | x,u)
︸ ︷︷ ︸

reward

p(y | x)
︸ ︷︷ ︸

observation

p(x)
︸︷︷︸

state

MPPH can be increased by improving rate, reliability, or

both. In this paper we focus on improving rate by reducing

GCT. Since MPPH depends on hardware, we individually

measure GCT in our experiments to control for network,

sensor and arm-movement speed.

IV. LEARNING OBJECTIVE

We use supervised learning to train a policy based on a

quality function Qθ that predicts the probability of success

for a given grasp using a deep neural network with parame-

ters θ [2], [16], [11], [21]. The policy maximizes this function

over all grasps in the action space U(y) to select a grasp:

πθ(x) = argmax
u∈U(y)

Qθ(y,u) (IV.1)

To train the network, we minimize the cross-entropy loss

between the predicted grasp quality and reward:

min
θ∈Θ

E [L(R,Qθ(y,u))]

Here the expectation is taken with respect to a dataset

distribution defined by a dataset collection policy τ that may

be independent of the policy parameters:

p(R,x,y,u | θ) = τ(u | x,y)
︸ ︷︷ ︸

policy

p(R | x,u)
︸ ︷︷ ︸

reward

p(y | x)
︸ ︷︷ ︸

observation

p(x)
︸︷︷︸

state

The distribution τ is designed to reflect a diverse set of

actions that may be evaluated by the learned quality function

at runtime. Note that this is distinct from the distribution of

actions planned by the policy, as the quality function must

evaluate a diverse set of grasp candidates and discard poor

actions. In prior work, τ is sampled off-policy by collecting

data from a human supervisor [25], [38], the current best

policy [18], [28], or 3D antipodal grasps [21].

V. ON-POLICY DATASET SYNTHESIS

The hybrid approach to learning robust grasping policies

samples training datasets from a synthetic dataset distribution

that is the product of a simulated training environment

ξ(R,x,y | u) and a data collection policy τ(u | x,y). The

training environment ξ models the distribution of rewards,

states, and point clouds using analytic models based on

physics and geometry [21] with domain randomization for

robust sim-to-real transfer [35]. The data collection policy

τ attempts to sample a diverse set of actions that the

learned quality function may need to evaluate at runtime.

Nonetheless, several hybrid methods such as the Dexterity

Network (Dex-Net) 2.0 [21], [20] use different distributions

of grasp actions for training and policy deployment (See

Fig. 1), which may reduce performance due to covariate

shift [32], [15].

Drawing inspiration from approaches in imitation learn-

ing [15], [32] and reinforcement learning [17], [31], we

propose an on-policy dataset distribution. The distribution

uses a data collection policy that uniformly samples grasps

from the action space U(y) that the policy evaluates with

the learned quality function at runtime (see Equation IV.1).

To increase the percentage of successful grasp actions, the

distribution uses guiding samples from a robust grasping

supervisor that plans robust grasps analytically using full

knowledge of 3D object geometry and pose.

Formally, the data collection policy is

τ(u | x,y) = (1− ǫ)U(U(y)) + ǫΩ(x),



a mixture of a uniform distribution over the grasp action

space U(y) and the Dex-Net 1.0 [24] robust grasping su-

pervisor distribution Ω(x). The parameter ǫ controls the

percentage of actions to sample from the supervisor. A larger

value of ǫ may increase covariate shift as more actions are

sampled from the supervisor, while smaller values of ǫ may

skew the distribution toward many negative examples and

require larger training datasets.

To increase the rate of grasp computation, we use this

data collection policy to train a Fully Convolutional Grasp

Quality CNN (FC-GQ-CNN) on a 4-DOF action space (3D

position and planar orientation). Fig. 1 (Top Right) illustrates

the dense discretization of the 4-DOF grasp action space that

is evaluated at runtime and used to sample training data.

VI. FULLY CONVOLUTIONAL 4-DOF ARCHITECTURE

Prior to the use of FCNs, grasping policies could only

evaluate a comparably limited number of grasps in a rea-

sonable computational budget. With this constraint, many

prior approaches used iterative optimization methods such as

the cross-entropy method (CEM) [18], [21] to approximate

(IV.1).

One drawback of these approaches is that they must be

implemented in a serial fashion. In the particular case that

they are implemented with a neural network quality function,

they require significant computational overhead, such as

copying data between device and host memory, every time

the network must be queried for a new batch of predictions.

Also, the iterative optimization itself often involves many

parameters such as the ideal number of iterations, which may

be difficult to tune.

As an alternative to these sparse approaches, Zeng [38]

and Morrison [25] have proposed using Fully Convolutional

Networks (FCNs) that can produce an extremely dense yet

efficient set of predictions over the entire state space in

a single-shot evaluation. This reduces the search over the

action space to an argmax of the network output.

The denser we can make the FCN evaluation, the more

efficiently we can cover the state space by offloading com-

putation to neural network inference, which can be highly

optimized on specialized GPU hardware. With this goal in

mind, we extend an FCN to 4-DOF as opposed to prior 3-

DOF approaches such as [38] and [25]. This is achieved by

parameterizing the action space using 3D gripper position

and planar orientation.

A. Architecture

We build the 4-DOF FC-GQ-CNN by:

1) Initially training a 4-DOF CNN.

2) At policy evaluation time converting all fully con-

nected layers into fully convolutional layers, resulting

in an FCN.

Although [25] and [38] choose to directly train the FCN,

we choose to train a CNN and convert it to a FCN because

this eliminates the need for densely-labeled ground-truth

images during training. Instead, the CNN can be trained on

much smaller crops of individual grasps.

1) 4-DOF GQ-CNN Architecture: We first design a 4-

DOF CNN architecture. We take inspiration from the GQ-

CNN [21], extending it to 4-DOF by incorporating the grasp

angle θ. This takes as input a cropped thumbnail depth image

of a single grasp centered on the grasp center pixel, ytrain,

along with the corresponding grasp depth relative to the

camera, z. It computes a set of k success probabilities, each

corresponding to a planar gripper angle.

Unlike in the original GQ-CNN, we cannot incorporate

depth using a separate network stream. The separate stream

presents a computational bottleneck during the FCN conver-

sion because its output must be expensively tiled across the

output of the final convolution layer, which can be fairly large

for larger input sizes. We instead incorporate the depth z into

the network by subtracting it from the depth image ytrain,

thus transforming the depth image into the grasp frame

of reference. Following standard conventions, we normalize

the transformed depth images by subtracting the mean and

dividing by the standard deviation of the training data.

2) Conversion to FCN: By converting each of the fully

connected layers of the 4-DOF GQ-CNN into a convolution

layer, we define the FC-GQ-CNN architecture. This is a valid

transformation because of the one-to-one mapping between

convolution and fully connected layer weights. The FC-GQ-

CNN, illustrated in Fig. 2 (Top) and detailed in the caption,

takes as input an arbitrarily sized depth image y and corre-

sponding gripper depth relative to the camera z, and evaluates

a dense 4-DOF set of grasp quality predictions. This allows

us to evaluate the 4-DOF GQ-CNN over the entire input

image in an efficient manner, as if it were a giant convolution

filter. The stride of the FC-GQ-CNN is determined by the

amount of pooling present in the convolution layers of the

4-DOF GQ-CNN architecture, specifically each pooling by a

factor of p will increase the stride by a corresponding factor.

VII. POLICY LEARNING

A. Policy

Given an arbitrarily sized depth image y, the FC-GQ-CNN

policy discretizes the action space based on grasp center

pixel, angular bin, and gripper depth. The granularity of the

former two are determined by the architecture, whereas the

latter is a policy parameter. Once we have formed this action

space, we can efficiently evaluate it with the FC-GQ-CNN

and take the argmax (IV.1).

B. FC-GQ-CNN Training

We train the 4-DOF GQ-CNN on 96x96 depth image

thumbnails, ytrain, of individual grasps. We optimize the pa-

rameters of the network using backpropagation with stochas-

tic gradient descent and momentum. The network output

consists of all k angular predictions, however each training

sample corresponds to only one specific angle. Given a depth

image with grasp angle θ, we first map θ to the corresponding

angular bin, then we backpropagate only through the network

output corresponding to that particular angular bin. The net-

work weights are initialized using a Kaiming initializer [9].

The network architecture and optimization framework are





Training Distribution Reliability(%) AP(%)

APD-3D 72.5 91.2

APD-2D+SUP 65.0 69.0

FC-GQ-CNN+SUP 87.5 97.7

TABLE I: Performance on a physical robot of the FC-GQ-CNN policy
versus training distribution measured on a set of 8 known adversarial objects
in singulation over 80 evaluations, 10 per object. For comparison, GQ-CNN
is able to reach 83% and 91%, accordingly [21].

proach (3). Policy (2) is chosen as an intermediate because

it contains grasps closer to those evaluated by the learned

FC-GQ-CNN policy, but still constrained by antipodality.

We evaluate the reliability of the resulting learned poli-

cies for 250 evaluations of grasping each object. On each

evaluation, the object is placed in a stable resting pose in a

given 2D position on a planar worksurface, the policy plans

a parallel-jaw grasp, and the grasp is evaluated with robust

quasi-static wrench resistance [22] for a known direction of

gravity. To test whether or not performance differences are

due to sample approximation error, we evaluate reliability

over increasing dataset sizes by varying the number of unique

positions and orientations of each object from 5 to 100.

Fig. 1 (Bottom) shows the results. Across all dataset sizes,

the policy trained with the FC-GQ-CNN+SUP guided on-

policy training distribution performs significantly better than

the other policies, suggesting more efficient learning. The

policies trained on APD-3D and APD-2D+SUP have sig-

nificantly lower performance than the supervisor even with

100 states per object. We hypothesize that APD-2D+SUP

outperforms APD-3D because it is a larger subset of the

FC-GQ-CNN+SUP training distribution, but lacks sufficient

coverage of the policy action space.

Next we extend experiments on training distribution to a

physical robot by training and testing an FC-GQ-CNN policy

on singulated objects from adv using the three different

distributions. We evaluate the resulting policies with 10

grasp attempts per object. Table I shows the results. As we

hypothesized, the FC-GQ-CNN+SUP distribution performs

significantly better than the off-policy approaches. However,

we do not find the same trend as in simulation where

the APD-2D+SUP distribution performs in-between the off-

policy supervisor and our proposed on-policy method. In

fact, the off-policy supervisor performs surprisingly well.

Mahler et al. [21] found similar performance.

C. Sensitivity Experiments

The granularity of the policy action space can have a

significant impact on the speed and reliability of dense

approaches, in particular the trade-off between the two. A

very high granularity will result in a very precise policy,

however producing a dense-enough output for this granu-

larity will be computationally expensive and require a large

grasp computation time (GCT). On the other extreme, a low

granularity will result in a policy that is quick to evaluate

due to significantly reduced computation, but is imprecise

because it never evaluates many grasps, some of which could

Policy Rel.(%) AP(%) GCT(s) MPPH

PJ Heuristic 53.4 77.1 2.0 162

GQ-CNN 75.8 96.0 1.5 250

GQ-CNN(∗) 81.2 93.8 3.0 236

FC-GQ-CNN 85.6 95.2 0.6 296

TABLE II: Performance of PJ Heuristic, GQ-CNN, and FC-GQ-CNN on bin
picking with 25 novel objects on a physical robot. GQ-CNN(∗) is a version
of GQ-CNN with increased CEM samples, increasing the performance of
CEM at the cost of rate. The FC-GQ-CNN outperforms the GQ-CNN, GQ-
CNN(∗), and PJ heuristic in rate and reliability. The higher AP of GQ-CNN
suggests that it fails to find a grasp on failures rather than better predicting
grasp quality.

Policy GCT(s) # Evaluations CTPG(ms)

GQ-CNN 1.485 400 3.7125

FC-GQ-CNN 0.625 2,008,064 0.0003

TABLE III: Comparison of the number of grasps evaluated, GCT, and
computation time per grasp (CTPG) for GQ-CNN and FC-GQ-CNN on
a 386x516 depth image.

be robust.

We characterize the effect of the policy action space

granularity on performance in simulation by training and

testing an FC-GQ-CNN policy on singulated objects from

thingiverse mini using the FC-GQ-CNN+SUP distribution.

However, now we independently vary the number of angular

bins k and stride s in the FC-GQ-CNN architecture, and the

number of depth bins d used in the FC-GQ-CNN policy.

Fig. 4 shows the results of experiments. The goal is to

maximize reliability while minimizing GCT. We find that the

best choice of these parameters is s = 4, d = 16, k = 16,

that is we evaluate the image in pixel-wise strides of 4,

bin the depth into 16 bins, and have angular bins of size

180/16 = 11.25 deg.

D. Novel Objects in Clutter

Robots in warehouses must be able to pick not only

singulated objects, but more importantly objects in dense

clutter. In order to test generalization and performance in

clutter, we train an FC-GQ-CNN on the FC-GQ-CNN+SUP

distribution with objects placed in heaps (which simulates

real-world clutter) sampled from thingiverse large. We then

test the policy’s ability to completely clear a bin consisting

of all the objects from novel (Fig. 3 Bottom Left) by

picking only a single object at a time. If more than one

object is picked, we arbitrarily choose a single object to

count and place the rest back into the bin. We compare

performance on 5 rollouts against a carefully tuned parallel

jaw heuristic and GQ-CNN [21] trained using the APD-2D

training distribution, which is on-policy for the standard GQ-

CNN. We find that the FC-GQ-CNN policy performs best

overall, achieving 296 MPPH. Results are shown in Table II.

E. Efficiency of FC-GQ-CNN Policy

We can quantify the efficiency of the proposed FC-GQ-

CNN policy with the millions of grasps it evaluates in

a single pass of the policy and the amortized time per
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