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Abstract

The conformational dynamics of proteins is rarely used in methodologies used to
predict the impact of genetic mutations due to the paucity of three-dimensional protein
structures as compared to the vast number of available sequences. Until now a three-
dimensional (3D) structure has been required to predict the conformational dynamics of
a protein. We introduce an approach that estimates the conformational dynamics of a
protein, without relying on structural information. This de novo approach utilizes
coevolving residues identified from a multiple sequence alignment (MSA) using Potts
models. These coevolving residues are used as contacts in a Gaussian network model
(GNM) to obtain protein dynamics. B-factors calculated using sequence-based GNM
(Seq-GNM) are in agreement with crystallographic B-factors as well as theoretical B-
factors from the original GNM that utilizes the 3D structure. Moreover, we demonstrate
the ability of the calculated B-factors from the Seq-GNM approach to discriminate
genomic variants according to their phenotypes for a wide range of proteins. These
results suggest that protein dynamics can be approximated based on sequence
information alone, making it possible to assess the phenotypes of nSNVs in cases where
a 3D structure is unknown. We hope this work will promote the use of dynamics
information in genetic disease prediction at scale by circumventing the need for 3D

structures.
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Author Summary

Proteins are dynamic machines that undergo atomic fluctuations, side chain
rotations, and collective domain movements that are required for biological function.
There is, therefore, a need for quantitative metrics that capture the dynamic fluctuations
per position to understand the critical role of protein dynamics in shaping biological
functions. A limiting factor in incorporating structural dynamics information in the
classification of non-synonymous single nucleotide variants (nSNVs) is the limited
number of known 3D structures compared to the vast number of available sequences.
We have developed a new sequence-based GNM method, termed Seqg-GNM, which uses
co-evolving amino acid positions based on the multiple sequence alignment of a given
query sequence to estimate the thermal motions of C-alpha atoms. In this paper, we have
demonstrated that the predicted thermal motions using Seq-GNM are in reasonable
agreement with experimental B-factors as well as B-factors computed using 3D crystal
structures. We also provide evidence that B-factors predicted by Seq-GNM are capable

of distinguishing between disease-associated and neutral nSNVs.

Introduction

A 3D structure is still required to computationally obtain protein dynamics,
drastically limiting the extent to which conformational dynamics can be incorporated into
genomic analysis. The reason for this is that there are exponentially more sequences
than experimental structures. Currently, UniProtKB contains more than 100 million
sequence entries, whereas the PDB reports the number of known 3D structures to be

3
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around 140,000 [1]. Furthermore, the number of known sequences is increasing at an
exponential rate, compared to the much slower addition of new experimental PDB
structures. This is due to the advent of high-throughput genomic sequencing, which is
providing an unprecedented amount of data for genomic analysis. The vast amount of
sequence data has driven the rapid classification of novel genetic variations through
genome-wide association studies [2,3]. A large catalogue of non-synonymous single
nucleotide variants (hNSNVs) occurs in coding regions that can severely impact protein
function, potentially leading to disease [4]. There are many in silico methods developed
using evolutionary methodologies such as positional conservation and phylogeny and
those that combine evolutionary approaches with biochemical and structural properties
to diagnose neutral and disease associated nSNVs [5—-11]. However, the accuracy of the
majority of these in silico prediction methods is significantly lower for predicting the impact
of nSNVs at highly evolving sites [12—16]. Protein dynamics can also be used to elucidate
the functional impact of nSNVs and mechanisms of disease [5,17]. Our previous studies
have evinced that a site-specific conformational dynamics analysis is capable of
diagnosing nSNVs irrespective of evolutionary conservation [5,18,19] and recently has
been incorporated as an additional feature for in silico prediction tools [20]. However, only
a small fraction of the catalogued nSNVs in the coding regions (i.e. missense variants)
have 3D experimental structures, [20], impeding broad application of protein dynamics in
in silico tool predictions.

Coevolution, on the other hand, has become a valuable tool for its ability to predict
structural contacts of 3D structures, particularly using global information through Potts

4
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models [21-27]. Coevolving residues are inferred from a multiple sequence alignment
(MSA) of a given protein family, whereby if two given amino acids exhibit concordant
patterns of evolution throughout the MSA then they are assumed to be in close spatial
proximity in the folded 3D structure. This evolutionary principle can be leveraged so that
sequence information can be used to describe protein topology, making de novo structure
prediction possible [24,27]. It has been reported that only one correct contact for every
12 residues in a protein is necessary for accurate topology-level modeling [28]. In addition
to structure prediction, coevolution analysis has also been used to identify critical
interactions between protein complexes [22] important functional sites [24] and allosteric
response [29]. The use of coevolution for structure prediction is largely possible for two
reasons. First, the amount of sequence data for different protein families is sufficient to
be leveraged by this technique to make predictions. Second, the methods for inferring
coevolving residues from an MSA are becoming increasingly robust [30—34].

Inferring evolutionary couplings from an MSA are based on two primary
approaches categorized as local [35-37] and global approaches [37-39]. The global
approaches detangle direct evolutionary couplings from indirect couplings which enables
them to capture spatial contacts [40]. Regardless of the method, the accuracy of detecting
coevolving residues that correspond to structural contacts is fundamentally limited by the
number of sequence homologs in the MSA. While most of the current methods use only
the sequence homologs of the protein family belonging to target sequence, integrating
multiple orthology protein families (i.e. families that share similar phylogeny and retain
similar functions) was used to increase the number of homologs to produce a more

5
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accurate statistical inference [41]. RaptorX, leverages this joint family methodology; it
uses an ultra-deep neural network combining coevolution information with sequence
conservation information to infer 3D contacts and has produced higher accuracy than
other methods [42—44].

In this paper, we will demonstrate the efficacy of our novel sequence-based GNM
approach, called Seq-GNM, to estimate the dynamics profile of a protein with no a priori
knowledge of its 3D structure. This de novo approach based on a Gaussian network
model (GNM) enables the prediction of the magnitude of mean-square fluctuations of
residues, which are proportional to the B-factors determined by X-ray crystallography
experiments. However, instead of using a cutoff distance to determine 3D contacts as
does the original structure-based GNM, we use coevolving residues (evolutionary
couplings) in our model. We show that the theoretical predictions from our Seq-GNM are
in reasonable agreement with experimental crystallographic B-factors as well as the
values obtained from the structure GNM models that use spatial contacts. We also extend
this analysis to determine the capacity of our model to assess the functional impact of
nSNVs. We will demonstrate that the dynamics predicted by Seq-GNM can adequately

classify disease and benign nSNVs across the proteome.
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Results

B-factor Correlations: Sequence, Structure, and Experimental

We considered a high-resolution protein (2.25 A) that is involved in amino acid
catabolism, acyl-CoA dehydrogenase (1JQl), as an example case to examine the B-factor
profiles and predicted contact maps using Seq-GNM. Coevolution analysis using direct
coupling analysis (DCA) has been shown to recapitulate accurate structural contact maps
for a wide range of proteins [21,23,24,27,31,45]. As expected, the contact maps of Seq-
GNM and structural GNM are similar (Fig 1). In a comparison of their B-factor profiles,
both Seq-GNM and structural GNM exhibit good agreement with observed B-factors,
capturing flexible and rigid positions. Using evolutionary coupling (EC) values obtained
from RaptorX, the correlation between the Seq-GNM and observed B-factors is 0.77,
whereas the correlation between the structural GNM and observed B-factors is 0.57 (Fig
1a). Similarly, using EC values obtained by EVcouplings produced a correlation of 0.60
between the Seq-GNM and observed B-factors (Fig 1b). The scores obtained from
EVcouplings are still reasonable, yet relatively lower correlations compared to those
obtained by the RaptorX. This is likely due to the relatively noisy contact map predictions
by EVcouplings compared to the more reliable contact maps produced by RaptorX (we

think this is due to their inclusion of multiple orthology protein families) [42].
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Fig 1. B-factors plots.

A plot of theoretical B-factors as calculated by our Seq-GNM (blue), the original GNM obtained
from structure (orange), and observed experimental B-factors (black) for acyl-CoA
dehydrogenase (PDB id: 1JQI) along with predicted contact maps by Seq-GNM (using a
threshold score, shown as blue) and the contact map of the structure (using 10A cut-off distance)
(a) The Seq-GNM with values obtained from RaptorX produced a correlation of 0.56 with
experiment, and 0.77 with the GNM obtained from structure. Moreover, the contact maps reveal
the predicted contacts between the Seq-GNM and structural GNM approaches are remarkably
similar. (b) The Seq-GNM that uses values obtained from EVcouplings produced a correlation
0f 0.60 with experiment, and 0.68 with the GNM obtained from structure. The B-factor obtained
by applying GNM to the experimental structure yields a correlation of 0.57. The contact map
captures the dominant contacts with noise coming from poorly predicted EVcouplings scores

The Seq-GNM produces a correlation with crystallographic B-factors of 0.60, which

is within the same range as those produced by the GNM from structure of 0.57. Moreover,
theoretical B-factor profiles obtained from both methods were able to identify the catalytic

sites on all of the proteins.
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As a further test of the efficacy of the Seq-GNM, we superimposed the predicted
B-factors onto the structures of three diverse proteins— 5'(3')-deoxyribonucleotidase
(2JAO), acyl protein thioesterase (1FJ2), and NADH-cytochrome b(5) reductase (1UMK)-
to visually contrast the predicted B-factors with that of experiment. Fig 2 shows each
protein color-coded according to their B-factor profile on a spectrum of blue—white-red,
where blue represents the lowest B-factors (less mobility) and red represents the highest
B-factors (more mobility). The left panel shows the experimental B-factors for each
protein, while the right panel shows the theoretical values predicted by the Seq-GNM. We
investigated whether secondary structure was a factor in how the B-factors were
distributed across the protein, and if certain secondary structure domains would exhibit
less agreement with experiment. In this context, the proteins were selected so that they
had a variety of secondary structure components—2JAO contains primarily alpha helices,
1UMK is mainly composed of beta-sheets, and 1F2J is a combination of alpha helices
and beta-sheets. For 2JAO, the exterior helices that are flexible (red) in the observed
structure are all reproduced in the predicted structure. The one highly rigid (blue) helix in
the observed structure was more flexible in the predicted structure but was still in overall
agreement. There is a surprising amount of similarity between the observed and predicted
structure of 1F2J, considering that it contains both alpha-helix and beta-sheet elements.
Similarly, TUMK showed good agreement, except for some miniscule differences. This
gives further evidence that the magnitudes of residue fluctuations predicted by the Seg-

GNM model is representative of the crystallographic B-factor profiles for many proteins.
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Experimental Theoretical

Fig 2. Color-coded ribbon diagrams using experimental and theoretical B-factors obtained
by Seq-GNM.

The observed crystallographic B-factors (left) and the predicted B-factors from the Seq-GNM
superimposed on the structure. The three proteins selected—2JAO, 1F2J, and lUMK-—were high-
resolution structures are better than 2.0 A. The B-factors are color-coded according to their B-
factor profile on a spectrum of blue—white-red where blue represents the lowest B-factors (less
mobility) and red represents the highest B-factors (more mobility). The B-factor scores were
converted to a percentile rank so that they could be compared across different proteins. Each
protein was also rotated 180° so that both sides could be visualized and compared. Moreover,
the proteins were selected so that they had a variety of secondary structure components—2JAO
contains primarily alpha helices, IUMK is mainly composed of beta-sheets, and 1F2J is a
combination of alpha helices and beta-sheets.
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In order to compare predicted B-factors with crystallographic B-factors, we
extracted a subset of 39 structures that had a resolution better than 2.0A to obtain more
realistic crystallographic B-factors (unreliable B-factors are common for many PDB
structures) [18,46]. The same cutoff of 2.0A was used in an earlier study to compare GNM
predicted B-factors with those determined by crystallography [47]. For all 39 structures,
the Seq-GNM (using EC values from RaptorX) and structure GNM were used to estimate
their B-factors, which were then compared with the observed B-factors by calculating the
correlation for each protein. The mean correlation coefficient for the Seq-GNM was 0.53
while the mean correlation coefficient for the structure GNM was 0.58. The correlation of
0.58 for structural GNM of our smaller data set is consistent with the findings of Kundu et
al. where 113 high-resolution structures (resolution <2.0 A) were used and, the mean
correlation coefficient with observed B-factors was 0.59 [47].

As shown in Fig 3a, boxplot distributions reveal that correlations are not
significantly different between the sequence and structure GNM (p = 0.055 in a student t-
test). The structure GNM appears to perform only slightly better than the Seq-GNM. Fig
3b shows the same distribution separated into 10 individual bins of size 0.1. The overall
shapes of the two distributions are similar, except for the exaggerated relative lower
second peak of the Seq-GNM at 0.4. It should also be noted that for these cases where
Seqg-GNM had low correlations, the EC threshold could be tuned to yield much higher
correlations. If this were done on a case-by-case basis, the overall correlation
distributions would be even more similar. Thus, the EC threshold may be used as a tuning
parameter to enhance the correlation coefficient for purposes of model optimization.

11
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Fig 3. Comparison of B-factors obtained by GNM and Seq-GNM with experimental B-
factors.

(a) Boxplot showing the correlation of predicted B-factors by the Seq-GNM with experimentally
observed B-factors (blue) in comparison to that of the GNM obtained from structure (orange)
for a subset of 39 structures with resolution better than 2.0 A. (b) A distribution plot of the same
correlations binned into 10 bins with sizes of 0.1. A student t-test revealed no significant
difference between the two distributions (p=0.055) indicating that the Seq-GNM is producing
competitive results compared to the original GNM from structure. The mean correlation of the
Seq-GNM is 0.53 while that of the GNM from structure is 0.58.

199

200 Interestingly, for the cases where predicted B-factors by Seq-GNM yielded
201  significantly better correlations with the experimental B-factors than those obtained by
202  GNM from structures, we observed that biological units of these proteins are assigned as
203  oligomeric forms. While predicted B-factors obtained using Seq-GNM does not retain this
204 information, it successfully predicts the experimentally low B-factor values of interface
205 positions as shown for protein 5'(3')-deoxyribonucleotidase (2JAO) and protein aldehyde
206 Dehydrogenase 7A1 (2J6L) in Fig 4. It is indeed shown in earlier work of direct contact

207 analysis that co-evolution can identify positions of protein interfaces and protein-protein
12
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interaction partners and successfully reconstruct protein complexes and interaction
network [23,30,48]. Thus, it is not surprising to see that it yields good correlations with the
experimental B-factors. Conversely, predicted B-factors from structure can only improve

when the oligomeric structure is used for the GNM analysis.

a High
B-factor

Low
B-factor  Experimental Seq-GNM GNM B-factors obtained GNM B-factors obtained
b High B-factors B-factors from monomer from dimer

B-factor

Low )
B-factor Experimental Seq-GNM GNM B-factors obtained GNM B-factors obtained

B-factors B-factors from monomer from tetramer

Fig 4. Comparison of B-factors obtained from Experiments, Seq-GNM, GNM from
monomeric structure, and GNM from oligomeric structure.

B-factors are shown on the respective structures for (a) 5'(3")-deoxyribonucleotidase (2JAO) and
(b) Aldehyde Dehydrogenase 7A1 (2J6L). (a) The correlation of Seq-GNM to experimental B-
factors is 0.83 while correlation of GNM B-factors obtained from monomer to experimental B-
factors is 0.63. When dimer is used for GNM analysis the correlation of GNM B-factors obtained
from monomer to experimental B-factors increase to 0.72. (b) The correlation of Seq-GNM to
experimental B-factors is 0.61 while correlation of GNM B-factors obtained from monomer to
experimental B-factors is 0.37. When tetramer is used for GNM analysis the correlation of GNM
B-factors obtained from monomer to experimental B-factors increase to 0.76. The change in
correlation for GNM between monomer and oligomer clearly shows the drawback for
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dependence on the crystal structure of biounits. However, Seq-GNM captures the interface B-
factors correctly.

Even when using high-resolution X-ray structures, there is still some uncertainty
about the realistic nature of crystallographic B-factors. For this reason, we thought a more
plausible way to determine the efficacy of the Seq-GNM was to compare it directly with
the structure GNM. The structure GNM is a robust method to describe thermal fluctuations
in a protein, and in many cases, it performs as good or better than the ANM or MD [47,49].
We systematically evaluated the performance of the Seq-GNM and structure GNM for the
entire set of 139 structures and obtained the correlation coefficients for each protein (Fig
5).

The average correlation of B-factors between the Seq-GNM and structure GNM
model is 0.63 when using EC contacts from RaptorX and 0.43 when using contacts from
EVcouplings. As seen in Fig 5a, the distribution of correlation coefficients increases until
0.8, and then subsequently decreases. Interestingly, there are still an appreciable number
of sequences yielding high correlations from 0.8 to 1.0. A distinguishing feature of the
distribution is the pronounced peak in the bin from 0.7 to 0.8, indicating that significant
fraction of our data set yields high correlations between 0.7 and 0.8. This is evidence that
the Seq-GNM is efficiently capturing protein dynamics and supports the theory that ECs
can be used as a substitute to 3D structure contacts in the GNM and still produce reliable
dynamics profiles. The results of Seq-GNM based on contacts predicted by RaptorX

usually yields B-factors that are closer to experimental B-factors as it uses structural
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information in its neural networks leading to better EC values and correlations with

structure [44].
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Fig 5. Distribution of correlation coefficients.

The distribution of correlation coefficients between B-factors from Seq-GNM and GNM from
structure. (a) The average correlation coefficient is 0.63 with RaptorX EC values. (b) The
average correlation coefficient is 0.43 by using EVcouplings EC values.

Assessing nSNV Phenotypes Using the Seq-GNM

Crystallographic B-factors have previously been used to assess the impact of
nSNVs on protein function [18,50-54]. A study [51] found that mutations on lysozyme that
impaired function exhibited lower than average temperature factors, suggesting that rigid
sites on the protein are more susceptible to destabilizing nSNVs than flexible sites [55].
Another study revealed a relationship between crystallographic B-factors and the impact
of nSNVs on protein function [56]. A commonly used tool to diagnose neutral and disease

associated nSNVs, PolyPhen-2, uses evolutionary information, structural information,
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and crystallographic B-factors in its prediction model [49]. These studies indicate that
crystallographic B-factors can be used to predict the tolerance of a given residue to an
nSNV (i.e., whether or not the occurrence of an nSNV would impact function).

We investigated whether B-factors predicted by the Seq-GNM were indicative of
biological phenotype for nSNVs in the human population. A total of 738 nSNVs were
mapped to the 139 enzymes, where 436 are disease-associated and 302 are neutral. S1
Table shows the number of disease and neutral nSNVs that occur on each protein. The
Seq-GNM (using EC contacts from RaptorX and EVcouplings) was computed
systematically for all 139 enzymes to obtain their dynamics profiles. The theoretical B-
factors scores were converted into a percentile rank so that the values could be compared
across different proteins.

We initially looked at two human enzymes, human lysozyme (PDB: 1C7P) and
human cytochrome reductase (PDB: 1UMK). They were chosen because they were short
proteins that each contain a disease and neutral nSNV. Human lysozyme is a glycoside
hydrolase that functions in the immune system by causing damage to cell walls of
bacteria. Human cytochrome b5 reductase is involved in many oxidation/reduction
reactions including converting methemoglobin to hemoglobin [55].

Each structure is color-coded according to its theoretical B-factor profile on a
spectrum of blue—white—red. Sites that exhibit high mobility (flexible) are red, and sites
that have low mobility (rigid) are blue. Regions that are characterized by low mobility are
usually important for maintaining stability and function, thus a mutation could act to
destabilize the protein and impair its function. Fig 6a show the disease mutation 156T
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occurring on a rigid site with a B-factor of 0.0075. The neutral mutation T70N has a B-
factor of 0.96 indicating that it is a highly mobile site. Both 156T and T70N occur on loop
regions. Although loops are generally more flexible, three alpha-helical domains
encompass the loop containing I156T, which implies that it may be involved in interactions
that contribute to stabilizing the functional conformation. Thus, the IS6T mutation may
disrupt these critical interactions and impair the enzymatic function. In the case of
cytochrome reductase (Fig 6b), the disease mutation R57Q is also on a rigid site with a
B-factor of 0.14. Instead of being located near the core, R57Q is highly exposed
protruding outwardly from a beta-barrel. However, since beta-barrels often harbor
functional residues, the R57Q mutation may disrupt certain interactions critical for
modulating function. The neutral mutation T116S is located on a loop and has a B-factor
of 0.96, indicating that is it has a high mobility. In our earlier proteome wide study of over
100 human protein structures, we have shown that sites that are highly flexible (e.g., loop
regions, or superficial sites) are typically more robust to mutations. Conversely, rigid sites
are more susceptible to mutations that may disrupt function [18,19]. For these two cases,
the B-factors produced by Seq-GNM successfully distinguished between the disease and

neutral nSNVs, without using the 3D structures.

17



286

287

288

289

290

291

292

293

294

295

296

297

ad human lysozyme b cytochrome reductase High
Mobility

R57Q
56T \)- C

T116S x

Low
Mobility

Fig 6. Comparison of theoretical B-factors on disease versus neutral mutant sites.

A ribbon diagram for two human enzymes, human lysozyme (a) and cytochrome reductase (b)
colored according to their predicted B-factors by the Seq-GNM. Red indicates high mobility
sites, and blue indicates low mobility sites. Each protein contains two known nSNVs. I56T and
R57Q are disease-associated, and they occur on low mobility (rigid) sites. Conversely, the
neutral nSNVs T116S and T70N occur on high mobility sites.

These findings prompted us to analyze the proteome-wide set of 139 enzymes to
determine if the B-factors were indicative of phenotype for all 436 disease and 302 neutral
nSNVs. The raw B-factor values were converted into a percentile rank (%B-factor) and
then binned into 5 bins of size 0.2. We computed the observed-to-expected ratio of B-
factors, where the expected values were based on the B-factor distribution of all 51,618
sites across all 139 proteins, and the observed values were based on the B-factors of the
436 disease sites. The same process was done for the 302 neutral nSNVs. Under the null
hypothesis that predicted B-factor of the disease associated nSNVs yields similar
distribution of all the positions gathered from 139 enzyme sequences, the ratio of
expected and observed sites harboring disease mutations for each %B-factor bin should

be close to 1, which would imply that B-factor does not distinguish sites that are prone to

18



298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

disease. This is the null hypothesis that disease sites are distributed uniformly between
sites with low and high mobility. However, the null hypothesis was rejected for the 436
disease nSNVs (p <0.001). Fig 7 shows the observed-to-expected ratio plot of disease
and neutral nSNVs, which indicates that disease nSNVs are overabundant at low %B-
factor sites (<0.4) and under abundant at high %B-factor sites. Conversely, neutral nNSNVs
are overabundant at high %B-factor sites (>0.6) and under abundant at low %B-factor
sites. This evidence suggests that the occurrence of an nSNV on a site with a low B-factor
is likely damaging based on the position irrelative of the substitution. This is in agreement
with our previous proteome-wide study showing that substitutions at rigid sites are more
often associated with diseases [18]. Conversely, an nSNV on a high B-factor site is
usually benign. Low B-factors usually signify a residue that is crucial for modulating
functional motions (e.g., a hinge). Thus, mutations on these sites can severely impact
function. High B-factor sites are more flexible (e.g., loops) and more robust to mutations.
Fig 7 suggest that it is possible to use the predicted B-factors to discriminate between
disease and neutral nSNVs using co-evolution obtained from only multiple sequence

alignment. Moreover, it can be used as an additional feature for in silico predictions [12].
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Fig 7. Observed to expected ratio plots for disease and neutral nSNVs.

The relationship of observed-to-expected numbers between 436 disease nSNVs (red) and 302
neutral nSNVs (blue) from 139 human enzymes. The %B-factor scores derived from the Seq-
GNM are binned into 5 bins of size 0.2.

Predictive models were created using logistic regression as the classification
algorithm, 80% of the data was used for training and 20% for testing for 10 randomized
sets. Models were evaluated based on ROC curves and their respective area under curve
(AUC), the best performance is labeled as AUC_max and average performance as AUC.
Theoretical B-factors obtained by Seq-GNM, experimental B-factors, and evolutionary
parameters were used as predictive variables for training and testing (Fig 8). Seq-GNM
and experimental B-factors have similar performance (maximum AUC of best 0.76 and
0.75, respectively), with Seq-GNM overshadowing experimental B-factors on average
(AUC of 0.69 and 0.60, respectively). The ~0.70 AUC of B-factors obtained from Seg-
GNM is impressive, as it has been shown that majority of state-of-art methods also yields
similar AUC in independent tests [5,13]. Moreover, incorporation of Seq-GNM as an
additional feature with evolutionary parameters resulted in higher prediction performance.

While the AUC scores obtained using the evolutionary features for classification gives
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0.76, this is increased to 0.81 after including the B-factors of Seq-GNM (Fig 8c-d). This

result also demonstrates the efficacy of Seq-GNM in disease prediction as a

complementary metric to other metrics used as features in classifiers.
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Fig 8. ROC curves for disease prediction performance comparing Seq-GNM, experimental
B-factors and evolutionary parameters.
ROC curves are plotted using 10 randomly selected training and testing data sets using 80%,
and 20% of the data, respectively. (a) ROC curve of Seq-GNM. (b) ROC curve of experimental
B-factors. (¢) ROC curve of evolutionary parameters, where primate, mammal, and vertebrate
fitch rates using Fitch Algorithm [57]; and Entropy?2 are used as features for training. (d) ROC
curve of evolutionary parameters used in (c) with the addition of Seq-GNM.
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We also compared the performance of Seq-GNM with common in silico prediction
tools like Polymorphism Phenotyping v2 (PolyPhen-2), and Sorting Intolerant from
Tolerant (SIFT) [6,58]. The accuracy, sensitivity, and selectivity of disease predictions for
nSNVs with experimental B-factors, B-factors from SIFT, PolyPhen-2, evolutionary
parameters, and Seq-GNM are tabulated in Table 1. The accuracy of Seq-GNM using
both EC values from EVcouplings and RaptorX is ~0.70. This accuracy is similar to using
experimental B-factors for prediction (0.69) and also very close to prediction with
evolutionary parameters (0.75), suggesting that Seq-GNM allows us to incorporate
protein dynamics in nSNV predictions when the 3D experimental structures are not
available. Moreover, accuracy of Seq-GNM approach is greater than SIFT (0.65) and
PolyPhen-2 (0.64). Interestingly, Seq-GNM obtained by EVcouplings and RaptorX yields
similar accuracies indicating that evolutionary couplings without the inclusion of structure
could be utilized to predict B-factors to include as a feature to in silico prediction tools.
Seq-GNM sensitivity (~0.90) surpasses other methods (0.80 for SIFT, 0.63 for PolyPhen-
2, and 0.85 for evolutionary parameters), but it has a shortcoming in selectivity (~0.36) as
other methods reach higher (~0.59). Conversely, training Seq-GNM combined with
evolutionary parameters enhances the selectivity (0.66) to its highest value compared to
others. Seq-GNM with evolutionary parameters predicted disease related nSNVs with
accuracy 0.78 and sensitivity of 0.84, reaching beyond predictions of other metrics solely.
These results suggest the incorporation of Seq-GNM with other prediction metrics can

augment accuracy, sensitivity, and selectivity of prediction.
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Table 1. The disease prediction data showing the accuracy, sensitivity, and the selectivity
of Seq-GNM compared with experimental B-factors, SIFT, PolyPhen-2 and evolutionary
parameters.

Classifier Feature and Methods Accuracy Sensitivity Selectivity
Experimental B-factors 0.69 0.88 0.35
SIFT 0.65 0.70 0.56
PolyPhen-2 0.64 0.63 0.64
Seq-GNM B-factors (EVcouplings) 0.70 0.89 0.37
Seq-GNM B-factors (RaptorX) 0.71 0.91 0.35
Evolutionary parameters 0.75 0.85 0.58
Seq—GNM (EVcouplings) with 0.78 0.84 0.66
evolutionary parameters

Prediction accuracy of Seq-GNM is further tested using 323 nSNVs (187 disease-
associated, 136 neutral) of 22 proteins where their 3D experimental structures are not
available (S2 Table). We used the trained classifier model of Seq-GNM B-factors for this
test. While the B-factors obtained solely from Seq-GNM are used, it reached an accuracy,
sensitivity, and selectivity of 0.82, 0.82, 0.83, respectively. This result further suggests
that Seq-GNM allows us to incorporate protein dynamics as additional feature in in silico

prediction tools without a known 3D structure.

Discussion

While we and others [5,19,59—-63] have shown that the integration of conformational
dynamics into genomic analysis will help next generation of approaches to predict the
impact of novel missense mutations on the human proteome, the inherent limitations in

availability of 3D structures compared to the vast number of sequences must be
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addressed. This begs the question: how can protein dynamics be used in genome-wide
analysis to predict functional impacts of nNSNVs? There is, therefore, a need to be able to
obtain protein dynamics by leveraging only sequence information, without a priori
knowledge of a 3D structure. For this reason, we have developed this novel method to
estimate the dynamics profile of a protein by using only a sequence as input. The method
uses the coevolution of amino acids through multiple sequence (which tend to be spatially
close in the 3D tertiary structure) and a simple Gaussian network model (GNM) to obtain
dynamics. The original GNM based on the 3D structure is well-known for its ability to
describe residue dynamics profiles due to thermal motions in proteins (i.e., B-factors). We
showed that our sequence-based GNM model is able to adequately reproduce the mean-
square fluctuations (B-factors) calculated by the original GNM, particularly outperforms
for the cases where biological functional state is oligomeric. Our estimates of B-factors
for a proteome-wide set of proteins exhibited good correlation with the structure GNM.
Moreover, our estimated B-factors were in reasonable agreement with crystallographic
B-factors for many cases. To address the issue of how protein dynamics can determine
the impact of nSNVs across the genome where there are no known 3D structures, we
tested the ability of our predicted dynamics from the Seg-GNM to assess nSNV
phenotypes. A plot of the observed-to-expected ratio of the predicted B-factors revealed
distributions of disease and neutral nSNVs that are similar to those in a previous protein
dynamics analysis work [18]. The predicted B-factors using the Seq-GNM was able to
discriminate between disease and neutral nSNVs with an accuracy of 0.70 and
incorporating the Seq-GNM predicted B-factors with evolutionary parameters increased
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overall accuracy to 0.78. This analysis demonstrates that the Seq-GNM makes it possible
to obtain estimates of dynamics without using a 3D structure, which will allow for the

integration of conformational dynamics into large-scale analysis of genomic variants.

Methods

Dataset

A curated set of 139 structures was selected for several reasons. First, they have
high query coverage (>80%) and sequence identity (>80%) as found from a BLAST
search, and the structures had already been modeled using the Modeller software
package [64] to account for any missing residues. Second, genetic variants were
previously mapped onto these structures, such that the positions containing known
nSNVs were already determined, enabling us to easily compare our results using
sequence coevolution with the genetic variation data. A total of 738 genetic variants were
obtained from the HumVar database [58], which was comprised of 436 disease and 302
neutral nSNVs. Finally, the structures were either monomers or the single-chain unit of a
multimer with <600 residues, allowing for tractable calculations of residue coevolution
using the RaptorX web server [42,44], and EVfold (EVcouplings) [21]. A table

summarizing the dataset is presented in S1 Table.
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Obtaining Coevolved Residues

The amino acid sequence from each of the 139 structures was used as input for
the evolutionary coupling (EC) analysis. The choice of taking the amino acid sequence
from the structure was done so that the predicted EC contacts could be compared directly
to the experimentally observed structure contacts as verification that the model was
producing realistic contact maps. Moreover, the theoretical B-factors predicted by our
sequence-based model could be directly compared to the experimental B-factors for each
protein. If the structure was unknown, however, sequence databases (e.g. UniProt,
PFAM, etc.) could be used. The PDB sequences were given to the RaptorX web server
[42,43], which computed the relative probability of each residue pair i, j of being in 3D
contact based on their coevolution strength. The sequences were also used to generate
MSAs using phmmer [65]. Using MSAs, DI values are calculated by EVcouplings. In order
to ensure consistency between different proteins of varying lengths, we converted the raw
scores into percentile ranks. We then used a threshold value, taking only the top scoring
evolutionary couplings (i.e., the strongest couplings are more likely to be in spatial
contact). An optimized threshold value was systematically evaluated and is discussed in

the Methods.

Sequence-based GNM Model (Seq-GNM)

The Gaussian network model (GNM) is an isotropic approach based on the contact
topology of a crystal protein structure to obtain the equilibrium fluctuations of residues
due to thermal motion. It uses a specified cutoff distance to define interacting pairs that
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are connected by springs with a single-parameter harmonic potential. In this structure-
based GNM, the interacting residue pairs within the cutoff range are represented as
contacts in the Kirchhoff (connectivity matrix).

In the proposed sequence-based GNM (Seq-GNM) approach we will instead use
coevolving residue pairs (evolutionary couplings) as contacts in the Kirchhoff. In this way,
the 3D structure is no longer a prerequisite to form a GNM. To construct the Kirchhoff, a
threshold is defined where any evolutionary coupling scores above that threshold are
sufficiently coupled such that they are spatially close in 3D structure. If a given
evolutionary coupling pair meets the threshold criteria, it is assigned a value in the
Kirchhoff for non-bonded contacts of —1 multiplied by its evolutionary coupling score (i.e.,
—1xECscore). This will permit that the strength of each connection will attenuate
proportionally to the evolutionary coupling strength. The Kirchhoff can be decomposed
into the individual contributions from the bonded contacts representing the chain
connectivity (Rouse chain) and that from the non-bonded contacts [56]. In the Seq-GNM

the contribution of non-bonded contacts to the Kirchhoff is constructed according to

(—1 X ECgcores i #j evolutionary coupling
1#]j no coupling

Fijb={_zoirij, i=j “

Lizj
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For the local chain connectivity (Rouse chain), we don’t take into account evolutionary
couplings, and matrix was constructed such that every residue pair i, i+ 1to i, i+ 3 isin

contact as

L
[ #j and Z i,itk
ilk=1,2,3
i#] else (2)

0,
130
;t

cc
l-‘i

Then the overall Kirchhoff is the combination of the two contributions I3; = I}5° +
I“i}‘b. The vibrational dynamics due to thermal fluctuations can then be evaluated in the

same way as the original GNM by inverting the Kirchhoff matrix. The magnitude of mean-
square fluctuations is then written in terms of the inverse Kirchhoff as
((AR)?) =[]y 3)

This is proportional to the Debye-Waller temperature factors or B-factors, which
describe the attenuation of X-ray scattering due to the thermal motions of atoms (B; =
8m2((AR;)?)/3). Here there is no single-parameter force constant as in the GNM obtained
from structure [52], and the pair-wise interactions are simply the strength of the
evolutionary couplings as given by their ranked scores. The theoretical predictions of our
Seq-GNM can be compared to the predictions of the original GNM obtained from structure
as well as observed crystallographic B-factors. A general workflow of our method is

presented as a flow diagram in Fig 9.
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Fig 9. Flowchart of Seq-GNM method for nSNV predictions.

A workflow of our method to use predicted evolutionary couplings to determine protein
dynamics and assess the functional impact of nSNVs. The initial input is an amino acid sequence,
which is used to obtain MSA. Using MSA evolutionary coupling pairs are predicted through
RaptorX and EVcouplings. The high scored evolutionary coupling pairs are assigned as contacts
in our Seq-GNM to compute the dynamics profile of each protein. The dynamic profiles obtained
from Seq-GNM can give insight into the functional impact of nSNVs. This was done for a
curated set of 139 structures.

Optimizing Threshold Value for EC Scores

To ensure consistency when analyzing different proteins with varying lengths, we
converted the raw scores of evolutionary couplings (EC) into a percentile rank. We
computed the Seq-GNM for all 139 structures using a constant threshold percentile rank

EC value to assign contacts and measured the correlation between the B-factors
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475  predicted by our Seq-GNM to the GNM obtained from structure. We used only the top
476  percentile EC scores predicted by RaptorX and EVcouplings as predicted contacts,
477  because only certain fraction of high EC scores are true native contacts in 3D structure,
478 largely due to noisy artifacts in the MSA such as the transitivity of correlations and
479  phylogeny. To determine the optimal threshold value, we tested a range of threshold
480  values from 0.92 to 0.99. A threshold value <0.92 yields superfluous contacts leading to
481 a noisy contact map, and thus, a lower overall correlation (Fig 10). Conversely, a
482  threshold value 20.99 gives a deficient number of contacts, which yields an excessively
483  sparse contact map and a lower overall correlation. As Fig 10 shows, a threshold value
484  of 0.98 produced the best overall correlation with the GNM from structure and, thus, was
485  taken to be the optimal threshold value used in the analysis.
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Fig 10. Comparison of theoretical B-factors.

Boxplots comparing the correlations of predicted B-factors by our Seq-GNM for (a) RaptorX
and (b) EVcouplings with that of the structural GNM for all 139 structures using a constant
threshold for EC contacts. The GNM analysis was conducted 8 times using a constant threshold
(between 0.92 and 0.99) each time. The best average correlations were produced when the
constant threshold value of 0.98 was used.
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Supporting information

S1 Table. List of 139 proteins used in this study.

Proteins used to compute theoretical B-factors based on Seq-GNM and GNM obtained

from structure. B-factor correlation values between GNM obtained from structure to

experimental (Str GNM-Expt), Seq-GNM to experimental (Seq GNM-Expt), and Seq-GNM

to GNM obtained from structure (Seq GNM-Str GNM) are given for two methods (RaptorX,

EVfold (EVcouplings)).
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S2 Table. List of proteins without a known structure with disease related nSNVs
used for prediction.

Seq-GNM predictions by using a set of 323 nSNV's without a known 3D structure from
22 proteins. The protein identifiers, residue numbers, amino acid substitutions Seq-

GNM scores, Seq-GNM predictions, and ground truth are provided.
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