

sequentially combine to form a global task. This leads to a

novel policy search algorithm, called sequential windowed

inverse reinforcement learning (SWIRL), where the demon-

strations can bootstrap a self-supervised Q-learning algorithm.

The unsupervised learning model is based on our prior

work on transition state clustering (Krishnan et al., 2015,

2016; Murali et al., 2016). Transitions are defined as signif-

icant changes in the state trajectory. These transitions can

be spatially and temporally clustered to identify whether

there are common conditions that trigger a change in

motion across demonstrations. The algorithm is outlined in

Algorithm 1. SWIRL extends this basic model with an

inverse reinforcement learning step that extracts subgoals

and computes local cost functions from the learned clusters.

Learning a policy over the segmented task is nontrivial

because solving k independent problems neglects any

shared structure in the value function during the policy

learning phase (e.g., a common failure state). Jointly learn-

ing over all segments introduces a dependence on history,

namely, any policy must complete step i before tackling

step i+ 1. Learning a memory-dependent policy could lead

to an exponential overhead of additional states. We show

that the problem can be posed as a proper Markov decision

process in a lifted state space that includes an indicator

variable of the highest-index f1, . . . , kg transition region

that has been reached so far if there are Markovian regular-

ity assumptions on the clustering algorithm.

The problem setting in SWIRL subtly differs from what

is typical in imitation learning and other works on learning

from demonstrations. During the demonstration phase,

SWIRL only observes the sequence of states visited by the

supervisor, and does not need to know what action the

supervisor applied or require a model of the environment

dynamics. We believe that this makes SWIRL applicable in

the increasingly popular third-person imitation learning set-

tings, where robots can exploit large corpora of videos of

human beings or other robots performing a variety of tasks

(Stadie et al., 2017).

This article is a significantly revised and extended ver-

sion of a previous conference publication (Krishnan et al.,

2016) with new experiments, formalism, and analysis. In

particular, this article introduces a new class of unsuper-

vised trajectory segmentation algorithms that can be effi-

ciently paired with reinforcement learning, as they preserve

Markovian structure. This paper also extends the number of

baseline approaches considered in simulation and adds a

new experiment in using a da Vinci surgical robot to manip-

ulate deformable materials.

The content is structured as follows. Section 2 describes

the background and related work. Section 3 describes nota-

tion and the problem statement. Section 4 gives an over-

view of the entire SWIRL framework. Section 5 describes

the clustering algorithm applied to the initial demonstra-

tions to divide the task into consistent subtasks. Section 6

describes how local reward functions are assigned to each

of the subtasks to construct a segmented approximation of

the global task. Section 7 describes how to apply

reinforcement learning to learn a policy over this approxi-

mation. Finally, Sections 8 to 10 discuss the experimental

methodology and results.

2. Related work and background

2.1. Apprenticeship learning

Abbeel and Ng (2004) argue that the reward function is

often a more concise representation of a task than a policy

is. As such, a concise reward function is more likely to be

robust to small perturbations in the task description. The

downside is that the reward function is not useful on its

own and, ultimately, a policy must be retrieved. In the most

general case, a reinforcement learning algorithm must be

used to optimize for that reward function (Abbeel and Ng,

2004). It is well-established that reinforcement learning

problems often converge slowly in complex tasks when

rewards are sparse and not ‘‘shaped’’ appropriately (Judah

et al., 2014; Ng et al., 1999). Our work revisits this two-

phase algorithm in the context of sequential tasks and tech-

niques, in order to scale such an approach to longer time

horizons. Related to SWIRL, Kolter et al. (2007) studied

hierarchical apprenticeship learning to learn bipedal loco-

motion, where the algorithm is provided with a hierarchy of

subtasks. We explore the automatical inference of a sequen-

tial task structure from data.

2.2. Motion primitives

Researchers in learning from demonstrations and planning

have studied the problem of leveraging motion primitives,

or libraries of temporally extended action sequences, to

improve generalization. Dynamic motion primitives are

used to construct new motions through a composition of

dynamic building blocks (Ijspeert et al., 2002; Manschitz

et al., 2015; Pastor et al., 2009). Much of the work in

motion primitives has considered manually identified seg-

ments but Niekum et al. (2012) proposed learning the set

of primitives from demonstrations using the Beta-Process

Autoregressive Hidden Markov Model. Similarly, Calinon

(2014) proposed a task-parametrized movement model with

Gaussian mixture models for automatic action segmenta-

tion. Both Niekum et al. (2012) and Calinon (2014) consid-

ered the motion planning setting in which analytical

planning methods are used to plan and perform a task.

2.3. Segmentation

Trajectory segmentation is a well-studied area of research,

dating back to early biomechanics and robotics research.

For example, Viviani and Cenzato (1985) explored using

the ‘‘two-thirds’’ power law coefficient to determine seg-

ment boundaries in handwriting. Morasso (1983) showed

that rhythmic three-dimensional motions of a human arm

could be modeled as piecewise linear. In a seminal paper,

Sternad and Schaal (1999) provided a formal framework for

2 The International Journal of Robotics Research 00(0)

the control-theoretic segmentation of trajectories. Botvinick

et al. (2009) explored the reinforcement learning analog of

the control-theoretic models. Concurrently, temporal seg-

mentation was being developed by researchers in motion

capture (Moeslund and Granum, 2001). Recently, some

Bayesian approaches have been proposed for the segmenta-

tion problem (Asfour et al., 2008; Calinon and Billard,

2004; Kruger et al., 2010; Tanwani and Calinon, 2016;

Vakanski et al., 2012). Two challenges are those of collect-

ing enough data to employ these techniques and of tuning

the hyperparameters. In a prior work, we observed that,

under the assumption that the task is sequential (with the

same order of primitives in each demonstration), the infer-

ence could be modeled as a two-level clustering problem

(Krishnan et al., 2015). This results in improved accuracy

and robustness for a small number of demonstrations.

Another relevant result is that of Ranchod et al. (2015),

who use an inverse reinforcement learning model to define

the primitives, in contrast with the problem of learning a

policy after inverse reinforcement learning.

2.4. Hierarchical reinforcement learning

The field of hierarchical reinforcement learning has a long

history in artificial intelligence (Barto and Mahadevan,

2003; Sutton et al., 1999) and in the analysis of biological

systems (Botvinick, 2008; Botvinick et al., 2009; Solway

et al., 2014; Whiten et al., 2006; Zacks et al., 2011). Early

work in hierarchical control demonstrated the advantages of

hierarchical structures by handcrafting hierarchical policies

(Brooks, 1986) and learning them, given various manual

specifications: state abstractions (Dayan and Hinton, 1992;

Hengst, 2002; Kolter et al., 2007; Konidaris and Barto,

2007), a set of waypoints (Kaelbling, 1993), low-level skills

(Bacon and Precup, 2015; Huber and Grupen, 1997), a set

of finite-state meta-controllers (Parr and Russell, 1997), a

set of subgoals (Dietterich, 2000; Sutton et al., 1999), or

intrinsic reward (Kulkarni et al., 2016). The key abstraction

used in hierarchical reinforcement learning is the ‘‘options’’

framework, where subskills are represented by local poli-

cies, termination conditions, and initialization conditions. A

high-level policy switches between these options and com-

bines them into a larger task policy. In this framework, per-

subskill reward functions are called subgoals. SWIRL is an

algorithm for learning quadratic subgoals and termination

conditions, where the high-level policy is deterministic and

sequentially iterates through the subskills.

3. Problem setup

A finite-horizon Markov decision process is a five-tuple

hS,A,P(� , �), T ,Ri, where S is the set of states (continuous

or discrete), A is the set of actions, P : S×A 7!D(S) is the

dynamic model that maps states and actions to a probability

density over subsequent states, T is the time horizon, and

R : S×A 7!R is the reward function.

3.1. Problem setting

We assume access to a supervisor, who samples from an

unknown policy p : S 7!D(A) that maps states to a prob-

ability distribution over actions. These samples form

sequences of length T, called demonstrations. The goal of

these demonstrations is to provide an initial dataset from

which we can learn about the structure of the Markov deci-

sion process. In the most basic form, a demonstration is

defined as follows.

Definition 1. Fully observed demonstration. A demon-

stration d is a sequence of tuples of states and actions

d= s0, a0ð Þ, s1, a1ð Þ, . . . , sT , aTð Þ½ �

This fully observed setting is typical of the literature on

imitation learning (Osa et al., 2018), where one uses a func-

tion approximation to learn the state to action mapping

from these samples. However, one may have a more limited

access to a limited supervisor, where only the states are

observed. The actions that the supervisor applied are latent.

Definition 2. State demonstration. A state demonstration

d is a sequence of tuples of states and actions

d= s0,ð Þ, s1,ð Þ, . . . , sT ,ð Þ½ �

The state demonstration setting differs from what is clas-

sically studied in imitation learning. This can happen when

the demonstration modality differs from the execution set-

ting, e.g., learning from third-person videos, motion capture

of a human being performing a task, or kinesthetic demon-

strations. Our objective is a framework that can learn even

if only state demonstrations are provided. Notationally, we

will use boldface to denote fully observed demonstrations

and the regular font face to denote state demonstrations.

Problem 1. Policy search. Given a Markov decision pro-

cess and a set of state demonstration trajectories

D= d1, . . . , dNf g from a supervisor, return a policy

p : S 7!D(A) that maximizes the cumulative reward of the

Markov decision process.

4. Task model

Directly optimizing the reward function R in the Markov

decision process from the previous section might be very

challenging. We propose to approximate R as a sequence

of smoother reward functions.

Definition 3. Proxy task. A proxy task is a set of k

Markov decision processes with the same state set, action

set, and dynamics. Associated with each Markov decision

process, i, is a reward function Ri : S×A7!R.

Additionally, associated with each Ri is a transition region

ri � S, which is a subset of the state space. A robot accu-

mulates a reward Ri until it reaches the transition region ri,

then the robot switches to the next reward and transition

pair. This process continues until rk is reached.

Krishnan et al. 3

A robot is deemed successful when all of the ri are

reached in sequence within a global time horizon T. SWIRL

uses a set of initial supervisor demonstrations to construct a

proxy task that approximates the original Markov decision

process.

4.1. Modeling assumptions

To make this problem computationally tractable, we make

some modeling assumptions.

Modeling assumption 1. Successful demonstrations. We

need conditions on the demonstrations to be able to infer

the sequential structure. We assume that all demonstrations

are successful, that is, they visit each ri in the same

sequence.

Modeling assumption 2. Quadratic rewards. We assume

that each reward function Ri can be expressed as a quadratic

of the form �(s� s0)
T
C(s� s0) for some positive semi-

definiteC and a center point s0 with s
T
0
Cs0 = 0.

Modeling assumption 3. Ellipsoidal approximation.

Finally, we assume that the transition regions in ri can be

approximated as a set of disjoint ellipsoids.

4.2. Algorithm overview

SWIRL can be described in terms of three subalgorithms:

Inputs: Demonstrations D

1. Sequence learning (Section 5). Given D, SWIRL

applies a hierarchical clustering algorithm to partition

the task into k subtasks, whose starts and ends are

defined by arrival at a sequence of transitions

G= ½r
1
, . . . , rk �.

2. Reward learning (Section 6). Given G and D,

SWIRL associates a local reward function with each

segment, resulting in a sequence of rewards

Rseq= ½R1, . . . ,Rk �.
3. Policy learning (Section 7). Given Rseq and G,

SWIRL applies reinforcement learning to optimize a

policy for the task p.

Outputs: Policy p

In principle, one could couple steps 1 and 2, as with the

results of Ranchod et al. (2015). We separate these steps,

since this allows us to use a different set of features for seg-

mentation than is used for reward learning. Perceptual fea-

tures can provide a valuable signal for segmentation but

quadratic reward functions might not be meaningful in all

perceptual feature spaces.

5. Sequence learning

First, SWIRL applies a clustering algorithm to the initial

demonstrations to learn the transition regions. The cluster-

ing model is based on our prior work on transition state

clustering (Krishnan et al., 2015; Murali et al., 2016).

Transitions are defined as significant changes in the state

trajectory. These transitions can be spatially and temporally

clustered to identify whether there are common conditions

that trigger a change in motion across demonstrations.

5.1. General framework

In a first pass, the clustering algorithm applies a motion-

based segmentation model over the noisy trajectories and

identifies a set of candidate segment transitions in each.

Definition 4. Transition indicator function. A transition

indicator function T is a function that maps each time

index in a demonstration d to f0, 1g.
As in Lioutikov et al. (2015), this is an initial heuristic

that oversegments to ground the probabilistic segmentation.

One can apply a variety of different change point detection

methodologies, such as detection of significant changes in

image features (Murali et al., 2016) or dynamic transitions

(Niekum et al., 2012), or the use of Gaussian mixture mod-

els (Krishnan et al., 2015). The particular model chosen

depends on the perceptual features available.

This function marks candidate segment endpoints, called

transitions, in a trajectory. Definition 4 naturally leads to a

notion of transition states, that is, the states and times at

which transitions occur.

Definition 5. Transition states. For a demonstration set D,

transition states are the set of state-time tuples where the

indicator is 1

G= x, tð Þ 2 D : T xð Þ= 1f g

We model the set G as samples from an underlying dis-

tribution over the state space and time

G;f (x, t)

We model this distribution using a Gaussian mixture

model

f x, tð Þ’GMM h, m
1
, . . . ,mkf g, S1, . . . ,Skf gð Þ

The interpretation of this distribution is that h describes

the fraction of transitions assigned to each mixture compo-

nent, mi describes the centroid of the mixture component,

and S describes the covariance. While Gaussian mixture

models are a poor approximation for some distributions,

they have shown empirical success for trajectory segmenta-

tion (Calinon, 2014). Our prior work (Krishnan et al., 2015;

Murali et al., 2016) describes a number of practical optimi-

zations, such as the pruning of low-confidence mixture

components.

For each mixture component, we can define ellipsoids

by taking the confidence level sets in the state space and

time that characterize regions where transitions occur.

These regions are ordered, as they are also defined over

time, since we make the assumption that the confidence

threshold for the level sets is tuned so that the regions are

4 The International Journal of Robotics Research 00(0)

disjoint. Thus, each of these regions defines a testable con-

dition based on the current state, time, and previously

reached regions—which is a Markov segmentation func-

tion. The result is exactly the set of transition regions,

G= r
1
, r

2
, . . . , rk½ �, and segmentation of each demonstra-

tion trajectory into k segments.

In typical Gaussian mixture model formulations, one

must specify the number of mixture components k before-

hand. However, we apply results from Bayesian nonpara-

metric statistics and jointly solve for the component

parameters and the number of components using a Dirichlet

process (Kulis and Jordan, 2012). The Dirichlet process

places a soft prior on the number of clusters. During infer-

ence, the number of components grows with the complexity

of the observed data (we denote this ‘‘DP-GMM’’). The

Dirichlet process has hyperparameters, which we tune once

for all domains; we use a uniform base measure and a prior

weight of 0:1.

5.2. Properties

While there are several different algorithms for segmenting

a set of demonstrations into subsequences, not all are

directly applicable to this problem setting. In our problem,

segments are used to construct a proxy Markov decision

process task for the robot to optimize. During the offline

phases of the algorithm (sequence learning and reward

learning), the clustering algorithm observes the full demon-

stration trajectory. However, during the learning phase (pol-

icy learning), the algorithm only observes the partial

trajectory up to the current time-step and does not observe

which segment is active. In this sense, segmentation intro-

duces a problem of partial observation, even if the original

task is fully observed. The segmentation must be estimated

from the history of the process.

Trivially, some algorithms are not applicable, since they

might require knowledge of future data. Even if the algo-

rithm is causal, it might have an arbitrary dependence on

the past, leading to inefficient estimation of the currently

active segment. To address this problem, we formalize the

following condition.

Definition 6. Markov segmentation. A segmentation of a

task is a function F that maps every state-time tuple to an

index f1, . . . , kg

F : S×Z+ 7!f1, . . . , kg

A Markov segmentation function is a task segmentation,

where the segmentation index at time t+ 1 can be com-

pletely determined by the featurized state st at time t and

the index it at time t

it+ 1 =M(st, it)

5.3. Transition indicator model

The general framework can support a number of different

transition indication heuristics. This article focuses on a

mixture modeling approach that identifies when trajectories

leave certain clusters of motion primitives. This technique

is quite general and applies to a large class of systems with

low-dimensional state spaces. Refer to our prior work for

other variations (Krishnan et al., 2015).

For a given time t, we can define a window of length ‘

as

w
(‘)
t = ½st�‘, . . . , st�

T

We can further normalize this window relative to its first

state, as

n
(‘)
t = ½st�‘ � st�‘, . . . , st � st�‘�

T

This represents the ‘‘delta’’ in movement over the time

span of a window. Then, for each demonstration trajectory,

we can also generate a trajectory of T � ‘ windowed

states, as

d
(‘)
= ½n(‘)

‘
, . . . , n

(‘)
T �T

Over the entire set of windowed demonstrations, we collect

a dataset of all of the n
(‘)
t vectors. We fit a Gaussian mix-

ture model to these vectors. The Gaussian mixture model

defines m multivariate Gaussian distributions and a prob-

ability that each observation n
(‘)
t is sampled from each of

the m distributions. We annotate each observation with the

most likely mixture component. Times such that n
(‘)
t and

n
(‘)
t+ 1

have different most-likely components are marked as

transitions. This model captures some dynamic behaviors

while not requiring explicit modeling of the state-to-state

transition function.

Sometimes the Markov decision process’s states are

more abstract and do not map to space where the normal-

ized windows make sense. We can still apply the same

method when we only have a positive definite kernel func-

tion over all pairs of states k(si, sj). We can construct this

kernel function for all of the states observed in the demon-

strations and apply kernelized principle component analysis

to the features before learning the transitions—a technique

used in computer vision (Mika et al., 1998). The top p0

eigenvalues define a new embedded feature vector for each

v in R
p0 . We can now apply Algorithm 5.3 in this

embedded feature space.

Algorithm 1: Subgoal clustering.

Data: Demonstration D
1 Use a transition indicator heuristic to identify a set of

candidate transitions Y.
2 Fit a DP-GMM to the states in Y.
3 Prune clusters that do not have one transition from all

demonstrations.
4 The result is G= ½r1, r2, . . . , rm�, where each r is a disjoint

ellipsoidal region of the state space and time interval.
Result: G

Krishnan et al. 5

6. Reward learning

After the sequence learning phase, each demonstration is

partitioned into k segments. The reward learning phase uses

the learned transition regions ½r1, . . . , rk � to construct the

local rewards ½R1, . . . ,Rk � for the task. Each Ri is a quadra-

tic cost parametrized by a positive semi-definite matrix C.

Inverse reinforcement learning (Ng and Russell, 2000)

involves studying the problem of inferring an implicitly

optimized reward function from demonstrations. The litera-

ture on inverse reinforcement learning argues that the

reward function is often a more concise representation of a

task than a policy is. As such, a concise reward function is

more likely to be robust to small perturbations in the task

description. The problem of constructing reward functions

is very much related to this problem. The only caveat is that

most inverse reinforcement learning techniques require a

dynamic model (Ziebart et al., 2008) or fit a local dynamic

model (Finn et al., 2016). Fitting a local dynamic model is

not possible with state demonstrations, as we do not expli-

citly observe the demonstrators’ actions.

6.1. Method for state-only demonstrations

The role of the reward function is to guide the robot to the

next transition region ri. A first approach is that, for each

segment i, we can define a reward function as

Ri(s)=� k s� mi k
2

2

which is simply the Euclidean distance from the centroid.

A problem in using the Euclidean distance directly is

that it uniformly penalizes disagreement with m in all

dimensions. During different stages of a task, some direc-

tions are naturally likely to vary more than others. To

account for this, we can derive

C½j, l�=S
�1

which is the inverse of the covariance matrix of all of the

state vectors in the segment

C=

X

end

t= start

ssT

 !�1

ð1Þ

which is a p× p matrix defined as the covariance of all of

the states in the segment i� 1 to i. Intuitively, if a feature

has low variance during this segment, deviation in that fea-

ture from the desired target is penalized. This is exactly the

Mahalanobis distance to the next transition.

For example, suppose that one of the features j measures

the distance to a reference trajectory ut. Further, suppose

that in step one of the task the demonstrator’s actions are

perfectly correlated with the trajectory (Ci½j, j� is low where

variance is in the distance) and in step two the actions are

uncorrelated with the reference trajectory (Ci½j, j� is high).
Thus, C will penalize deviation from mi½j� more in step one

than in step two.

6.2. Method for full demonstrations

If we do have access to full demonstrations, we can locally

fit dynamic models and use a standard inverse reinforce-

ment learning technique. In our experiments, we compare

both approaches—and find that the covariance-based

method given here is actually very competitive.

6.2.1. Primer on maximum entropy inverse reinforcement

learning. Maximum entropy inverse reinforcement learn-

ing (MaxEnt-IRL) (Ziebart et al., 2008) involves finding a

reward function such that an optimal policy with respect to

the reward function is close to the expert demonstration. In

the MaxEnt-IRL model, ‘‘close’’ is defined as matching the

first moment of the expert feature distribution

gexpert=
1

Z

X

d2D

X

N

i= 1

si

where Z is an appropriate normalization constant (the total

number of states in all demonstrations). The MaxEnt-IRL

model uses the linear parametrized representation

R(x)= sTu

where x is a feature vector representing the state of the sys-

tem. The agent is modeled as noisily optimal, where it takes

actions from a policy p

p(ajs, u)} expfAu(s, a)g

where Au is the advantage function (the Q function minus

the value function) for the reward, parameterized by u. The

objective is to maximize the log-likelihood that the demon-

stration trajectories were generated by u.

Under the exponential distribution model, it can be

shown that the gradient for this likelihood optimization is

∂L

∂u
= gexpert � gu

where gu is the first moment of the feature distribution of

an optimal policy under u.

SWIRL applies the MaxEnt-IRL model to each segment

of the task but with a small modification; to learn quadratic

rewards instead of linear ones. Let mi be the centroid of the

next transition region. We want to learn a reward function

of the form

Ri(x)= � (s� mi)
T
C(s� mi)

for a positive semi-definite C (negated, since this is a nega-

tive quadratic cost). With some re-parametrization (drop-

ping mi for convenience and without loss of generality),

this reward function can be written as

Ri(s)= �
X

d

j= 1

X

d

l= 1

C½i, j�s½j�s½l�

6 The International Journal of Robotics Research 00(0)

which is linear in the feature space y= s½j�s½l�

Ri(s)= uTy

6.2.2. Two inference settings: discrete and continuous. In

the MaxEnt-IRL model, the gradient can be estimated reli-

ably in two cases, discrete and linear Gaussian systems,

since it requires an efficient forward search of the policy,

given a particular reward parametrized by u. In both these

cases, we have to estimate the system dynamics within each

segment.

Consider the case when the state space is discrete and

the action space is discrete. To estimate the dynamics, we

construct an jSj× jSj× jAj matrix of zeros for each action,

where each of the components of this matrix corresponds

to the transition probability of a pair of states. For each,

(s, a, s0) observation in the segment, we increment (+ 1)

the appropriate element of the matrix. Finally, we normal-

ize the elements to sum to one across the set of actions. An

additional optimization could be to add smoothing to this

estimate (i.e., initialize the matrix with some nonzero con-

stant value); we found that this was not necessary for the

sparse domains in our experiments. The result is an esti-

mate of P(s0js, a). Given this estimate, gu can be efficiently

calculated with the forward-backward technique described

by Ziebart et al. (2008).

The discrete model is difficult to scale to continuous

state spaces. If we discretize, the number of bins required

would be exponential in the dimensionality. However, lin-

ear models are another class of dynamic model for which

the estimation and inference is tractable. We can fit local

linear models to each of the segments discovered in the pre-

vious section

Aj = argmin
A

X

N

i= 1

X

seg j end

seg j start

As
(i)
t � s

(i)
t+ 1

�

�

�

�

�

�

With Aj known, gu can be analytically solved with tech-

niques proposed by Ziebart et al. (2012). SWIRL applies

MaxEnt-IRL to the subsequences of demonstrations

between 0 and r
1
, and then from r

1
to r

2
, and so on. The

result is an estimated local reward function Ri modeled as a

linear function of states that is associated with each transi-

tion region ri (Algorithm 2).

7. Policy learning

SWIRL uses the learned transition regions ½r1, . . . , rk � and
Rseq to construct a proxy task to solve via reinforcement

learning. In this section, we describe a method of learning a

policy p, given rewards Rseq and an ordered sequence of

transitions G. However, this problem is not trivial, since

solving k independent problems neglects potential shared

value structures between local problems (e.g., a common

failure state). Furthermore, simply taking the aggregate of

the rewards can lead to inconsistencies, since there is

nothing enforcing the order of operations. We show that a

single policy can be learned jointly over all segments over a

modified problem where the state space, with additional

variables, keep tracks of the previously achieved segments.

We present a Q-learning algorithm (Mnih et al., 2015;

Sutton and Barto, 1998) that captures the noted coupling

between task segments. In principle, similar techniques can

be used for any other policy search method.

7.1. Jointly learning over all segments

In our sequential task definition, we cannot transition to

reward Ri+ 1 unless all previous transition regions

r
1
, . . . , ri are reached in sequence. We can leverage the

definition of the Markov segmentation function formalized

earlier to learn jointly across all segments, while leveraging

the segmented structure. We know that the reward transi-

tions (Ri to Ri+ 1) only depend on an arrival at the transi-

tion state ri and not any other aspect of the history.

Therefore, we can store an index v, which indicates whether

a transition state i 2 0, . . . , k has been reached. This index

can be efficiently incremented when the current state

s 2 ri+ 1
. The result is an augmented state space

s

v

� �

to

account for previous progress. In this lifted space, the prob-

lem is a fully observed Markov decision process. Then the

additional complexity of representing the reward with his-

tory over S× ½k� is only O(k) instead of exponential in the

time horizon.

7.2. Segmented Q-learning

At a high level, the objective of standard Q-learning is to

learn the function Q(s, a) of the optimal policy, which is

the expected reward that the agent will receive on taking

action a in state s, assuming that future behavior is optimal.

Q-learning works by first initializing a random Q function.

Then it samples rollouts from an exploration policy collect-

ing (s, a, r, s0) tuples. From these tuples, one can calculate

yi =R(s, a)+ argmax
a

Q(s0, a)

Each of the yi can be used to define a loss function since,

if Q were the true Q function, then the following recurrence

would hold

Q(s, a)=R(s, a)+ argmax
a

Q(s0, a)

Algorithm 2: Reward inference.

Data: Demonstration D and subgoals ½r
1
, . . . , rk �

1 Based on the transition states, segment each demonstration di
into k subsequences where the jth is denoted di½j�.

2 Apply MaxEnt-IRL or equation (1) to each set of
subsequences 1, . . . , k.
Result: Rseq

Krishnan et al. 7

Thus, Q-learning defines a loss

L(Q)=
X

i

k yi � Q(s, a) k2
2

This loss can be optimized with gradient descent. When

the state and action space is discrete, the representation of

the Q function is a table, and we get the familiar Q-learning

algorithm (Sutton and Barto, 1998)—where each gradient

step updates the table with the appropriate value. When the

Q function must be approximated, we get the deep Q-net-

work algorithm (Mnih et al., 2015).

SWIRL applies a variant of Q-learning to optimize the

policy over the sequential rewards. This is summarized in

Algorithm 3. The basic change to the algorithm is that the

state space is augmented with an indicator vector that indi-

cates the transition regions that have been reached. So each

of the rollouts now records a tuple (s, v, a, r, s0, v0) that

additionally stores this information. The Q function is now

defined over states, actions, and segment index—which

also selects the appropriate local reward function

Q(s, a, v)=Rv(s, a)+ argmax
a

Q(s0, a, v0)

We also need to define an exploration policy, i.e., a stochas-

tic policy with which we will collect rollouts. To initialize

the Q-learning, we apply behavioral cloning locally for each

of the segments to get a policy pi. We apply an e-greedy

version of these policies to collect rollouts.

8. Experimental methodology

This section overviews our basic experimental methodol-

ogy. We evaluate SWIRL using two simulated reinforce-

ment learning benchmarks and two deformable

manipulation tasks on the da Vinci surgical robot

(Kazanzides et al., 2014). In all of these tasks, there is a

single Markov decision process of interest where the

reward is sparse (for a substantial amount of the state

space, the reward is zero). The goal of SWIRL is to

improve convergence on this task.

8.1. Supervision

In both of the reinforcement learning benchmarks, the

reward function defines a target configuration of the robot.

We generated the initial demonstrations using an RRT*

motion planner (assuming deterministic dynamics)

(Karaman and Frazzoli, 2010). As both reinforcement

learning benchmarks are stochastic in nature, we used a

model-predictive-control-style re-planning approach to

control the robot to the target region. For the physical

experiments, we provided the robot with demonstrations

collected through tele-operation. We collected fully

observed trajectories with both states and actions.

8.2. Basic baselines

8.2.1. Pure exploration. The first set of baselines study a

pure exploration approach to learning a policy. The baseline

approach applies reinforcement learning to the global task.

In all of our experiments, we use variants of Q-learning

with different function approximators. The Q function is

randomly initialized and is updated with data collected from

episodic rollouts. The hyperparameters for each experiment

are listed in the appendixes. We use approximate Q-learn-

ing (Bertsekas and Tsitsiklis, 1995; Thrun and Schwartz,

1993) in the simulated benchmarks and deep Q-networks in

the physical experiments (Mnih et al., 2015).

8.2.2. Pure demonstration. This baseline directly learns a

policy from an initial set of demonstrations using super-

vised learning. This approach is called behavioral cloning

(see the survey of imitation learning given by Osa et al.

(2018)); in each of our experiments, we describe the policy

models used. It is important to note that this approach

requires fully observed demonstrations.

8.2.3. Warm-start exploration. Next, we consider

approaches that leverage both demonstrations and explora-

tion. One approach is to use demonstrations to initialize the

Q function for reinforcement learning and then perform

rollouts. This approach also requires fully observed

demonstrations.

8.2.4. Inverse reinforcement learning. Alternatively, we

can also use the demonstrations to infer a new reward func-

tion. We use inverse reinforcement learning to infer a

smoother quadratic reward function that explains the

demonstrator’s behavior. We infer this quadratic reward

function using MaxEnt-IRL. We consider using both esti-

mated dynamics and ground truth dynamics for this base-

line. When the dynamics are estimated, this approach

requires fully observed demonstrations. After inferring the

Algorithm 3: Q-learning with segments.

Data: Transition states G, reward sequence Rseq,
exploration policy p

1 Initialize Q
s

v

� �

, a

� �

randomly

2 foreach iter 2 0, . . . , I do
3 Draw s0 from initial conditions
4 Initialize v to be ½0, . . . , 0�
5 Initialize j to be 1
6 foreach t 2 0, . . . ,T do
7 Choose action a based on p.
8 Observe reward Rj

9 Update state to s0 and Q via Q-learning update
10 If s0 is 2 rj update v½j�= 1 and j= j+ 1

Result: Policy p

8 The International Journal of Robotics Research 00(0)

reward, the task is solved using reinforcement learning with

respect to the quadratic reward function.

9. Simulated experiments

We constructed a parallel parking scenario for a robot

car with nonholonomic dynamics and two obstacles

(Figure 1(a)). We also experimented on the standard acro-

bot domain (Figure 1(b)).

For the car domain, the car can accelerate or decelerate

in discrete increments of 60:1 m/s2 (the car can reverse),

and change its heading in increments of 58. The car’s velo-

city and heading u are inputs to a bicycle steering model

that computes the next state. The car observes its x position,

y position, orientation, and speed in a global coordinate

frame. The car’s dynamics are noisy and with probability

0.1 will randomly add or subtract 2:58 to the steering angle.

If the car parks between the obstacles, i.e., the speed is 0 m/

s within a 15
8 tolerance and a positional tolerance of 1m,

the task is a success and the car receives a reward of 1. The

obstacles are 5 m apart (2.5 car lengths). If the car collides

with one of the obstacles or does not park in 200 time-steps,

the episode ends, with a reward of 0.

The acrobot domain consists of an under-actuated two-

link pendulum with gravity and with torque controls on the

joint. There are four discrete actions that correspond to

clockwise and counterclockwise torques on each of the

links. The robot observes the angle u1, u2 and angular velo-

city v1,v2 at each of the links. The dynamics are noisy; a

small amount of random noise is added to each torque

applied to the pendulum. The robot has 1000 time-steps to

raise the arm above the horizontal (y= 1 in Figure 1b). If

the task is successful, the robot receives a reward of 1. The

expected reward is equivalent to the probability that the

current policy will successfully raise the arm above the

horizontal.

9.1. Pure exploration versus SWIRL

In the first set of experiments, we compare the learning

efficiency of pure exploration with SWIRL (Figure 2). The

baseline Q-learning approach is very slow because it relies

on random exploration to achieve the goal at least once

before it can start estimating the values of states and

actions. We fix the number of initial demonstrations pro-

vided to SWIRL. We apply the segmentation and reward

Fig. 1. (a) Simulated control task with a car with noisy nonholonomic dynamics. The car A1ð Þ is controlled by accelerating and

turning in discrete increments. The task is to park the car between two obstacles. (b) The Acrobot domain consists of a two-link arm

(L.1, L.2) with gravity and torque constraints. The task it to swing the arm above the horizon.

Fig. 2. Learning curves for Q-learning and SWIRL on both simulated tasks. Parallel parking: for a fixed number of demonstrations

(five), we vary the number of rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations

(15), we vary the number of rollouts and measure the average reward at each rollout.
QL: Q-learning; SWIRL, sequential windowed inverse reinforcement learning.

Krishnan et al. 9

learning algorithms and construct a proxy task. In both

domains, SWIRL significantly accelerates learning and

converges to a successful policy with significantly fewer

demonstrations. We find that this improvement is more

substantial in the parallel parking domain. This is probably

because the task more naturally partitions into discrete sub-

tasks. In the appendixes, we visualize the segments discov-

ered by the algorithm.

9.2. Pure demonstration versus SWIRL

Next, we evaluate SWIRL against a behavioral cloning

approach (Figure 3). We collect the initial set of demonstra-

tions and directly learn a policy using a support vector

machine (SVM). For the parallel parking task, we use a lin-

ear SVM. For the acrobot task, we use a kernel SVM with

a radial basis function kernel. We fix the number of auton-

omous rollouts that SWIRL can observe (500 for the paral-

lel parking task and 3000 for the acrobot task). Note that

the SVM technique requires observation of the actions in

the demonstration trajectories, which might not be possible

in all applications. The SVM approach does have the

advantage that it does not require any further exploration.

However, SWIRL and the pure demonstration approach are

not mutually exclusive. As we show in our physical experi-

ments, we can initialize Q-learning with a behavioral clon-

ing policy. The combination of the two approaches allows

us to take advantage of a small number of demonstrations

and learn to refine the initial policy through exploration.

The SVM approach requires more than 10 times as

many demonstrations to be competitive. In particular, there

is an issue with exhaustively demonstrating all the scenar-

ios that a robot might encounter. Learning from autono-

mous trials in addition to the initial demonstrations can

augment the data without burdening the supervisor.

Perhaps surprisingly, the initial dataset of demonstrations

can be quite small. On both tasks, with only five demon-

strations, SWIRL is within 20% of its maximum reward.

Representing a policy is often more complex than

representing a reward function that guides the agent to

valuable states. Learning this structure requires less data

than learning a full policy. This suggests that SWIRL can

exploit a very small number of expert demonstrations to

dramatically reduce the number of rollouts needed to learn

a successful policy.

9.3. SWIRL versus other hybrid approaches

Finally, we compare SWIRL with two other hybrid

demonstration–exploration approaches (Figure 4). The goal

of these experiments is to show that the sequential structure

learned in SWIRL is a strong prior. As in the previous

experiments, it is important to note that SWIRL only

requires a state trajectory as a demonstration and does not

need to observe the actions taken by the expert demonstra-

tor explicitly.

Initializing the Q function with the demonstrations, did

not yield a significant improvement over random initializa-

tion. This is because one rarely observes failures in expert

demonstration, and if the Q-learning algorithm does not

observe poor decisions it will not be able to avoid them in

the future. We also applied an inverse reinforcement learn-

ing approach using estimated dynamics. This approach is

substantially better than the basic Q-learning algorithm in

the parallel parking domain. This is probably because it

smooths out the sparse reward to fit a quadratic function.

This does serve to guide the robot to the goal states to some

extent. Finally, SWIRL is the most sample-efficient algo-

rithm. This is because the sequential quadratic rewards

learned align better with the true value functions in both

tasks. This structure can be learned from a small number of

demonstrations.

9.4. The benefit of models

Next, we consider the benefits of using inverse reinforce-

ment learning with the ground truth dynamic models

instead of those estimated from data (Figure 5). One

Fig. 3. Demonstration curves for imitation learning (SVM) and SWIRL on both simulated tasks. Parallel parking: we fix the number

of rollouts to 500 and vary the number of demonstration trajectories that each approach observes. Acrobot: for a fixed number of

rollouts 3000ð Þ, we vary the number of demonstration trajectories given to each technique.
SVM: support vector machine; SWIRL, sequential windowed inverse reinforcement learning.

10 The International Journal of Robotics Research 00(0)

scenario where this problem setting is useful is when the

demonstration dynamics are known but differ from the exe-

cution dynamics. Most common inverse reinforcement

learning frameworks, such as maximum entropy inverse

reinforcement learning, assume access to the dynamic

model. In the previous experiments, these models were

estimated from data; here, we show the benefit of providing

the true models to the algorithms. Both inverse reinforce-

ment learning and SWIRL improve their sample efficiency

significantly when ground truth models are given. This

experiment illustrates that the principles behind SWIRL are

compatible with model-based methodologies.

9.5. Different segmentation methods

In our general framework, SWIRL is compatible with any

heuristic to segment the initial demonstration trajectories.

This heuristic serves to oversegment; the unsupervised

learning model builds a model for sequential rewards from

this heuristic. The previous experiments use an approach

based on Gaussian mixture models as a segmentation heur-

istic; this experiment evaluates the same domains with other

heuristics. In particular, we consider two other models: seg-

mentation based on changes in the direction of velocity and

segmentation based on linear dynamic regimes. Figure 6

illustrates the results. While there are differences between

the performance of different heuristics, we found that the

approach based on Gaussian mixture models was the most

reliable across the domains.

9.6. Transfer

We constructed two transfer scenarios to evaluate whether

the structure learned overfits the initial demonstrations. In

essence, this is an evaluation of how well the approaches

handle transfer if the dynamics change between demonstra-

tion and execution. We collected N = 100 demonstrations

of the original task and then used the learned rewards or

policies on a perturbed task. For the parallel parking task,

we modified the execution environment, such that the

dynamics would be coupled in a way that turning right

would cause the car to accelerate forward by 0:05 m/s2. In

the perturbed task, the car must learn to adjust to this accel-

eration during the reversing phase. In the new domain, each

Fig. 4. Comparison of hybrid approaches. Parallel parking: for a fixed number of demonstrations (five), we vary the number of

rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations (15), we vary the number of

rollouts and measure the average reward at each rollout.
Init: initialization; IRL: inverse reinforcement learning; QL, Q-learning; SWIRL, sequential windowed inverse reinforcement learning.

Fig. 5. Parallel parking: for a fixed number of demonstrations (five), we vary the number of rollouts and measure the average reward

at each rollout. Acrobot: for a fixed number of demonstrations (15), we vary the number of rollouts and measure the average reward at

each rollout.
IRL, inverse reinforcement learning; SWIRL, sequential windowed inverse reinforcement learning.

Krishnan et al. 11

approach is allowed 500 rollouts. We report the results in

Figure 7.

The success rate of the policy learned with Q-learning is

more or less constant between the two domains. This is

because Q-learning does not use any information from the

original domain. The SVM behavioral cloning policy

undergoes a drastic change. On the original domain, it

achieves a 95% success rate (with 100 demonstrations);

however, on the perturbed domain, it is never successful.

This is because the SVM learned a policy that causes it to

crash into one of the obstacles in the perturbed

environment.

The inverse reinforcement learning techniques are more

robust during the transfer. This is because the rewards

learned are quadratic functions of the state and do not

encode anything specific about the dynamics. Similarly, in

SWIRL, the rewards and transition regions are invariant to

the dynamics in this transfer problem. The model-free ver-

sion of SWIRL reports a larger drop of 16%. This is

because the model-free version is not a true inverse reinfor-

cement learning algorithm and may encode some aspects

of the dynamics in the learned reward function.

Coincidentally, this experiment also shows us how to

construct a failure mode for SWIRL. If the perturbation in

the task is such that it ‘‘invalidates’’ a transition region, e.g.,

a new obstacle, then SWIRL may not be able to learn to

complete the task. However, the transition regions give us a

formalism for detecting such problems during learning, as

we can keep track of which regions are possible to reach.

For the acrobot task, as in the parallel parking scenario,

we evaluate how the different approaches handle transfer if

the dynamics change between demonstration and execution.

With N = 250 demonstrations, we learn the rewards, poli-

cies, and segments on the standard pendulum; then during

learning we vary the size of the second link in the pendu-

lum. We plot the success rate (after a fixed 3000 rollouts)

as a function of the increasing link size in Figure 8.

As the link size increases, even the baseline Q-learning

becomes less successful. This is because the system

becomes more unstable and it is harder to learn a policy.

The behavioral cloning SVM policy immediately fails as

the link size is increased. Inverse reinforcement learning is

more robust but does not offer much of an advantage in

this problem. SWIRL is robust until the change in the link

size becomes large. This is because, for the larger link size,

SWIRL might require different segments (or one of the

learned segments is unreachable).

9.7. Sensitivity

Next, we evaluated the sensitivity of SWIRL to different

initial demonstration sets (Figure 9). We sampled random

initial demonstration sets and re-ran the algorithm on each

of the two domains 100 times. Figure 9 is a plot of the

Fig. 6. We compare different transition indicator heuristics with SWIRL. Parallel parking: for a fixed number of demonstrations

(five), we vary the number of rollouts and measure the average reward at each rollout. Acrobot: for a fixed number of demonstrations

(15), we vary the number of rollouts and measure the average reward at each rollout.
GMM: Gaussian mixture model; Lin. Dyn.: linear dynamics; Vel.: velocity.

Fig. 7. For 500 rollouts and 100 demonstrations, we measure the

robustness of the approaches to changes in the execution

dynamics. While the SVM is 95% successful on the original

domain, its success does not transfer to the perturbed setting.

SWIRL learns rewards and segments that transfer to the new

dynamics since they are state-space goals.
IRL: maximum entropy inverse reinforcement learning with estimated

dynamics; QL: Q-learning; SVM: a baseline of behavioral cloning with a

support vector machine policy representation; SWIRL: the model-free

version of sequential windowed inverse reinforcement learning.

12 The International Journal of Robotics Research 00(0)

mean reward as a function of the number of rollouts and

two standard deviations over all of the trials. We find that

SWIRL is not very sensitive to the particular initial demon-

stration dataset. In fact, the two standard deviation error

bar is smaller than the improvement in convergence in pre-

vious experiments.

9.8. Segmentation and partial observation

Next, we made the parallel parking domain more difficult,

to illustrate the connection between segmentation and mem-

ory in reinforcement learning (Figure 10). We hid the velo-

city state from the robot, so the car only sees (x, y, u). As

before, if the car collides with one of the obstacles or does

not park in 200 time-steps, the episode ends. We call this

domain ‘‘parallel parking with partial observation’’.

This form of partial observation creates an interesting

challenge. There is no longer a stationary policy that can

achieve the reward. During the reversing phase of parallel

parking, the car does not know that it is currently reversing.

So there is ambiguity in that state; whether to pull up or

reverse. We will see that segmentation can help disambigu-

ate the action in this state.

As before, we generated five demonstrations using an

RRT* motion planner (assuming deterministic dynamics)

and applied each of the approaches. The techniques that

model this problem using a single Markov decision process

all fail to converge. The Q-learning approach achieves

some nonzero rewards by chance. The learned segments in

SWIRL help disambiguate dependence on history, since

the segment indicator tells the car which stage of the task

is currently active (pulling up or reversing) After 250,000

time-steps, the policy learned with model-based SWIRL

has a 95% success rate in comparison with a \10% suc-

cess rate for the baseline reinforcement learning, 0% for

MaxEnt-IRL, and 0% for the SVM.

10. Physical experiments with the da Vinci

surgical robot

In the next set of experiments, we evaluate SWIRL for two

tasks using the da Vinci surgical robot. The da Vinci

research kit is a surgical robot originally designed for tele-

operation, and we consider autonomous execution of surgi-

cal subtasks. Based on a chessboard calibration, we found

that the robot has a kinematic root mean square error of 3.5

mm and thus requires feedback from vision for accurate

manipulation. In our robotic setup, there is an overhead

endoscopic stereo camera that can be used to find visual

features for learning’ it is located 650 mm above the work-

space. This camera is registered to the workspace with a

calibration root mean square error of 2.2 mm.

10.1. Deformable sheet tensioning

In the first experiment, we consider the task of deformable

sheet tensioning. The experimental setup is pictured in

Figure 11. A sheet of surgical gauze is fixed at the two far

Fig. 8. For 3000 rollouts and 250 demonstrations, we measure

the transfer as a function of link size. The SVM policy fails as

soon the link size is changed. SWIRL is robust until the change

becomes very large.
IRL: maximum entropy inverse reinforcement learning using estimated

dynamics learned from the demonstrations; QL: Q-learning; SVM: a

baseline of behavioral cloning with a kernel support vector machine

policy representation; SWIRL: sequential windowed inverse

reinforcement learning.

Fig. 9. Sensitivity of SWIRL. Parallel parking: we generate a random set of five demonstrations, vary the number of rollouts, and

measure the average reward at each rollout. We plot the mean and standard deviation over 100 trials. Acrobot: we generate a random

set of 15 demonstration, vary the number of rollouts, and measure the average reward at each rollout. We plot the mean and two

standard deviations over 100 trials.

Krishnan et al. 13

corners using a pair of clips. The unclipped part of the

gauze is allowed to rest on soft silicone padding. The

robot’s task is to reach for the unclipped part, grasp it, lift

the gauze, and tension the sheet to be as flat as possible.

An open-loop policy typically fails in this task because it

requires some feedback of whether the gauze is properly

grasped, how the gauze has deformed after grasping, and

visual feedback of whether the gauze is flat. The task is

sequential, as some grasps pick up more or less of the

material and the flattening procedure must be modified

accordingly.

The state space is the six-degrees-of-freedom end-

effector position of the robot, the current load on the wrist

of the robot, and a visual feature measuring the flatness of

the gauze. This latter is achieved using a set of fiducial

markers on the gauze, which are segmented by color using

a stereo camera. Then we correspond the segmented con-

tours and estimate a z position for each marker (relative to

the horizontal plane). The variance in the z position is a

proxy for flatness; we include this as a feature for learning

(we call this the disparity). The action space is discretized

into an eight-dimensional vector (6x, 6y, 6z, open or

close gripper) where the robot moves in 2 mm increments.

We provided 15 demonstrations through a keyboard-

based tele-operation interface. The average length of the

demonstrations was 48.4 actions (although we sampled

observations at a higher frequency, about 10 observations

for every action). From these 15 demonstrations, SWIRL

identifies four segments. Figure 11 illustrates the segmenta-

tion of a representative demonstration with important states

plotted over time. One of the segments corresponds to mov-

ing to the correct grasping position, one to making the

grasp, one to lifting the gauze up again, and one to

straightening the gauze. An interesting aspect of this task is

that the segmentation requires a number of features. Figure

11 plots three signals (current load, disparity, and z posi-

tion); segmenting any single signal might mean that an

important feature is missed. Then, we tried to learn a policy

from the rewards constructed by SWIRL. In this experi-

ment, we initialized the policy learning phase of SWIRL

using the behavioral cloning policy. We define a Q-network

using a single-layer Multi-Layer Perceptron with 32 hidden

units and sigmoid activation. For each of the segments, we

apply behavioral cloning locally, with the same architecture

as the Q-network (with an additional softmax over the out-

put layer) to get an initial policy. We rollout 100 trials with

a greedy e= 0:1ð Þ version of these segmented policies.

The learning results of this experiment are summarized

in Table 1 for different baselines. The value of the policy is

a measure of the average disparity over the gauze, accumu-

lated over the task (if the gauze is flatter for longer, the

value is greater). As a baseline, we applied reinforcement

learning for 100 rollouts with no other information. Using

reinforcement learning did not result in successful grasping

of the gauze even once. Next, we applied behavioral clon-

ing directly. Using behavioral cloning, the gauze could be

reached but not successfully grasped. Then we applied the

segmentation from SWIRL and applied behavioral cloning

directly to each local segment (without further refinement).

Using this, the full task could be completed with a cumula-

tive disparity score of �3516. Finally, we applied all of

SWIRL and obtained the largest disparity score �3110ð Þ.
For comparison, we applied SWIRL without the behavioral

cloning initialization and found that success was only pos-

sible in the first two steps. This indicates that initialization

is crucial in real tasks.

10.2. Surgical line cutting

In the next experiment, we evaluate generalization to differ-

ent task instances. We apply SWIRL to learn to cut along a

marked line in gauze, similar to the experiments of Murali

et al. (2015). This is a multi-step problem, where the robot

starts from a random initial state, has to move to a position

that allows it to start the cut, and then cuts along the marked

line. We provide the robot with five kinesthetic demonstra-

tions by positioning the end effector and then following var-

ious marked straight lines. The state space of the robot

included the end-effector position (x, y) as well as a visual

feature indicating its pixel distance from the marked line

pix. This visual feature is constructed using OpenCV

thresholding for the black line. Since the gauze is planar,

the robot’s actions are unit steps in the 6x and 6y axes.

Figure 12 illustrates the training and test scenarios.

SWIRL identifies two segments, corresponding to the

positioning step and the termination. The learned reward

function for the position step minimizes the x, y, pix dis-

tance to the starting point; for the cutting step, the reward

function is more heavily weighted to minimize the pix dis-

tance. We defined task success as positioning within 1 cm

Fig. 10. We hid the velocity state from the robot, so the robot

only sees (x, y, u). For a fixed number of demonstrations (five),

we vary the number of rollouts and measure the average reward

at each rollout. SWIRL converges while the other approaches fail

to reach a reliable success rate.
IRL: maximum entropy inverse reinforcement learning using estimated

dynamics; QL: Q-learning; SVM: a baseline of behavioral cloning with a

support vector machine policy representation; SWIRL: sequential

windowed inverse reinforcement learning.

14 The International Journal of Robotics Research 00(0)

of the starting position of the line and, during the following

stage, missing the line by no more than 1 cm (estimated

from the pixel distance). We evaluated the model-free ver-

sion of SWIRL, Q-learning, and behavioral cloning with

an SVM. SWIRL was the only technique able to perform

the combined task.

We evaluated the learned tracking policy to cut gauze.

We ran trials on different sequences of curves and straight

lines. Out of the 15 trials, 11 were successful. Two failed,

owing to SWIRL errors (tracking or position was

imprecise) and two failed owing to cutting errors (gauze

deformed, causing the task to fail). One of the failures was

on the 4.5 cm curvature line and three were on the 3.5 cm

curvature line.

Next, we characterized the repeatability of the learned

policy. We applied SWIRL to lines of various curvatures,

spanning from straight lines to a curvature radius of 1.5

cm. Table 2 summarizes the results for lines of various cur-

vatures. While the SVM approach did not work on the

combined task, we evaluated its accuracy for each

Fig. 11. Representative demonstration of deformable sheet tensioning task with relevant features plotted over time. SWIRL identifies

four segments, which correspond to reaching, grasping, lifting, and tensioning. The wrist current, variance disparity (measure of

smoothness of the sheet), and the tool tip height are plotted in relation to the segmentation learned by SWIRL.

Table 1. Results from the deformable sheet tensioning experiment.

Technique No. of demonstrations No. of rollouts Disparity value

Pure exploration (reinforcement learning) – 100 �8210

Pure demonstration (behavioral cloning) 15 – �7591

Segmented demonstrations 15 – �3516

SWIRL 15 100

SWIRL: sequential windowed inverse reinforcement learning.

Krishnan et al. 15

individual step, to illustrate the benefits of SWIRL. In fol-

lowing straight lines, SVM was comparable to SWIRL in

terms of accuracy. However, as the lines become increas-

ingly curved, SWIRL generalizes more robustly than the

SVM. A single SVM has to learn both the positioning and

cutting policies. The combined policy is much more com-

plicated than the individual policies, e.g., go to a goal and

follow a line.

11. Discussion and future work

This paper explores a new algorithm, SWIRL, for segment-

ing tasks into shorter subtasks and assigning local reward

functions. Experimental results suggest that sequential seg-

mentation can indeed improve convergence in reinforce-

ment learning problems with delayed rewards. Results

suggest that SWIRL is robust to perturbations in initial

conditions, the environment, and sensing noise. There are

several limitations and avenues for future work that we

would like to address.

11.1. High-dimensional state spaces

As is, SWIRL will have difficulty scaling to problems with

high-dimensional state spaces, such as images. Most inverse

reinforcement learning algorithms require some estimate of

the dynamic model, which is difficult in general. We believe

that some combination of pre-trained features and the model-

free reward learning approach proposed in this paper will be

a first step toward SWIRL in image space.

11.2. Avoiding reinforcement learning

Another intriguing direction is whether we can avoid the

last phase of reinforcement learning. It might be possible to

Fig. 12. We collected demonstrations on the da Vinci surgical robot kinesthetically. The task was to cut a marked line on gauze. We

demonstrated the location of the line without actually cutting it. The goal is to infer that the demonstrator’s reward function has two

steps: position at a start position before the line, and then following the line. We applied this same reward to curved lines that started

in different positions.
DVRK: da Vinci research kit.

Table 2. With five kinesthetic demonstrations of following marked straight lines on gauze, we applied SWIRL to learn to follow

lines of various curvatures. After 25 episodes of exploration, we evaluated the policies on ability to position in the correct cutting

location and track the line. We compare with the SVM for each individual segment. The SVM is comparably accurate on the straight

line (training set) but does not generalize well to the curved lines.

Curvature radius, cm SVM position error, cm SVM tracking error, cm SWIRL position error, cm SWIRL tracking error, cm

Straight 0.46 0.23 0.42 0.21
4.0 0.43 0.59 0.45 0.33
3.5 0.51 1.21 0.56 0.38
3.0 0.86 3.03 0.66 0.57
2.5 1.43 – 0.74 0.87
2.0 – – 0.87 1.45
1.5 – – 1.12 2.44

SVM: support vector machine; SWIRL: sequential windowed inverse reinforcement learning.

16 The International Journal of Robotics Research 00(0)

design a policy learning framework that implicitly solves an

inverse reinforcement learning problem. This would open a

number of opportunities for incorporating segmentation,

inverse reinforcement learning, and policy learning as one

probabilistic model. We will also explore how the Q-learn-

ing step could be replaced with guided policy search, policy

gradients, and optimal control.

11.3. More complex task structures

Another avenue for future work is the modeling of complex

tasks as hierarchies of Markov decision processes, namely,

tasks composed of a number of Markov decision processes

that switch upon certain states and where the switching

dynamics can be modeled as another Markov decision pro-

cess. This is related to the options framework in hierarchi-

cal reinforcement learning; we will explore the connections

between SWIRL and more complex hierarchies of

behaviors.

Acknowledgments

This research was performed at the AUTOLAB at the University

of California, Berkeley in affiliation with the Algorithms,

Machines, and People Laboratory at the University of California,

Berkeley, BAIR, and the ‘‘People and Robots’’ Initiative at the

Center for Information Technology Research in the Interest of

Society, in affiliation with the Center for Automation and

Learning for Medical Robotics (Cal-MR) at the University of

California, Berkeley. We thank our colleagues and the anonymous

reviewers at the Workshop on the Algorithmic Foundations of

Robotics who provided valuable feedback and suggestions, in par-

ticular, Pieter Abbeel, Anca Dragan, and Roy Fox.

Funding

This work was supported in part by the US National Science

Foundation (NRI Award IIS-1227536), the Scalable Collaborative

Human–Robot Learning (SCHooL) Project, the NSF National

Robotics Initiative (grant number 1734633), Google, the

Algorithms, Machines, and People Laboratory at the University of

California, Berkeley, the Knut & Alice Wallenberg Foundation, a

major equipment grant from Intuitive Surgical, and generous

donations from Andy Chou and Susan and Deepak Lim.

References

Abbeel P and Ng AY (2004) Apprenticeship learning via inverse

reinforcement learning. In: ICML ’04 proceedings of the

twenty-first international conference on machine learning,

Banff, Canada, 4–8 July 2004. New York, NY: ACM.

Agrawal P, Nair AV, Abbeel P, et al. (2016) Learning to poke by

poking: Experiential learning of intuitive physics. In: NIPS’16

proceedings of the 30th international conference on neural

information processing systems (eds. DD Lee, U von Luxburg,

R Garnett, et al.), Barcelona, Spain, 5–10 December 2016, pp.

5074–5082. Red Hook, NY: Curran.

Argall BD, Chernova S, Veloso M, et al. (2009) A survey of robot

learning from demonstration. Robotics and Autonomous Sys-

tems 57(5): 469–483.

Asfour T, Azad P, Gyarfas F, et al. (2008) Imitation learning of

dual-arm manipulation tasks in humanoid robots. International

Journal of Humanoid Robotics 5(2): 183–202.

Bacon PL and Precup D (2015) Learning with options: Just delib-

erate and relax. In: NIPS bounded optimality and rational

metareasoning workshop, Montreal, Canada, 12 November

2015.

Barto AG and Mahadevan S (2003) Recent advances in hierarchi-

cal reinforcement learning. Discrete Event Dynamic Systems

13(1–2): 41–77.

Bertsekas DP and Tsitsiklis JN (1995) Neuro-dynamic program-

ming: An overview. In: Proceedings of the 34th IEEE confer-

ence on decision and control, New Orleans, LA, USA, 13–15

December 1995, vol. 1, pp. 560–564. Piscataway, NJ: IEEE.

Botvinick MM (2008) Hierarchical models of behavior and pre-

frontal function. Trends in Cognitive Sciences 12(5): 201–208.

Botvinick MM, Niv Y and Barto AC (2009) Hierarchically orga-

nized behavior and its neural foundations: A reinforcement

learning perspective. Cognition 113(3): 262–280.

Brooks R (1986) A robust layered control system for a mobile

robot. IEEE Journal on Robotics and Automation 2(1): 14–23.

Calinon S (2014) Skills learning in robots by interaction with

users and environment. In: 11th international conference on

ubiquitous robots and ambient intelligence (URAI), Kuala

Lumpur, Malaysia, 12–15 November 2014, pp. 161–162. Pis-

cataway, NJ: IEEE.

Calinon S and Billard A (2004) Stochastic gesture production and

recognition model for a humanoid robot. In: 2004 IEEE/RSJ

international conference on intelligent robots and systems,

Sendai, Japan, 28 September–2 October 2004, pp. 2769–2774.

Piscataway, NJ: IEEE.

Dayan P and Hinton GE (1992) Feudal reinforcement learning.

In: NIPS’92 proceedings of the 5th international conference

on neural information processing systems, Denver, CO, USA,

30 November–3 December 1992, pp. 271–278. San Francisco,

CA: Morgan Kaufmann.

Dietterich TG (2000) Hierarchical reinforcement learning with the

MAXQ value function decomposition. Journal of Artificial

Intelligence Research 13: 227–303.

Finn C and Levine S (2017) Deep visual foresight for planning

robot motion. In: International conference on robotics and

automation (ICRA), Singapore, 29 May–3 June 2017, pp.

2786–2793. Piscataway, NJ: IEEE.

Finn C, Levine S and Abbeel P (2016) Guided cost learning:

Deep inverse optimal control via policy optimization. In:

ICML’16 proceedings of the 33rd international conference on

on machine learning (eds. MF Balcan and KQ Weinberger),

New York, NY, USA, 19–24 June 2016, pp. 49–58. Brookline,

MA: Microtome Publishing.

Hengst B (2002) Discovering hierarchy in reinforcement learning

with HEXQ. In: ICML ’02 proceedings of the nineteenth inter-

national conference on machine learning (eds. C Sammut and

AG Hoffmann), Sydney, Australia, 8–12 July 2002, vol. 2, pp.

243–250. San Francisco, CA: Morgan Kaufmann.

Huber M and Grupen RA (1997) A feedback control structure for

on-line learning tasks. Robotics and Autonomous Systems

22(3–4): 303–315.

Ijspeert A, Nakanishi J and Schaal S (2002) Learning attractor

landscapes for learning motor primitives. In: NIPS’02 proceed-

ings of the 15th international conference on neural information

processing systems (eds. S Becker, S Thrun and KObermayer),

Krishnan et al. 17

Vancouver, Canada, 9–14 December 2002, pp. 1523–1530.

Cambridge, MA: MIT Press.

Judah K, Fern AP, Tadepalli P, et al. (2014) Imitation learning with

demonstrations and shaping rewards. In: AAAI’14 proceedings

of the twenty-eighth AAAI conference on artificial intelligence,

Québec City, Canada, 27–31 July 2014, pp. 1890–1896. Palo

Alto, CA: AAAI Press.

Kaelbling LP (1993) Hierarchical learning in stochastic domains:

Preliminary results. In: ICML’93 proceedings of the tenth inter-

national conference on machine learning, Amherst, MA, USA,

27–29 July, 1993, pp. 167–173. San Francisco, CA: Morgan

Kaufmann.

Karaman S and Frazzoli E (2010) Incremental sampling-based

algorithms for optimal motion planning. In: Robotics: Science

and systems VI (eds. Y Matsuoka, H Durrant-Whyte and J

Neira), Zaragoza, Spain, 27–30 June 2010. Cambridge, MA:

MIT Press.

Kazanzides P, Chen Z, Deguet A, et al. (2014) An open-source

research kit for the da Vinci� surgical system. In: IEEE inter-

national conference on robotics and automation (ICRA), Hong

Kong, China, 31 May–7 June 2014, pp. 6434–6439. Piscat-

away, NJ: IEEE.

Kolter JZ, Abbeel P and Ng AY (2007) Hierarchical apprentice-

ship learning with application to quadruped locomotion. In:

NIPS’07 proceedings of the 20th international conference on

neural information processing systems, Vancouver, Canada, 3–

6 December 2006, pp. 769–776. Red Hook, NY: Curran.

Konidaris G and Barto AG (2007) Building portable options: Skill

transfer in reinforcement learning. In: IJCAI’07 proceedings of

the 20th international joint conference on artificial intelli-

gence, Hyderabad, India, 6–12 January 2007, pp. 895–900.

San Francisco, CA: Morgan Kaufmann.

Krishnan S, Garg A, Liaw R, et al. (2016) SWIRL: A sequential

windowed inverse reinforcement learning algorithm for robot

tasks with delayed rewards. In: Workshop on algorithmic foun-

dations of robotics (WAFR), Springer Tracts in Advanced

Robotics (STAR) Springer-Verlag Berlin Heidelberg San Fran-

cisco, CA, USA, 18–20 December 2016.

Krishnan S, Garg A, Patil S, et al. (2015) Transition state cluster-

ing: Unsupervised surgical trajectory segmentation for robot

learning. In: International symposium of robotics research,

Sestri Levante, Italy, 12–15 September 2015. Cham: Springer.

Kruger V, Herzog D, Baby S, et al. (2010) Learning actions from

observations. IEEE Robotics & Automation Magazine 17(2):

30–43.

Kulis B and Jordan MI (2012) Revisiting k-means: New algo-

rithms via Bayesian nonparametrics. In: 29th international

conference on machine learning, ICML 2012, Edinburgh, UK,

26 June–1 July 2012. Madison, WI: Omnipress.

Kulkarni TD, Narasimhan K, Saeedi A, et al. (2016) Hierarchical

deep reinforcement learning: Integrating temporal abstraction

and intrinsic motivation. In: NIPS’16 proceedings of the 30th

international conference on neural information processing sys-

tems, Barcelona, Spain, 5–10 December 2016, pp. 3675–3683.

Red Hook, NY: Curran.

Laskey M, Lee J, Hsieh W, et al. (2017) Iterative noise injection

for scalable imitation learning. 1st conference on robot learn-

ing (CoRL), (ed., Sergey Levine and Vincent Vanhoucke and

Ken Goldberg), Mountain View, CA, USA, 13–15 November

2017, pp.143–156. PMLR.

Levine S, Pastor P, Krizhevsky A, et al. (2016) Learning hand-eye

coordination for robotic grasping with large-scale data collec-

tion. In: Kulić D, Nakamura Y, Khatib O, et al. (eds.) 2016

International Symposium on Experimental Robotics. ISER

2016. Springer Proceedings in Advanced Robotics, vol 1.

Cham: Springer, pp. 173–184.

Lioutikov R, Neumann G, Maeda G, et al. (2015) Probabilistic

segmentation applied to an assembly task. In: IEEE-RAS 15th

international conference on humanoid robots (humanoids),

Seoul, South Korea, 3–5 November 2015, pp. 533–540. Pis-

cataway, NJ: IEEE.

Manschitz S, Kober J, Gienger M, et al. (2015) Learning move-

ment primitive attractor goals and sequential skills from kines-

thetic demonstrations. Robotics and Autonomous Systems 74A:

97–107.

Mika S, Schölkopf B, Smola AJ, et al. (1998) Kernel PCA and de-

noising in feature spaces. In: NIPS’98 proceedings of the 11th

international conference on neural information processing sys-

tems, Denver, CO, 1–3 December 1998, pp. 536–542. Cam-

bridge, MA: MIT Press.

Mnih V, Kavukcuoglu K, Silver D, et al. (2015) Human-level con-

trol through deep reinforcement learning. Nature 518(7540):

529–533.

Moeslund TB and Granum E (2001) A survey of computer vision-

based human motion capture. Computer Vision and Image

Understanding 81(3): 231–268.

Morasso P (1983) Three dimensional arm trajectories. Biological

Cybernetics 48(3): 187–194.

Murali A, Garg A, Krishnan S, et al. (2016) TSC-DL: Unsuper-

vised trajectory segmentation of multi-modal surgical demon-

strations with deep learning. In: IEEE international conference

on robotics and automation (ICRA), Stockholm, Sweden, 16–

21 May 2016, pp. 4150–4157. Piscataway, NJ: IEEE.

Murali A, Sen S, Kehoe B, et al. (2015) Learning by observation

for surgical subtasks: Multilateral cutting of 3D viscoelastic and

2D orthotropic tissue phantoms. In: IEEE international confer-

ence on robotics and automation, ICRA, Seattle, WA, USA,

26–30 May, 2015, pp. 1202–1209. Piscataway, NJ: IEEE.

Ng AYand Russell S (2000) Algorithms for inverse reinforcement

learning. In: ICML ’00 proceedings of the seventeenth interna-

tional conference on machine learning (ed. P Langley), Stan-

ford, CA, USA, 29 June–2 July 2000, pp. 663–670. San

Francisco, CA: Morgan Kaufmann.

Ng AY, Harada D and Russell SJ (1999) Policy invariance under

reward transformations: Theory and application to reward

shaping. In: ICML ’99 proceedings of the sixteenth interna-

tional conference on machine learning (eds. I Bratko and S

Dzeroski), Bled, Slovenia, 27–30 June 1999, pp. 278–287.

San Francisco, CA: Morgan Kaufmann.

Niekum S, Osentoski S, Konidaris G, et al. (2012) Learning and

generalization of complex tasks from unstructured demonstra-

tions. In: 2012 IEEE/RSJ international conference on intelli-

gent robots and systems, IROS, Vilamoura, Portugal, 7–12

October 2012, pp. 5239–5246. Piscataway, NJ: IEEE.

Osa T, Pajarinen J, Neumann G, et al. (2018) An algorithmic per-

spective on imitation learning. Foundations and Trends in

Robotics 7(1–2): 1–179.

Parr R and Russell SJ (1997) Reinforcement learning with hierar-

chies of machines. In: NIPS’97 proceedings of the 10th inter-

national conference on neural information processing systems

18 The International Journal of Robotics Research 00(0)

(eds. MI Jordan, MJ Kearns and SA Solla), Denver, CO, 1–6

December 1997, pp. 1043–1049. Cambridge, MA: MIT Press.

Pastor P, Hoffmann H, Asfour T, et al. (2009) Learning and gener-

alization of motor skills by learning from demonstration. In:

International conference on robotics and automation (ICRA),

Kobe, Japan, 12–17 May 2009, pp. 763–768. Piscataway, NJ:

IEEE.

Pinto L and Gupta A (2016) Supersizing self-supervision: Learn-

ing to grasp from 50k tries and 700 robot hours. In: IEEE

international conference on robotics and automation (ICRA),

Stockholm, Sweden, 16–21 May 2016, pp. 3406–3413. Piscat-

away, NJ: IEEE.

Pinto L, Gandhi D, Han Y, et al. (2016) The curious robot:

Learning visual representations via physical interactions. In:

Leibe B, Matas J, Sebe N, et al. (eds.) Computer Vision—

ECCV 2016 (Lecture Notes in Computer Science, vol. 9906).

Cham: Springer, pp. 3–18.

Ranchod P, Rosman B and Konidaris G (2015) Nonparametric

Bayesian reward segmentation for skill discovery using inverse

reinforcement learning. In: IEEE/RSJ international conference

on intelligent robots and systems (IROS), Hamburg, Germany,

28 September–2 October 2015, p. 471. Piscataway, NJ: IEEE.

Solway A, Diuk C, Córdova N, et al. (2014) Optimal behavioral

hierarchy. PLoS Computational Biology 10(8): e1003779.

Stadie BC, Abbeel P and Sutskever I (2017) Third-person imita-

tion learning. arXiv arXiv:1703.01703.

Sternad D and Schaal S (1999) Segmentation of endpoint trajec-

tories does not imply segmented control. Experimental Brain

Research 124(1): 118–136.

Sutton RS and Barto AG (1998) Reinforcement Learning: An

Introduction, vol. 1. Cambridge, MA: MIT Press.

Sutton RS, Precup D and Singh SP (1999) Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinfor-

cement learning. Artificial Intelligence 112(1–2): 181–211.

Tanwani AK and Calinon S (2016) Learning robot manipulation

tasks with task-parameterized semitied hidden semi-Markov

model. IEEE Robotics and Automation Letters 1(1): 235–242.

Thrun S and Schwartz A (1993) Issues in using function approxi-

mation for reinforcement learning. In: Proceedings of the 1993

connectionist models summer school (eds. M Moser, P Smo-

lensky, D Touretzky, et al.), Boulder, CO, USA, 21 June–3 July

1993. Hillsdale, NJ: Lawrence Erlbaum.

Vakanski A, Mantegh I, Irish A, et al. (2012) Trajectory learning

for robot programming by demonstration using hidden Markov

model and dynamic time warping. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B: Cybernetics 42(4):

1039–1052.

Viviani P and Cenzato M (1985) Segmentation and coupling in

complex movements. Journal of Experimental Psychology:

Human Perception and Performance 11(6): 828.

Whiten A, Flynn E, Brown K, et al. (2006) Imitation of hierarchi-

cal action structure by young children. Developmental Science

9(6): 574–582.

Zacks JM, Kurby CA, Eisenberg ML, et al. (2011) Prediction

error associated with the perceptual segmentation of natura-

listic events. Journal of Cognitive Neuroscience 23(12):

4057–4066.

Ziebart B, Dey A and Bagnell JA (2012) Probabilistic pointing tar-

get prediction via inverse optimal control. In: IUI ’12 proceed-

ings of the 2012 ACM international conference on intelligent

user interfaces, Lisbon, Portugal, 14–17 February 2012, pp. 1–

10. New York, NY: ACM.

Ziebart BD, Maas AL, Bagnell JA, et al. (2008) Maximum

entropy inverse reinforcement learning. In: AAAI’08 proceed-

ings of the 23rd national conference on artificial intelligence

(ed. A Cohn), Chicago, IL, USA, 13–17 July 2008, vol. 3, pp.

1433–1438. Palo Alto, CA: AAAI Press.

Appendix A Parallel parking experiment

Here, we discuss some of the details of the parallel parking

experiment. The car implements a dynamic bicycle model

and, with probability 0.1, the car takes a random action. To

implement the supervisor, a model predictive control

approach was used. We applied an RRT* motion planner

that re-planned to the goal state. Figure 13 illustrates the

demonstrations and the segments learned by SWIRL.

Figure 14 illustrates the reward functions learned by

SWIRL in each stage of the task; the matrices are plotted

as a heat map. A larger value indicates that deviation in

that axis is penalized more. In the first stage of the task,

the cost function ensures that the robot is penalized for not

matching the velocity profile of the demonstrator. The cost

function is more even in the other stages.

There are also several relevant hyperparameters in this

experiment.

A.1. Q-learning hyperparameters

We apply Q-learning to learn a policy for this problem with

a radial basis function representation for the Q function

with hyperparameters k= 5,s= 0:1, respectively. The

Fig. 13. Left: the five demonstration trajectories for the parallel parking task. Right: the subgoals learned by SWIRL. There are two

intermediate goals corresponding to positioning the car and orienting the car correctly before reversing.
SWIRL: sequential windowed inverse reinforcement learning.

Krishnan et al. 19

radial basis function hyperparameters were tuned manually

to achieve the fastest convergence in the experimental task.

A.2. Behavioral cloning hyperparameters

We use an L1 hinge-loss SVM with L2 regularization

a= 5e� 3 to predict the action from the state. The hyper-

parameters were tuned manually using cross-validation by

holding out trajectories.

Appendix B Acrobot experiment

Next, we discuss the acrobot experimental details. The

acrobot implements a two-link pendulum with equal-sized

links. These links are torque limited so it takes a number of

swings to invert the pendulum. This system is also stochas-

tic where the dynamics have random Gaussian noise. To

implement the supervisor, a model predictive control

approach was used. We applied an RRT* motion planner

that re-planned to the goal state after discretizing the con-

trol inputs.

There are also several relevant hyperparameters in this

experiment.

B.1. Reinforcement learning (Q-learning)

The baseline approach is to model the entire problem as a

Markov decision process with the sparse delayed reward.

We apply Q-learning to learn a policy for this problem with

a radial basis function representation for the Q function

with number of bases k= 25 and bandwidth s= 0:25. The

radial basis function hyperparameters were tuned manually

to achieve the fastest convergence in the experimental task.

B.2. Behavioral cloning (kernel SVM)

We generated N demonstrations using the Q-learning base-

line (i.e., run to convergence and sample from the learned

policy). We use a radial basis function kernel SVM

s= 1e� 5 with L2 regularization a= 5e� 3 to predict

the action from the state. The hyperparameters were tuned

manually using cross-validation by holding out trajectories.

B.3. SWIRL featurization

We apply SWIRL with a DP-GMM-based segmentation

step with a kernel transformation s= 0:1 (as described in

Section 5.3).

Fig. 14. Reward matrices learned in each of the segments of the

parallel parking task.

20 The International Journal of Robotics Research 00(0)

