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Abstract. In this paper, we construct a solution to the optimal contract problem for delegated portfolio man-
agement of the first-best (risk-sharing) type. The novelty of our result is (i) in the robustness of
the optimal contract with respect to perturbations of the wealth process (interpreted as capital in-
jections), and (ii) in the more general form of principal’s objective function, which is allowed to
depend directly on the agent’s strategy, as opposed to being a function of the generated wealth
only. In particular, the latter feature allows us to incorporate endogenous trading constraints in
the contract. We reduce the optimal contract problem to the following inverse problem: for a given
portfolio (defined in a feedback form, as a random field), construct a stochastic utility for which the
given portfolio is optimal. We characterize the solution to this problem through a Stochastic Partial
Differential Equation (SPDE), prove its well-posedness, and compute the solution explicitly in the
Black-Scholes model.

1. Introduction. In this paper, we study a problem of delegated portfolio management.
The basic formulation of the problem (on which we build our setup) is as follows. An investor
hires a fund manager (referred to as the agent) for a specified period of time, to invest her
capital dynamically in the available assets. At the end of the time period, the investor receives
the wealth generated by the manager and, in return, pays the fees prescribed by the contract.
The fees are allowed to depend on the wealth level and on all publicly observed factors that
generate the market filtration. As we assume a non-degenerate Itô’s market model, the agent’s
strategy is uniquely determined by the (terminal value of the) generated wealth process,1 and
since the agent does not have any superior information about the market relative to the
investor,2 the investor can choose any target strategy and restrict the payoff of the contract
to the set on which the generated wealth coincides with the one associated with the target
strategy, thus, forcing the agent to follow this strategy (see Subsection 4.2 for more). As a
result, in such a setting, the optimal strategy of the agent and the associated optimal contract
can be chosen so that they jointly maximize the investor’s objective. Such problems are known
as “first-best”, or the optimal risk-sharing problems.

The existing literature on the optimal contract design for the delegated portfolio manage-
ment problem, of the first-best type, includes [16], [17], [12], [2], and the references therein.3
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1This follows directly from the uniqueness of the martingale representation. It is important to notice that

the agent’s strategy is still not directly observable, in the sense that it cannot be deduced from the wealth
value on a single random outcome. However, if the wealth is known as a random variable, then, the strategy
can be deduced uniquely from it.

2Relaxing this assumption would, e.g., correspond to assuming that the investor does not observe the prices
of some of the assets, and it would introduce the information asymmetry, or “moral hazard”, in the model. We
do not consider such a version of the problem in the present paper.

3In this paper, we limit our literature review to the papers that are dealing with the delegated portfolio
management problem specifically, leaving aside the discussion of general optimal contract theory, such as the
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Single period models are analyzed in [16] and [17], while [12] considers the Black-Scholes model,
with the investor and the fund manager having either exponential or power utilities. A general
market model and general utilities are considered in [2], which, in particular, constructs an
optimal contract explicitly when the market is complete.

The present work differs from the existing results in that, herein, (i) we require that the
contract is robust with respect to the perturbations of wealth process, and (ii) we consider a
more general optimality criterion for a contract than the classical expected utility of terminal
wealth. Our main motivation to consider the perturbations of wealth process is to include (un-
anticipated) capital injections made by the investor after the contract is initiated. Namely,
we assume that the contract allows the investor (as, e.g., most fee structures of mutual funds
do) to add an arbitrary amount of additional capital to her account with the manager, at
any time when she wishes to do so, and with the fee structure for the manager remaining the
same (i.e. the contract remains the same). Note that these times and amounts, and even their
probabilistic structure, may not be initially known to either one of the two parties. However,
the inflow of capital in the fund may change the investment strategy of the fund manager
drastically (see, e.g. [1], and the references therein, for more on the effects of capital inflows
and outflows on the behavior of a fund manager). Thus, when designing an optimal contract,
one needs to take into account the agent’s optimal strategy, induced by this contract, for
any intermediate time and wealth level. Mathematically, this means that the agent’s strategy
should be viewed as a random field, defined for all possible initial investment times and wealth
levels. Another implication of this feature is that it is no longer obvious how the principal
can force the agent to follow a chosen strategy. Indeed, since the agent’s strategy is not
directly observable by the principal, it can only be enforced indirectly, through the wealth
process. Even though it turns out that such enforcement can be implemented in our setting,
the implementation itself (i.e., the form of a contract) is far from obvious (unlike the classical
case, with no capital injections). Subsection 4.2 contains a more detailed discussion of this
issue.

Another special feature of our setting is a more general optimality criterion for the contract.
Namely, we assume that the entity designing the contract (referred to as the principal) may
be concerned directly with the strategy used by the agent, in addition to the wealth generated
by this strategy.4 Our main motivating example of such preference structure is the case of
constrained maximization of expected utility of terminal wealth, with the constraint that no
investment is made in certain assets. In such a case, the principal’s objective contains an
infinite penalty for investing in the prohibited assets, and the contract must be designed so
that the agent follows this rule. For example, a regulator or the board of directors of a mutual
fund may want to enforce a ban on investments in certain “socially irresponsible” assets, or
in the assets of companies subject to sanctions (we refer the reader to [14], and the reference
therein, for more on the so called “socially responsible” funds). However, the principal cannot
put such a rule into a contract directly, as she does not observe the agent’s actions. Hence,
these constraints need to be enforced implicitly, through the design of the contract, which can
only depend on the generated wealth and on the publicly observed factors – this is what we

seminal work [5].
4As explained in the next paragraph, the investor may not coincide with the principal, in our setting.
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refer to as the endogenous constraints.
Let us describe a specific setting in which the robustness of the contract with respect to

capital injections and the endogenous constraints are important (a more detailed formulation
is given in Section 4). First, we assume that the principal, who designs the contract, may
not coincide with the investor (at least, they may not coincide for the entire duration of the
contract). For example, the fee structure of a mutual fund is very often prescribed a priori,
and an individual investor can either take it or leave it. In this case, the principal may be
a regulator or the board of directors of the mutual fund.5 Even though the principal may
not coincide with the investor, we assume that she aims to design the contract so that the
investor is satisfied: e.g. the board of directors of a mutual fund wants to keep their investors
happy, in order not to lose them to the competitors. At the same time, the principal also
wants to ensure that the agent does not invest in the prohibited assets.6 Thus, the principal
finds a strategy that maximizes the investor’s expected utility of terminal wealth, subject
to the constraint that no investment is made in the prohibited assets, and aims to design
a contract (which is only allowed to depend on the generated wealth and on the publicly
observable market factors) which would make this strategy optimal for the agent. This task
is complicated by the fact that the investor may perform capital injections, whose times and
sizes are unknown (i.e. not modeled) initially. Namely, the investor, unlike the principal,
may not be concerned about investing in prohibited assets, hence, she may perform a capital
injection even if it encourages the agent to violate this constraint. Thus, the contract has to
be chosen by the principal so that the agent has no incentive to violate the constraint even in
the presence of capital injections – this is what we refer to as the robustness with respect to
capital injections.

On the mathematical side, this paper solves the following inverse problem: given a reg-
ular enough random field, find a stochastic utility whose optimal investment strategy, in the
feedback form, coincides with this random field. We characterize the solution through a linear
stochastic partial differential equation (SPDE), prove its well-posedness, and compute the
solution explicitly in the Black-Scholes model.

Let us describe how the proposed method for constructing an optimal contract compares
to the existing literature. The typical construction of an optimal contract starts by find-
ing a convenient description of a sufficiently large family of potential contracts (so that the
principal’s maximization problem can be reduced to this family without loss of optimality).
The “convenience” is determined by how tractable is the description of the contract and the
associated optimal strategy of the agent. For example, [12] assumes a convenient differential
representation of a contract (which, potentially, may lead to a loss of optimality), for which
the optimal effort of the agent can be computed explicitly in a feedback form. In [2], the mar-
ket completeness allows for the use of convex duality in oder to describe the optimal strategy
of the agent. More generally, it was proposed in the seminal work [15] that a convenient

5Alternatively, the principal may be an initial investor, who enters into a long-term contract with the fund
manager and passes on her wealth to the successors. The successors cannot withdraw funds before the deadline,
but they may be allowed to add capital, keeping the fee structure as prescribed by the principal.

6For example, a university may want to ensure that its endowment is not invested in the stocks of the
companies engaged in the production and distribution of fossil fuel, or tobacco and alcohol. We thank the
anonymous referee for this example.
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parameterization of the space of potential contracts is through the associated (continuation)
value processes. For example, in a finite-horizon setting, the contract is given by the value
process at the terminal time. In many relevant problems, the Pontryagin principle provides
a representation of the value process of the agent as the solution to a backward stochastic
differential equation (BSDE), and the associated optimal strategy is expressed through the
value process and its diffusion coefficient. Then, in order to describe all contracts and the
associated optimal strategies, it suffices to describe all solutions to the aforementioned BSDE.
It turns out that, since the terminal condition of the BSDE is not fixed, the space of its solu-
tions can be described by “reversing the time” and viewing the BSDE as a family of forward
stochastic differential equations (SDEs). Any solution to such SDE also solves the desired
BSDE, which makes it a value process and yields a tractable representation for the associated
contract and the optimal strategy of the agent. In turn, the aforementioned family of SDEs
can be parameterized explicitly by varying the diffusion coefficient of this equation (viewed
as a stochastic process), and its initial condition, over a tractable set.7 For any choice of
the diffusion coefficient and the initial condition, one obtains the associated contract and the
agent’s optimal strategy explicitly, and the latter determine the objective of the principal.
Thus, the principal’s problem is reduced to a standard optimal control problem, where the
coefficients of the state process depend explicitly on the control (the latter represents the dif-
fusion coefficient of the value process). This approach appears to be prevailing in the modern
literature: see, e.g., [4], [3]. Our approach follows the same general methodology. However,
the main difference is that, herein, we need to consider value processes for all possible initial
wealth levels, in order to ensure that the optimal strategy of the agent is stable with respect
to capital injections. Such formulation does not allow for the use of Pontryagin principle, as
it only describes the optimal wealth dynamics starting from a given initial point, but does
not characterize the optimal wealth processes starting form other intermediate levels. Hence,
we replace the Pontryagin BSDE by the stochastic Hamilton-Jacobi-Belman (HJB) equation
(3.3), also known as the forward performance SPDE. The latter describes the optimal wealth
processes and the associated optimal strategies for all initial wealth levels and initial times.
The main mathematical challenge associated with this modification is that, unlike the case of
BSDE, one cannot simply “reverse the time” in a parabolic SPDE: the resulting time-reversed
equation is, typically, not well posed for most initial conditions (see the discussion of this issue
for parabolic PDEs in [11]). Thus, another interpretation of the solution to the inverse prob-
lem mentioned in the preceding paragraph is as follows: we find an explicit representation of a
sufficiently large family of solutions to the stochastic HJB equation via the associated optimal
strategies. Having established such a representation, we follow the standard approach and
parameterize the space of contracts explicitly via the agent’s optimal strategies: each contract
is computed from the terminal value of the solution to an SPDE, whose coefficients depend on
the agent’s strategy. As a result, the principal’s problem can be reformulated as an optimal
control problem over the agent’s strategies (viewed as random fields). The latter, in general,
becomes an infinite-dimensional control problem (i.e., control of SPDE), which, however, is
made trivial in the present setting by assuming the additive structure of the principal’s objec-

7For the sake of simplicity, this discussion is restricted to diffusion-based models, and it excludes the
adverse-selection, or “third-best”, problems, where 2BSDEs are used (cf. [3]).
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tive with respect to the contract fees. It is also worth mentioning that our description of the
solutions to stochastic HJB equation works only in the case of symmetric information. The
additional challenges arising in the asymmetric case (i.e., in the case of “moral hazard”) are
discussed in Remark 10.

The rest of the paper is organized as follows. In Section 2, we formulate the optimal
contract problem precisely, in mathematical terms. Subsection 2.1 is concerned with the
market model, and Subsection 2.2 introduces the notions of admissible and optimal contracts.
Section 3 presents a general solution to the problem, which reduces to the inverse problem
of constructing an optimization criterion that generates a given optimal strategy (viewed
as a random field), for all initial wealth levels. Proposition 3.1 connects this problem to a
nonlinear SPDE, and Proposition 3.2 shows how to linearize this SPDE and proves the well-
posedness of the resulting equation. Finally, Theorem 3.3 connects these results to the optimal
contract problem. In Section 4, we consider a specific setting in which the proposed notion
of optimal contract is natural, and use the general results of preceding sections to construct
an optimal contract in closed form, in the Black-Scholes model. Remarkably, the optimal
contract constructed in Section 4 depends only on the values of the wealth process and of the
tradable assets at the terminal time.

2. Problem formulation.

2.1. Market model and investment strategies. We fix a stochastic basis (Ω,F,P) and
assume that the publicly observed filtration F (also referred to as the market filtration) is
an augmentation of the filtration generated by W , a standard Brownian motion in R

d. In
addition, we assume that the price process of traded assets S = (S1, . . . , Sk)T is an Itô process
in R

k with positive entries, given by

(2.1) d logSt = µ̃tdt+ σT
t dWt,

where the logarithm is taken entry-wise, µ̃ is a locally integrable stochastic process with
values in R

k, and σ is a d × k matrix of locally square integrable processes, with d ≥ k, and
with linearly independent columns. The latter assumptions is interpreted as the absence of
redundant assets. We use the notation ”AT ” to denote the transpose of a matrix (vector) A.
For simplicity, we set the riskless interest rate to zero (equivalently, we work with discounted
units). We introduce the d-dimensional stochastic process λ, frequently called the market
price of risk, via

(2.2) λt :=
(
σT
t

)+
µt,

where (σT
t )

+ is the Moore-Penrose pseudo-inverse of the matrix σT
t , and µ is the drift of S:

µi
t = µ̃i

t + ‖σi
t‖2/2, for i = 1, . . . , k, with σi

t being the i-th column of σt. In particular, we
have σT

t λt = µt. The existence of such a process λ follows from the assumption of absence
of arbitrage in the model. Denote by X a set of pairs (ξ, τ), with τ ∈ T and ξ ∈ L0

+(Fτ ),
where T is the set of all F-stopping times, and L0

+(Fτ ) is the set of all positive Fτ -measurable
random variables. Starting from any (ξ, τ) ∈ X , the cumulative wealth process Xπ,ξ,τ is given
by

(2.3) dXπ,ξ,τ
s = πT

s σ
T
s λsds+ πT

s σ
T
s dWs, s ∈ (τ, T ], Xπ,ξ,τ

τ = ξ,
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for any progressively measurable process π, representing the self-financing trading strategy,
for which the integrals associated with the right hand side of (2.3) are well defined. We assume
that π is such that Xπ,ξ,τ is almost surely strictly positive at all times. For each pair (ξ, τ),
we fix a subset of such strategies A(ξ, τ), and call any π ∈ A(ξ, τ) (ξ, τ)-admissible (or, just
admissible, if the rest is clear from the context).

Remark 1. It is possible to drop the restriction to strictly positive wealth processes. How-
ever, in this case, the construction (and the form) of the optimal contract would change ac-
cordingly (cf. the proof of Proposition 3.2 and Remark 8).

2.2. Optimal contract. Consider an investor who hires a risk-neutral agent in order to
invest her initial capital X0 > 0 in the market described above. The agent is offered a contract,
which is represented by a measurable mapping C : Ω× (0,∞) → R, which maps the terminal
value of a wealth process (produced by the agent, via a chosen trading strategy π) into the
payment (received by the agent at time T ). The agent is risk-neutral, in that he aims to
maximize his expected objective:

(2.4) max
π

EC(Xπ
T ),

where the maximization is performed over all admissible strategies π, with C being fixed.
The agent will not enter into a contract if his expected payment does not reach a given level
u0 > 0. We define an admissible contract as a contract for which the agent’s optimization
problem is well posed, and such that the participation constraint is satisfied.

Definition 2.1. We call C an admissible contract if the following holds.
• For any (ξ, τ) ∈ X and any π ∈ A(ξ, τ), C(Xπ,ξ,τ

T ) is absolutely integrable.
• There exists a progressively measurable random field π∗ : [0, T ]× Ω× (0,∞) → R, such that:

– for any (ξ, τ) ∈ X , there exists a unique X∗,ξ,τ satisfying (2.3), with π = (π∗
t (X

∗,ξ,τ
t )),

– for any (ξ, τ) ∈ X , (π∗
t (X

∗,ξ,τ
t )) ∈ A(ξ, τ),

– EC
(
X∗,X0,0

T

)
≥ u0,

– for any (ξ, τ) ∈ X and any π ∈ A(ξ, τ),

E

(
C(Xπ,ξ,τ

T ) | Fτ

)
≤ E

(
C(X∗,ξ,τ

T ) | Fτ

)
, a.s.,

and the equality is only possible if π = (π∗
t (X

∗,ξ,τ
t )) for a.e. (t, ω) in the stochastic

interval [τ, T ].
Any such strategy π∗ is called C-optimal.

Throughout the rest of the paper, a “strategy” may refer to either a stochastic process
(i.e. an element of A(ξ, τ)) or a random field (whose values along the generated wealth form
an element of A(ξ, τ)), whenever the meaning is clear from the context. Similarly, in Xπ,ξ,τ ,
the term π may represent either a stochastic process or a random field – in either case, it is
clear how (π, ξ, τ) generates Xπ,ξ,τ .

The special feature of the above definition, which differentiates it from the classical setup,
is that the agent is allowed to re-evaluate his strategy at intermediate times, and starting
from various wealth levels, which, in particular, may not coincide with the wealth generated
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by his strategy thus far. In addition, at each re-evaluation, the agent has to follow the exact
strategy prescribed by the optimal random field: i.e. the optimal strategy is time-consistent
and unique. A motivation for such strong definition of an optimal contract is given in the
discussion following Definition 2.2, and a specific problem is described in Section 4.

The contract is designed by a principal who aims to maximize the expectation of her
individual objective J , which maps any progressively measurable random field π : [0, T ]×Ω×
(0,∞) → R into an FT -measurable random variable J(π), applied to the strategy used by the
agent, less the payment to the agent:

(2.5) max
C

E [J(π)− C (Xπ
T )] .

The above maximization is performed over all admissible contracts C, with the strategy π
being C-optimal.

Definition 2.2. An admissible contract C∗ is a solution to the optimal contract problem
(2.4)–(2.5), also referred to as an optimal contract, if, for any C∗-optimal strategy π∗, any
admissible contract C, and any C-optimal π, we have

E

(
J(π)− C

(
Xπ,X0,0

T

))
≤ E

(
J(π∗)− C∗

(
X∗,X0,0

T

))
,

where Xπ,X0,0 and X∗,X0,0 are the wealth processes associated with π and π∗, respectively, and
with the initial condition X0 at time zero.

The main difference between the above formulation of the optimal contract problem and
the classical one is that, in the present case, the principal needs to predict the agent’s strategy
for various initial wealth levels, which may not correspond to the levels generated by the
strategy itself. The reason for such a formulation is explained in the introduction: on the one
hand, we want to allow for (positive) capital injections after the contract is initiated, on the
other hand, we do not want to impose any probabilistic structure on the times or the sizes
of these injections. In such a robust formulation, the capital under management may change
(increase) in an “unpredictable way” at any given time, which, naturally, forces the agent to
change his strategy. However, Definition 2.1 ensures that, even if an injection is made, the
agent’s optimal strategy is still given by the same random field (only started from a different
wealth level). Thus, in the presence of unknown capital injections, the contract can only
determine the agent’s optimal strategy as a random field. This makes it natural to define the
principal’s objective as a function of such random field. A specific example that leads to an
optimal contract problem of the present type is described in Section 4.

It is worth mentioning that, in the classical formulation of the problem, if we assume
no capital injections and view strategies as stochastic processes, with a fixed initial wealth,
the optimal contract problem typically reduces to the “first best” type, which has a trivial
solution. This is due to the fact that, in a non-degenerate market, one can infer the trading
strategy from a terminal value of the wealth process (viewed as a random variable). An
example of such trivial construction is given in Subsection 4.2. However, the mapping from
wealth to strategy (viewed as a stochastic process) depends on the initial capital, hence, the
resulting, trivial, solution is not robust with respect to capital injections. The optimal contract
defined above (with an example constructed in Subsection 4.3) is robust with respect to such

7



injections, and it is also optimal in the classical formulation. Thus, in particular, it provides
another, non-trivial, solution to the classical problem.

It is also important that J(π) may depend on π in a more general way – not only through
Xπ. Otherwise, the problem becomes trivial in many cases of interest, as illustrated in Sub-
section 4.2. As discussed in the introduction, our main motivation for considering general
dependence on π is the presence of endogenous constraints. Namely, we assume that the
principal does not want the agent to invest in certain stocks but cannot simply include it in
the contract, as the agent’s strategy is not directly observable.

Remark 2. Note that we allow the principal’s individual objective, J , and the contract, C,
to be quite general. However, the principal’s total objective combines them in the additive way:
J − C. From an economic point of view, it may be more natural to include the agent’s fees
inside J , but it is not allowed by the current setting. As mentioned in the introduction, if the
agent’s fees are included inside J , the problem turns into an optimal control of SPDE, which is
significantly more challenging. Nevertheless, the subsequent sections show that, in the present
setting, the optimal contract is constructed as C(x) = CT (x), where C is a sufficiently smooth
random filed, so that we can define

C(Xπ
T ) = C0(X0) +

∫ T

0
dCt(X

π
t ).

As we assume no discounting (equivalently, we work with discounted units), the above repre-
sentation can be interpreted as a flow of payments from the principal to the agent. As these
payments are spread over the entire time interval [0, T ], it is possible to justify their appear-
ance in the additive form in the principal’s objective. Indeed, it is natural for the principal
to treat differently (i.e. have different types of utility for) the terminal and the intermediate
payments.

Remark 3. The assumption of risk-neutrality of the agent can be relaxed by assuming that
he maximizes the expected utility of his fees, U(C). However, in such a case, we would either
have to replace C in the principal’s objective by U(C), or the agent’s participation constraint
would have to be formulated in terms of expected fees (as opposed to expected utility of his
fees), none of which is very natural. In addition, we do not allow for a cost of effort in the
agent’s objective. These are the limitations we have to accept in order to be able to use our
solution approach. We leave the case of more general preferences and cost structures for future
research.

Remark 4. The optimal contract constructed herein is also robust with respect to maturity.
Namely, our method allows one to construct an entire family of optimal contracts, {CT }, for
all maturities T > 0. Thus, we also solve a slightly more general optimal contract problem (of
the so-called “third best” type), in which the agent is allowed to choose the time horizon (when
the contract is initiated), and the principal does not know which horizon the agent prefers,
hence, she offers him a menu of contracts, for all possible horizons.

Remark 5. A very desirable feature of a contract is its limited liability: i.e. the condition
C ≥ 0. Note that we do not require limited liability in the definition of admissible contract,
and our general results do not guarantee that this property is satisfied by the optimal con-
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tract. However, the optimal contract constructed in Section 4 does satisfy the limited liability
condition.

3. Solution. Let us outline, heuristically, the solution approach. First, we notice that, if
C is an admissible contract and π∗ is C-optimal, with the associated optimal wealth X∗, the
contract

(3.1) C̃ := C
u0

EC(X∗
T )

is also admissible, and the set of C̃-optimal strategies is the same as the set of C-optimal
strategies. In addition,

E C̃(X∗
T ) = u0.

Thus, there is no loss of optimality in restricting the candidate contracts C to those admissible
contracts for which EC(Xπ) = u0, for every C-optimal π. This implies that we can drop the
expected payment to the agent in the principal’s objective and solve the relaxed problem: find
a random field π∗ and the associated optimal wealth X∗ (with initial condition (X0, 0)), such
that

π∗ ∈ argmaxE J(π),

where the maximization is performed over all random fields π, such that, for any (ξ, τ) ∈ X ,

(πt(X
π,ξ,τ
t )) ∈ A(ξ, τ). Then, for the π∗ obtained as above, we need to construct an admissible

contract C, such that π∗ is the only C-optimal strategy. Normalizing C as in (3.1), we obtain
the desired optimal contract.

Thus, the construction of an optimal contract reduces to solving the following inverse
problem: given a strategy π∗ (viewed as a random field), find an admissible contract C, such
that, for any (ξ, τ) ∈ X and any π ∈ A(ξ, τ),

E

(
C(Xπ,ξ,τ

T ) | Fτ

)
≤ E

(
C(X∗,ξ,τ

T ) | Fτ

)
, a.s.,

and the equality is only possible if π = (π∗
t (X

∗,ξ,τ
t )) for a.e. (t, ω) in the stochastic interval

[τ, T ]. Fortunately, a solution to such problem is offered by the so-called forward performance
SPDE. In the remainder of this section, we describe this solution, given by a random field
(Ut(x))t≥0, x>0, and show that

C(x) = u0
UT (x)

U0(X0)
,

is the desired optimal contract.

3.1. Forward performance SPDE. We start this subsection by recalling (heuristically) the
derivation of the stochastic Hamilton-Jacobi-Bellman (HJB) equation in the classical utility
maximization problem (also known as Merton problem). These derivations, leading up to
Proposition 3.1, can be found, e.g., in [10], [18], as well as in many subsequent publications,
but we provide them here for the sake of completeness. This derivation is based on the
following martingale principle. Consider a progressively measurable random field U = (Ut(x)),
representing the stochastic value function – i.e., the maximal expected utility of terminal
wealth that can be generated from the initial wealth level x and initial time t. Then (under
additional technical assumptions), this random field satisfies the following two properties:
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• for any attainable wealth process X, the process (Ut(Xt)) is a supermartingale;
• there exists a wealth process X∗, such that the process (Ut(X

∗
t )) is a martingale.

The converse is also true: if one can find a progressively measurable random field U , satisfying
the above properties on a time interval [0, T ], then, this random field is the value function of
the Merton problem with stochastic utility UT (·), and X∗ is the associated optimal wealth
process. Relaxing the supermartingale and martingale conditions to their local versions, and
assuming enough regularity of the random field U (in the sense of [9]), we translate the two
defining properties of a stochastic value function into the following: the drift of (Ut(Xt)) is
non-positive for any admissible X, and it is zero at some X. The latter, in turn, is equivalent
to: the maximum drift of (Ut(Xt)), over all admissible portfolios, is zero. Assuming an Itô
representation for U ,

(3.2) dUt(x) = bt(x)dt+ aTt (x)dWt,

with sufficiently regular random fields a and b (we refer to a as the volatility of U), we apply
the Itô-Ventzel formula to (Ut(Xt)), to obtain:

dUt (Xt) =

(
bt + ∂xUt π

T
t σ

T
t λt +

1

2
∂2
xxUt π

T
t σ

T
t σtπt + ∂xa

T
t σtπt

)
dt+ (· · · )dWt,

where π is the strategy generating X, via (2.3). Assuming ∂2
xxUt < 0, the maximum over π of

the drift in the above expression can be computed explicitly. Equating it to zero, we obtain
a formula for b. Substituting this formula into (3.2), we obtain

(3.3) dUt(x) =
1

2

‖∂xUt(x)λt + (σT
t )

+σT
t ∂xat(x)‖2

∂2
xxUt(x)

dt+ aTt (x)dWt, t ∈ [0, T ].

In a Markovian model, Ut(x) becomes a deterministic function of (t, x) and the levels of
relevant stochastic factors. Using Itô’s formula, we represent a and the left hand side of (3.3)
through the derivatives of U and obtain the classical HJB equation. Hence, we refer to (3.3) as
the stochastic HJB equation, although it was initially named “forward performance SPDE”,
by the authors of [10], [18].8 The following proposition formalizes the above discussion.

Proposition 3.1. Assume that a = (at(x))t∈[0,T ], x>0 and U = (Ut(x))t∈[0,T ], x>0, respec-
tively, are once and twice continuously differentiable random fields (in the sense of [9]), satis-
fying (3.3), and such that U is strictly concave in x (almost surely, for all times). Then, the
following holds.

1. For any (ξ, τ) ∈ X and any π ∈ A(ξ, τ), the process
(
Ut

(
Xπ,ξ,τ

t

))
t∈[τ,T ]

is a local supermartin-

gale (in the sense that there exists a localizing sequence that makes it a supermartingale).9

2. Assume that there exists a progressively measurable random field π∗, satisfying almost surely,
for all t ∈ [0, T ],

(3.4) σtπ
∗
t (x) = −λt∂xUt(x) + (σT

t )
+σT

t ∂xat(x)

∂2
xxUt(x)

, ∀x > 0,

8In the forward performance theory, it is crucial that the SPDE (3.3) holds for all t ≥ 0. For the problem
under consideration, it is not important, and we can consider t ∈ [0, T ].

9Throughout the paper, such process is always defined with respect to the filtration (Fτ∨t)t∈[0,T ], and its
value on [0, τ ] is Uτ (ξ).
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and such that, for any initial condition (ξ, τ) ∈ X , there exists a unique (strong) solution
X∗,ξ,τ to

(3.5) dX∗,ξ,τ
t =

(
σtπ

∗
t (X

∗,ξ,τ
t )

)T
λtdt+

(
σtπ

∗
t (X

∗,ξ,τ
t )

)T
dWt, t ∈ [τ, T ], X∗,ξ,τ

τ = ξ.

Then,
(
Ut

(
X∗,ξ,τ

t

))
t∈[τ,T ]

is a local martingale.

3. Assume that the conditions of the previous two items are satisfied, and that, in addition, the
aforementioned local martingale and local supermartingales are a true martingale and true
supermartingales, respectively. Then, for any (ξ, τ) ∈ X and any π ∈ A(ξ, τ),

E

(
UT (X

∗,ξ,τ
T ) | Fτ

)
≥ E

(
UT (X

π,ξ,τ
T ) | Fτ

)
a.s.,

and the equality is only possible if π = (π∗
t (X

∗,ξ,τ
t )) for a.e. (t, ω) in the stochastic interval

[τ, T ].

Proof:
The proof follows easily from the preceding discussion. In particular, the first two claims

follow immediately. For the last claim, we only need to notice that the drift of Ut(X
π,ξ,τ
t )

is strictly negative unless πt = π∗
t (X

π,ξ,τ
t ), with π∗ given by (3.4). The inequality between

conditional expectations follows directly from the martingale and supermartingale properties.
None

The last item of the above theorem implies that (π∗
t (X

∗
t )) maximizes the criterion EUT (X

π
T )

over all admissible strategies, provided it is, itself, admissible. Of course, to establish this,
one needs to (i) solve the SPDE (3.3), (ii) ensure the existence of π∗ and X∗, and (iii) drop
“local” in the supermartingale and martingale properties. One way to ensure that the local
supermartingale (Ut (X

π
t ))t≥0 is a true supermartingale, is to construct U so that inft,x Ut(x)

is bounded from below by an absolutely integrable random variable, and to restrict the initial
wealth to absolutely integrable random variables. Then, one can also show by a standard
argument that the local martingale (Ut (X

∗
t ))t≥0 is a true martingale if and only if its expec-

tation at any time coincides with its initial value. Of course, there also exist other ways to
address (iii).

To address (i) and (ii), one needs to solve (3.3). However, the latter equation presents
numerous difficulties associated with its nonlinear nature and, even more importantly, with
the fact that it has “time running in a wrong direction” (cf. [11], for a more detailed discussion
of the latter issue). To date, there exist no existence or uniqueness results for the solutions
to (3.3) in its general form. Nevertheless, in the next subsection, we choose a specific form of
the volatility process a and show how to construct a unique solution to (3.3), for any given
(sufficiently regular) strategy π∗, given as a random field. If, in addition, (iii) is resolved and
(π∗

t (X
∗
t )) is admissible, we obtain a solution to the optimal contract problem formulated in

Subsection 2.2. Indeed, if π∗ is the optimal strategy of the principal (i.e. the strategy she
would like the agent to follow), the associated UT (x), normalized appropriately, produces the
desired optimal contract.
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3.2. Solving the forward performance SPDE. Assume that we are given a random field

(3.6) π∗ : (R+ × Ω× (0,∞),P ⊗ B ((0,∞))) → (R,B (R)) ,

where P is the sigma-algebra of progressively measurable sets. As usual, we suppress the
dependence upon ω ∈ Ω. We assume that π∗ is a sufficiently smooth random field, with the
precise assumptions stated below. In this subsection, we construct a solution to (3.3), such
that (3.4) holds with the given π∗.

Our goal is to reduce (3.3) to a linear SPDE. To this end, we assume that U solves (3.3)
and that

(3.7) at(x) = a(t, x, Ut, ∂
2
xxUt) := at(x̄)− λt (Ut(x)− Ut(x̄))−

∫ x

x̄
σtπ

∗
t (y)∂

2
yyUt(y)dy,

where x̄ > 0 is a fixed constant, and (at(x̄))t≥0 is an arbitrary locally square integrable process

in R
d. With such a choice, we have:

(3.8) ∂xat(x) = −σtπ
∗
t (x)∂

2
xxUt(x)− ∂xUt(x)λt.

Then, recalling that the columns of σt are linearly independent, we obtain

(3.9) ∂xUt(x)λt + (σT
t )

+σT
t ∂xat(x) = −σtπ

∗
t (x)∂

2
xxUt(x),

and (3.3) becomes

dUt(x) =
1

2
‖σtπ∗

t (x)‖2∂2
xxUt(x)dt(3.10)

+

(
at(x̄)− λt (Ut(x)− Ut(x̄))−

∫ x

x̄
σtπ

∗
t (y)∂

2
yyUt(y)dy

)T

dWt

The following derivations (until Assumption 1) are heuristic and are meant to motivate the
main result of this subsection, Proposition 3.2. Introducing Vt(x) := ∂xUt(x), we differentiate
the above equation, to obtain

dVt(x) =
1

2
∂x
(
‖σtπ∗

t (x)‖2∂xVt(x)
)
dt− (σtπ

∗
t (x)∂xVt(x) + λtVt(x))

T dWt.(3.11)

Next, we introduce Rt(x) := −∂xVt(x) = −∂2
xxUt(x), and differentiate the above equation, to

obtain

dRt(x) =
1

2

[
∂x
(
‖σtπ∗

t (x)‖2∂xRt(x)
)
+ ∂x

(
‖σtπ∗

t (x)‖2
)
∂xRt(x)

+∂2
xx

(
‖σtπ∗

t (x)‖2
)
Rt(x)

]
dt− [σtπ

∗
t (x)∂xRt(x) + (λt + σt∂xπ

∗
t (x))Rt(x)]

T dWt,(3.12)

with the deterministic initial condition R0(x) = −∂2
xxU0(x).

In order to solve (3.12), we will apply the results of [8] (see Appendix A for more details).
To this end, we need to introduce two assumptions.
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Assumption 1. Let σ and π∗, respectively, be the volatility matrix (defined by (2.1)) and
the candidate optimal portfolio (as in (3.6)). We assume that, almost surely, for each t ≥ 0,
the function π∗

t (·) is five times continuously differentiable and

sup
z∈R

∣∣∣∣∣∣

k∑

j=1

σij
t (∂z)

m
(
e−zπ∗j

t (ez)
)
∣∣∣∣∣∣
≤ ξt, ∀m = 0, . . . , 5, i = 1, . . . , d,

for some progressively measurable stochastic process ξ with locally bounded paths.

Remark 6. The above assumption is purely technical. If π∗ arises from a utility maximiza-
tion problem (which is natural), Assumption 1 implies certain restrictions on the underlying
model: i.e., on the growth rate and smoothness of the diffusion coefficients and of the utility
function. Nevertheless, from a practical perspective, this assumption is not a serious limi-
tation. Indeed, if the target optimal strategy can be approximated with the ones that satisfy
Assumption 1, our algorithm can produce a contract that is ε-optimal for the principal, with
arbitrary precision ε > 0.

For any function φ : R → R, m-times weakly differentiable, we define the norm

‖φ‖m :=




m∑

j=0

∫

R

r2(z)
(
φ(j)(z)

)2
dz




1/2

,

with

(3.13) r(z) := exp
(
η
√
1 + z2

)
,

with some constant η > 1. Following [8], we define the weighted Sobolev space Wm (consisting
of m-times weakly differentiable functions from R to R) as the closure of C∞

0 (R) in the ‖.‖m
norm. We also consider a measurable function U0 : (0,∞) → R.

Assumption 2. Let λ and U0, respectively, be the market price of risk (defined by (2.2))
and the candidate initial condition (as above). We assume that ∂2

xxU0(exp(·)) ∈ W
3, and that

|λ| has locally integrable paths.

We now present one of the main results of this paper.

Proposition 3.2. Let π∗, U0, σ, and λ, satisfy Assumptions 1 and 2. Then, there exists a
unique random field R which solves (3.12), with the initial condition R0 = −∂2

xxU0, and is
such that Rt(log ·) takes values in W

3. The random field R·(·) is almost surely continuous.
If, in addition, R is strictly positive, then, for any constant x̄ > 0 and any locally square

integrable R
d-valued process (at(x̄))t≥0, the random field (Ut(x))t≥0, x>0, given by

(3.14) Ut(x) = ζt +

∫ x

x̄

∫ ∞

y
Rt(z)dzdy,

with

dζt = −1

2
‖σtπ∗

t (x̄)‖2Rt(x̄)dt+ aTt (x̄)dWt, ζ0 = U0(x̄),
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is strictly concave and strictly increasing in x, and satisfies (3.3), with the volatility a given
by (3.7). Moreover, for the given π∗, (3.4) holds, and there exists a unique solution to (3.5),
for any (ξ, τ) ∈ X .

Proof:
First, we transform (3.12) with the simple change of variables, x = exp(z), introducing

R̃t(z) := Rt(e
z), and (3.12) becomes

dR̃t(z) =
1

2

[
(∂z + 1)

(
‖e−zσtπ

∗
t (e

z)‖2∂zR̃t(z)
)
+ (∂z + 2)

(
‖e−zσtπ

∗
t (e

z)‖2
)
∂zR̃t(z)

+(∂2
zz + 3∂z + 2)

(
‖e−zσtπ

∗
t (e

z)‖2
)
R̃t(z)

]
dt(3.15)

−
[
e−zσtπ

∗
t (e

z)∂zR̃t(z) +
(
λt + (∂z + 1)

(
e−zσtπ

∗
t (e

z)
))

R̃t(z)
]T

dWt,

Notice that the SPDE (3.15) is linear and (degenerate) parabolic. In particular, it belongs to
the class of equations analyzed in [8]. For convenience, we provide a summary of the relevant
results from [8] in Appendix A. More specifically, we refer to Example 2.2 in [8], and the
preceding discussion, to conclude that the conditions of Theorem 2.5 in [8] are satisfied, with
d = 1, m = 3, and Γ = 1. The latter theorem states that there exists a unique generalized
solution R̃ to (3.15), with R̃0(z) = −∂2

xxU0(e
z), which is a progressively measurable process

with values in W
3, having continuous paths in W

2. Notice that R̃t ∈ W
3 implies that R̃t(.) is

twice continuously differentiable. Hence, the random field R̃·(·) is almost surely continuous,
and the spatial derivatives in (3.15) can be understood in the classical sense. Then, changing
the variables back to x = exp(z), we conclude that Rt(x) := R̃t(log x) solves (3.12). Reverting
these arguments, we obtain uniqueness of the solution to (3.12).

Next, assume that R is strictly positive. We need to verify that the random field U ,
defined by (3.14), is well defined and has the desired properties. To this end, we define

Vt(x) =

∫ ∞

x
Rt(y)dy.

Note that the above integral is well defined due to the choice of r (cf. (3.13)) and the fact
that R̃t = Rt(exp(·)) takes values in W

3 ⊂ W
0:

∫ ∞

x
Rt(y)dy =

∫ ∞

log x
ezR̃t(z)dz ≤

(∫ ∞

log x
r2(z)R̃2

t (z)dz

)1/2(∫

log x
e2z−2η

√
1+z2dz

)1/2

< ∞

Similarly, it is easy to deduce that ∂xRt(·) and ∂2
xxRt(·) are absolutely integrable over (ε,∞),

for any ε > 0. Applying the stochastic Fubini theorem (cf. Theorem 64 in [13]), we integrate
(3.12) to deduce that V satisfies (3.11), with the initial condition V0(x) = ∂xU0(x).

10 Applying
stochastic Fubini theorem again, we integrate (3.11), to show that U , defined by (3.14),
satisfies the SPDE (3.10). It is clear that Ut(·) is strictly concave, as R is strictly positive.
Then, choosing at via (3.7), we conclude that U satisfies (3.3). In turn, equation (3.9) yields

10Strictly speaking, in order to apply Theorem 64 in [13], we need to localize R and pass to the limit in the
integrals over finite domain. We skip these routine arguments for the sake of brevity.
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(3.4). Finally, Assumption 1 implies that σtπ
∗
t (·) is globally Lipschitz, uniformly over (t, ω),

which yields the existence and uniqueness of the solution to (3.5), for any initial condition
(ξ, τ) ∈ X . None

Remark 7. Proposition 3.2 can be extended to hold with any positive weight function r,
satisfying the condition (W̃ ) in [8], and such that

∫ ∞

x

e2z

r2(z)
dz < ∞, ∀x ∈ R.

Remark 8. It is straight-forward to formulate the version of Proposition 3.2 for the case
where the wealth variable x takes values in R (as opposed to being restricted to (0,∞)). This
would correspond to the investment problems in which the wealth is not restricted to remain
positive (cf. Remark 1). We did not find a unifying formulation that would allow us to treat
both cases (i.e. x ∈ R and x > 0) simultaneously, and we chose to consider the case x > 0.
This choice is motivated by the example in Section 4 which shows that, in the case x > 0, in
the Black-Scholes model, one can construct explicitly an optimal contract which also satisfies
the limited liability condition. Currently, we do not know how to ensure the limited liability
condition for the case x ∈ R, even in the context of this simple example.

Remark 9. An alternative description of the solutions to (3.3), using duality methods, is
given in [6], [7]. However, the present construction is much shorter and more direct, and it
allows us to obtain explicit solutions, as illustrated in Section 4. It is also worth mentioning
that the Markovian solutions to (3.3) are analyzed in [11].

Propositions 3.1 and 3.2 allow us to establish the following characterization of an optimal
contract, which is the main result of this paper.

Theorem 3.3. Consider any initial capital X0 > 0, as well as any λ and U0, satisfying
Assumption 2 and such that U0(X0) > 0. Assume that a progressively measurable random
field π∗ and the process σ satisfy Assumption 1, that (π∗

t (X
∗,X0,0
t )) ∈ A(X0, 0), and that

EJ(π) ≤ EJ (π∗) ,

for any π that is C-optimal for some admissible contract C. Let R be the unique solution
to (3.12), with the initial condition R0 = −∂2

xxU0. Assume that R is strictly positive and
consider the associated U , as in Proposition 3.2, with any constant x̄ > 0 and any locally
square integrable R

d-valued process (at(x̄))t≥0. Then, the following holds.

1. For any (ξ, τ) ∈ X and any π ∈ A(ξ, τ), the process
(
Ut

(
Xπ,ξ,τ

t

))
t∈[τ,T ]

is a local super-

martingale.

2. For any (ξ, τ) ∈ X , there exists a unique solution X∗,ξ,τ to (3.5), and the process
(
Ut

(
X∗,ξ,τ

t

))
t∈[τ,T ]

is a local martingale.
3. If the aforementioned local martingale and local supermartingales are a true martingale and

true supermartingales, respectively, then,

C∗(x) := UT (x)
u0

U0(X0)

is an optimal contract.

15



Proof:
Proposition 3.2 implies that U , a, and π∗, satisfy all the assumptions of Proposition 3.1.

The first two statements of the theorem follow immediately. To show the last statement, we
notice that the admissibility of (π∗

t (X
∗
t )), the integrability of C∗(Xπ,ξ,τ

T ), and the last part
of Proposition 3.1, imply that C∗ is an admissible contract and that π∗ is C∗-optimal. To
conclude, consider any admissible contract C and any C-optimal π. Then, we have

E

[
J(π)− C

(
Xπ,X0,0

T

)]
≤ EJ(π)− u0 ≤ EJ (π∗)− u0 = E

[
J (π∗)− C∗ (X∗,X0,0

)]
,

where the first inequality follows from the admissibility of C and the C-optimality of π, and
the second inequality follows from the assumptions of the theorem. None

Remark 10. Note that a solution to (3.3) yields an optimal contract only in the case of
symmetric information: i.e., when the contract is allowed to be measurable with respect to
the full filtration of the agent, FT . In the asymmetric (“moral hazard”) case, the principal’s
observations may not include the entire F (e.g., she may not see the prices of some of the as-
sets), hence, the contract needs to be measurable with respect to a sigma-algebra that is strictly
smaller than FT . This leads to the problem of describing all solutions to (3.3) that satisfy an
additional measurability constraint at time T . The contract constructed in Theorem 3.3 may
not satisfy this measurability constraint, as the random field UT , constructed in Proposition
3.2, does not satisfy such a constraint.

In the asymmetric case, the aforementioned measurability constraint implies that not every
random field π∗, satisfying Assumption 1, has an admissible associated random field U and,
in turn, an admissible contract. Thus, as expected, the asymmetry of information reduces the
set of strategies which admit an optimal contract (i.e., which can be optimal for the agent),
relative to the symmetric (first-best) case. In particular, the best strategy, from the point of
view of the principal, may no longer be attainable. The distance between this strategy and the
space of attainable ones – i.e., the strategies associated with the solutions to (3.3) that satisfy
the additional measurability constraint – quantifies the loss to the principal due to information
asymmetry. However, the problem of establishing a convenient representation of all solutions
to (3.3) that satisfy additional measurability constraints, in general, remains open. A related
problem is solved in [11], but the latter paper imposes even stronger constraints on the space
of admissible solutions to (3.3).

The next section illustrates the application of the above theorem. It describes a specific
market model and a concrete contract design problem, for which the present definition of
optimal contract is natural, and it shows how to construct an optimal contract explicitly.
Moreover, the resulting optimal contract satisfies the limited liability condition: C ≥ 0 (note,
however, that this condition is not guaranteed by Theorem 3.3).

4. Explicit optimal contract in the Black-Scholes model. In this section, we assume
that d = k = 2, and

d log(S1
t ) = (µ1 − σ2

1/2)dt+ σ1dW
1
t ,

d log(S2
t ) = (µ2 − σ2

2/2)dt+ σ2(ρdW
1
t +

√
1− ρ2dW 2

t ),
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with some µ1, µ2 ∈ R, σ1, σ2 > 0, and ρ ∈ (−1, 1). In other words,

σ =

(
σ1 σ2ρ

0 σ2
√

1− ρ2

)
, µ =

(
µ1

µ2

)
, λ = (σT )−1µ =

(
µ1/σ1

µ2−(σ2ρµ1)/σ1

σ2

√
1−ρ2

)
.

Let us fix a constant γ ∈ (−∞, 0) ∪ (0, 1), whose meaning is explained below. We let X
consist of all pairs (ξ, τ), such that τ is any stopping time with values in [0, T ] and ξ, ξγ ∈
L1∩L0

+(Fτ ). For any (ξ, τ) ∈ X , we define A(ξ, τ) as the set of all locally integrable processes
π, such that the resulting Xπ,ξ,τ is strictly positive and

E sup
t∈[τ,T ]

Xπ,ξ,τ
t + E sup

t∈[τ,T ]

(
Xπ,ξ,τ

t

)γ
< ∞.

Next, consider an investor who is looking to hire an agent to manage her initial capital
X0. As discussed in the introduction, we assume that the contract between the agent and the
investor is designed by a third party, referred to as the principal (e.g., it can be a regulator,
the board of directors of a mutual fund, etc.). The principal chooses an optimal contract using
the following individual objective:

(4.1) J(π) =
1

γ

(
Xπ,X0,0

T

)γ
1{π2≡0} −∞ · (1− 1{π2≡0}),

where π is a random field and Xπ,X0,0 is the associated wealth. The rationale behind this
choice is as follows. The principal assumes (e.g., based on her estimates) that a typical investor
uses power utility, with the relative risk aversion 1 − γ, and she adds the constraint that no
investment can be made in S2, as the latter asset is deemed inappropriate (e.g., immoral,
subject to sanctions, etc.).

Note that the investor may not be interested in the constraint π2 ≡ 0 being met: e.g.,
in accordance with the assumption of the principal, she may aim to optimize the expected
power utility, without the constraint. After the contract is initiated, the investor may have
an opportunity to increase the size of her investment, at some stopping time τ , to a random
level ξ. As the investor may not care about the constraint π2 ≡ 0, a priori, her capital injec-
tion may encourage the agent to violate this constraint. Neither the principal nor the agent
are aware of the probabilistic properties of (ξ, τ) (i.e., we take the approach of Knightian
uncertainty with regards to the opportunities of capital injections). In particular, after any
capital injection (ξ, τ), the agent maximizes the expected value of the worst-case future sce-
nario, which corresponds to no future capital injections, since he can always choose to keep
the additional capital in cash, which does not decrease his objective value, compared to the
case of no additional investment, provided his contract is non-decreasing in terminal wealth
(which is the case, as follows from (3.14)). Thus, after every capital injection (ξ, τ) ∈ X , the
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agent solves11

(4.2) max
π∈A(ξ,τ)

E

(
C(Xπ,ξ,τ

T ) | Fτ

)
.

The regulator’s task is two-fold. First, she needs to ensure that the investor is as happy
with the contract as possible, given the constraint π2 ≡ 0. Namely, the contract should be
such that every optimal strategy of the agent maximizes the expectation of (4.1) less the
expected payment to the agent, even in the presence of capital injections by the investor.
Since these injections are not known to the regulator, she aims to maximize the worst case
scenario for the investor, which is the case of no future opportunities for capital injections (as
the investor can always choose not to use such an opportunity). This leads to the following
objective for the regulator: find admissible contract C∗, such that, for any C∗-optimal π∗,
(C∗, π∗) maximizes

(4.3) E

[
J(π)− C(Xπ,X0,0

T )
]

among all pairs (C, π) with admissible C and C-optimal π. It is easy to see that, if C∗

is an optimal contract, in the sense of Definition 2.2, then it solves the first task of the
regulator. The second task of the regulator is to ensure that the investor will not encourage
the agent to invest in the second asset by her capital injections. This task is resolved by the
admissibility property of an optimal contract C∗: cf. Definitions 2.1 and 2.2. Indeed, the
admissibility implies that, after each capital injection, it is still optimal for the agent to follow
the optimal strategy (understood as a random field) computed under the assumption of no
capital injections. The latter strategy does not invest in S2, as the pair (C∗, π∗) maximizes the
objective (4.3). In the following subsections, we construct an optimal contract C∗ explicitly.

4.1. Principal’s optimal strategy. Following the solution approach outlined at the begin-
ning of Section 3, we, first, search for a random field π∗1, such that

(π∗1
t (X∗

t )) ∈ argmax
1

γ
E

(
Xπ,X0,0

T

)γ
,

where X∗ is the associated optimal wealth (starting from X0 at time zero), and the supremum
is taken over all processes π1, such that π = (π1, 0)T ∈ A(X0, 0). The wealth process, in this
case, satisfies

Xπ,X0,0
0 = X0 ∈ R, dXπ,X0,0

s = π1
sσ1λ1ds+ π1

sσ1dW
1
s , s ∈ [0, T ].

The solution to the above optimal investment problem is well known, but we briefly outline it
here, for the sake of completeness. The associated HJB equation for the value function V is

∂tV +max
π1

(π1
sσ1λ1∂xV +

1

2
(π1

s)
2σ2

1∂
2
xxV ) = 0, x > 0, s ∈ (0, T ), V (T, x) = xγ/γ.

11We do not assume that only one capital injection may occur. In particular, we allow for an arbitrary finite
number of capital injections {(ξi, τi)}. Since, by our modeling assumption, the agent does not anticipate (i.e.,
does not have a model for) the capital injections, at any given time, he maximizes his expected profits using
the worst-case scenario with respect to the injections. It is easy to see that, due to monotonicity of the contract
in x, the worst-case scenario is always the one with no future injections. Hence, after each injection, the agent
will choose the strategy that solves (4.2), even if more injections will follow (as he is not anticipating them).
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This yields

(4.4) V (t, x) =
xγ

γ
exp

(
(T − t)

λ2
1γ

2(1− γ)

)
, π∗1

t (x) =
λ1

σ1(1− γ)
x,

(4.5) X∗
0 = X0 > 0, dX∗

s =
λ2
1

1− γ
X∗

sds+
λ1

1− γ
X∗

sdW
1
s , s ∈ [0, T ].

A standard verification argument shows that, indeed, V is the value function of the optimiza-
tion problem, (π∗1

t (X∗
t )) is the optimal policy, and X∗ is the optimal wealth (note that X∗ is

a geometric Brownian motion, hence, (π∗
t (X

∗
t )) ∈ A(X0, 0)). In particular, it follows that

J(π) ≤ J(π∗),

for any π that is C-optimal for some admissible contract C, with J given by (4.1).

4.2. Fake optimal contracts. Recall that the notion of optimal contract used herein
(cf. Definition 2.2) is stronger than usual. The main additional requirement of the present
definition is that the contract is robust with respect to capital injections. In this subsection,
we show how to construct a (trivial) contract that does not possess this feature, to illustrate
the differences.

Recall the optimal wealth process of the principal, X∗, given by (4.5), and consider the
following contract:

(4.6) Ĉ(x) := u01{X∗
T
}(x)

Note that, as long as X∗
T is attainable from the current wealth level, the agent will always

aim for X∗
T as the terminal wealth, according to such contract. From the non-degeneracy of

the market (i.e. the columns of σ are linearly independent), it follows that the agent will keep
following the prescribed strategy (π∗

t (X
∗
t )), given by (4.4), as this is the only strategy that

generates X∗
T . As a result, the contract Ĉ leaves both the principal and the agent satisfied.

In fact, the above construction is well known in the optimal contract theory, and it always
works for the first-best (risk-sharing) problems. However, the resulting contract Ĉ is not
robust with respect to capital injections. Indeed, if the current wealth level is perturbed,
the new set of attainable terminal wealth values may not include X∗

T anymore. In this case,
it is not clear which strategy the agent will choose: in fact, in the case of a positive capital
injection, the contract will actually provide an incentive for the agent to “lose” (or steal) funds
(which, strictly speaking, is not allowed in the model, but can certainly happen in practice).
In particular, there is no guarantee that the agent will follow a strategy that is best for the
principal after a capital injection is made. One can modify the definition of the “fake” optimal
contract (4.6), by using functions other than indicator, and, e.g., obtain contracts that are
non-decreasing in the terminal wealth. Nevertheless, such modifications will not resolve the
main problem: the agent is not guaranteed to follow the prescribed strategy (viewed as a
random field) after a capital injection is made. Fundamentally, this lack of robustness is due
to the fact that the contract is not allowed to depend on the capital injections themselves. If
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such dependence were allowed, the problem would reduce to a standard first-best setting, but
at the cost of making it much more difficult to implement the resulting optimal contract.

To conclude this subsection, we illustrate the importance of the fact that the individual
objective of the principal, J , given by (4.1), depends on the strategy π in a more general way
than through the terminal wealth Xπ

T alone. Recall that the principal needs to ensure that the
agent’s strategy satisfies the constraint π2 ≡ 0 (this is what we call an endogenous constraint).
Then, if the principal’s individual objective were a deterministic function of terminal wealth,
e.g.,

J̃(Xπ) =
1

γ
(Xπ

T )
γ ,

we could maximize the expectation of this objective, to obtain an optimal strategy π̃∗ (viewed
as a random field), and choose the contract

C̃(x) := J̃(x)
u0

E J̃(X∗
T )

.

Note that E J̃(Xπ
T ) is indeed maximized by the desired optimal strategy π∗. The dynamic

programming principle also implies that π∗ (as a random field) remains optimal for the agent,
for any initial wealth level, and at any starting time. Thus, C̃ would be a (trivial) optimal
contract, in the sense of Definition 2.2. Nevertheless, this construction is only possible if the
individual objective of the principal depends on π through Xπ

T only. Recall, however, that,
in the present formulation, J(π) depends directly on π, via the constraint π2 ≡ 0. Hence,
if we use E (Xπ

T )
γ as the objective in the unconstrained problem, faced by the agent, it may

not yield the same optimal strategy π∗. Indeed, the optimal contract constructed explicitly
in the next subsection does not coincide with the power function with exponent γ; in fact, it
becomes a random function of terminal wealth.

4.3. Optimal contract. Recall that π∗
t (x) = (π∗1x, 0)T , with

π∗1 =
λ1

σ1(1− γ)
,

maximizes the individual objective of the principal. Following Proposition 3.2 and Theorem
3.3, we start by solving the SPDE (3.12), which, in the present case, becomes

dRt(x) =
1

2

[
σ2
1(π

∗1)2x2∂2
xxRt(x) + 4σ2

1(π
∗1)2x∂xRt(x) + 2σ2

1(π
∗1)2Rt(x)

]
dt

−
[
σ1π

∗1x∂xRt(x) +
(
λ1 + σ1π

∗1)Rt(x)
]
dW 1

t − λ2Rt(x)dW
2
t ,

With the ansatz Rt(x) = R(t, x,−W 1
t ,−W 2

t ), the above becomes

(∂tR+
1

2
∂2
yyR+

1

2
∂2
zzR)dt− ∂yRdW 1

t − ∂zRdW 2
t

=
1

2

[
σ2
1(π

∗1)2x2∂2
xxR+ 4σ2

1(π
∗1)2x∂xR+ 2σ2

1(π
∗1)2R

]
dt
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−
[
σ1π

∗1x∂xR+
(
λ1 + σ1π

∗1)R
]
dW 1

t − λ2RdW 2
t ,

which is equivalent to

∂tR+
1

2
∂2
yyR+

1

2
∂2
zzR =

1

2
σ2
1(π

∗1)2x2∂2
xxR+ 2σ2

1(π
∗1)2x∂xR+ σ2

1(π
∗1)2R,

∂yR = σ1π
∗1x∂xR+

(
λ1 + σ1π

∗1)R, ∂zR = λ2R.

The following specification solves the above system:

R(t, x, y, z) = R̃(t, σ1π
∗1y + log x)e(λ1+σ1π∗1)y+λ2z,

∂tR̃+A∂xR̃+ (A+B)R̃ = 0,

A :=
1

2

(
2λ1σ1π

∗1 − σ2
1(π

∗1)2
)
, B :=

1

2

(
λ2
1 + λ2

2

)
.

A specific solution to the above equation is given by

R̃(t, x) = exp (−(B − εA)t− (1 + ε)x) ,

R(t, x, y, z) = exp
(
−(B − εA)t− (1 + ε) log x+

(
λ1 − εσ1π

∗1) y + λ2z
)
,

with any ε ∈ (0, 1). Then,

Rt(x) =
1

x1+ε
Qt,

where

Qt = exp
(
−(B − εA)t−

(
λ1 − εσ1π

∗1)W 1
t − λ2W

2
t

)
.

Let us fix any X∗
0 > 0, and note that λ, σ, U0, and π∗, satisfy the assumptions of Theorem

3.3. To complete the construction, we choose x̄ = 1 and

a1t (x̄) = −λ1 − εσ1π
∗1

ε(1− ε)
Qt, a2t (x̄) = − λ2

ε(1− ε)
Qt,

to obtain

(4.7) Ut(x) = ζt +

∫ x

1

∫ ∞

y
Rt(z)dzdy = ζt +Qt

1

ε

∫ x

1
y−εdy = ζt +Qt

1

ε(1− ε)
(x1−ε − 1),

with ζ0 = 1 and

dζt = −1

2
σ2
1(π

∗1)2Qtdt−
λ1 − εσ1π

∗1

ε(1− ε)
QtdW

1
t − λ2

ε(1− ε)
QtdW

2
t =

1

ε(1− ε)
dQt.

Then

Ut(x) = Qt
1

ε(1− ε)
x1−ε, C∗(x) = u0

(
x

X0

)1−ε

QT .
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Notice that such choice of ζ ensures that Ut(x) ≥ 0, for all x > 0 and all (t, ω), thus,
satisfying the limited liability condition. In addition, we can express Qt and, hence, Ut(x), as
deterministic functions of the returns of the two assets, S1 and S2, at time t:

W 1
t =

1

σ1
log(S1

t /S
1
0)− λ1t+

σ1
2
t,

W 2
t =

1

σ2
√
1− ρ2

log(S2
t /S

2
0)−

ρ

σ1
√
1− ρ2

log(S1
t /S

1
0) +

(
σ2

2
√
1− ρ2

− σ1ρ

2
√
1− ρ2

− λ2

)
t,

Qt = exp

((
1

2
(λ2

1 + λ2
2)− λ1

σ1
2

+ επ∗1σ
2
1

2
(1− π∗1)− λ2

σ2 − σ1ρ

2
√

1− ρ2

)
t

)

×
(
S1
t

S1
0

)επ∗1+
ρλ2

σ1

√
1−ρ2

−λ1
σ1
(
S2
t

S2
0

)− λ2

σ2

√
1−ρ2

:= Q̂
(
t, S2

t /S
2
0 , S

3
t /S

3
0

)
.

To conclude that C∗ is an optimal contract, it remains to verify that the assumptions of
the last statement of Theorem 3.3 are satisfied. Note that U ≥ 0. Part 1 of Theorem 3.3

implies that, for any (ξ, τ) ∈ X and any π ∈ A(ξ, τ), the process
(
Ut

(
Xπ,ξ,τ

t

))
t∈[τ,T ]

is a

local supermartingale. As it is nonnegative, and

Uτ (ξ) = const ·Qτ ξ
1−ε ∈ L1,

(which follows form Hölder inequality), an application of Fatou’s lemma yields that it is a

true supermartingale. Next, Part 2 of Theorem 3.3 implies that
(
Ut

(
X∗,ξ,τ

t

))
t∈[τ,T ]

is a local

martingale. As it is also positive, we have

E sup
t∈[0,T ]

∣∣∣Ut

(
X∗,ξ,τ

t

)∣∣∣ ≤ const · E
(
ξ1−ε sup

t∈[0,T ]

(
Qt

(
X∗,1,τ

t

)1−ε
))

< ∞,

which follows, again, from Hölder inequality, by observing that the expression inside the supre-

mum is a geometric Brownian motion. The above inequality implies that
(
Ut

(
X∗,ξ,τ

t

))
t∈[τ,T ]

is a true martingale and completes the proof of the fact that C∗ is an optimal contract (by
Theorem 3.3).

Notice that the optimal contract C∗ is given by a power function of terminal wealth
multiplied by a random scalar. This is in contrast to the individual objective of the principal,
which is a deterministic function of terminal wealth. The random scalar, QT , itself, is a
power function of the returns generated by the two assets available in the market. Thus,
effectively, the optimal contract measures the terminal wealth generated by the agent relative
to the performance of the available assets. Note also that the exponents in the latter power
functions depend on the characteristics of the assets, such as the market price of risk. Recall
also that the optimal contract is nonnegative, thus, satisfying the limited liability condition.

Note also that, as ε ≈ 0, the optimal contract converges to u0 multiplied by

x/X0

Q̂
(
T, S2

T /S
2
0 , S

3
T /S

3
0

) .
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The above ratio measures the return of the fund relative to the returns of the two assets,
the latter being captured by Q̂. If this ratio exceeds one (i.e. if the fund outperformance
the benchmark), the manager’s fee exceeds its initially expected value u0 (i.e. he receives a
bonus). Otherwise, his payment drops below u0 (i.e. he is penalized).

Finally, it is worth mentioning that the optimal contract C∗ is a deterministic function of
the terminal values of the wealth process and of the tradable assets. Hence, it is particularly
easy to implement.

To conclude this section, it is worth mentioning that the explicit form of the optimal
contract derived herein is due to the very simple structure of the target strategy π∗ (i.e.,
it is linear in x) and of the underlying (Black-Scholes) model. To date, we do not have a
complete understanding of what is the class of Markovian models in which the SPDE (3.12)
has a finite-dimensional realization – i.e., a solution that can be represented as a deterministic
function of x and of a finite number of stochastic factors. We leave this important question
for future investigation.

5. Appendix A. In this section, we present a summary of the relevant results from [8]
on the existence and uniqueness of solutions to linear SPDEs. Many of the expressions and
statements are, in fact, more specific corollaries of the results of [8], as we do not require the
full power of the latter results in the present paper.

Consider an SPDE of the form

(5.1) du(t, ω, x) =
( d2∑

j=1

M2
ju(t, ω, x) +

1

2

d1∑

i=1

N 2
i u(t, ω, x) +

d1∑

i=1

Nigi(t, ω, x)

+M0u(t, ω, x) + f(t, ω, x)
)
dt +

d1∑

i=1

(Niu(t, ω, x) + gi(t, ω, x)) dW
i(t),

(5.2) u(0, ω, x) = u0(ω, x),

where (W 1, . . . ,W d1) is a standard Brownian motion on a stochastic basis (Ω,F ,P, (Ft)t≥0),
and Mj , Ni are first-order differential operators in the space variable x ∈ R. In particular,
we assume:

Mj = b̂j(t, ω, x)
∂

∂x
+ b0j (t, ω, x), Ni = ĉi(t, ω, x)

∂

∂x
+ c0i (t, ω, x).

(In the notation of [8], the above corresponds to choosing d = 1 and Γ = 1.)

Consider a function r : R → R, satisfying the assumption (W̃ ): for any nonnegative integer
i,

sup
x∈R

∣∣r−1(x) ∂i
x r(x)

∣∣ < ∞.

Example 2.2 in [8] contains a list of functions r that satisfy the condition (W̃ ) (note that we
are interested in the cases corresponding to Γ = 1). It contains r given by (3.13), with η = 1.

It is easy to check, however, that (W̃ ) is satisfied for any η > 1.
Next, we introduce assumption (E), stated for any given integer m ≥ 1.
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• The functions (f(t, ·))t≥0, (gi(t, ·))t≥0 are progressively measurable processes taking
values in W

m and W
m+1, respectively, with W

m being the weighted Sobolev space
with norm ‖ · ‖m, defined directly below equation (3.13).

• The function u0 is an F0-measurable random element of Wm.
• The coefficients b̂i, ĉi, ĉ

0
i are differentiable in x ∈ R up to the order m + 1, and the

coefficient b̂0j is differentiable up to the order m.
• There exists a progressively measurable stochastic process (ξt), such that, for all γ ≤

m+ 1 and β ≤ m:

|∂γ
x b̂j |2 ≤ ξ, |∂β

x b̂
0
j |2 ≤ ξ, j = 1, . . . , d2,

|∂γ
x ĉi|2 ≤ ξ, |∂γ

x ĉ
0
i |2 ≤ ξ, i = 1, . . . , d1,

‖f‖2m ≤ ξ, ‖gi‖2m+1 ≤ ξ, ‖u0‖2m ≤ ξ0,

for all (t, ω) ∈ [0, T ]× Ω and all x ∈ R.

Theorem 5.1. (Corollary of Theorem 2.5 in [8]) Assume (W̃ ) and (E) (with some inte-
ger m ≥ 1). Then there exists a unique generalized solution u to (5.1)–(5.2). Moreover,
(u(t))t∈[0,T ] is a weakly continuous W

m-valued process, and it is strongly continuous as a
W

m−1-valued process.
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[8] N. Krylov and I. Gyöngy, On stochastic partial differential equations with unbounded coefficients,

Potential Analysis, 1 (1992), pp. 233 – 256.
[9] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge University Press, 1990.

[10] M. Musiela and T. Zariphopoulou, Stochastic partial differential equations in portfolio choice, in
Contemporary Quantitative Finance, C. Chiarella and A. Novikov, eds., Springer-Verlag Berlin Hei-
delberg, 2010.

[11] S. Nadtochiy and M. Tehranchi, Optimal investment for all time horizons and Martin boundary of

space-time diffusions, Mathematical Finance, 27(2) (2017), pp. 438 – 470.
[12] H. Ou-Yang, Optimal contracts in a continuous-time delegated portfolio management problem, The Re-

view of Financial Studies, 16(1) (2003), pp. 173 – 208.
[13] P. Protter, Stochastic Integration and Differential Equations, Springer Verlag, 2nd ed., 2004.
[14] A. Riedl and P. Smeets, Why do investors hold socially responsible mutual funds?, The Journal of

Finance, 72(6) (2017), pp. 2505 – 2550.

24



[15] Y. Sannikov, A continuous-time version of the principal-agent problem, The Review of Economic Studies,
75(3) (2008), pp. 957 – 984.

[16] L. T. Starks, Performance incentive fees: An agency theoretic approach, The Journal of Financial and
Quantitative Analysis, 22(1) (1987), pp. 17 – 32.

[17] N. M. Stoughton, Moral hazard and the portfolio management problem, The Journal of Finance, 48(5)
(1993), pp. 2009 – 2028.

[18] T. Zariphopoulou, Optimal asset allocation in a stochastic factor model - an overview and open prob-

lems, Advanced Financial Modelling, Radon Series in Computational and Applied Mathematics, 8
(2009), pp. 427 – 453.

25


	Introduction
	Problem formulation
	Market model and investment strategies
	Optimal contract

	Solution
	Forward performance SPDE
	Solving the forward performance SPDE

	Explicit optimal contract in the Black-Scholes model
	Principal's optimal strategy
	Fake optimal contracts
	Optimal contract

	Appendix A

