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Abstract

We present sequential windowed inverse reinforcement learning (SWIRL), a policy search algorithm that is a hybrid of
exploration and demonstration paradigms for robot learning. We apply unsupervised learning to a small number of initial
expert demonstrations to structure future autonomous exploration. SWIRL approximates a long time horizon task as a
sequence of local reward functions and subtask transition conditions. Over this approximation, SWIRL applies Q-learning
to compute a policy that maximizes rewards. Experiments suggest that SWIRL requires significantly fewer rollouts than
pure reinforcement learning and fewer expert demonstrations than behavioral cloning to learn a policy. We evaluate
SWIRL in two simulated control tasks, parallel parking and a two-link pendulum. On the parallel parking task, SWIRL
achieves the maximum reward on the task with 85% fewer rollouts than Q-learning, and one-eight of demonstrations
needed by behavioral cloning. We also consider physical experiments on surgical tensioning and cutting deformable
sheets using a da Vinci surgical robot. On the deformable tensioning task, SWIRL achieves a 36% relative improvement
in reward compared with a baseline of behavioral cloning with segmentation.
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1. Introduction learning paradigms. We apply unsupervised learning to a

small number of initial expert demonstrations to structure
future autonomous exploration. A real-world task often
naturally decomposes into a sequence of simpler, locally
solvable subtasks. For example, an assembly task might
decompose into completing the part’s constituent subassem-
blies or a surgical task might decompose into a sequence of
movement primitives. Such a structure imposes a strong
prior on the class of successful policies and can focus
exploration in reinforcement learning. It reduces the effec-
tive time horizon of learning to the start of the next subtask
rather than until task completion. We apply a clustering
algorithm to identify a latent set of state-space subgoals that

There has been significant recent interest in learning con-
trol policies through autonomous exploration (Agrawal
et al., 2016; Finn and Levine, 2017; Levine et al., 2016;
Pinto and Gupta, 2016; Pinto et al., 2016). However, it is
difficult to scale such techniques to learning tasks with lon-
ger time horizons. Discovering a viable policy purely
through exploration can be extremely difficult, especially if
there are narrow criteria for task success. In long tasks, it
can be very difficult to quantify the advantage of taking a
particular action without a large number of repeated trials.
Conversely, learning from demonstrations presents an alter-
native, where the robot imitates demonstrations collected
from an expert supervisor (Argall et al., 2009). However,
this places a significant burden on the supervisor to exhaus-  1,yToLAB, University of California, Berkeley, USA
tively cover the scenarios the robot may encounter during  2Stanford University, USA
execution (Laskey et al., 2017). Moreover, in the learning  *RPL/CSC, KTH Royal Institute of Technology, Sweden
from demonstrations paradigm, the robot can, at best, only .
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sequentially combine to form a global task. This leads to a
novel policy search algorithm, called sequential windowed
inverse reinforcement learning (SWIRL), where the demon-
strations can bootstrap a self-supervised Q-learning algorithm.

The unsupervised learning model is based on our prior
work on transition state clustering (Krishnan et al., 2015,
2016; Murali et al., 2016). Transitions are defined as signif-
icant changes in the state trajectory. These transitions can
be spatially and temporally clustered to identify whether
there are common conditions that trigger a change in
motion across demonstrations. The algorithm is outlined in
Algorithm 1. SWIRL extends this basic model with an
inverse reinforcement learning step that extracts subgoals
and computes local cost functions from the learned clusters.
Learning a policy over the segmented task is nontrivial
because solving k independent problems neglects any
shared structure in the value function during the policy
learning phase (e.g., a common failure state). Jointly learn-
ing over all segments introduces a dependence on history,
namely, any policy must complete step i before tackling
step i + 1. Learning a memory-dependent policy could lead
to an exponential overhead of additional states. We show
that the problem can be posed as a proper Markov decision
process in a lifted state space that includes an indicator
variable of the highest-index {1, ...,k} transition region
that has been reached so far if there are Markovian regular-
ity assumptions on the clustering algorithm.

The problem setting in SWIRL subtly differs from what
is typical in imitation learning and other works on learning
from demonstrations. During the demonstration phase,
SWIRL only observes the sequence of states visited by the
supervisor, and does not need to know what action the
supervisor applied or require a model of the environment
dynamics. We believe that this makes SWIRL applicable in
the increasingly popular third-person imitation learning set-
tings, where robots can exploit large corpora of videos of
human beings or other robots performing a variety of tasks
(Stadie et al., 2017).

This article is a significantly revised and extended ver-
sion of a previous conference publication (Krishnan et al.,
2016) with new experiments, formalism, and analysis. In
particular, this article introduces a new class of unsuper-
vised trajectory segmentation algorithms that can be effi-
ciently paired with reinforcement learning, as they preserve
Markovian structure. This paper also extends the number of
baseline approaches considered in simulation and adds a
new experiment in using a da Vinci surgical robot to manip-
ulate deformable materials.

The content is structured as follows. Section 2 describes
the background and related work. Section 3 describes nota-
tion and the problem statement. Section 4 gives an over-
view of the entire SWIRL framework. Section 5 describes
the clustering algorithm applied to the initial demonstra-
tions to divide the task into consistent subtasks. Section 6
describes how local reward functions are assigned to each
of the subtasks to construct a segmented approximation of
the global task. Section 7 describes how to apply

reinforcement learning to learn a policy over this approxi-
mation. Finally, Sections 8 to 10 discuss the experimental
methodology and results.

2. Related work and background

2.1. Apprenticeship learning

Abbeel and Ng (2004) argue that the reward function is
often a more concise representation of a task than a policy
is. As such, a concise reward function is more likely to be
robust to small perturbations in the task description. The
downside is that the reward function is not useful on its
own and, ultimately, a policy must be retrieved. In the most
general case, a reinforcement learning algorithm must be
used to optimize for that reward function (Abbeel and Ng,
2004). It is well-established that reinforcement learning
problems often converge slowly in complex tasks when
rewards are sparse and not “shaped” appropriately (Judah
et al., 2014; Ng et al., 1999). Our work revisits this two-
phase algorithm in the context of sequential tasks and tech-
niques, in order to scale such an approach to longer time
horizons. Related to SWIRL, Kolter et al. (2007) studied
hierarchical apprenticeship learning to learn bipedal loco-
motion, where the algorithm is provided with a hierarchy of
subtasks. We explore the automatical inference of a sequen-
tial task structure from data.

2.2. Motion primitives

Researchers in learning from demonstrations and planning
have studied the problem of leveraging motion primitives,
or libraries of temporally extended action sequences, to
improve generalization. Dynamic motion primitives are
used to construct new motions through a composition of
dynamic building blocks (Ijspeert et al., 2002; Manschitz
et al.,, 2015; Pastor et al., 2009). Much of the work in
motion primitives has considered manually identified seg-
ments but Niekum et al. (2012) proposed learning the set
of primitives from demonstrations using the Beta-Process
Autoregressive Hidden Markov Model. Similarly, Calinon
(2014) proposed a task-parametrized movement model with
Gaussian mixture models for automatic action segmenta-
tion. Both Niekum et al. (2012) and Calinon (2014) consid-
ered the motion planning setting in which analytical
planning methods are used to plan and perform a task.

2.3. Segmentation

Trajectory segmentation is a well-studied area of research,
dating back to early biomechanics and robotics research.
For example, Viviani and Cenzato (1985) explored using
the “two-thirds” power law coefficient to determine seg-
ment boundaries in handwriting. Morasso (1983) showed
that rhythmic three-dimensional motions of a human arm
could be modeled as piecewise linear. In a seminal paper,
Sternad and Schaal (1999) provided a formal framework for



Krishnan et al.

the control-theoretic segmentation of trajectories. Botvinick
et al. (2009) explored the reinforcement learning analog of
the control-theoretic models. Concurrently, temporal seg-
mentation was being developed by researchers in motion
capture (Moeslund and Granum, 2001). Recently, some
Bayesian approaches have been proposed for the segmenta-
tion problem (Asfour et al.,, 2008; Calinon and Billard,
2004; Kruger et al., 2010; Tanwani and Calinon, 2016;
Vakanski et al., 2012). Two challenges are those of collect-
ing enough data to employ these techniques and of tuning
the hyperparameters. In a prior work, we observed that,
under the assumption that the task is sequential (with the
same order of primitives in each demonstration), the infer-
ence could be modeled as a two-level clustering problem
(Krishnan et al., 2015). This results in improved accuracy
and robustness for a small number of demonstrations.
Another relevant result is that of Ranchod et al. (2015),
who use an inverse reinforcement learning model to define
the primitives, in contrast with the problem of learning a
policy after inverse reinforcement learning.

2.4. Hierarchical reinforcement learning

The field of hierarchical reinforcement learning has a long
history in artificial intelligence (Barto and Mahadevan,
2003; Sutton et al., 1999) and in the analysis of biological
systems (Botvinick, 2008; Botvinick et al., 2009; Solway
et al., 2014; Whiten et al., 2006; Zacks et al., 2011). Early
work in hierarchical control demonstrated the advantages of
hierarchical structures by handcrafting hierarchical policies
(Brooks, 1986) and learning them, given various manual
specifications: state abstractions (Dayan and Hinton, 1992;
Hengst, 2002; Kolter et al., 2007; Konidaris and Barto,
2007), a set of waypoints (Kaelbling, 1993), low-level skills
(Bacon and Precup, 2015; Huber and Grupen, 1997), a set
of finite-state meta-controllers (Parr and Russell, 1997), a
set of subgoals (Dietterich, 2000; Sutton et al., 1999), or
intrinsic reward (Kulkarni et al., 2016). The key abstraction
used in hierarchical reinforcement learning is the “options”
framework, where subskills are represented by local poli-
cies, termination conditions, and initialization conditions. A
high-level policy switches between these options and com-
bines them into a larger task policy. In this framework, per-
subskill reward functions are called subgoals. SWIRL is an
algorithm for learning quadratic subgoals and termination
conditions, where the high-level policy is deterministic and
sequentially iterates through the subskills.

3. Problem setup

A finite-horizon Markov decision process is a five-tuple
(S,4,P(-,-), T,R), where S is the set of states (continuous
or discrete), A is the set of actions, P : S x 4—A(S) is the
dynamic model that maps states and actions to a probability
density over subsequent states, 7 is the time horizon, and
R : § x 4—R is the reward function.

3.1. Problem setting

We assume access to a supervisor, who samples from an
unknown policy 7 : S—A(4) that maps states to a prob-
ability distribution over actions. These samples form
sequences of length 7, called demonstrations. The goal of
these demonstrations is to provide an initial dataset from
which we can learn about the structure of the Markov deci-
sion process. In the most basic form, a demonstration is
defined as follows.

Definition 1. Fully observed demonstration. A demon-
stration d is a sequence of tuples of states and actions

d= [(S(),ao), (sl,al), ey (ST’ aT)]

This fully observed setting is typical of the literature on
imitation learning (Osa et al., 2018), where one uses a func-
tion approximation to learn the state to action mapping
from these samples. However, one may have a more limited
access to a limited supervisor, where only the states are
observed. The actions that the supervisor applied are latent.

Definition 2. State demonstration. A state demonstration
d is a sequence of tuples of states and actions

d={(s0,-), (s1,-) -+, (57, )]

The state demonstration setting differs from what is clas-
sically studied in imitation learning. This can happen when
the demonstration modality differs from the execution set-
ting, e.g., learning from third-person videos, motion capture
of a human being performing a task, or kinesthetic demon-
strations. Our objective is a framework that can learn even
if only state demonstrations are provided. Notationally, we
will use boldface to denote fully observed demonstrations
and the regular font face to denote state demonstrations.

Problem 1. Policy search. Given a Markov decision pro-
cess and a set of state demonstration trajectories
D={d,, ...,dy} from a supervisor, return a policy
7 : S—A(A) that maximizes the cumulative reward of the
Markov decision process.

4. Task model

Directly optimizing the reward function R in the Markov
decision process from the previous section might be very
challenging. We propose to approximate R as a sequence
of smoother reward functions.

Definition 3. Proxy task. A proxy task is a set of &
Markov decision processes with the same state set, action
set, and dynamics. Associated with each Markov decision
process, i, is a reward function R;:S X A—R.
Additionally, associated with each R; is a transition region
p; € S, which is a subset of the state space. A robot accu-
mulates a reward R; until it reaches the transition region p;,
then the robot switches to the next reward and transition
pair. This process continues until p; is reached.
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A robot is deemed successful when all of the p; are
reached in sequence within a global time horizon 72 SWIRL
uses a set of initial supervisor demonstrations to construct a
proxy task that approximates the original Markov decision
process.

4.1. Modeling assumptions

To make this problem computationally tractable, we make
some modeling assumptions.

Modeling assumption 1. Successful demonstrations. We
need conditions on the demonstrations to be able to infer
the sequential structure. We assume that all demonstrations
are successful, that is, they visit each p; in the same
sequence.

Modeling assumption 2. Quadratic rewards. We assume
that each reward function R; can be expressed as a quadratic
of the form —(s — so)” W(s — s0) for some positive semi-
definite W and a center point sy with sg Wso=0.

Modeling assumption 3. Ellipsoidal approximation.
Finally, we assume that the transition regions in p; can be
approximated as a set of disjoint ellipsoids.

4.2. Algorithm overview

SWIRL can be described in terms of three subalgorithms:
Inputs: Demonstrations D

1. Sequence learning (Section 5). Given D, SWIRL
applies a hierarchical clustering algorithm to partition
the task into & subtasks, whose starts and ends are
defined by arrival at a sequence of transitions
G:[pla "'apk]'

2. Reward learning (Section 6). Given G and D,
SWIRL associates a local reward function with each
segment, resulting in a sequence of rewards
Reeq =[R1, ..., Ryl

3. Policy learning (Section 7). Given Ry and G,
SWIRL applies reinforcement learning to optimize a
policy for the task 7.

Outputs: Policy 7

In principle, one could couple steps 1 and 2, as with the
results of Ranchod et al. (2015). We separate these steps,
since this allows us to use a different set of features for seg-
mentation than is used for reward learning. Perceptual fea-
tures can provide a valuable signal for segmentation but
quadratic reward functions might not be meaningful in all
perceptual feature spaces.

5. Sequence learning

First, SWIRL applies a clustering algorithm to the initial
demonstrations to learn the transition regions. The cluster-
ing model is based on our prior work on transition state
clustering (Krishnan et al., 2015; Murali et al., 2016).

Transitions are defined as significant changes in the state
trajectory. These transitions can be spatially and temporally
clustered to identify whether there are common conditions
that trigger a change in motion across demonstrations.

5.1. General framework

In a first pass, the clustering algorithm applies a motion-
based segmentation model over the noisy trajectories and
identifies a set of candidate segment transitions in each.

Definition 4. Transition indicator function. A transition
indicator function T is a function that maps each time
index in a demonstration d to {0, 1}.

As in Lioutikov et al. (2015), this is an initial heuristic
that oversegments to ground the probabilistic segmentation.
One can apply a variety of different change point detection
methodologies, such as detection of significant changes in
image features (Murali et al., 2016) or dynamic transitions
(Niekum et al., 2012), or the use of Gaussian mixture mod-
els (Krishnan et al., 2015). The particular model chosen
depends on the perceptual features available.

This function marks candidate segment endpoints, called
transitions, in a trajectory. Definition 4 naturally leads to a
notion of transition states, that is, the states and times at
which transitions occur.

Definition 5. Transition states. For a demonstration set D,
transition states are the set of state-time tuples where the
indicator is 1

I'={(x,t) e D:T(x)=1}

We model the set I" as samples from an underlying dis-
tribution over the state space and time

I'~f(x,0)

We model this distribution using a Gaussian mixture
model

SO, ) =GMM(n, {pys sy b {205 -, 2% })

The interpretation of this distribution is that 1 describes
the fraction of transitions assigned to each mixture compo-
nent, w,; describes the centroid of the mixture component,
and 2 describes the covariance. While Gaussian mixture
models are a poor approximation for some distributions,
they have shown empirical success for trajectory segmenta-
tion (Calinon, 2014). Our prior work (Krishnan et al., 2015;
Murali et al., 2016) describes a number of practical optimi-
zations, such as the pruning of low-confidence mixture
components.

For each mixture component, we can define ellipsoids
by taking the confidence level sets in the state space and
time that characterize regions where transitions occur.
These regions are ordered, as they are also defined over
time, since we make the assumption that the confidence
threshold for the level sets is tuned so that the regions are
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disjoint. Thus, each of these regions defines a testable con-
dition based on the current state, time, and previously
reached regions—which is a Markov segmentation func-
tion. The result is exactly the set of transition regions,
G=|p;, Py ---»Pi), and segmentation of each demonstra-
tion trajectory into & segments.

In typical Gaussian mixture model formulations, one
must specify the number of mixture components & before-
hand. However, we apply results from Bayesian nonpara-
metric statistics and jointly solve for the component
parameters and the number of components using a Dirichlet
process (Kulis and Jordan, 2012). The Dirichlet process
places a soft prior on the number of clusters. During infer-
ence, the number of components grows with the complexity
of the observed data (we denote this “DP-GMM?”). The
Dirichlet process has hyperparameters, which we tune once
for all domains; we use a uniform base measure and a prior
weight of 0.1.

5.2. Properties

While there are several different algorithms for segmenting
a set of demonstrations into subsequences, not all are
directly applicable to this problem setting. In our problem,
segments are used to construct a proxy Markov decision
process task for the robot to optimize. During the offline
phases of the algorithm (sequence learning and reward
learning), the clustering algorithm observes the full demon-
stration trajectory. However, during the learning phase (pol-
icy learning), the algorithm only observes the partial
trajectory up to the current time-step and does not observe
which segment is active. In this sense, segmentation intro-
duces a problem of partial observation, even if the original
task is fully observed. The segmentation must be estimated
from the history of the process.

Trivially, some algorithms are not applicable, since they
might require knowledge of future data. Even if the algo-
rithm is causal, it might have an arbitrary dependence on
the past, leading to inefficient estimation of the currently
active segment. To address this problem, we formalize the
following condition.

Definition 6. Markov segmentation. A segmentation of a
task is a function F' that maps every state-time tuple to an
index {1, ..., k}

F:SxZi—{1,...,k}

A Markov segmentation function is a task segmentation,
where the segmentation index at time #+ 1 can be com-
pletely determined by the featurized state s, at time ¢ and
the index i, at time ¢

Iiy1= M(St» it)

5.3. Transition indicator model

The general framework can support a number of different
transition indication heuristics. This article focuses on a

Algorithm 1: Subgoal clustering.

Data: Demonstration D

1 Use a transition indicator heuristic to identify a set of
candidate transitions ©.

2 Fita DP-GMM to the states in ®.

3 Prune clusters that do not have one transition from all
demonstrations.

4 The resultis G=[p;,p,, --.,pn), Where each p is a disjoint
ellipsoidal region of the state space and time interval.
Result: G

mixture modeling approach that identifies when trajectories
leave certain clusters of motion primitives. This technique
is quite general and applies to a large class of systems with
low-dimensional state spaces. Refer to our prior work for
other variations (Krishnan et al., 2015).

For a given time ¢, we can define a window of length ¢
as

{4 T
Wg ) = [S,,g, Ce ,S,]
We can further normalize this window relative to its first
state, as

0 _ T
n, = [St—l = St—l5 58t — Slff]

This represents the “delta” in movement over the time
span of a window. Then, for each demonstration trajectory,
we can also generate a trajectory of 7 — ¢ windowed
states, as

¢ o7
d(k):[n(é), ...,n<T)]

Over the entire set of windowed demonstrations, we collect
a dataset of all of the nﬁz) vectors. We fit a Gaussian mix-
ture model to these vectors. The Gaussian mixture model
defines m multivariate Gaussian distributions and a prob-
ability that each observation ngl) is sampled from each of
the m distributions. We annotate each observation with the
most likely mixture component. Times such that ngf) and
n%)rl have different most-likely components are marked as
transitions. This model captures some dynamic behaviors
while not requiring explicit modeling of the state-to-state
transition function.

Sometimes the Markov decision process’s states are
more abstract and do not map to space where the normal-
ized windows make sense. We can still apply the same
method when we only have a positive definite kernel func-
tion over all pairs of states k(s;,s;). We can construct this
kernel function for all of the states observed in the demon-
strations and apply kernelized principle component analysis
to the features before learning the transitions—a technique
used in computer vision (Mika et al., 1998). The top p’
eigenvalues define a new embedded feature vector for each
w in R”. We can now apply Algorithm 5.3 in this

embedded feature space.
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6. Reward learning

After the sequence learning phase, each demonstration is
partitioned into k segments. The reward learning phase uses
the learned transition regions [p,, ..., p;] to construct the
local rewards [Ry, ..., Ry] for the task. Each R; is a quadra-
tic cost parametrized by a positive semi-definite matrix V.

Inverse reinforcement learning (Ng and Russell, 2000)
involves studying the problem of inferring an implicitly
optimized reward function from demonstrations. The litera-
ture on inverse reinforcement learning argues that the
reward function is often a more concise representation of a
task than a policy is. As such, a concise reward function is
more likely to be robust to small perturbations in the task
description. The problem of constructing reward functions
is very much related to this problem. The only caveat is that
most inverse reinforcement learning techniques require a
dynamic model (Ziebart et al., 2008) or fit a local dynamic
model (Finn et al., 2016). Fitting a local dynamic model is
not possible with state demonstrations, as we do not expli-
citly observe the demonstrators’ actions.

6.1. Method for state-only demonstrations

The role of the reward function is to guide the robot to the
next transition region p;. A first approach is that, for each
segment 7, we can define a reward function as

Ri(s)=— |l s — ||§

which is simply the Euclidean distance from the centroid.

A problem in using the Euclidean distance directly is
that it uniformly penalizes disagreement with p in all
dimensions. During different stages of a task, some direc-
tions are naturally likely to vary more than others. To
account for this, we can derive

W, =3"

which is the inverse of the covariance matrix of all of the
state vectors in the segment

end -1
wz<§:u§ (1)
t=start

which is a p X p matrix defined as the covariance of all of
the states in the segment i — 1 to i. Intuitively, if a feature
has low variance during this segment, deviation in that fea-
ture from the desired target is penalized. This is exactly the
Mabhalanobis distance to the next transition.

For example, suppose that one of the features j measures
the distance to a reference trajectory u, Further, suppose
that in step one of the task the demonstrator’s actions are
perfectly correlated with the trajectory (W;[j, /] is low where
variance is in the distance) and in step two the actions are
uncorrelated with the reference trajectory (W;[f, /] is high).
Thus, ¥ will penalize deviation from u,[j] more in step one
than in step two.

6.2. Method for full demonstrations

If we do have access to full demonstrations, we can locally
fit dynamic models and use a standard inverse reinforce-
ment learning technique. In our experiments, we compare
both approaches—and find that the covariance-based
method given here is actually very competitive.

6.2.1. Primer on maximum entropy inverse reinforcement
learning. Maximum entropy inverse reinforcement learn-
ing (MaxEnt-IRL) (Ziebart et al., 2008) involves finding a
reward function such that an optimal policy with respect to
the reward function is close to the expert demonstration. In
the MaxEnt-IRL model, “close” is defined as matching the
first moment of the expert feature distribution

1 N
Yexpert = 2 Z Z Si

deD i=1

where Z is an appropriate normalization constant (the total
number of states in all demonstrations). The MaxEnt-IRL
model uses the linear parametrized representation

R(x)=s"6

where x is a feature vector representing the state of the sys-
tem. The agent is modeled as noisily optimal, where it takes
actions from a policy 7

w(als, 0)< exp{A4q(s,a)}

where Ay is the advantage function (the QO function minus
the value function) for the reward, parameterized by 6. The
objective is to maximize the log-likelihood that the demon-
stration trajectories were generated by 6.

Under the exponential distribution model, it can be
shown that the gradient for this likelihood optimization is

oL

% = Yexpert — Yo
where 7y, is the first moment of the feature distribution of
an optimal policy under 6.

SWIRL applies the MaxEnt-IRL model to each segment
of the task but with a small modification; to learn quadratic
rewards instead of linear ones. Let w; be the centroid of the
next transition region. We want to learn a reward function
of the form

Rix)= — (s — ) "W(s — )

for a positive semi-definite W (negated, since this is a nega-
tive quadratic cost). With some re-parametrization (drop-
ping w, for convenience and without loss of generality),
this reward function can be written as

d

Ri(s)= =D > Wlijlsljls[]

j=11=1



Krishnan et al.

which is linear in the feature space y = s[j]s[/]

Ri(s)=0"y

6.2.2. Two inference settings: discrete and continuous. In
the MaxEnt-IRL model, the gradient can be estimated reli-
ably in two cases, discrete and linear Gaussian systems,
since it requires an efficient forward search of the policy,
given a particular reward parametrized by 6. In both these
cases, we have to estimate the system dynamics within each
segment.

Consider the case when the state space is discrete and
the action space is discrete. To estimate the dynamics, we
construct an |S| X |S| x |4| matrix of zeros for each action,
where each of the components of this matrix corresponds
to the transition probability of a pair of states. For each,
(s,a,s’) observation in the segment, we increment (+ 1)
the appropriate element of the matrix. Finally, we normal-
ize the elements to sum to one across the set of actions. An
additional optimization could be to add smoothing to this
estimate (i.e., initialize the matrix with some nonzero con-
stant value); we found that this was not necessary for the
sparse domains in our experiments. The result is an esti-
mate of P(s'|s, a). Given this estimate, y, can be efficiently
calculated with the forward-backward technique described
by Ziebart et al. (2008).

The discrete model is difficult to scale to continuous
state spaces. If we discretize, the number of bins required
would be exponential in the dimensionality. However, lin-
ear models are another class of dynamic model for which
the estimation and inference is tractable. We can fit local
linear models to each of the segments discovered in the pre-
vious section

N segjend

Aj:argjninz Z HAS?)*S?LH

i=1 seg j start

With 4; known, vy, can be analytically solved with tech-
niques proposed by Ziebart et al. (2012). SWIRL applies
MaxEnt-IRL. to the subsequences of demonstrations
between 0 and p,, and then from p, to p,, and so on. The
result is an estimated local reward function R; modeled as a
linear function of states that is associated with each transi-
tion region p; (Algorithm 2).

7. Policy learning

SWIRL uses the learned transition regions [p,, ..., p;] and
Rgeq to construct a proxy task to solve via reinforcement
learning. In this section, we describe a method of learning a
policy m, given rewards Ry and an ordered sequence of
transitions G. However, this problem is not trivial, since
solving k independent problems neglects potential shared
value structures between local problems (e.g., a common
failure state). Furthermore, simply taking the aggregate of
the rewards can lead to inconsistencies, since there is

Algorithm 2: Reward inference.

Data: Demonstration D and subgoals [p, ..., p;]

1 Based on the transition states, segment each demonstration d;
into k subsequences where the jth is denoted d;[j].

2 Apply MaxEnt-IRL or equation (1) to each set of
subsequences 1, ..., k.
Result: Rq

nothing enforcing the order of operations. We show that a
single policy can be learned jointly over all segments over a
modified problem where the state space, with additional
variables, keep tracks of the previously achieved segments.
We present a Q-learning algorithm (Mnih et al., 2015;
Sutton and Barto, 1998) that captures the noted coupling
between task segments. In principle, similar techniques can
be used for any other policy search method.

7.1. Jointly learning over all segments

In our sequential task definition, we cannot transition to
reward R;;; unless all previous transition regions
pi» -..,p; are reached in sequence. We can leverage the
definition of the Markov segmentation function formalized
earlier to learn jointly across all segments, while leveraging
the segmented structure. We know that the reward transi-
tions (R; to R; ) only depend on an arrival at the transi-
tion state p, and not any other aspect of the history.
Therefore, we can store an index v, which indicates whether
a transition state i € 0, ..., k has been reached. This index
can be efficiently incremented when the current state

s € p;; 1. The result is an augmented state space (i) to

account for previous progress. In this lifted space, the prob-
lem is a fully observed Markov decision process. Then the
additional complexity of representing the reward with his-
tory over S X [k] is only O(k) instead of exponential in the
time horizon.

7.2. Segmented Q-learning

At a high level, the objective of standard Q-learning is to
learn the function Q(s,a) of the optimal policy, which is
the expected reward that the agent will receive on taking
action « in state s, assuming that future behavior is optimal.
Q-learning works by first initializing a random Q function.
Then it samples rollouts from an exploration policy collect-
ing (s, a, r, s') tuples. From these tuples, one can calculate

yi=R(s,a) + argmax O(s', a)
Each of the y; can be used to define a loss function since,
if O were the true Q function, then the following recurrence

would hold

O(s,a) =R(s,a) + argmax O(s', a)
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Algorithm 3: Q-learning with segments.

Data: Transition states G, reward

exploration policy 7

1 Initialize Q< (‘S}) , a) randomly

2 foreachiter €0, ...,/ do
3 Draw s( from initial conditions
4 Initialize v to be [0, ..., 0]
5 Initialize j to be 1

6 foreach7 €0, ...,7 do
7

8

9

0

sequence Rgeq,

Choose action a based on 7.

Observe reward R;

Update state to s’ and Q via Q-learning update
If s’ is € p; update v[j] =1 and j =; + 1
Result: Policy 7

Thus, Q-learning defines a loss
L= llyi—06.a) 3

This loss can be optimized with gradient descent. When
the state and action space is discrete, the representation of
the Q function is a table, and we get the familiar Q-learning
algorithm (Sutton and Barto, 1998)—where each gradient
step updates the table with the appropriate value. When the
O function must be approximated, we get the deep Q-net-
work algorithm (Mnih et al., 2015).

SWIRL applies a variant of Q-learning to optimize the
policy over the sequential rewards. This is summarized in
Algorithm 3. The basic change to the algorithm is that the
state space is augmented with an indicator vector that indi-
cates the transition regions that have been reached. So each
of the rollouts now records a tuple (s,v,a,r,s’,v') that
additionally stores this information. The Q function is now
defined over states, actions, and segment index—which
also selects the appropriate local reward function

O(s,a,v) =R,(s,a) + argmax O(s', a,V)
a

We also need to define an exploration policy, i.e., a stochas-
tic policy with which we will collect rollouts. To initialize
the Q-learning, we apply behavioral cloning locally for each
of the segments to get a policy 7. We apply an e-greedy
version of these policies to collect rollouts.

8. Experimental methodology

This section overviews our basic experimental methodol-
ogy. We evaluate SWIRL using two simulated reinforce-
ment learning benchmarks and two deformable
manipulation tasks on the da Vinci surgical robot
(Kazanzides et al., 2014). In all of these tasks, there is a
single Markov decision process of interest where the
reward is sparse (for a substantial amount of the state

space, the reward is zero). The goal of SWIRL is to
improve convergence on this task.

8.1. Supervision

In both of the reinforcement learning benchmarks, the
reward function defines a target configuration of the robot.
We generated the initial demonstrations using an RRT*
motion planner (assuming deterministic dynamics)
(Karaman and Frazzoli, 2010). As both reinforcement
learning benchmarks are stochastic in nature, we used a
model-predictive-control-style re-planning approach to
control the robot to the target region. For the physical
experiments, we provided the robot with demonstrations
collected through tele-operation. We collected fully
observed trajectories with both states and actions.

8.2. Basic baselines

8.2.1. Pure exploration. The first set of baselines study a
pure exploration approach to learning a policy. The baseline
approach applies reinforcement learning to the global task.
In all of our experiments, we use variants of Q-learning
with different function approximators. The O function is
randomly initialized and is updated with data collected from
episodic rollouts. The hyperparameters for each experiment
are listed in the appendixes. We use approximate Q-learn-
ing (Bertsekas and Tsitsiklis, 1995; Thrun and Schwartz,
1993) in the simulated benchmarks and deep Q-networks in
the physical experiments (Mnih et al., 2015).

8.2.2. Pure demonstration. This baseline directly learns a
policy from an initial set of demonstrations using super-
vised learning. This approach is called behavioral cloning
(see the survey of imitation learning given by Osa et al.
(2018)); in each of our experiments, we describe the policy
models used. It is important to note that this approach
requires fully observed demonstrations.

8.2.3.  Warm-start exploration. Next, we consider
approaches that leverage both demonstrations and explora-
tion. One approach is to use demonstrations to initialize the
QO function for reinforcement learning and then perform
rollouts. This approach also requires fully observed
demonstrations.

8.2.4. Inverse reinforcement learning. Alternatively, we
can also use the demonstrations to infer a new reward func-
tion. We use inverse reinforcement learning to infer a
smoother quadratic reward function that explains the
demonstrator’s behavior. We infer this quadratic reward
function using MaxEnt-IRL. We consider using both esti-
mated dynamics and ground truth dynamics for this base-
line. When the dynamics are estimated, this approach
requires fully observed demonstrations. After inferring the
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Fig. 1. (a) Simulated control task with a car with noisy nonholonomic dynamics. The car (4;) is controlled by accelerating and
turning in discrete increments. The task is to park the car between two obstacles. (b) The Acrobot domain consists of a two-link arm
(L.1, L.2) with gravity and torque constraints. The task it to swing the arm above the horizon.

Fig. 2. Learning curves for Q-learning and SWIRL on both simulated tasks. Parallel parking: for a fixed number of demonstrations
(five), we vary the number of rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations
(15), we vary the number of rollouts and measure the average reward at each rollout.

QL: Q-learning; SWIRL, sequential windowed inverse reinforcement learning.

reward, the task is solved using reinforcement learning with
respect to the quadratic reward function.

9. Simulated experiments

We constructed a parallel parking scenario for a robot
car with nonholonomic dynamics and two obstacles
(Figure 1(a)). We also experimented on the standard acro-
bot domain (Figure 1(b)).

For the car domain, the car can accelerate or decelerate
in discrete increments of +0.1 m/s® (the car can reverse),
and change its heading in increments of 5°. The car’s velo-
city and heading 0 are inputs to a bicycle steering model
that computes the next state. The car observes its x position,
y position, orientation, and speed in a global coordinate
frame. The car’s dynamics are noisy and with probability
0.1 will randomly add or subtract 2.5 to the steering angle.
If the car parks between the obstacles, i.e., the speed is 0 m/
s within a 15” tolerance and a positional tolerance of 1m,
the task is a success and the car receives a reward of 1. The
obstacles are 5 m apart (2.5 car lengths). If the car collides
with one of the obstacles or does not park in 200 time-steps,
the episode ends, with a reward of 0.

The acrobot domain consists of an under-actuated two-
link pendulum with gravity and with torque controls on the
joint. There are four discrete actions that correspond to
clockwise and counterclockwise torques on each of the
links. The robot observes the angle 6, 6, and angular velo-
city w;, w; at each of the links. The dynamics are noisy; a
small amount of random noise is added to each torque
applied to the pendulum. The robot has 1000 time-steps to
raise the arm above the horizontal (y=1 in Figure 1b). If
the task is successful, the robot receives a reward of 1. The
expected reward is equivalent to the probability that the
current policy will successfully raise the arm above the
horizontal.

9.1. Pure exploration versus SWIRL

In the first set of experiments, we compare the learning
efficiency of pure exploration with SWIRL (Figure 2). The
baseline Q-learning approach is very slow because it relies
on random exploration to achieve the goal at least once
before it can start estimating the values of states and
actions. We fix the number of initial demonstrations pro-
vided to SWIRL. We apply the segmentation and reward
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Fig. 3. Demonstration curves for imitation learning (SVM) and SWIRL on both simulated tasks. Parallel parking: we fix the number
of rollouts to 500 and vary the number of demonstration trajectories that each approach observes. Acrobot: for a fixed number of
rollouts (3000), we vary the number of demonstration trajectories given to each technique.

SVM: support vector machine; SWIRL, sequential windowed inverse reinforcement learning.

learning algorithms and construct a proxy task. In both
domains, SWIRL significantly accelerates learning and
converges to a successful policy with significantly fewer
demonstrations. We find that this improvement is more
substantial in the parallel parking domain. This is probably
because the task more naturally partitions into discrete sub-
tasks. In the appendixes, we visualize the segments discov-
ered by the algorithm.

9.2. Pure demonstration versus SWIRL

Next, we evaluate SWIRL against a behavioral cloning
approach (Figure 3). We collect the initial set of demonstra-
tions and directly learn a policy using a support vector
machine (SVM). For the parallel parking task, we use a lin-
ear SVM. For the acrobot task, we use a kernel SVM with
a radial basis function kernel. We fix the number of auton-
omous rollouts that SWIRL can observe (500 for the paral-
lel parking task and 3000 for the acrobot task). Note that
the SVM technique requires observation of the actions in
the demonstration trajectories, which might not be possible
in all applications. The SVM approach does have the
advantage that it does not require any further exploration.
However, SWIRL and the pure demonstration approach are
not mutually exclusive. As we show in our physical experi-
ments, we can initialize Q-learning with a behavioral clon-
ing policy. The combination of the two approaches allows
us to take advantage of a small number of demonstrations
and learn to refine the initial policy through exploration.
The SVM approach requires more than 10 times as
many demonstrations to be competitive. In particular, there
is an issue with exhaustively demonstrating all the scenar-
ios that a robot might encounter. Learning from autono-
mous trials in addition to the initial demonstrations can
augment the data without burdening the supervisor.
Perhaps surprisingly, the initial dataset of demonstrations
can be quite small. On both tasks, with only five demon-
strations, SWIRL is within 20% of its maximum reward.
Representing a policy is often more complex than

representing a reward function that guides the agent to
valuable states. Learning this structure requires less data
than learning a full policy. This suggests that SWIRL can
exploit a very small number of expert demonstrations to
dramatically reduce the number of rollouts needed to learn
a successful policy.

9.3. SWIRL versus other hybrid approaches

Finally, we compare SWIRL with two other hybrid
demonstration—exploration approaches (Figure 4). The goal
of these experiments is to show that the sequential structure
learned in SWIRL is a strong prior. As in the previous
experiments, it is important to note that SWIRL only
requires a state trajectory as a demonstration and does not
need to observe the actions taken by the expert demonstra-
tor explicitly.

Initializing the Q function with the demonstrations, did
not yield a significant improvement over random initializa-
tion. This is because one rarely observes failures in expert
demonstration, and if the Q-learning algorithm does not
observe poor decisions it will not be able to avoid them in
the future. We also applied an inverse reinforcement learn-
ing approach using estimated dynamics. This approach is
substantially better than the basic Q-learning algorithm in
the parallel parking domain. This is probably because it
smooths out the sparse reward to fit a quadratic function.
This does serve to guide the robot to the goal states to some
extent. Finally, SWIRL is the most sample-efficient algo-
rithm. This is because the sequential quadratic rewards
learned align better with the true value functions in both
tasks. This structure can be learned from a small number of
demonstrations.

9.4. The benefit of models

Next, we consider the benefits of using inverse reinforce-
ment learning with the ground truth dynamic models
instead of those estimated from data (Figure 5). One
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Fig. 4. Comparison of hybrid approaches. Parallel parking: for a fixed number of demonstrations (five), we vary the number of
rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations (15), we vary the number of

rollouts and measure the average reward at each rollout.

Init: initialization; IRL: inverse reinforcement learning; QL, Q-learning; SWIRL, sequential windowed inverse reinforcement learning.

Fig. 5. Parallel parking: for a fixed number of demonstrations (five), we vary the number of rollouts and measure the average reward
at each rollout. Acrobot: for a fixed number of demonstrations (15), we vary the number of rollouts and measure the average reward at

each rollout.

IRL, inverse reinforcement learning; SWIRL, sequential windowed inverse reinforcement learning.

scenario where this problem setting is useful is when the
demonstration dynamics are known but differ from the exe-
cution dynamics. Most common inverse reinforcement
learning frameworks, such as maximum entropy inverse
reinforcement learning, assume access to the dynamic
model. In the previous experiments, these models were
estimated from data; here, we show the benefit of providing
the true models to the algorithms. Both inverse reinforce-
ment learning and SWIRL improve their sample efficiency
significantly when ground truth models are given. This
experiment illustrates that the principles behind SWIRL are
compatible with model-based methodologies.

9.5. Different segmentation methods

In our general framework, SWIRL is compatible with any
heuristic to segment the initial demonstration trajectories.
This heuristic serves to oversegment; the unsupervised
learning model builds a model for sequential rewards from
this heuristic. The previous experiments use an approach
based on Gaussian mixture models as a segmentation heur-
istic; this experiment evaluates the same domains with other

heuristics. In particular, we consider two other models: seg-
mentation based on changes in the direction of velocity and
segmentation based on linear dynamic regimes. Figure 6
illustrates the results. While there are differences between
the performance of different heuristics, we found that the
approach based on Gaussian mixture models was the most
reliable across the domains.

9.6. Transfer

We constructed two transfer scenarios to evaluate whether
the structure learned overfits the initial demonstrations. In
essence, this is an evaluation of how well the approaches
handle transfer if the dynamics change between demonstra-
tion and execution. We collected N =100 demonstrations
of the original task and then used the learned rewards or
policies on a perturbed task. For the parallel parking task,
we modified the execution environment, such that the
dynamics would be coupled in a way that turning right
would cause the car to accelerate forward by 0.05 m/s”. In
the perturbed task, the car must learn to adjust to this accel-
eration during the reversing phase. In the new domain, each
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Fig. 6. We compare different transition indicator heuristics with SWIRL. Parallel parking: for a fixed number of demonstrations
(five), we vary the number of rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations
(15), we vary the number of rollouts and measure the average reward at each rollout.

GMM: Gaussian mixture model; Lin. Dyn.: linear dynamics; Vel.: velocity.

Fig. 7. For 500 rollouts and 100 demonstrations, we measure the
robustness of the approaches to changes in the execution
dynamics. While the SVM is 95% successful on the original
domain, its success does not transfer to the perturbed setting.
SWIRL learns rewards and segments that transfer to the new
dynamics since they are state-space goals.

IRL: maximum entropy inverse reinforcement learning with estimated
dynamics; QL: Q-learning; SVM: a baseline of behavioral cloning with a
support vector machine policy representation; SWIRL: the model-free
version of sequential windowed inverse reinforcement learning.

approach is allowed 500 rollouts. We report the results in
Figure 7.

The success rate of the policy learned with Q-learning is
more or less constant between the two domains. This is
because Q-learning does not use any information from the
original domain. The SVM behavioral cloning policy
undergoes a drastic change. On the original domain, it
achieves a 95% success rate (with 100 demonstrations);
however, on the perturbed domain, it is never successful.
This is because the SVM learned a policy that causes it to
crash into one of the obstacles in the perturbed
environment.

The inverse reinforcement learning techniques are more
robust during the transfer. This is because the rewards
learned are quadratic functions of the state and do not

encode anything specific about the dynamics. Similarly, in
SWIRL, the rewards and transition regions are invariant to
the dynamics in this transfer problem. The model-free ver-
sion of SWIRL reports a larger drop of 16%. This is
because the model-free version is not a true inverse reinfor-
cement learning algorithm and may encode some aspects
of the dynamics in the learned reward function.

Coincidentally, this experiment also shows us how to
construct a failure mode for SWIRL. If the perturbation in
the task is such that it “invalidates” a transition region, e.g.,
a new obstacle, then SWIRL may not be able to learn to
complete the task. However, the transition regions give us a
formalism for detecting such problems during learning, as
we can keep track of which regions are possible to reach.

For the acrobot task, as in the parallel parking scenario,
we evaluate how the different approaches handle transfer if
the dynamics change between demonstration and execution.
With N =250 demonstrations, we learn the rewards, poli-
cies, and segments on the standard pendulum; then during
learning we vary the size of the second link in the pendu-
lum. We plot the success rate (after a fixed 3000 rollouts)
as a function of the increasing link size in Figure 8.

As the link size increases, even the baseline Q-learning
becomes less successful. This is because the system
becomes more unstable and it is harder to learn a policy.
The behavioral cloning SVM policy immediately fails as
the link size is increased. Inverse reinforcement learning is
more robust but does not offer much of an advantage in
this problem. SWIRL is robust until the change in the link
size becomes large. This is because, for the larger link size,
SWIRL might require different segments (or one of the
learned segments is unreachable).

9.7. Sensitivity

Next, we evaluated the sensitivity of SWIRL to different
initial demonstration sets (Figure 9). We sampled random
initial demonstration sets and re-ran the algorithm on each
of the two domains 100 times. Figure 9 is a plot of the
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Fig. 8. For 3000 rollouts and 250 demonstrations, we measure
the transfer as a function of link size. The SVM policy fails as
soon the link size is changed. SWIRL is robust until the change
becomes very large.

IRL: maximum entropy inverse reinforcement learning using estimated
dynamics learned from the demonstrations; QL: Q-learning; SVM: a
baseline of behavioral cloning with a kernel support vector machine
policy representation; SWIRL: sequential ~windowed inverse
reinforcement learning.

mean reward as a function of the number of rollouts and
two standard deviations over all of the trials. We find that
SWIRL is not very sensitive to the particular initial demon-
stration dataset. In fact, the two standard deviation error
bar is smaller than the improvement in convergence in pre-
vious experiments.

9.8. Segmentation and partial observation

Next, we made the parallel parking domain more difficult,
to illustrate the connection between segmentation and mem-
ory in reinforcement learning (Figure 10). We hid the velo-
city state from the robot, so the car only sees (x,y, ). As
before, if the car collides with one of the obstacles or does
not park in 200 time-steps, the episode ends. We call this
domain “parallel parking with partial observation”.

This form of partial observation creates an interesting
challenge. There is no longer a stationary policy that can

achieve the reward. During the reversing phase of parallel
parking, the car does not know that it is currently reversing.
So there is ambiguity in that state; whether to pull up or
reverse. We will see that segmentation can help disambigu-
ate the action in this state.

As before, we generated five demonstrations using an
RRT* motion planner (assuming deterministic dynamics)
and applied each of the approaches. The techniques that
model this problem using a single Markov decision process
all fail to converge. The Q-learning approach achieves
some nonzero rewards by chance. The learned segments in
SWIRL help disambiguate dependence on history, since
the segment indicator tells the car which stage of the task
is currently active (pulling up or reversing) After 250,000
time-steps, the policy learned with model-based SWIRL
has a 95% success rate in comparison with a <10% suc-
cess rate for the baseline reinforcement learning, 0% for
MaxEnt-IRL, and 0% for the SVM.

10. Physical experiments with the da Vinci
surgical robot

In the next set of experiments, we evaluate SWIRL for two
tasks using the da Vinci surgical robot. The da Vinci
research kit is a surgical robot originally designed for tele-
operation, and we consider autonomous execution of surgi-
cal subtasks. Based on a chessboard calibration, we found
that the robot has a kinematic root mean square error of 3.5
mm and thus requires feedback from vision for accurate
manipulation. In our robotic setup, there is an overhead
endoscopic stereo camera that can be used to find visual
features for learning’ it is located 650 mm above the work-
space. This camera is registered to the workspace with a
calibration root mean square error of 2.2 mm.

10.1. Deformable sheet tensioning

In the first experiment, we consider the task of deformable
sheet tensioning. The experimental setup is pictured in
Figure 11. A sheet of surgical gauze is fixed at the two far

Fig. 9. Sensitivity of SWIRL. Parallel parking: we generate a random set of five demonstrations, vary the number of rollouts, and
measure the average reward at each rollout. We plot the mean and standard deviation over 100 trials. Acrobot: we generate a random
set of 15 demonstration, vary the number of rollouts, and measure the average reward at each rollout. We plot the mean and two

standard deviations over 100 trials.
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Fig. 10. We hid the velocity state from the robot, so the robot
only sees (x,y, ). For a fixed number of demonstrations (five),
we vary the number of rollouts and measure the average reward
at each rollout. SWIRL converges while the other approaches fail
to reach a reliable success rate.

IRL: maximum entropy inverse reinforcement learning using estimated
dynamics; QL: Q-learning; SVM: a baseline of behavioral cloning with a
support vector machine policy representation; SWIRL: sequential
windowed inverse reinforcement learning.

corners using a pair of clips. The unclipped part of the
gauze is allowed to rest on soft silicone padding. The
robot’s task is to reach for the unclipped part, grasp it, lift
the gauze, and tension the sheet to be as flat as possible.
An open-loop policy typically fails in this task because it
requires some feedback of whether the gauze is properly
grasped, how the gauze has deformed after grasping, and
visual feedback of whether the gauze is flat. The task is
sequential, as some grasps pick up more or less of the
material and the flattening procedure must be modified
accordingly.

The state space is the six-degrees-of-freedom end-
effector position of the robot, the current load on the wrist
of the robot, and a visual feature measuring the flatness of
the gauze. This latter is achieved using a set of fiducial
markers on the gauze, which are segmented by color using
a stereo camera. Then we correspond the segmented con-
tours and estimate a z position for each marker (relative to
the horizontal plane). The variance in the z position is a
proxy for flatness; we include this as a feature for learning
(we call this the disparity). The action space is discretized
into an eight-dimensional vector (*x, *y, *z, open or
close gripper) where the robot moves in 2 mm increments.

We provided 15 demonstrations through a keyboard-
based tele-operation interface. The average length of the
demonstrations was 48.4 actions (although we sampled
observations at a higher frequency, about 10 observations
for every action). From these 15 demonstrations, SWIRL
identifies four segments. Figure 11 illustrates the segmenta-
tion of a representative demonstration with important states
plotted over time. One of the segments corresponds to mov-
ing to the correct grasping position, one to making the
grasp, one to lifting the gauze up again, and one to

straightening the gauze. An interesting aspect of this task is
that the segmentation requires a number of features. Figure
11 plots three signals (current load, disparity, and z posi-
tion); segmenting any single signal might mean that an
important feature is missed. Then, we tried to learn a policy
from the rewards constructed by SWIRL. In this experi-
ment, we initialized the policy learning phase of SWIRL
using the behavioral cloning policy. We define a Q-network
using a single-layer Multi-Layer Perceptron with 32 hidden
units and sigmoid activation. For each of the segments, we
apply behavioral cloning locally, with the same architecture
as the Q-network (with an additional softmax over the out-
put layer) to get an initial policy. We rollout 100 trials with
a greedy (¢=0.1) version of these segmented policies.

The learning results of this experiment are summarized
in Table 1 for different baselines. The value of the policy is
a measure of the average disparity over the gauze, accumu-
lated over the task (if the gauze is flatter for longer, the
value is greater). As a baseline, we applied reinforcement
learning for 100 rollouts with no other information. Using
reinforcement learning did not result in successful grasping
of the gauze even once. Next, we applied behavioral clon-
ing directly. Using behavioral cloning, the gauze could be
reached but not successfully grasped. Then we applied the
segmentation from SWIRL and applied behavioral cloning
directly to each local segment (without further refinement).
Using this, the full task could be completed with a cumula-
tive disparity score of —3516. Finally, we applied all of
SWIRL and obtained the largest disparity score (—3110).
For comparison, we applied SWIRL without the behavioral
cloning initialization and found that success was only pos-
sible in the first two steps. This indicates that initialization
is crucial in real tasks.

10.2. Surgical line cutting

In the next experiment, we evaluate generalization to differ-
ent task instances. We apply SWIRL to learn to cut along a
marked line in gauze, similar to the experiments of Murali
et al. (2015). This is a multi-step problem, where the robot
starts from a random initial state, has to move to a position
that allows it to start the cut, and then cuts along the marked
line. We provide the robot with five kinesthetic demonstra-
tions by positioning the end effector and then following var-
ious marked straight lines. The state space of the robot
included the end-effector position (x,y) as well as a visual
feature indicating its pixel distance from the marked line
pix. This visual feature is constructed using OpenCV
thresholding for the black line. Since the gauze is planar,
the robot’s actions are unit steps in the =x and =y axes.
Figure 12 illustrates the training and test scenarios.

SWIRL identifies two segments, corresponding to the
positioning step and the termination. The learned reward
function for the position step minimizes the x, y, pix dis-
tance to the starting point; for the cutting step, the reward
function is more heavily weighted to minimize the pix dis-
tance. We defined task success as positioning within 1 cm
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Fig. 11. Representative demonstration of deformable sheet tensioning task with relevant features plotted over time. SWIRL identifies
four segments, which correspond to reaching, grasping, lifting, and tensioning. The wrist current, variance disparity (measure of
smoothness of the sheet), and the tool tip height are plotted in relation to the segmentation learned by SWIRL.

Table 1. Results from the deformable sheet tensioning experiment.

Technique

No. of demonstrations

No. of rollouts Disparity value

Pure exploration (reinforcement learning) -
15

Pure demonstration (behavioral cloning)
Segmented demonstrations 15
SWIRL 15

100 —8210
- —7591
- —3516

100

SWIRL: sequential windowed inverse reinforcement learning.

of the starting position of the line and, during the following
stage, missing the line by no more than 1 cm (estimated
from the pixel distance). We evaluated the model-free ver-
sion of SWIRL, Q-learning, and behavioral cloning with
an SVM. SWIRL was the only technique able to perform
the combined task.

We evaluated the learned tracking policy to cut gauze.
We ran trials on different sequences of curves and straight
lines. Out of the 15 trials, 11 were successful. Two failed,
owing to SWIRL errors (tracking or position was

imprecise) and two failed owing to cutting errors (gauze
deformed, causing the task to fail). One of the failures was
on the 4.5 cm curvature line and three were on the 3.5 cm
curvature line.

Next, we characterized the repeatability of the learned
policy. We applied SWIRL to lines of various curvatures,
spanning from straight lines to a curvature radius of 1.5
cm. Table 2 summarizes the results for lines of various cur-
vatures. While the SVM approach did not work on the
combined task, we evaluated its accuracy for each
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Fig. 12. We collected demonstrations on the da Vinci surgical robot kinesthetically. The task was to cut a marked line on gauze. We
demonstrated the location of the line without actually cutting it. The goal is to infer that the demonstrator’s reward function has two
steps: position at a start position before the line, and then following the line. We applied this same reward to curved lines that started

in different positions.
DVRK: da Vinci research kit.

Table 2. With five kinesthetic demonstrations of following marked straight lines on gauze, we applied SWIRL to learn to follow
lines of various curvatures. After 25 episodes of exploration, we evaluated the policies on ability to position in the correct cutting
location and track the line. We compare with the SVM for each individual segment. The SVM is comparably accurate on the straight

line (training set) but does not generalize well to the curved lines.

Curvature radius, cm  SVM position error, cm

SVM tracking error, cm  SWIRL position error, cm

SWIRL tracking error, cm

Straight 0.46 0.23
4.0 0.43 0.59
35 0.51 1.21
3.0 0.86 3.03
2.5 1.43 -
2.0 - -
1.5 - -

0.42 0.21
0.45 0.33
0.56 0.38
0.66 0.57
0.74 0.87
0.87 1.45
1.12 2.44

SVM: support vector machine; SWIRL: sequential windowed inverse reinforcement learning.

individual step, to illustrate the benefits of SWIRL. In fol-
lowing straight lines, SVM was comparable to SWIRL in
terms of accuracy. However, as the lines become increas-
ingly curved, SWIRL generalizes more robustly than the
SVM. A single SVM has to learn both the positioning and
cutting policies. The combined policy is much more com-
plicated than the individual policies, e.g., go to a goal and
follow a line.

11. Discussion and future work

This paper explores a new algorithm, SWIRL, for segment-
ing tasks into shorter subtasks and assigning local reward
functions. Experimental results suggest that sequential seg-
mentation can indeed improve convergence in reinforce-
ment learning problems with delayed rewards. Results
suggest that SWIRL is robust to perturbations in initial

conditions, the environment, and sensing noise. There are
several limitations and avenues for future work that we
would like to address.

11.1. High-dimensional state spaces

As is, SWIRL will have difficulty scaling to problems with
high-dimensional state spaces, such as images. Most inverse
reinforcement learning algorithms require some estimate of
the dynamic model, which is difficult in general. We believe
that some combination of pre-trained features and the model-
free reward learning approach proposed in this paper will be
a first step toward SWIRL in image space.

11.2. Avoiding reinforcement learning

Another intriguing direction is whether we can avoid the
last phase of reinforcement learning. It might be possible to
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design a policy learning framework that implicitly solves an
inverse reinforcement learning problem. This would open a
number of opportunities for incorporating segmentation,
inverse reinforcement learning, and policy learning as one
probabilistic model. We will also explore how the Q-learn-
ing step could be replaced with guided policy search, policy
gradients, and optimal control.

11.3. More complex task structures

Another avenue for future work is the modeling of complex
tasks as hierarchies of Markov decision processes, namely,
tasks composed of a number of Markov decision processes
that switch upon certain states and where the switching
dynamics can be modeled as another Markov decision pro-
cess. This is related to the options framework in hierarchi-
cal reinforcement learning; we will explore the connections
between SWIRL and more complex hierarchies of
behaviors.
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Appendix A Parallel parking experiment

Here, we discuss some of the details of the parallel parking
experiment. The car implements a dynamic bicycle model
and, with probability 0.1, the car takes a random action. To
implement the supervisor, a model predictive control
approach was used. We applied an RRT* motion planner
that re-planned to the goal state. Figure 13 illustrates the
demonstrations and the segments learned by SWIRL.

Figure 14 illustrates the reward functions learned by
SWIRL in each stage of the task; the matrices are plotted
as a heat map. A larger value indicates that deviation in
that axis is penalized more. In the first stage of the task,
the cost function ensures that the robot is penalized for not
matching the velocity profile of the demonstrator. The cost
function is more even in the other stages.

There are also several relevant hyperparameters in this
experiment.

A.1. Q-learning hyperparameters

We apply Q-learning to learn a policy for this problem with
a radial basis function representation for the Q function
with hyperparameters k=5,0=0.1, respectively. The

Segmentation

1 ]

3

Fig. 13. Left: the five demonstration trajectories for the parallel parking task. Right: the subgoals learned by SWIRL. There are two
intermediate goals corresponding to positioning the car and orienting the car correctly before reversing.

SWIRL: sequential windowed inverse reinforcement learning.
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- that re-planned to the goal state after discretizing the con-
trol inputs.
y There are also several relevant hyperparameters in this
e experiment.
T
Y

Fig. 14. Reward matrices learned in each of the segments of the
parallel parking task.

radial basis function hyperparameters were tuned manually
to achieve the fastest convergence in the experimental task.

A.2. Behavioral cloning hyperparameters

We use an L1 hinge-loss SVM with L2 regularization
a =5e — 3 to predict the action from the state. The hyper-
parameters were tuned manually using cross-validation by
holding out trajectories.

Appendix B Acrobot experiment

Next, we discuss the acrobot experimental details. The
acrobot implements a two-link pendulum with equal-sized
links. These links are torque limited so it takes a number of
swings to invert the pendulum. This system is also stochas-
tic where the dynamics have random Gaussian noise. To
implement the supervisor, a model predictive control
approach was used. We applied an RRT* motion planner

B.1. Reinforcement learning (Q-learning)

The baseline approach is to model the entire problem as a
Markov decision process with the sparse delayed reward.
We apply Q-learning to learn a policy for this problem with
a radial basis function representation for the O function
with number of bases £ =25 and bandwidth o = 0.25. The
radial basis function hyperparameters were tuned manually
to achieve the fastest convergence in the experimental task.

B.2. Behavioral cloning (kernel SVM)

We generated N demonstrations using the Q-learning base-
line (i.e., run to convergence and sample from the learned
policy). We use a radial basis function kernel SVM
o=1e—5 with L2 regularization a =5e — 3 to predict
the action from the state. The hyperparameters were tuned
manually using cross-validation by holding out trajectories.

B.3. SWIRL featurization

We apply SWIRL with a DP-GMM-based segmentation
step with a kernel transformation o =0.1 (as described in
Section 5.3).



