


This paper contributes:

1) A method for rapidly generating a synthetic dataset of

depth images and segmentation masks using domain

randomization for robust transfer from simulation to

reality.

2) The Warehouse Instance Segmentation Dataset for

Object Manipulation (WISDOM), a hybrid sim/real

dataset designed for training and evaluating category-

agnostic instance segmentation methods in the context

of robotic bin picking.

3) Synthetic Depth Mask R-CNN (SD Mask R-CNN), a

Mask R-CNN adaptation designed to perform deep

category-agnostic object instance segmentation on

depth images, trained on WISDOM-Sim.

4) Experiments evaluating the sim-to-real generalization

abilities of SD Mask R-CNN and performance bench-

marks comparing it against a set of baseline instance

segmentation methods.

In an experimental evaluation on WISDOM-Real’s high-

resolution dataset, SD Mask R-CNN achieves significantly

higher average precision and recall than baseline learning

methods fine-tuned on WISDOM-Real training images, and

also generalizes to a low-resolution sensor. We employ

SD Mask R-CNN as part of an instance-specific grasping

pipeline on an ABB YuMi bimanual industrial robot and find

that it can increase success rate by 20% over standard point

cloud segmentation techniques.

II. RELATED WORK

This work builds on prior research in region proposal

generation, neural architectures for image segmentation, and

use of synthetic data for learning models in computer vision

and robotics. The approach presented here is motivated and

informed by robotic grasping, manipulation, and bin-picking

tasks.

a) Box and Region Proposals: Early work in computer

vision focused on using bottom-up cues for generating box

and region proposals in images [3, 4, 18, 19, 20]. Such

techniques typically detect contours in images to obtain a

hierarchical segmentation. Regions from such a hierarchical

segmentation are combined together and used with low-level

objectness cues to produce a list of regions that cover the

objects present in the image. The focus of these techniques

is on getting high recall, and the soup of output region

proposals is used with a classifier to detect or segment objects

of interest [21].

More recently, given advances in learning image repre-

sentations, researchers have used feature learning techniques

(specifically CNN based models) to tackle this problem

of producing bounding box proposals [22, 23] and region

proposals [24, 25]. Unlike bottom-up segmentation methods,

these techniques use data-driven methods to learn high-

level semantic markers for proposing and classifying object

segments. Some of these learning-based region proposal

techniques [25] have built upon advances in models for

image segmentation and use fine-grained information from

early layers in CNNs [5, 26] to produce high quality regions.

While most work in computer vision has used RGB images

to study these problems, researchers have also studied similar

problems with depth data. Once again there are bottom-

up techniques [27, 28, 29, 30, 31, 32] that use low-level

geometry-based cues to come up with region proposals, as

well as more recent top-down learning-based techniques to

produce proposals [33] in the form of image segments or

3D bounding boxes that contain objects in the scene. Shao

et al. [16] combined color and depth modalities, featurizing

objects and clustering the features to produce object instance

segmentation masks on simulated RGB-D images.

A parallel stream of work has tackled the problem of class-

specific segmentation. Some of these works ignore object

instances and study semantic segmentation [5, 25, 34, 35],

while others try to distinguish between instances [6, 36].

Similar research has also been done in context of input from

depth sensors [32, 37, 38, 39, 40].

b) Synthetic Data for Training Models: Our research

is related to a number of recent efforts for rapidly ac-

quiring large training datasets containing image and ground

truth masks with limited or no human labeling. The most

natural way is to augment training with synthetic color

and depth images collected in simulation. This idea has

been explored extensively for training semantic segmentation

networks for autonomous driving [13, 15] and for estimating

human and object pose [41, 42]. Another approach is to

use self-supervision to increase training dataset size by

first hand-aligning 3D models to images with easy-to-use

interfaces [43] or algorithmically matching a set of 3D CAD

models to initial RGB-D images [9], and then projecting

each 3D model into a larger set of images from camera

viewpoints with known 6-DOF poses. In comparison, we

generate synthetic training datasets for category-agnostic

object segmentation in a robot bin picking domain.

c) Robotics Applications: Segmentation methods have

been applied extensively to grasping target objects, most

notably in the Amazon Robotics Challenge (ARC). Many

classical grasping pipelines consisted of an alignment phase,

in which 3D CAD models or scans are matched to RGB-D

point clouds, and an indexing phase, in which precomputed

grasps are executed given the estimated object pose [44]. In

the 2015 ARC, the winning team followed a similar strat-

egy, using a histogram backprojection method to segment

objects from shelves and point cloud heuristics for grasp

planning [45]. In 2016, many teams used deep learning to

segment objects for the alignment phase, training semantic

segmentation networks with separate classes for each object

instance on hand-labeled [46] or self-supervised datasets [9].

Team ACRV, the winners of the 2017 ARC, fine-tuned

RefineNet to segment and classify 40 unique known objects

in a bin, with a system to quickly learn new items with a

semi-automated procedure [10, 47]. In contrast, our method

uses deep learning for category-agnostic segmentation, which

can can be used to segment a wide variety of objects not seen

in training.



III. PROBLEM STATEMENT

We consider the problem of depth-based category-agnostic

instance segmentation, or finding subsets of pixels corre-

sponding to unique unknown objects in a single depth image.

To formalize category-agnostic instance segmentation, we

use the following definitions:

1) States: Let x = {O1, . . . ,Om,B1, . . . ,Bn, C} be a

ground truth state which contains (A) a set of m

foreground objects in the environment, (B) a set of n

background objects (e.g. bins, tables), and (C) a depth

camera. Here, each object state Oi or Bj is defined

by the object’s geometry and 6-DOF pose, while the

camera state C is defined by its intrinsics matrix K

and its 6-DOF pose (R, t) ∈ SE(3).
2) Observations: Let y ∈ R

H×W
+ be a depth image

observation of the state x generated from C with height

H and width W . Let the pixel space U = [0, H−1]×
[0,W−1] be the set of all real-valued pixel coordinates

in the depth image.

3) Object Mask: Let Mi ⊆ U be a mask for foreground

object Oi, or the set of pixels in y that were generated

by the surface of Oi.

Every state x corresponds to a set of visible foreground

object masks : M = {(Mi : Mi 6= ∅) ∀i ∈ {1, . . . ,m}}.

The goal of category-agnostic object instance segmentation

is to find M given a depth image y.

IV. SYNTHETIC DATASET GENERATION METHOD

To efficiently learn category-agnostic instance segmen-

tation, we generate a synthetic training dataset of N

paired depth images and ground truth object masks: D =
{(yk,Mk)}

N

k=1
. The proposed dataset generation method

samples training examples using two distributions: a task-

specific state distribution, p(x), that randomizes over a

diverse set of object geometries, object poses, and camera

parameters; and an observation distribution, p(y|x), that

models sensor operation and noise.

To sample a single datapoint, we first sample a state xk ∼
p(x) using a dataset of 3D CAD models, dynamic simulation,

and domain randomization [17] over the object states, camera

intrinsic parameters, and camera pose for robust transfer

from simulation to reality. Next, we sample a synthetic depth

image yk ∼ p(yk | xk) using rendering. Finally, we compute

the visible object masks Mj determining the set of pixels

in the depth image with a corresponding 3D point on the

surface of object Oj . Specifically, we render a depth image

of each object in isolation and add a pixel to the mask if it

is within a threshold from the corresponding full-state depth

image.

V. WISDOM DATASET

To test the effectiveness of this method, we generate

the Warehouse Instance Segmentation Dataset for Object

Manipulation (WISDOM), a hybrid sim/real dataset designed

to train and test category-agnostic instance segmentation

networks in a robotic bin-picking environment. WISDOM in-

cludes WISDOM-Sim, a large synthetic dataset of depth im-

ages generated using the simulation pipeline, and WISDOM-

Real, a set of hand-labeled real RGB-D images for evaluating

performance in the real world.

A. WISDOM-Sim

For WISDOM-Sim, we consider an environment for

robotic bin picking consisting of a table and a bin full of

objects imaged with an overhead depth camera. In general,

p(x) can be represented as a product over distributions on:

1) Foreground and background object counts (m and n):

We draw m from a Poisson distribution with mean

λ = 7.5, truncated to a maximum of 10. We set n = 2
since we use two fixed background objects: a table and

a bin.

2) Background object states ({Bj}
n
1 ): We set the geome-

try and pose of the background objects to fixed values.

3) Foreground object states ({Oj}
m
1 ): We sample the

m foreground objects uniformly from a dataset of

1,664 3D triangular mesh models from Thingiverse,

including objects augmented with artificial cardboard

backing to mimic common packages. Object poses are

sampled by selecting a random pose above the bin from

a uniform distribution, dropping each object into the

bin one-by-one in pybullet dynamic simulation, and

simulating until all objects come to rest [48].

4) Camera state (C): We sample camera poses uniformly

at random from a bounded set of spherical coordi-

nates above the bin. We sample intrinsic parameters

uniformly at random from intervals centered on the

parameters of a Photoneo PhoXi S industrial depth

camera.

Because the high-resolution depth sensor we use has very lit-

tle white noise, we fix p(y|x) to simply perform perspective

depth rendering using an OpenGL z-buffer.

We used these distributions to sample a dataset of

50,000 synthetic depth images containing 320,000 individual

ground-truth segmasks. Generating 50k datapoints took ap-

proximately 26 hours on a desktop with an Intel i7-6700 3.4

GHz CPU. The synthetic images are broken into training

and validation sets with an 80/20 split, where the split is

both on images as well as objects (i.e. no objects appear in

both the training and validation sets). The training set has

40,000 images of 1,280 unique objects, while the validation

set contains 10,000 images of 320 unique objects.

B. WISDOM-Real

To evaluate the real-world performance of category-

agnostic instance segmentation methods and their ability to

generalize to novel objects across different types of depth

sensors, we collected a hand-labeled dataset of real RGB-D

images. WISDOM-Real contains a total of 800 hand-labeled

RGB-D images of cluttered bins, with 400 from both a high-

resolution Photoneo PhoXi industrial sensor (1032x772 with

0.05 mm depth precision) and a low-resolution Primesense

Carmine (640x480 with 1 mm depth precision). Missing





High-Res Low-Res

Method AP AR AP AR

Euclidean Clustering 0.324 0.467 0.183 0.317

Region Growing 0.349 0.574 0.180 0.346

FT Mask R-CNN (Depth) 0.370 0.616 0.331 0.546

FT Mask R-CNN (Color) 0.384 0.608 0.385 0.613

SD Mask R-CNN 0.516 0.647 0.356 0.465

TABLE I: Average precision and average recall (as defined by COCO
benchmarks) on each dataset for each of the methods considered. SD
Mask R-CNN is the highest performing method, even against Mask R-
CNN pretrained on the COCO dataset and fine-tuned on real color and
depth images from WISDOM-Real.

which uses a ResNet 101 and FPN backbone [50]. This im-

plementation closely follows the original Mask R-CNN paper

in [6]. We made the modifications listed above and trained

the network on WISDOM-Sim with an 80-20 train-val split

for 60 epochs with a learning rate of 0.01, momentum of 0.9,

and weight decay of 0.0001 on a Titan X GPU. On our setup,

training took approximately 24 hours and a single forward

pass took 105 ms (average of 600 trials). We call the final

trained network a Synthetic Depth Mask R-CNN (SD Mask

R-CNN).

VII. EXPERIMENTS

We compare performance of SD-Mask-R-CNN with sev-

eral baseline methods for category-agnostic instance segmen-

tation on RGB-D images.

A. Baselines

We use four baselines: two Point Cloud Library methods

and two color-based Mask R-CNNs pre-trained on COCO

and fine-tuned on WISDOM-Real images. For fine-tuning,

the image shape and dataset-specific parameters such as

mean pixel were set based on the dataset being trained on

(e.g., either color or depth images).

1) Point Cloud Library Baselines: The Point Cloud Li-

brary, an open-source library for processing 3D data, pro-

vides several methods for segmenting point clouds [28]. We

used two of these methods: Euclidean clustering and region-

growing segmentation. Euclidean clustering adds points to

clusters based on the Euclidean distance between neighbor-

ing points. If a point is within a sphere of a set radius

from its neighbor, then it is added to the cluster [27].

Region-growing segmentation operates in a similar way to

Euclidean clustering, but instead of considering Euclidean

distance between neighboring points, it discriminates clusters

based on the difference of angle between normal vectors and

curvature [29, 30]. We tuned the parameters of each method

on the first ten images of the high-res and low-res WISDOM-

Real training sets.

2) Fine-Tuned Mask R-CNN Baselines: As deep learn-

ing baselines, we used two variants of Mask R-CNN, one

trained on color images and one trained on depth images

triplicated across the color channels. Both these variants

were pre-trained on RGB images from the COCO dataset

and then fine-tuned using the 100 color or depth images

from the WISDOM-Real high-res training set. All images

were rescaled and padded to be 512 by 512 pixels, and

the depth images were treated as grayscale images. Both

implementations were fine-tuned on the 100 images for 10

epochs with a learning rate of 0.001.

B. Benchmarks

We compare the category-agnostic instance segmentation

performance of all methods using the widely-used COCO

instance segmentation benchmarks [7]. Of the metrics in the

benchmark, we report average precision (AP) over ten IoU

thresholds over a range from 0.50 to 0.95 with a step size of

0.05, and we report average recall (AR) given a maximum

of 100 detections. Averaging over several IoU thresholds

rewards better localization from detectors, so we report this

score as our main benchmark as opposed to simply the

average precision for an IoU threshold of 0.50. All scores

are for the segmentation mask IoU calculation.

C. Performance

We ran each of the methods on three test datasets: 2000

images from the WISDOM-Sim validation set and 300 real

test images each from the Primesense and Phoxi cameras.

All real test images were rescaled and padded to be 512

by 512 pixels. The results are shown in Table I, and full

precision-recall curves for each dataset can be found in the

supplemental file. The SD Mask R-CNN network shows

significant improvement over both the PCL baselines and

the fine-tuned Mask R-CNN baselines, and is also robust to

sensor noise.

An example of each method’s performance on each of

the real datasets can be seen in Figure 5. The visualizations

suggest that the PCL baselines tend to undersegment the

scene and cluster nearby objects as a single object. The fine-

tuned Mask R-CNN implementations separate objects more

effectively, but the color implementation may incorrectly

predict multiple object segments on different colored pieces

of the same object. In contrast, the SD Mask R-CNN network

can group parts of objects that may be slightly discontinuous

in depth space, and is agnostic to color. It is able to segment

the scenes with high accuracy despite significant occlusion

and variation in shape. Table I also shows SD Mask R-

CNN can perform similarly on low-res Primesense images,

suggesting that the network can generalize to other camera

intrinsics and poses.

D. Robotics Application: Instance-Specific Grasping

To demonstrate the usefulness of SD Mask R-CNN in a

robotics task, we ran experiments utilizing category-agnostic

instance segmentation as the first phase of an instance-

specific grasping pipeline. In this task, the goal is to identify

and grasp a particular target object from a bin filled with

other distractor objects.

We randomly selected a subset of ten objects from

WISDOM-Real’s test set and trained an instance classifi-

cation network on ten RGB images of each object from a
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