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Abstract—Spectrum sensing enables secondary users in a
cognitive radio network to opportunistically access portions of
the spectrum left idle by primary users. Tracking spectrum
holes jointly in time and frequency over a wide spectrum band
is a challenging task. In one approach to wideband temporal
sensing, the spectrum band is partitioned into narrowband
subchannels of fixed bandwidth, which are then characterized
via hidden Markov modeling using average power or energy
measurements as observation data. Adjacent, correlated sub-

channels are recursively aggregated into channels of variable
bandwidths, corresponding to the primary user signals. Thus,
wideband temporal sensing is transformed into a multiband
sensing scenario by identifying the primary user channels in the
spectrum band. However, future changes in the configuration
of the primary user channels in the multiband setup cannot
generally be detected using an energy detector front end for
spectrum sensing. We propose the use of a cepstral feature vector
to detect changes in the spectrum envelope of a primary user
channel. Our numerical results show that the cepstrum-based
spectrum envelope detector performs well under moderate to
high signal-to-noise ratio conditions.1

Index Terms—Cognitive radio; dynamic spectrum access; spec-
trum sensing; cepstrum; hidden Markov model.

I. INTRODUCTION

Due to the rapidly increasing number of wireless systems

and devices, the demand for wireless spectrum resources has

been increasing at a remarkable rate over the past two decades.

As a result, the crowded radio spectrum under 5 GHz has

become a bottleneck for wireless communications. To address

the spectrum scarcity problem, cognitive radio technologies

are a promising direction of research for achieving more

efficient utilization of the spectrum. In practice, large portions

of the spectrum under 5 GHz remain highly underutilized due

to intermittent spectrum usage by licensed users across the

dimensions of frequency, space, and time. This observation

has been verified experimentally, for example, in the spectrum

occupancy measurement report published by Federal Commu-

nications Commission (FCC) in 2002 [1] and more recently

in spectrum studies conducted by the Shared Spectrum Com-

pany [2]. Such studies point to potentially significant gains in
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spectrum utilization that could be achieved via cognitive radio

technologies.

In this paper, we focus on wideband temporal spectrum

sensing, i.e., tracking spectrum holes jointly in time and

frequency across a wide spectrum band. For concreteness,

we adopt the hierarchical access model of dynamic spectrum

access, which consists of licensed or primary users (PUs) and

unlicensed or secondary users (SUs) [3]. The SUs perform

spectrum sensing to detect and exploit the spectrum left idle

by the PUs without causing harmful interference to the PUs.

In this scenario, reliable spectrum sensing is the prerequisite

of dynamic spectrum access in cognitive radio network. Other

dynamic spectrum sharing paradigms also require an effective

means for detecting and exploiting spectrum holes.

Various spectrum sensing approaches have been developed

such as energy detection, matched filter detection, and cyclo-

stationary feature detection [4]. The energy detector simply

computes the average power of the received signal over a block

of received signal samples and compares it to a specific thresh-

old. This detector has the lowest computational complexity

but performs poorly under low signal-to-noise ratio (SNR).

The matched filter detector requires prior knowledge about

the transmitted signal and thus its applicability is limited. The

cyclostationary feature detector utilizes the cyclostationary

property of digital modulated signals and makes decisions by

computing certain test statistics from the cyclic spectrum of

the received signal. The performance of the cyclostationary

feature detector is generally superior compared to the energy

detector, especially under low SNR, but it requires a much

larger number of received signal samples and has signifi-

cantly higher computational complexity. The aforementioned

spectrum sensing approaches provide a snapshot of spectrum

occupancy in the frequency domain, but do not detect temporal

spectrum holes.

Spectrum detectors based on an underlying hidden Markov

model with an energy detector front end have been devel-

oped for offline and online temporal spectrum sensing of

narrowband channels [5], [6]. A generalization of the HMM,

referred to as a hidden bivariate Markov model (HBMM) was

proposed in [5] to account for more general sojourn time

distributions of a given PU in the idle and active states. In the



temporal spectrum sensing approach of [5], an HBMM model

is first trained offline via an observation sequence consisting

of average received signal powers. The Baum algorithm is

used to estimate the parameter of the trained HBMM model.

Spectrum sensing is accomplished by using average received

power measurements as observations to compute the posterior

probability of the underlying state of the PU given the ob-

servation sequence, based on the trained HBMM. An online

approach to estimating the HBMM model parameter in this

context is developed in [6]. The performance of the HBMM-

based detector is better than that of an energy detector alone

and enables prediction of future spectrum occupancy.

The present paper builds upon the wideband temporal

sensing approach proposed in [7] whereby a given frequency

band is first partitioned into narrowband channels of smaller

but equal bandwidth. The narrowband channels are then sensed

individually using an HMM-based approach similar to that

of [5]. Adjacent channels that are determined to be correlated

according to a modified correlation metric are aggregated

to form larger channels. The procedure is conducted in a

recursive manner, which ultimately results in the identification

of a set of PU channels together with associated HMM

parameters. Temporal spectrum sensing can then be applied

to the identified PU channels in a multiband spectrum sensing

setup. However, the recursive wideband temporal sensing

approach in [7] is performed offline and does not adapt to

dynamic changes in the PU channels that may occur at a

later time. For example, a PU channel may at some future

time be occupied by more than two PU signals. In this case,

the multiband sensing configuration should be recomputed.

The energy detector front end used in [5]–[7] cannot be used

effectively to detect a change in the spectrum envelope of a

PU channel.

In this paper, we develop an approach to wideband temporal

spectrum sensing that can adapt to dynamic changes in the

configuration of a PU channel. A key component of our

approach is the use of a cepstral feature vector to detect

changes in the spectrum envelope of a PU signal within a

given frequency band. The cepstral vector at a given time

frame characterizes the spectrum envelope of a PU signal.

Our approach extends that of [7] for determining an initial

multiband configuration of PU channels by providing a method

to determine when the multiband setup should be recomputed.

To illustrate the problem, Fig. 1 shows three scenarios with

respect to a given spectrum band. Figures 1(a) and 1(b) depict

the spectrum occupancy when the band is, respectively, idle

and active. In Fig. 1(c), apparently the two halves of the band

can be seen to be in different states. In this case, the band

cannot be characterized as a single PU channel. By using the

cepstrum, a spectrum envelope change within a designated PU

channel can be detected efficiently.

The remainder of the paper is organized as follows. In

Section II, we describe a framework for wideband temporal

spectrum sensing, which involves the proposed method for de-

tecting spectrum envelope changes. In Section III, we develop

the cepstrum-based spectrum envelope detector. We present

numerical results in Section IV. The paper is concluded in

Section V.

II. SPECTRUM SENSING FRAMEWORK

In this section, we describe a framework for wideband

temporal spectrum sensing based on the narrowband tempo-

ral sensing approach in [5] and the recursive algorithm for

aggregating narrowband subchannels into PU channels in [7].

A. Narrowband Temporal Sensing

We adopt the narrowband sensing approach in [5] based on

hidden Markov modeling of a given channel and application

of the Baum algorithm to estimate its parameter. Consider the

scenario of a PU transmitting on a narrowband channel while

an SU extracts measurements of the received signal on this

channel. As in [8], the channel state of the PU is a discrete-

time process X = {Xt : t = 0, 1, . . .} where

Xt =

{

0, idle state,
1, active state

(1)

at time t. The observation data obtained by the SU consists of

a discrete-time process Y = {Y t}, where Y t denotes a vector

of observations and is represented by a multivariate Gaussian

random variable with mean µa and covariance matrix Σa,

given the channel state of the PU, i.e., Xt = a, where

a ∈ {0, 1}. In [5], the observation data at time t was a

scalar Yt, representing the average power or energy of the

received signal at time t. In the present paper, the observation

data is a feature vector Y t derived from the cepstrum of

the received signal (see Section III). The observation vectors

in the sequence {Y t} are assumed statistically independent.

The mean and covariance matrix of each Y t depends on

the state Xt, i.e., Y is conditionally Gaussian given X . In

the approach of [5], average received power measurements

on a narrowband PU channel form the observation sequence

Y . When the underlying state process X is a discrete-time

Markov chain, the bivariate process (Y,X) is a hidden Markov

model. Given an estimate of the parameter of the HMM and

the sequence of observations up to the current time t, the

current state and future states of X can be estimated.

An HMM may not be sufficient to accurately model the

channel state process for temporal spectrum sensing, since

the sojourn time of the process X in a given state is limited

to having a geometric distribution. To address this issue, the

hidden bivariate Markov model was proposed in [5] to extend

the chain X to a bivariate Markov chain Z = (X,S) with

an auxiliary process S such that the process X alone is not

a Markov chain. Thus, the HBMM is a trivariate process

(Y,X, S). Instead of the geometric distribution, the sojourn

times of the X-state have a discrete phase-type distribution,

which can approximate a large class of discrete-time sojourn

time distributions including mixtures and convolutions of

geometric distributions. For a general HBMM, the state space

of X is denoted by X = {0, 1, . . . , d−1} where d is a positive

integer, and that of S is denoted by S = {1, 2, . . . , r} where r

is positive integer. In this paper, d = 1 such that X = {0, 1}.



The state space of Z is given by Z = X×S. When r = 1, the

HBMM reduces to an HMM.

Let φ = {π,G,µa,Σa} denote the parameter of the

HBMM used to model a given channel. The vector π = [πa,i :
(a, i) ∈ Z], of size dr, represents the initial distribution of each

state Z , where πa,i = P (Z0 = (a, i)). The transition matrix G

of the HBMM is a dr×dr matrix consisting of the probabilities

gab(ij) = P (Zt = (b, j) | Zt−1 = (a, i)) of transition from

state (a, i) to (b, j). The other two components of the HBMM

parameter, µa and Σa, are the mean vector and the covari-

ance matrix of the Gaussian distribution given channel state

X = a, respectively. As discussed in [5], the Baum algorithm

can be applied to estimate the parameter of an HBMM for

temporal spectrum sensing of a narrowband sensing. Given an

observation sequence yT
0 = {y0,y1, . . . ,yT }, each iteration

of the Baum algorithm computes a new parameter estimate φ̂

based on the previous estimate φ. The re-estimation formulas

given a scalar observation sequence yT0 of average power mea-

surements {yt} are given in [5, Eq. (18)-(21)] and generalize

straightforwardly to the case of vector observations considered

here.

B. Wideband Temporal Sensing

In the wideband temporal sensing approach of [7], a given

spectrum band is partitioned hierarchically into narrowband

channels, each of which is characterized by an HMM or, more

generally an HBMM, as discussed above. A recursive tree

search is used to aggregate adjacent, statistically correlated

narrowband channels into PU channels of generally larger

bandwidth. Thus, the original spectrum band is divided into

a set of PU channels, each of which is then monitored for

temporal spectrum hole opportunities via the hidden Markov

modeling approach of [5]. In effect, the problem of sensing

a given wide spectrum band jointly in time and frequency is

transformed into a multiband spectrum sensing problem. In the

multiband setup, each PU channel can be sensed independently

using narrowband temporal sensing techniques. A challenge in

multiband sensing is how to allocate computational resources

in sensing a given set of PU channel to achieve a good tradeoff

between computational effort and the amount of idle spectrum

that can be detected [9].

An important issue not addressed in [7] is that the configura-

tion of PU signal within the given spectrum band may change

over time, i.e., the PU channels in the multiband setup may

not be static. For example, a given PU channel determined

through the approach of [7] alternates between an idle state,

as in Fig. 1(a), and an active state, as in Fig. 1(b). After some

time, the same channel may come to occupied by two PU

signals that are active and idle at different times, as shown in

Fig. 1(c). In this scenario, narrowband sensing can no longer

be applied meaningfully to the channel. If such a change in

the configuration of the PU channel can be detected, a new

configuration can be recomputed using the approach of [7].

The key challenge here is to devise an efficient method to

detect a change in the configuration of a given PU channel.

This cannot be done using only the average power of the PU

channel, since a change in the configuration of the PU channel

may not involve a change in its average power. This motivates

the cepstrum-based spectrum envelope detector proposed in

the next section.

III. CEPSTRUM-BASED SPECTRUM ENVELOPE DETECTOR

We propose to augment the energy detector front end used

for narrowband temporal spectrum sensing with a detector that

uses cepstral features to determine changes in the spectrum

envelope of a PU channel.

A. Cepstrum

Cepstral analysis has been widely used in applications

such as mechanical inspection [10], seismic echo characteriza-

tion [11], and automatic speech recognition [12]. The cepstrum

of a signal is defined as the inverse Fourier transform of the

logarithm of its power spectral density. Consider a signal w(n)
with power spectral density Sw(k). The cepstral coefficients

are given by

Cw(n) =
1

K

K−1
∑

k=0

log(Sw(k)) exp

(

j
2π

K
kn

)

, (2)

where log(·) denotes the natural logarithm and K is the frame

of the signal. Estimates of the cepstral coefficients are derived

from the periodogram estimate of the power spectral density,

given as follows:

Ŝw(k) =
1

N
|W (k)|2. (3)

Here, W (k) is the Discrete Fourier Transform (DFT) of w(n):

W (k) =

N−1
∑

n=0

w(n) exp

(

−j
2π

K
kn

)

, (4)

where k = 0, . . . ,K − 1 and N is the number of samples of

w(n) used. Then the estimates for the cepstral coefficients are

given by

cw(n) =
1

K

K−1
∑

k=0

log

(

1

N
|W (k)|2

)

exp

(

j
2π

K
kn

)

, (5)

for n = 0, . . . ,K − 1. We assume K ≥ 2N − 1 which makes

Ŝw(k) the DFT of a linear sample correlation of {w(n)}N−1
n=0

rather than a circular sample correlation.

The cepstral feature vector used for spectrum envelope

change detection is formed from the first few cepstral coeffi-

cients as follows:

cw := (cw(1), . . . , cw(L − 1)), (6)

where L ≪ N . The zeroth component cw(0) is closely related

to the energy of the signal and may be used in lieu of the

average signal power for temporal spectrum sensing based

on the HBMM. However, this component is omitted in the

cepstral feature vector given by (6), as it is not helpful for

detecting a change in the configuration of a PU channel. The

cepstrum, including the zeroth component, characterizes the

envelope of the logarithm of the power spectral density of the
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Fig. 1: Spectrum envelope of a band in three scenarios.

signal. A typical length of the cepstral coefficient vector for

speech recognition is L = 12 [12]. It was shown in [12] that

the covariance of the cepstral components is approximately

constant independent of the underlying signal:

cov(cw(n), cw(m)) ≈







π2

3K , if n = m = 0, K2 ,
π2

6K , if 0 < n = m < K
2 ,

0. otherwise.
(7)

for large K . This avoids the need to estimate the covariance

matrix of the cepstral feature vector.

B. Spectrum Envelope Detector

Assume that a number of samples are collected in a given

time period over a specific band. This period consists of

two phases. Initially, we use the wideband temporal spectrum

sensing approach in [7] to identify and characterize all of the

subbands occupied by PU signals. Each subband is treated

as an independent PU channel, characterized by an HBMM

parameter estimate, and is initially said to be in phase 1.

Spectrum sensing of the PU channels proceeds in a multiband

setup using the HBMM parameter estimate and average power

measurements. At the same time, a spectrum envelope detector

based on the cepstral feature vector (6) is applied to detect a

transition of the PU channel to a different configuration, which

we refer to as phase 2. In phase 2, the channel no longer

corresponds to a single PU signal. For example, Fig. 1(c)

shows the spectrum envelope of a subband that is in phase

2 because it consists of two parts that occupy the spectrum

differently. Since the transition from phase 1 to phase 2

leads to a spectrum envelope change, we use the cepstral

feature vector to detect it. After detecting the transition, the

configuration of the PU channels in the orignal band of interest

will need to be recomputed. This could be done by re-applying

the approach of [7] to a portion of the original spectrum band

containing the PU channel in phase 2.

The spectrum envelope detector is based on the underlying

HBMM as discussed in Section II-A in which the observation

vector yt corresponds to the cepstral feature vector extracted

from the received signal. The posterior probability that the

channel is in the idle state given the sequence of observations

yt
0 is denoted by P (Xt = 0 | yt

0;φ), where φ denotes the

current estimate of the HBMM parameter for the channel. This

probability can be derived from the scaled forward recursion

of the Baum algorithm applied to the HBMM (Y , X, S). A

sample decision D̂t on whether a spectrum envelope change,

i.e., a transition to phase 2, has occurred at time t is computed

as follows:

D̂t =

{

1, if γ < P (Xt = 0 | yt
0;φ) < 1− γ,

0, otherwise.
(8)

where γ ∈ (0, 0.5) is a constant. When D̂t = 1, a spectrum

envelope change is detected, the rationale being that the poste-

rior probability of the channel state is bounded away from the

values 0 and 1 by γ. The choice of γ affects the probabilities of

false alarm and detection of the spectrum envelope detector. If

γ is increased, the probability of false alarm will decrease but

the probability of detection will also decrease, and vice versa.

Our empirical studies indicate that the detector is relatively

insensitive to the value of γ within a certain range. We have

obtained good results with γ = 0.01. The spectrum envelope

detector is obtained by averaging over T decision samples. A

decision on whether a spectrum envelope change has occurred

is made periodically once every T samples. The decision for

the ℓth period is given by

D̄ℓ =

{

1, if 1
T

∑T−1
t=0 D̂t+(ℓ−1)T > η,

0, otherwise,
(9)

for ℓ = 1, 2, . . ., where η ∈ (0, 1) can be adjusted to provide

the desired tradeoff between the false alarm and detection

probabilities.

IV. NUMERICAL RESULTS

In this section, we describe several numerical experiments,

implemented in MATLAB, that were conducted to study

the performance of the proposed cepstrum-based spectrum

envelope detector. We simulate phases 1 and 2 as described in

Section III as follows. In phase 1, the channel state sequences

for all the PUs are the same, which means that all of the

PUs occupy and release the band simultaneously. Hence, when

the recursive algorithm in [7] is applied, the entire band is

characterized as a single PU channel. Meanwhile, in phase 2,

the channel state sequences for all the PUs are generated

independently such that the spectrum envelope will change

over the band.

We assume that there are three PUs transmitting on three

adjacent channels with the same bandwidth BW = 330 kHz.
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The sampling rate is Fs = 10 MHz. The signals of both PUs

are modulated by BPSK. Between each pair of adjacent chan-

nels there is a guard band with bandwidth BWg = 60 kHz.

To simulate the active and idle state transitions, the state

sequences for both PUs are generated based on the high-

order HBMM parameter (r = 10) estimated via the algorithm

in [5] from the spectrum measurement data in [2]. For all

experiments, we obtain Ttrain = 200 observation samples in

phase 1 for parameter estimation. For performance evaluation

in phase 2, the number of observation samples for each

decision period for the spectrum envelope detector in (9) is

set to T = 200 and the total number of decision periods is set

to 50.

A. Signal-to-Noise Ratio

We conducted numerical experiments to explore the proba-

bility of detection under various SNR values for the cepstrum-

based spectrum envelope detector. For most of the experi-

ments, we set the HBMM parameter to r = 1, which simplifies

the HBMM to an HMM. For cepstral feature extraction, the

number of samples for calculating cepstrum is N = 256
and the total size of the cepstral component vector is K =
2⌈log2

(N)⌉ where ⌈·⌉ denotes the ceiling operator. This formula

for K is used in all of our numerical experiments. The size of

the cepstral feature vector cw in (6) is set to 11, i.e., L = 12.

We use the zeroth component, cw(0), of the cepstrum as the

observation data for HBMM-based spectrum sensing since it

is closely related to the energy of the signal.

Figure 2 depicts the probability of detection of the cepstrum-

based spectrum envelope detection scheme for several values

of γ under SNR from -20 to 20 dB when the false alarm rate

is Pfa = 0.01. Evidently, the performance of the spectrum

envelope detector is not very sensitive to the value of γ.

The spectrum envelope detector performs well in the regime

of moderate to high SNR. Taking into consideration that

the SUs in the cognitive radio network transmit with low

power, they will not cause harmful interference to the PUs

if the SNR of a given received PU signal is quite low at

their locations. Consequently, in dynamic spectrum access, the

SUs generally focus their sensing efforts more on PU signals

with moderate to high SNR. Figure 3 shows the receiver

operating characteristic (ROC) performance of the cepstrum-

based spectrum envelope detector for different SNR values

of 2, 4, and 6 in units of dB. The threshold γ = 0.01 and

we vary η to obtain the ROC curve. In the ROC diagram,

the x-axis is the probability of false alarm Pfa and the y-axis

is the probability of detection Pd. In this case, the number

of samples used for cepstral feature extraction is N = 128.

When the SNR is greater than 6 dB, almost all of the spectrum

envelope changes are detected correctly.

B. Number of Samples Per Observation

We have also studied the performance impact of the number

of samples N used for cepstral feature extraction. Here, the

signal is generated under an SNR value of 0 dB. As before,

we set L = 12 and r = 1. In Fig. 4, the performance of the

proposed spectrum envelope is shown for N = 128, 192, 256.

It turns out that the performance increases dramatically with a

small increment of the number of samples N . Even when the

SNR is only 0 dB, the performance is still acceptable when

N = 256.

C. Number of Underlying States

We have compared the performance of the proposed spec-

trum envelope detector with different values of r, the number

of states of the underlying auxiliary process S of the HBMM;

in particular, we set r = 1, 2, 5, 10. The signal is generated

under an SNR of 3 dB. The number of received signal samples

used for cepstral feature extraction is N = 128. Figure 5

shows that the performance of the proposed spectrum envelope
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detector improves when r increases. The ROC curves of

r = 2, 5, 10 are close to each other but are all much better than

that of r = 1. In particular, the performance of the proposed

detector is almost perfect when r = 10. However, r = 2 is

more feasible in practice since the computational complexity

increases exponentially as r increases while the performance

is not improved much when r > 2.

V. CONCLUSION

We have proposed a cepstrum-based scheme for detecting a

change in the configuration of a primary user channel in con-

junction with a hidden bivariate Markov model for wideband

temporal spectrum sensing. Such a change is indicated by a

change in the spectrum envelope of the signal occupying the

channel. The observation data for hidden Markov modeling

consists of a cepstral feature vector extracted from the first

several low-order cepstral components of the received signal

except for the energy-dependent zeroth order component.

The proposed spectrum envelope detector can be computed

efficiently. Our numerical results show that the cepstrum-based

spectrum envelope detector performs well in moderate to high

SNR environments. In ongoing work, we are investigating the

use of feature vectors based on the cyclostationary spectrum

for efficiently detecting spectrum envelope changes in low

SNR scenarios.
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