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Abstract 25 

The conformational dynamics of proteins is rarely used in methodologies used to 26 

predict the impact of genetic mutations due to the paucity of three-dimensional protein 27 

structures as compared to the vast number of available sequences. Until now a three-28 

dimensional (3D) structure has been required to predict the conformational dynamics of 29 

a protein. We introduce an approach that estimates the conformational dynamics of a 30 

protein, without relying on structural information. This de novo approach utilizes 31 

coevolving residues identified from a multiple sequence alignment (MSA) using Potts 32 

models. These coevolving residues are used as contacts in a Gaussian network model 33 

(GNM) to obtain protein dynamics. B-factors calculated using sequence-based GNM 34 

(Seq-GNM) are in agreement with crystallographic B-factors as well as theoretical B-35 

factors from the original GNM that utilizes the 3D structure. Moreover, we demonstrate 36 

the ability of the calculated B-factors from the Seq-GNM approach to discriminate 37 

genomic variants according to their phenotypes for a wide range of proteins. These 38 

results suggest that protein dynamics can be approximated based on sequence 39 

information alone, making it possible to assess the phenotypes of nSNVs in cases where 40 

a 3D structure is unknown. We hope this work will promote the use of dynamics 41 

information in genetic disease prediction at scale by circumventing the need for 3D 42 

structures.  43 

 44 
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Author Summary 45 

Proteins are dynamic machines that undergo atomic fluctuations, side chain 46 

rotations, and collective domain movements that are required for biological function. 47 

There is, therefore, a need for quantitative metrics that capture the dynamic fluctuations 48 

per position to understand the critical role of protein dynamics in shaping biological 49 

functions. A limiting factor in incorporating structural dynamics information in the 50 

classification of non-synonymous single nucleotide variants (nSNVs) is the limited 51 

number of known 3D structures compared to the vast number of available sequences.  52 

We have developed a new sequence-based GNM method, termed Seq-GNM, which uses 53 

co-evolving amino acid positions based on the multiple sequence alignment of a given 54 

query sequence to estimate the thermal motions of C-alpha atoms. In this paper, we have 55 

demonstrated that the predicted thermal motions using Seq-GNM are in reasonable 56 

agreement with experimental B-factors as well as B-factors computed using 3D crystal 57 

structures. We also provide evidence that B-factors predicted by Seq-GNM are capable 58 

of distinguishing between disease-associated and neutral nSNVs. 59 

Introduction 60 

A 3D structure is still required to computationally obtain protein dynamics, 61 

drastically limiting the extent to which conformational dynamics can be incorporated into 62 

genomic analysis. The reason for this is that there are exponentially more sequences 63 

than experimental structures.  Currently, UniProtKB contains more than 100 million 64 

sequence entries, whereas the PDB reports the number of known 3D structures to be 65 
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around 140,000 [1]. Furthermore, the number of known sequences is increasing at an 66 

exponential rate, compared to the much slower addition of new experimental PDB 67 

structures. This is due to the advent of high-throughput genomic sequencing, which is 68 

providing an unprecedented amount of data for genomic analysis. The vast amount of 69 

sequence data has  driven the rapid classification of novel genetic variations through 70 

genome-wide association studies [2,3]. A large catalogue of non-synonymous single 71 

nucleotide variants (nSNVs) occurs in coding regions that can severely impact protein 72 

function, potentially leading to disease [4].  There are many in silico methods developed 73 

using evolutionary methodologies such as positional conservation and phylogeny and 74 

those that combine evolutionary approaches with biochemical and structural properties 75 

to diagnose neutral and disease associated nSNVs [5–11]. However, the accuracy of the 76 

majority of these in silico prediction methods is significantly lower for predicting the impact 77 

of nSNVs at highly evolving sites [12–16]. Protein dynamics can also be used to elucidate 78 

the functional impact of nSNVs and mechanisms of disease [5,17]. Our previous studies 79 

have evinced that a site-specific conformational dynamics analysis is capable of 80 

diagnosing nSNVs irrespective of evolutionary conservation [5,18,19] and recently has 81 

been incorporated as an additional feature for in silico prediction tools [20]. However, only 82 

a small fraction of the catalogued nSNVs in the coding regions (i.e. missense variants) 83 

have 3D experimental structures, [20], impeding broad application of protein dynamics in 84 

in silico tool predictions. 85 

Coevolution, on the other hand, has become a valuable tool for its ability to predict 86 

structural contacts of 3D structures, particularly using  global information  through Potts 87 



5 

 

models [21–27]. Coevolving residues are inferred from a multiple sequence alignment 88 

(MSA) of a given protein family, whereby if two given amino acids exhibit concordant 89 

patterns of evolution throughout the MSA then they are assumed to be in close spatial 90 

proximity in the folded 3D structure. This evolutionary principle can be leveraged so that 91 

sequence information can be used to describe protein topology, making de novo structure 92 

prediction possible [24,27]. It has been reported that only one correct contact for every 93 

12 residues in a protein is necessary for accurate topology-level modeling [28]. In addition 94 

to structure prediction, coevolution analysis has also been used to identify critical 95 

interactions between protein complexes [22] important functional sites [24] and allosteric 96 

response [29]. The use of coevolution for structure prediction is largely possible for two 97 

reasons. First, the amount of sequence data for different protein families is sufficient to 98 

be leveraged by this technique to make predictions. Second, the methods for inferring 99 

coevolving residues from an MSA are becoming increasingly robust [30–34]. 100 

Inferring evolutionary couplings from an MSA are based on two primary 101 

approaches categorized as local [35–37] and global approaches [37–39]. The global 102 

approaches detangle direct evolutionary couplings from indirect couplings which enables 103 

them to capture spatial contacts [40]. Regardless of the method, the accuracy of detecting 104 

coevolving residues that correspond to structural contacts is fundamentally limited by the 105 

number of sequence homologs in the MSA. While most of the current methods use only 106 

the sequence homologs of the protein family belonging to target sequence, integrating 107 

multiple orthology protein families (i.e. families that share similar phylogeny and retain 108 

similar functions) was used to increase the number of homologs to produce a more 109 
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accurate statistical inference [41]. RaptorX, leverages this joint family methodology; it 110 

uses an ultra-deep neural network combining coevolution information with sequence 111 

conservation information to infer 3D contacts and has produced higher accuracy than 112 

other methods [42–44]. 113 

In this paper, we will demonstrate the efficacy of our novel sequence-based GNM 114 

approach, called Seq-GNM, to estimate the dynamics profile of a protein with no a priori 115 

knowledge of its 3D structure. This de novo approach based on a Gaussian network 116 

model (GNM) enables the prediction of the magnitude of mean-square fluctuations of 117 

residues, which are proportional to the B-factors determined by X-ray crystallography 118 

experiments. However, instead of using a cutoff distance to determine 3D contacts as 119 

does the original structure-based GNM, we use coevolving residues (evolutionary 120 

couplings) in our model. We show that the theoretical predictions from our Seq-GNM are 121 

in reasonable agreement with experimental crystallographic B-factors as well as the 122 

values obtained from the structure GNM models that use spatial contacts. We also extend 123 

this analysis to determine the capacity of our model to assess the functional impact of 124 

nSNVs. We will demonstrate that the dynamics predicted by Seq-GNM can adequately 125 

classify disease and benign nSNVs across the proteome. 126 

 127 

 128 

 129 
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Results 130 

B-factor Correlations:  Sequence, Structure, and Experimental 131 

We considered a high-resolution protein (2.25 Å) that is involved in amino acid 132 

catabolism, acyl-CoA dehydrogenase (1JQI), as an example case to examine the B-factor 133 

profiles and predicted contact maps using Seq-GNM. Coevolution analysis using direct 134 

coupling analysis (DCA) has been shown to recapitulate accurate structural contact maps 135 

for a wide range of proteins [21,23,24,27,31,45]. As expected, the contact maps of Seq-136 

GNM and structural GNM are similar (Fig 1). In a comparison of their B-factor profiles, 137 

both Seq-GNM and structural GNM exhibit good agreement with observed B-factors, 138 

capturing flexible and rigid positions. Using evolutionary coupling (EC) values obtained 139 

from RaptorX, the correlation between the Seq-GNM and observed B-factors is 0.77, 140 

whereas the correlation between the structural GNM and observed B-factors is 0.57 (Fig 141 

1a). Similarly, using EC values obtained by EVcouplings produced a correlation of 0.60 142 

between the Seq-GNM and observed B-factors (Fig 1b). The scores obtained from 143 

EVcouplings are still reasonable, yet relatively lower correlations compared to those 144 

obtained by the RaptorX. This is likely due to the relatively noisy contact map predictions 145 

by EVcouplings compared to the more reliable contact maps produced by RaptorX (we 146 

think this is due to their inclusion of multiple orthology protein families) [42]. 147 
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Fig 1. B-factors plots. 

A plot of theoretical B-factors as calculated by our Seq-GNM (blue), the original GNM obtained 

from structure (orange), and observed experimental B-factors (black) for acyl-CoA 

dehydrogenase (PDB id: 1JQI) along with predicted contact maps by Seq-GNM (using a 

threshold score, shown as blue) and the contact map of the structure (using 10Å cut-off distance) 

(a) The Seq-GNM with values obtained from RaptorX produced a correlation of 0.56 with 

experiment, and 0.77 with the GNM obtained from structure. Moreover, the contact maps reveal 

the predicted contacts between the Seq-GNM and structural GNM approaches are remarkably 

similar. (b) The Seq-GNM that uses values obtained from EVcouplings produced a correlation 

of 0.60 with experiment, and 0.68 with the GNM obtained from structure. The B-factor obtained 

by applying GNM to the experimental structure yields a correlation of 0.57. The contact map 

captures the dominant contacts with noise coming from poorly predicted EVcouplings scores 

 148 

The Seq-GNM produces a correlation with crystallographic B-factors of 0.60, which 149 

is within the same range as those produced by the GNM from structure of 0.57. Moreover, 150 

theoretical B-factor profiles obtained from both methods were able to identify the catalytic 151 

sites on all of the proteins.  152 
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As a further test of the efficacy of the Seq-GNM, we superimposed the predicted 153 

B-factors onto the structures of three diverse proteins– 5'(3')-deoxyribonucleotidase 154 

(2JAO), acyl protein thioesterase (1FJ2), and NADH-cytochrome b(5) reductase (1UMK)–155 

to visually contrast the predicted B-factors with that of experiment. Fig 2 shows each 156 

protein color-coded according to their B-factor profile on a spectrum of blue–white–red, 157 

where blue represents the lowest B-factors (less mobility) and red represents the highest 158 

B-factors (more mobility). The left panel shows the experimental B-factors for each 159 

protein, while the right panel shows the theoretical values predicted by the Seq-GNM. We 160 

investigated whether secondary structure was a factor in how the B-factors were 161 

distributed across the protein, and if certain secondary structure domains would exhibit 162 

less agreement with experiment. In this context, the proteins were selected so that they 163 

had a variety of secondary structure components–2JAO contains primarily alpha helices, 164 

1UMK is mainly composed of beta-sheets, and 1F2J is a combination of alpha helices 165 

and beta-sheets. For 2JAO, the exterior helices that are flexible (red) in the observed 166 

structure are all reproduced in the predicted structure. The one highly rigid (blue) helix in 167 

the observed structure was more flexible in the predicted structure but was still in overall 168 

agreement. There is a surprising amount of similarity between the observed and predicted 169 

structure of 1F2J, considering that it contains both alpha-helix and beta-sheet elements. 170 

Similarly, 1UMK showed good agreement, except for some miniscule differences. This 171 

gives further evidence that the magnitudes of residue fluctuations predicted by the Seq-172 

GNM model is representative of the crystallographic B-factor profiles for many proteins. 173 
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Fig 2. Color-coded ribbon diagrams using experimental and theoretical B-factors obtained 

by Seq-GNM. 

The observed crystallographic B-factors (left) and the predicted B-factors from the Seq-GNM 

superimposed on the structure. The three proteins selected–2JAO, 1F2J, and 1UMK–were high-

resolution structures are better than 2.0 Å. The B-factors are color-coded according to their B-

factor profile on a spectrum of blue–white–red where blue represents the lowest B-factors (less 

mobility) and red represents the highest B-factors (more mobility). The B-factor scores were 

converted to a percentile rank so that they could be compared across different proteins. Each 

protein was also rotated 180° so that both sides could be visualized and compared. Moreover, 

the proteins were selected so that they had a variety of secondary structure components–2JAO 

contains primarily alpha helices, 1UMK is mainly composed of beta-sheets, and 1F2J is a 

combination of alpha helices and beta-sheets. 

 174 

 175 
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In order to compare predicted B-factors with crystallographic B-factors, we 176 

extracted a subset of 39 structures that had a resolution better than 2.0Å to obtain more 177 

realistic crystallographic B-factors (unreliable B-factors are common for many PDB 178 

structures) [18,46]. The same cutoff of 2.0Å was used in an earlier study to compare GNM 179 

predicted B-factors with those determined by crystallography [47]. For all 39 structures, 180 

the Seq-GNM (using EC values from RaptorX) and structure GNM were used to estimate 181 

their B-factors, which were then compared with the observed B-factors by calculating the 182 

correlation for each protein. The mean correlation coefficient for the Seq-GNM was 0.53 183 

while the mean correlation coefficient for the structure GNM was 0.58. The correlation of 184 

0.58 for structural GNM of our smaller data set is consistent with the findings of Kundu et 185 

al. where 113 high-resolution structures (resolution <2.0 Å)  were used and, the mean 186 

correlation coefficient with observed B-factors was 0.59 [47]. 187 

As shown in Fig 3a, boxplot distributions reveal that correlations are not 188 

significantly different between the sequence and structure GNM (p = 0.055 in a student t-189 

test). The structure GNM appears to perform only slightly better than the Seq-GNM. Fig 190 

3b shows the same distribution separated into 10 individual bins of size 0.1. The overall 191 

shapes of the two distributions are similar, except for the exaggerated relative lower 192 

second peak of the Seq-GNM at 0.4. It should also be noted that for these cases where 193 

Seq-GNM had low correlations, the EC threshold could be tuned to yield much higher 194 

correlations. If this were done on a case-by-case basis, the overall correlation 195 

distributions would be even more similar. Thus, the EC threshold may be used as a tuning 196 

parameter to enhance the correlation coefficient for purposes of model optimization.  197 
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 198 

Fig 3. Comparison of B-factors obtained by GNM and Seq-GNM with experimental B-

factors. 

(a) Boxplot showing the correlation of predicted B-factors by the Seq-GNM with experimentally 

observed B-factors (blue) in comparison to that of the GNM obtained from structure (orange) 

for a subset of 39 structures with resolution better than 2.0 Å. (b) A distribution plot of the same 

correlations binned into 10 bins with sizes of 0.1. A student t-test revealed no significant 

difference between the two distributions (p=0.055) indicating that the Seq-GNM is producing 

competitive results compared to the original GNM from structure. The mean correlation of the 

Seq-GNM is 0.53 while that of the GNM from structure is 0.58. 

 199 

Interestingly, for the cases where predicted B-factors by Seq-GNM yielded 200 

significantly better correlations with the experimental B-factors than those obtained by 201 

GNM from structures, we observed that biological units of these proteins are assigned as 202 

oligomeric forms. While predicted B-factors obtained using Seq-GNM does not retain this 203 

information, it successfully predicts the experimentally low B-factor values of interface 204 

positions as shown for protein 5'(3')-deoxyribonucleotidase (2JAO) and protein aldehyde 205 

Dehydrogenase 7A1 (2J6L) in Fig 4. It is indeed shown in earlier work of direct contact 206 

analysis that co-evolution can identify positions of protein interfaces and protein-protein 207 
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interaction partners and successfully reconstruct protein complexes and interaction 208 

network [23,30,48]. Thus, it is not surprising to see that it yields good correlations with the 209 

experimental B-factors. Conversely, predicted B-factors from structure can only improve 210 

when the oligomeric structure is used for the GNM analysis. 211 

 212 

 

 

Fig 4.  Comparison of B-factors obtained from Experiments, Seq-GNM, GNM from 

monomeric structure, and GNM from oligomeric structure. 

B-factors are shown on the respective structures for (a) 5'(3')-deoxyribonucleotidase (2JAO) and 

(b) Aldehyde Dehydrogenase 7A1 (2J6L). (a) The correlation of Seq-GNM to experimental B-

factors is 0.83 while correlation of GNM B-factors obtained from monomer to experimental B-

factors is 0.63. When dimer is used for GNM analysis the correlation of GNM B-factors obtained 

from monomer to experimental B-factors increase to 0.72. (b) The correlation of Seq-GNM to 

experimental B-factors is 0.61 while correlation of GNM B-factors obtained from monomer to 

experimental B-factors is 0.37. When tetramer is used for GNM analysis the correlation of GNM 

B-factors obtained from monomer to experimental B-factors increase to 0.76. The change in 

correlation for GNM between monomer and oligomer clearly shows the drawback for 
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dependence on the crystal structure of biounits. However, Seq-GNM captures the interface B-

factors correctly. 

 213 

Even when using high-resolution X-ray structures, there is still some uncertainty 214 

about the realistic nature of crystallographic B-factors. For this reason, we thought a more 215 

plausible way to determine the efficacy of the Seq-GNM was to compare it directly with 216 

the structure GNM. The structure GNM is a robust method to describe thermal fluctuations 217 

in a protein, and in many cases, it performs as good or better than the ANM or MD [47,49]. 218 

We systematically evaluated the performance of the Seq-GNM and structure GNM for the 219 

entire set of 139 structures and obtained the correlation coefficients for each protein (Fig 220 

5).  221 

The average correlation of B-factors between the Seq-GNM and structure GNM 222 

model is 0.63 when using EC contacts from RaptorX and 0.43 when using contacts from 223 

EVcouplings. As seen in Fig 5a, the distribution of correlation coefficients increases until 224 

0.8, and then subsequently decreases. Interestingly, there are still an appreciable number 225 

of sequences yielding high correlations from 0.8 to 1.0. A distinguishing feature of the 226 

distribution is the pronounced peak in the bin from 0.7 to 0.8, indicating that significant 227 

fraction of our data set yields high correlations between 0.7 and 0.8. This is evidence that 228 

the Seq-GNM is efficiently capturing protein dynamics and supports the theory that ECs 229 

can be used as a substitute to 3D structure contacts in the GNM and still produce reliable 230 

dynamics profiles. The results of Seq-GNM based on contacts predicted by RaptorX 231 

usually yields B-factors that are closer to experimental B-factors as it uses structural 232 
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information in its neural networks leading to better EC values and correlations with 233 

structure [44]. 234 

 235 

Fig 5. Distribution of correlation coefficients. 

The distribution of correlation coefficients between B-factors from Seq-GNM and GNM from 

structure. (a) The average correlation coefficient is 0.63 with RaptorX EC values. (b) The 

average correlation coefficient is 0.43 by using EVcouplings EC values. 

 236 

 237 

Assessing nSNV Phenotypes Using the Seq-GNM 238 

Crystallographic B-factors have previously been used to assess the impact of 239 

nSNVs on protein function [18,50–54]. A study [51] found that mutations on lysozyme that 240 

impaired function exhibited lower than average temperature factors, suggesting that rigid 241 

sites on the protein are more susceptible to destabilizing nSNVs than flexible sites [55]. 242 

Another study revealed a relationship between crystallographic B-factors and the impact 243 

of nSNVs on protein function [56]. A commonly used tool to diagnose neutral and disease 244 

associated nSNVs, PolyPhen-2, uses evolutionary information, structural information, 245 
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and crystallographic B-factors in its prediction model [49]. These studies indicate that 246 

crystallographic B-factors can be used to predict the tolerance of a given residue to an 247 

nSNV (i.e., whether or not the occurrence of an nSNV would impact function).  248 

We investigated whether B-factors predicted by the Seq-GNM were indicative of 249 

biological phenotype for nSNVs in the human population. A total of 738 nSNVs were 250 

mapped to the 139 enzymes, where 436 are disease-associated and 302 are neutral. S1 251 

Table shows the number of disease and neutral nSNVs that occur on each protein. The 252 

Seq-GNM (using EC contacts from RaptorX and EVcouplings) was computed 253 

systematically for all 139 enzymes to obtain their dynamics profiles. The theoretical B-254 

factors scores were converted into a percentile rank so that the values could be compared 255 

across different proteins. 256 

We initially looked at two human enzymes, human lysozyme (PDB: 1C7P) and 257 

human cytochrome reductase (PDB: 1UMK). They were chosen because they were short 258 

proteins that each contain a disease and neutral nSNV. Human lysozyme is a glycoside 259 

hydrolase that functions in the immune system by causing damage to cell walls of 260 

bacteria. Human cytochrome b5 reductase is involved in many oxidation/reduction 261 

reactions including converting methemoglobin to hemoglobin [55].  262 

Each structure is color-coded according to its theoretical B-factor profile on a 263 

spectrum of blue–white–red. Sites that exhibit high mobility (flexible) are red, and sites 264 

that have low mobility (rigid) are blue. Regions that are characterized by low mobility are 265 

usually important for maintaining stability and function, thus a mutation could act to 266 

destabilize the protein and impair its function. Fig 6a show the disease mutation I56T 267 
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occurring on a rigid site with a B-factor of 0.0075. The neutral mutation T70N has a B-268 

factor of 0.96 indicating that it is a highly mobile site. Both I56T and T70N occur on loop 269 

regions. Although loops are generally more flexible, three alpha-helical domains 270 

encompass the loop containing I56T, which implies that it may be involved in interactions 271 

that contribute to stabilizing the functional conformation. Thus, the I56T mutation may 272 

disrupt these critical interactions and impair the enzymatic function. In the case of 273 

cytochrome reductase (Fig 6b), the disease mutation R57Q is also on a rigid site with a 274 

B-factor of 0.14. Instead of being located near the core, R57Q is highly exposed 275 

protruding outwardly from a beta-barrel. However, since beta-barrels often harbor 276 

functional residues, the R57Q mutation may disrupt certain interactions critical for 277 

modulating function. The neutral mutation T116S is located on a loop and has a B-factor 278 

of 0.96, indicating that is it has a high mobility. In our earlier proteome wide study of over 279 

100 human protein structures, we have shown that sites that are highly flexible (e.g., loop 280 

regions, or superficial sites) are typically more robust to mutations. Conversely, rigid sites 281 

are more susceptible to mutations that may disrupt function [18,19]. For these two cases, 282 

the B-factors produced by Seq-GNM successfully distinguished between the disease and 283 

neutral nSNVs, without using the 3D structures.  284 

 285 
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Fig 6. Comparison of theoretical B-factors on disease versus neutral mutant sites. 

A ribbon diagram for two human enzymes, human lysozyme (a) and cytochrome reductase (b) 

colored according to their predicted B-factors by the Seq-GNM. Red indicates high mobility 

sites, and blue indicates low mobility sites. Each protein contains two known nSNVs. I56T and 

R57Q are disease-associated, and they occur on low mobility (rigid) sites. Conversely, the 

neutral nSNVs T116S and T70N occur on high mobility sites. 

 286 

These findings prompted us to analyze the proteome-wide set of 139 enzymes to 287 

determine if the B-factors were indicative of phenotype for all 436 disease and 302 neutral 288 

nSNVs. The raw B-factor values were converted into a percentile rank (%B-factor) and 289 

then binned into 5 bins of size 0.2. We computed the observed-to-expected ratio of B-290 

factors, where the expected values were based on the B-factor distribution of all 51,618 291 

sites across all 139 proteins, and the observed values were based on the B-factors of the 292 

436 disease sites. The same process was done for the 302 neutral nSNVs. Under the null 293 

hypothesis that predicted B-factor of the disease associated nSNVs yields similar 294 

distribution of all the positions gathered from 139 enzyme sequences, the ratio of 295 

expected and observed sites harboring disease mutations for each %B-factor bin should 296 

be close to 1, which would imply that B-factor does not distinguish sites that are prone to 297 
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disease. This is the null hypothesis that disease sites are distributed uniformly between 298 

sites with low and high mobility. However, the null hypothesis was rejected for the 436 299 

disease nSNVs (p <0.001). Fig 7 shows the observed-to-expected ratio plot of disease 300 

and neutral nSNVs, which indicates that disease nSNVs are overabundant at low %B-301 

factor sites (<0.4) and under abundant at high %B-factor sites. Conversely, neutral nSNVs 302 

are overabundant at high %B-factor sites (>0.6) and under abundant at low %B-factor 303 

sites. This evidence suggests that the occurrence of an nSNV on a site with a low B-factor 304 

is likely damaging based on the position irrelative of the substitution. This is in agreement 305 

with our previous proteome-wide study showing that substitutions at rigid sites are more 306 

often associated with diseases [18]. Conversely, an nSNV on a high B-factor site is 307 

usually benign. Low B-factors usually signify a residue that is crucial for modulating 308 

functional motions (e.g., a hinge). Thus, mutations on these sites can severely impact 309 

function. High B-factor sites are more flexible (e.g., loops) and more robust to mutations. 310 

Fig 7 suggest that it is possible to use the predicted B-factors to discriminate between 311 

disease and neutral nSNVs using co-evolution obtained from only multiple sequence 312 

alignment. Moreover, it can be used as an additional feature for in silico predictions [12]. 313 

 314 
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Fig 7. Observed to expected ratio plots for disease and neutral nSNVs. 

The relationship of observed-to-expected numbers between 436 disease nSNVs (red) and 302 

neutral nSNVs (blue) from 139 human enzymes. The %B-factor scores derived from the Seq-

GNM are binned into 5 bins of size 0.2. 

 315 

Predictive models were created using logistic regression as the classification 316 

algorithm, 80% of the data was used for training and 20% for testing for 10 randomized 317 

sets. Models were evaluated based on ROC curves and their respective area under curve 318 

(AUC), the best performance is labeled as AUC_max and average performance as AUC. 319 

Theoretical B-factors obtained by Seq-GNM, experimental B-factors, and evolutionary 320 

parameters were used as predictive variables for training and testing (Fig 8). Seq-GNM 321 

and experimental B-factors have similar performance (maximum AUC of best 0.76 and 322 

0.75, respectively), with Seq-GNM overshadowing experimental B-factors on average 323 

(AUC of 0.69 and 0.60, respectively). The ~0.70 AUC of B-factors obtained from Seq-324 

GNM is impressive, as it has been shown that majority of state-of-art methods also yields 325 

similar AUC in independent tests [5,13]. Moreover, incorporation of Seq-GNM as an 326 

additional feature with evolutionary parameters resulted in higher prediction performance. 327 

While the AUC scores obtained using the evolutionary features for classification gives 328 
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0.76, this is increased to 0.81 after including the B-factors of Seq-GNM (Fig 8c-d). This 329 

result also demonstrates the efficacy of Seq-GNM in disease prediction as a 330 

complementary metric to other metrics used as features in classifiers. 331 

 332 

 

 

Fig 8. ROC curves for disease prediction performance comparing Seq-GNM, experimental 

B-factors and evolutionary parameters. 

ROC curves are plotted using 10 randomly selected training and testing data sets using 80%, 

and 20% of the data, respectively. (a) ROC curve of Seq-GNM. (b) ROC curve of experimental 

B-factors. (c) ROC curve of evolutionary parameters, where primate, mammal, and vertebrate 

fitch rates using Fitch Algorithm [57]; and Entropy2 are used as features for training. (d) ROC 

curve of evolutionary parameters used in (c) with the addition of Seq-GNM. 

 333 
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We also compared the performance of Seq-GNM with common in silico prediction 334 

tools like Polymorphism Phenotyping v2 (PolyPhen-2), and Sorting Intolerant from 335 

Tolerant (SIFT) [6,58]. The accuracy, sensitivity, and selectivity of disease predictions for 336 

nSNVs with experimental B-factors, B-factors from SIFT, PolyPhen-2, evolutionary 337 

parameters, and Seq-GNM are tabulated in Table 1. The accuracy of Seq-GNM using 338 

both EC values from EVcouplings and RaptorX is ~0.70. This accuracy is similar to using 339 

experimental B-factors for prediction (0.69) and also very close to prediction with 340 

evolutionary parameters (0.75), suggesting that Seq-GNM allows us to incorporate 341 

protein dynamics in nSNV predictions when the 3D experimental structures are not 342 

available. Moreover, accuracy of Seq-GNM approach is greater than SIFT (0.65) and 343 

PolyPhen-2 (0.64). Interestingly, Seq-GNM obtained by EVcouplings and RaptorX yields 344 

similar accuracies indicating that evolutionary couplings without the inclusion of structure 345 

could be utilized to predict B-factors to include as a feature to in silico prediction tools. 346 

Seq-GNM sensitivity (~0.90) surpasses other methods (0.80 for SIFT, 0.63 for PolyPhen-347 

2, and 0.85 for evolutionary parameters), but it has a shortcoming in selectivity (~0.36) as 348 

other methods reach higher (~0.59). Conversely, training Seq-GNM combined with 349 

evolutionary parameters enhances the selectivity (0.66) to its highest value compared to 350 

others. Seq-GNM with evolutionary parameters predicted disease related nSNVs with 351 

accuracy 0.78 and sensitivity of 0.84, reaching beyond predictions of other metrics solely. 352 

These results suggest the incorporation of Seq-GNM with other prediction metrics can 353 

augment accuracy, sensitivity, and selectivity of prediction. 354 

 355 
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Table 1. The disease prediction data showing the accuracy, sensitivity, and the selectivity 

of Seq-GNM compared with experimental B-factors, SIFT, PolyPhen-2 and evolutionary 

parameters. 

Classifier Feature and Methods Accuracy Sensitivity Selectivity 

Experimental B-factors 0.69 0.88 0.35 

SIFT 0.65 0.70 0.56 

PolyPhen-2 0.64 0.63 0.64 

Seq-GNM B-factors (EVcouplings) 0.70 0.89 0.37 

Seq-GNM B-factors (RaptorX) 0.71 0.91 0.35 

Evolutionary parameters 0.75 0.85 0.58 

Seq-GNM (EVcouplings) with 

evolutionary parameters 
0.78 0.84 0.66 

 356 

 Prediction accuracy of Seq-GNM is further tested using 323 nSNVs (187 disease-357 

associated, 136 neutral) of 22 proteins where their 3D experimental structures are not 358 

available (S2 Table). We used the trained classifier model of Seq-GNM B-factors for this 359 

test. While the B-factors obtained solely from Seq-GNM are used, it reached an accuracy, 360 

sensitivity, and selectivity of 0.82, 0.82, 0.83, respectively. This result further suggests 361 

that Seq-GNM allows us to incorporate protein dynamics as additional feature in in silico 362 

prediction tools without a known 3D structure. 363 

 364 

Discussion 365 

While we and others [5,19,59–63] have shown that the integration of conformational 366 

dynamics into genomic analysis will help next generation of approaches to predict the 367 

impact of novel missense mutations on the human proteome, the inherent limitations in 368 

availability of 3D structures compared to the vast number of sequences must be 369 
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addressed. This begs the question: how can protein dynamics be used in genome-wide 370 

analysis to predict functional impacts of nSNVs? There is, therefore, a need to be able to 371 

obtain protein dynamics by leveraging only sequence information, without a priori 372 

knowledge of a 3D structure.  For this reason, we have developed this novel method to 373 

estimate the dynamics profile of a protein by using only a sequence as input. The method 374 

uses the coevolution of amino acids through multiple sequence (which tend to be spatially 375 

close in the 3D tertiary structure) and a simple Gaussian network model (GNM) to obtain 376 

dynamics. The original GNM based on the 3D structure is well-known for its ability to 377 

describe residue dynamics profiles due to thermal motions in proteins (i.e., B-factors). We 378 

showed that our sequence-based GNM model is able to adequately reproduce the mean-379 

square fluctuations (B-factors) calculated by the original GNM, particularly outperforms 380 

for the cases where biological functional state is oligomeric. Our estimates of B-factors 381 

for a proteome-wide set of proteins exhibited good correlation with the structure GNM. 382 

Moreover, our estimated B-factors were in reasonable agreement with crystallographic 383 

B-factors for many cases. To address the issue of how protein dynamics can determine 384 

the impact of nSNVs across the genome where there are no known 3D structures, we 385 

tested the ability of our predicted dynamics from the Seq-GNM to assess nSNV 386 

phenotypes. A plot of the observed-to-expected ratio of the predicted B-factors revealed 387 

distributions of disease and neutral nSNVs that are similar to those in a previous protein 388 

dynamics analysis work [18]. The predicted B-factors using the Seq-GNM was able to 389 

discriminate between disease and neutral nSNVs with an accuracy of 0.70 and 390 

incorporating the Seq-GNM predicted B-factors with evolutionary parameters increased 391 
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overall accuracy to 0.78. This analysis demonstrates that the Seq-GNM makes it possible 392 

to obtain estimates of dynamics without using a 3D structure, which will allow for the 393 

integration of conformational dynamics into large-scale analysis of genomic variants.  394 

 395 

Methods 396 

Dataset 397 

A curated set of 139 structures was selected for several reasons. First, they have 398 

high query coverage (>80%) and sequence identity (>80%) as found from a BLAST 399 

search, and the structures had already been modeled using the Modeller software 400 

package [64] to account for any missing residues. Second, genetic variants were 401 

previously mapped onto these structures, such that the positions containing known 402 

nSNVs were already determined, enabling us to easily compare our results using 403 

sequence coevolution with the genetic variation data. A total of 738 genetic variants were 404 

obtained from the HumVar database [58], which was comprised of 436 disease and 302 405 

neutral nSNVs. Finally, the structures were either monomers or the single-chain unit of a 406 

multimer with <600 residues, allowing for tractable calculations of residue coevolution 407 

using the RaptorX web server [42,44], and EVfold (EVcouplings) [21]. A table 408 

summarizing the dataset is presented in S1 Table.  409 

 410 
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Obtaining Coevolved Residues 411 

The amino acid sequence from each of the 139 structures was used as input for 412 

the evolutionary coupling (EC) analysis. The choice of taking the amino acid sequence 413 

from the structure was done so that the predicted EC contacts could be compared directly 414 

to the experimentally observed structure contacts as verification that the model was 415 

producing realistic contact maps. Moreover, the theoretical B-factors predicted by our 416 

sequence-based model could be directly compared to the experimental B-factors for each 417 

protein. If the structure was unknown, however, sequence databases (e.g. UniProt, 418 

PFAM, etc.) could be used. The PDB sequences were given to the RaptorX web server 419 

[42,43], which computed the relative probability of each residue pair i, j of being in 3D 420 

contact based on their coevolution strength. The sequences were also used to generate 421 

MSAs using phmmer [65]. Using MSAs, DI values are calculated by EVcouplings. In order 422 

to ensure consistency between different proteins of varying lengths, we converted the raw 423 

scores into percentile ranks. We then used a threshold value, taking only the top scoring 424 

evolutionary couplings (i.e., the strongest couplings are more likely to be in spatial 425 

contact). An optimized threshold value was systematically evaluated and is discussed in 426 

the Methods. 427 

 428 

Sequence-based GNM Model (Seq-GNM) 429 

The Gaussian network model (GNM) is an isotropic approach based on the contact 430 

topology of a crystal protein structure to obtain the equilibrium fluctuations of residues 431 

due to thermal motion. It uses a specified cutoff distance to define interacting pairs that 432 
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are connected by springs with a single-parameter harmonic potential. In this structure-433 

based GNM, the interacting residue pairs within the cutoff range are represented as 434 

contacts in the Kirchhoff (connectivity matrix). 435 

In the proposed sequence-based GNM (Seq-GNM) approach we will instead use 436 

coevolving residue pairs (evolutionary couplings) as contacts in the Kirchhoff. In this way, 437 

the 3D structure is no longer a prerequisite to form a GNM. To construct the Kirchhoff, a 438 

threshold is defined where any evolutionary coupling scores above that threshold are 439 

sufficiently coupled such that they are spatially close in 3D structure. If a given 440 

evolutionary coupling pair meets the threshold criteria, it is assigned a value in the 441 

Kirchhoff for non-bonded contacts of –1 multiplied by its evolutionary coupling score (i.e., 442 

–1×ECscore). This will permit that the strength of each connection will attenuate 443 

proportionally to the evolutionary coupling strength. The Kirchhoff can be decomposed 444 

into the individual contributions from the bonded contacts representing the chain 445 

connectivity (Rouse chain) and that from the non-bonded contacts [56]. In the Seq-GNM 446 

the contribution of non-bonded contacts to the Kirchhoff is constructed according to 447 

 448 

 Γ𝑖𝑗 
𝑛𝑏 =

{
 
 

 
 −1 × ECscore,        𝑖 ≠ 𝑗    evolutionary coupling        

0,               i ≠ 𝑗         no coupling                        

− ∑ Γ𝑖𝑗
𝑖,𝑖≠𝑗

,         𝑖 = 𝑗                                                            
 (1) 

 449 



28 

 

For the local chain connectivity (Rouse chain), we don’t take into account evolutionary 450 

couplings, and matrix was constructed such that every residue pair i, i ± 1 to i, i ± 3 is in 451 

contact as 452 

 453 

 Γ𝑖𝑗 
𝑐𝑐 =

{
 
 

 
 −1,       𝑖 ≠ 𝑗    and    ∑ 𝑖, 𝑖 ± 𝑘

𝐿

𝑖|𝑘=1,2,3
 

0 ,         𝑖 ≠ 𝑗     else                               

– ∑ Γ𝑖𝑗
𝑖,𝑖≠𝑗

,    𝑖 = 𝑗                                             

 (2) 

 454 

Then the overall Kirchhoff is the combination of the two contributions 𝛤𝑖𝑗 = 𝛤𝑖𝑗
𝑐𝑐 +455 

𝛤𝑖𝑗
𝑛𝑏. The vibrational dynamics due to thermal fluctuations can then be evaluated in the 456 

same way as the original GNM by inverting the Kirchhoff matrix. The magnitude of mean-457 

square fluctuations is then written in terms of the inverse Kirchhoff as 458 

 ⟨(𝛥𝑹𝑖)
2⟩ ≅ [𝛤−1]𝑖𝑖 (3) 

This is proportional to the Debye-Waller temperature factors or B-factors, which 459 

describe the attenuation of X-ray scattering due to the thermal motions of atoms (𝐵𝑖 =460 

8𝜋2⟨(𝛥𝑹𝑖)
2⟩ 3⁄ ). Here there is no single-parameter force constant as in the GNM obtained 461 

from structure [52], and the pair-wise interactions are simply the strength of the 462 

evolutionary couplings as given by their ranked scores. The theoretical predictions of our 463 

Seq-GNM can be compared to the predictions of the original GNM obtained from structure 464 

as well as observed crystallographic B-factors. A general workflow of our method is 465 

presented as a flow diagram in Fig 9. 466 
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 467 

Fig 9. Flowchart of Seq-GNM method for nSNV predictions. 

A workflow of our method to use predicted evolutionary couplings to determine protein 

dynamics and assess the functional impact of nSNVs. The initial input is an amino acid sequence, 

which is used to obtain MSA. Using MSA evolutionary coupling pairs are predicted through 

RaptorX and EVcouplings. The high scored evolutionary coupling pairs are assigned as contacts 

in our Seq-GNM to compute the dynamics profile of each protein. The dynamic profiles obtained 

from Seq-GNM can give insight into the functional impact of nSNVs. This was done for a 

curated set of 139 structures. 

 468 

 469 

Optimizing Threshold Value for EC Scores 470 

To ensure consistency when analyzing different proteins with varying lengths, we 471 

converted the raw scores of evolutionary couplings (EC) into a percentile rank. We 472 

computed the Seq-GNM for all 139 structures using a constant threshold percentile rank 473 

EC value to assign contacts and measured the correlation between the B-factors 474 
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predicted by our Seq-GNM to the GNM obtained from structure. We used only the top 475 

percentile EC scores predicted by RaptorX and EVcouplings as predicted contacts, 476 

because only certain fraction of high EC scores are true native contacts in 3D structure, 477 

largely due to noisy artifacts in the MSA such as the transitivity of correlations and 478 

phylogeny. To determine the optimal threshold value, we tested a range of threshold 479 

values from 0.92 to 0.99. A threshold value ≤0.92 yields superfluous contacts leading to 480 

a noisy contact map, and thus, a lower overall correlation (Fig 10). Conversely, a 481 

threshold value ≥0.99 gives a deficient number of contacts, which yields an excessively 482 

sparse contact map and a lower overall correlation. As Fig 10 shows, a threshold value 483 

of 0.98 produced the best overall correlation with the GNM from structure and, thus, was 484 

taken to be the optimal threshold value used in the analysis. 485 

 486 
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Fig 10. Comparison of theoretical B-factors. 

Boxplots comparing the correlations of predicted B-factors by our Seq-GNM for (a) RaptorX 

and (b) EVcouplings with that of the structural GNM for all 139 structures using a constant 

threshold for EC contacts. The GNM analysis was conducted 8 times using a constant threshold 

(between 0.92 and 0.99) each time. The best average correlations were produced when the 

constant threshold value of 0.98 was used. 

 487 

 488 

 489 
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Supporting information 671 

S1 Table. List of 139 proteins used in this study. 672 

Proteins used to compute theoretical B-factors based on Seq-GNM and GNM obtained 673 

from structure. B-factor correlation values between GNM obtained from structure to 674 

experimental (Str GNM-Expt), Seq-GNM to experimental (Seq GNM-Expt), and Seq-GNM 675 

to GNM obtained from structure (Seq GNM-Str GNM) are given for two methods (RaptorX, 676 

EVfold (EVcouplings)).  677 
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S2 Table. List of proteins without a known structure with disease related nSNVs 679 

used for prediction. 680 

Seq-GNM predictions by using a set of 323 nSNVs without a known 3D structure from 681 

22 proteins. The protein identifiers, residue numbers, amino acid substitutions Seq-682 

GNM scores, Seq-GNM predictions, and ground truth are provided. 683 
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