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Abstract—Spectrum sensing enables secondary users in a
cognitive radio network to opportunistically access portions of
the spectrum left idle by primary users. Tracking spectrum
holes jointly in time and frequency over a wide spectrum band
is a challenging task. In one approach to wideband temporal
sensing, the spectrum band is partitioned into narrowband
subchannels of fixed bandwidth, which are then characterized
via hidden Markov modeling using average power or energy
measurements as observation data. Adjacent, correlated sub-
channels are recursively aggregated into channels of variable
bandwidths, corresponding to the primary user signals. Thus,
wideband temporal sensing is transformed into a multiband
sensing scenario by identifying the primary user channels in the
spectrum band. However, future changes in the configuration
of the primary user channels in the multiband setup cannot
generally be detected using an energy detector front end for
spectrum sensing. We propose the use of a cepstral feature vector
to detect changes in the spectrum envelope of a primary user
channel. Our numerical results show that the cepstrum-based
spectrum envelope detector performs well under moderate to
high signal-to-noise ratio conditions.'

Index Terms—Cognitive radio; dynamic spectrum access; spec-
trum sensing; cepstrum; hidden Markov model.

I. INTRODUCTION

Due to the rapidly increasing number of wireless systems
and devices, the demand for wireless spectrum resources has
been increasing at a remarkable rate over the past two decades.
As a result, the crowded radio spectrum under 5 GHz has
become a bottleneck for wireless communications. To address
the spectrum scarcity problem, cognitive radio technologies
are a promising direction of research for achieving more
efficient utilization of the spectrum. In practice, large portions
of the spectrum under 5 GHz remain highly underutilized due
to intermittent spectrum usage by licensed users across the
dimensions of frequency, space, and time. This observation
has been verified experimentally, for example, in the spectrum
occupancy measurement report published by Federal Commu-
nications Commission (FCC) in 2002 [1] and more recently
in spectrum studies conducted by the Shared Spectrum Com-
pany [2]. Such studies point to potentially significant gains in
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spectrum utilization that could be achieved via cognitive radio
technologies.

In this paper, we focus on wideband temporal spectrum
sensing, i.e., tracking spectrum holes jointly in time and
frequency across a wide spectrum band. For concreteness,
we adopt the hierarchical access model of dynamic spectrum
access, which consists of licensed or primary users (PUs) and
unlicensed or secondary users (SUs) [3]. The SUs perform
spectrum sensing to detect and exploit the spectrum left idle
by the PUs without causing harmful interference to the PUs.
In this scenario, reliable spectrum sensing is the prerequisite
of dynamic spectrum access in cognitive radio network. Other
dynamic spectrum sharing paradigms also require an effective
means for detecting and exploiting spectrum holes.

Various spectrum sensing approaches have been developed
such as energy detection, matched filter detection, and cyclo-
stationary feature detection [4]. The energy detector simply
computes the average power of the received signal over a block
of received signal samples and compares it to a specific thresh-
old. This detector has the lowest computational complexity
but performs poorly under low signal-to-noise ratio (SNR).
The matched filter detector requires prior knowledge about
the transmitted signal and thus its applicability is limited. The
cyclostationary feature detector utilizes the cyclostationary
property of digital modulated signals and makes decisions by
computing certain test statistics from the cyclic spectrum of
the received signal. The performance of the cyclostationary
feature detector is generally superior compared to the energy
detector, especially under low SNR, but it requires a much
larger number of received signal samples and has signifi-
cantly higher computational complexity. The aforementioned
spectrum sensing approaches provide a snapshot of spectrum
occupancy in the frequency domain, but do not detect temporal
spectrum holes.

Spectrum detectors based on an underlying hidden Markov
model with an energy detector front end have been devel-
oped for offline and online temporal spectrum sensing of
narrowband channels [5], [6]. A generalization of the HMM,
referred to as a hidden bivariate Markov model (HBMM) was
proposed in [5] to account for more general sojourn time
distributions of a given PU in the idle and active states. In the



temporal spectrum sensing approach of [5], an HBMM model
is first trained offline via an observation sequence consisting
of average received signal powers. The Baum algorithm is
used to estimate the parameter of the trained HBMM model.
Spectrum sensing is accomplished by using average received
power measurements as observations to compute the posterior
probability of the underlying state of the PU given the ob-
servation sequence, based on the trained HBMM. An online
approach to estimating the HBMM model parameter in this
context is developed in [6]. The performance of the HBMM-
based detector is better than that of an energy detector alone
and enables prediction of future spectrum occupancy.

The present paper builds upon the wideband temporal
sensing approach proposed in [7] whereby a given frequency
band is first partitioned into narrowband channels of smaller
but equal bandwidth. The narrowband channels are then sensed
individually using an HMM-based approach similar to that
of [5]. Adjacent channels that are determined to be correlated
according to a modified correlation metric are aggregated
to form larger channels. The procedure is conducted in a
recursive manner, which ultimately results in the identification
of a set of PU channels together with associated HMM
parameters. Temporal spectrum sensing can then be applied
to the identified PU channels in a multiband spectrum sensing
setup. However, the recursive wideband temporal sensing
approach in [7] is performed offline and does not adapt to
dynamic changes in the PU channels that may occur at a
later time. For example, a PU channel may at some future
time be occupied by more than two PU signals. In this case,
the multiband sensing configuration should be recomputed.
The energy detector front end used in [S]-[7] cannot be used
effectively to detect a change in the spectrum envelope of a
PU channel.

In this paper, we develop an approach to wideband temporal
spectrum sensing that can adapt to dynamic changes in the
configuration of a PU channel. A key component of our
approach is the use of a cepstral feature vector to detect
changes in the spectrum envelope of a PU signal within a
given frequency band. The cepstral vector at a given time
frame characterizes the spectrum envelope of a PU signal.
Our approach extends that of [7] for determining an initial
multiband configuration of PU channels by providing a method
to determine when the multiband setup should be recomputed.
To illustrate the problem, Fig. 1 shows three scenarios with
respect to a given spectrum band. Figures 1(a) and 1(b) depict
the spectrum occupancy when the band is, respectively, idle
and active. In Fig. 1(c), apparently the two halves of the band
can be seen to be in different states. In this case, the band
cannot be characterized as a single PU channel. By using the
cepstrum, a spectrum envelope change within a designated PU
channel can be detected efficiently.

The remainder of the paper is organized as follows. In
Section II, we describe a framework for wideband temporal
spectrum sensing, which involves the proposed method for de-
tecting spectrum envelope changes. In Section III, we develop
the cepstrum-based spectrum envelope detector. We present

numerical results in Section IV. The paper is concluded in
Section V.

II. SPECTRUM SENSING FRAMEWORK

In this section, we describe a framework for wideband
temporal spectrum sensing based on the narrowband tempo-
ral sensing approach in [5] and the recursive algorithm for
aggregating narrowband subchannels into PU channels in [7].

A. Narrowband Temporal Sensing

We adopt the narrowband sensing approach in [5] based on
hidden Markov modeling of a given channel and application
of the Baum algorithm to estimate its parameter. Consider the
scenario of a PU transmitting on a narrowband channel while
an SU extracts measurements of the received signal on this
channel. As in [8], the channel state of the PU is a discrete-
time process X = {X;:t=0,1,...} where
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at time ¢. The observation data obtained by the SU consists of
a discrete-time process Y = {Y;}, where Y'; denotes a vector
of observations and is represented by a multivariate Gaussian
random variable with mean g, and covariance matrix X,
given the channel state of the PU, ie., X; = a, where
a € {0,1}. In [5], the observation data at time ¢ was a
scalar Y;, representing the average power or energy of the
received signal at time ¢. In the present paper, the observation
data is a feature vector Y; derived from the cepstrum of
the received signal (see Section III). The observation vectors
in the sequence {Y;} are assumed statistically independent.
The mean and covariance matrix of each Y; depends on
the state Xy, i.e., Y is conditionally Gaussian given X. In
the approach of [5], average received power measurements
on a narrowband PU channel form the observation sequence
Y. When the underlying state process X is a discrete-time
Markov chain, the bivariate process (Y, X) is a hidden Markov
model. Given an estimate of the parameter of the HMM and
the sequence of observations up to the current time ¢, the
current state and future states of X can be estimated.

An HMM may not be sufficient to accurately model the
channel state process for temporal spectrum sensing, since
the sojourn time of the process X in a given state is limited
to having a geometric distribution. To address this issue, the
hidden bivariate Markov model was proposed in [5] to extend
the chain X to a bivariate Markov chain Z = (X,S) with
an auxiliary process S such that the process X alone is not
a Markov chain. Thus, the HBMM is a trivariate process
(Y, X,S). Instead of the geometric distribution, the sojourn
times of the X-state have a discrete phase-type distribution,
which can approximate a large class of discrete-time sojourn
time distributions including mixtures and convolutions of
geometric distributions. For a general HBMM, the state space
of X is denoted by X = {0,1,...,d—1} where d is a positive
integer, and that of S is denoted by S = {1,2,...,r} where r
is positive integer. In this paper, d = 1 such that X = {0, 1}.

idle state,
active state
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The state space of Z is given by Z = X x S. When r = 1, the
HBMM reduces to an HMM.

Let ¢ = {m G,u,,X,} denote the parameter of the
HBMM used to model a given channel. The vector 7w = [mg; :
(a,1) € ZJ, of size dr, represents the initial distribution of each
state Z, where 7, ; = P(Zy = (a,)). The transition matrix G
of the HBMM is a dr x dr matrix consisting of the probabilities
9av(ij) = P(Z; = (b,j) | Zi—1 = (a, 1)) of transition from
state (a, %) to (b, j). The other two components of the HBMM
parameter, p, and X,, are the mean vector and the covari-
ance matrix of the Gaussian distribution given channel state
X = a, respectively. As discussed in [5], the Baum algorithm
can be applied to estimate the parameter of an HBMM for
temporal spectrum sensing of a narrowband sensing. Given an
observation sequence y? = {vy,,¥y;,..., Yy}, each iteration
of the Baum algorithm computes a new parameter estimate ¢?
based on the previous estimate ¢. The re-estimation formulas
given a scalar observation sequence y{ of average power mea-
surements {y;} are given in [5, Eq. (18)-(21)] and generalize
straightforwardly to the case of vector observations considered
here.

B. Wideband Temporal Sensing

In the wideband temporal sensing approach of [7], a given
spectrum band is partitioned hierarchically into narrowband
channels, each of which is characterized by an HMM or, more
generally an HBMM, as discussed above. A recursive tree
search is used to aggregate adjacent, statistically correlated
narrowband channels into PU channels of generally larger
bandwidth. Thus, the original spectrum band is divided into
a set of PU channels, each of which is then monitored for
temporal spectrum hole opportunities via the hidden Markov
modeling approach of [5]. In effect, the problem of sensing
a given wide spectrum band jointly in time and frequency is
transformed into a multiband spectrum sensing problem. In the
multiband setup, each PU channel can be sensed independently
using narrowband temporal sensing techniques. A challenge in
multiband sensing is how to allocate computational resources
in sensing a given set of PU channel to achieve a good tradeoff
between computational effort and the amount of idle spectrum
that can be detected [9].

An important issue not addressed in [7] is that the configura-
tion of PU signal within the given spectrum band may change
over time, i.e., the PU channels in the multiband setup may
not be static. For example, a given PU channel determined
through the approach of [7] alternates between an idle state,
as in Fig. 1(a), and an active state, as in Fig. 1(b). After some
time, the same channel may come to occupied by two PU
signals that are active and idle at different times, as shown in
Fig. 1(c). In this scenario, narrowband sensing can no longer
be applied meaningfully to the channel. If such a change in
the configuration of the PU channel can be detected, a new
configuration can be recomputed using the approach of [7].
The key challenge here is to devise an efficient method to
detect a change in the configuration of a given PU channel.
This cannot be done using only the average power of the PU

channel, since a change in the configuration of the PU channel
may not involve a change in its average power. This motivates
the cepstrum-based spectrum envelope detector proposed in
the next section.

III. CEPSTRUM-BASED SPECTRUM ENVELOPE DETECTOR

We propose to augment the energy detector front end used
for narrowband temporal spectrum sensing with a detector that
uses cepstral features to determine changes in the spectrum
envelope of a PU channel.

A. Cepstrum

Cepstral analysis has been widely used in applications
such as mechanical inspection [10], seismic echo characteriza-
tion [11], and automatic speech recognition [12]. The cepstrum
of a signal is defined as the inverse Fourier transform of the
logarithm of its power spectral density. Consider a signal w(n)
with power spectral density S, (k). The cepstral coefficients
are given by
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Culn) = 2= 3 o8(Su (k) exp <szm) S
k=0

where log(-) denotes the natural logarithm and K is the frame
of the signal. Estimates of the cepstral coefficients are derived
from the periodogram estimate of the power spectral density,
given as follows:
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Here, W (k) is the Discrete Fourier Transform (DFT) of w(n):
N-1 o

W(k) = nzzo w(n) exp (—j?kn) )

where k =0,..., K — 1 and N is the number of samples of

w(n) used. Then the estimates for the cepstral coefficients are
given by

Sulk) = W (k)

“
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forn=0,..., K —1. We assume K > 2N — 1 which makes
S, (k) the DFT of a linear sample correlation of {w(n)}N_!
rather than a circular sample correlation.

The cepstral feature vector used for spectrum envelope
change detection is formed from the first few cepstral coeffi-
cients as follows:

cy = (cw(l),...,co(L —1)), (6)

where L < N. The zeroth component ¢, (0) is closely related
to the energy of the signal and may be used in lieu of the
average signal power for temporal spectrum sensing based
on the HBMM. However, this component is omitted in the
cepstral feature vector given by (6), as it is not helpful for
detecting a change in the configuration of a PU channel. The
cepstrum, including the zeroth component, characterizes the
envelope of the logarithm of the power spectral density of the
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Fig. 1: Spectrum envelope of a band in three scenarios.

signal. A typical length of the cepstral coefficient vector for
speech recognition is L = 12 [12]. It was shown in [12] that
the covariance of the cepstral components is approximately
constant independent of the underlying signal:

2 :

35 ifn=m=0,% R
cov(cw(n), cw(m)) = 4 Zo, if0<n:m< X

0. otherwise.
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for large K. This avoids the need to estimate the covariance
matrix of the cepstral feature vector.

B. Spectrum Envelope Detector

Assume that a number of samples are collected in a given
time period over a specific band. This period consists of
two phases. Initially, we use the wideband temporal spectrum
sensing approach in [7] to identify and characterize all of the
subbands occupied by PU signals. Each subband is treated
as an independent PU channel, characterized by an HBMM
parameter estimate, and is initially said to be in phase I.
Spectrum sensing of the PU channels proceeds in a multiband
setup using the HBMM parameter estimate and average power
measurements. At the same time, a spectrum envelope detector
based on the cepstral feature vector (6) is applied to detect a
transition of the PU channel to a different configuration, which
we refer to as phase 2. In phase 2, the channel no longer
corresponds to a single PU signal. For example, Fig. 1(c)
shows the spectrum envelope of a subband that is in phase
2 because it consists of two parts that occupy the spectrum
differently. Since the transition from phase 1 to phase 2
leads to a spectrum envelope change, we use the cepstral

feature vector to detect it. After detecting the transition, the
configuration of the PU channels in the orignal band of interest
will need to be recomputed. This could be done by re-applying
the approach of [7] to a portion of the original spectrum band
containing the PU channel in phase 2.

The spectrum envelope detector is based on the underlying
HBMM as discussed in Section II-A in which the observation
vector y, corresponds to the cepstral feature vector extracted
from the received signal. The posterior probability that the
channel is in the idle state given the sequence of observations
yl is denoted by P(X; = 0 | yl; ), where ¢ denotes the
current estimate of the HBMM parameter for the channel. This
probability can be derived from the scaled forward recursion
of the Baum algorithm applied to the HBMM (Y, X, S). A
sample decision Dy on whether a spectrum envelope change,
i.e., a transition to phase 2, has occurred at time ¢ is computed
as follows:

D, = { (1)
where v € (0,0.5) is a constant. When D, =1,a spectrum
envelope change is detected, the rationale being that the poste-
rior probability of the channel state is bounded away from the
values 0 and 1 by ~. The choice of v affects the probabilities of
false alarm and detection of the spectrum envelope detector. If
v is increased, the probability of false alarm will decrease but
the probability of detection will also decrease, and vice versa.
Our empirical studies indicate that the detector is relatively
insensitive to the value of  within a certain range. We have
obtained good results with v = 0.01. The spectrum envelope
detector is obtained by averaging over 1" decision samples. A
decision on whether a spectrum envelope change has occurred
is made periodically once every T' samples. The decision for
the ¢th period is given by

if v < P(X;=0]yh¢) <1-1,
otherwise.

®)

Dl _ 1, if % Zt 0 Dt+(l nT > 1, )
0, 0therw1se
for ¢ =1,2,..., where np € (0,1) can be adjusted to provide

the desired tradeoff between the false alarm and detection
probabilities.

IV. NUMERICAL RESULTS

In this section, we describe several numerical experiments,
implemented in MATLAB, that were conducted to study
the performance of the proposed cepstrum-based spectrum
envelope detector. We simulate phases 1 and 2 as described in
Section III as follows. In phase 1, the channel state sequences
for all the PUs are the same, which means that all of the
PUs occupy and release the band simultaneously. Hence, when
the recursive algorithm in [7] is applied, the entire band is
characterized as a single PU channel. Meanwhile, in phase 2,
the channel state sequences for all the PUs are generated
independently such that the spectrum envelope will change
over the band.

We assume that there are three PUs transmitting on three
adjacent channels with the same bandwidth BW = 330 kHz.
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Fig. 2: Spectrum envelope detection probability vs. SNR for
different values of v (P, = 0.01).
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Fig. 3: ROC curves of the spectrum envelope detector under
SNR values of 2, 4, and 6 dB.

The sampling rate is Fs = 10 MHz. The signals of both PUs
are modulated by BPSK. Between each pair of adjacent chan-
nels there is a guard band with bandwidth BW, = 60 kHz.
To simulate the active and idle state transitions, the state
sequences for both PUs are generated based on the high-
order HBMM parameter (r = 10) estimated via the algorithm
in [5] from the spectrum measurement data in [2]. For all
experiments, we obtain T}, = 200 observation samples in
phase 1 for parameter estimation. For performance evaluation
in phase 2, the number of observation samples for each
decision period for the spectrum envelope detector in (9) is
set to 7' = 200 and the total number of decision periods is set
to 50.

A. Signal-to-Noise Ratio

We conducted numerical experiments to explore the proba-
bility of detection under various SNR values for the cepstrum-
based spectrum envelope detector. For most of the experi-
ments, we set the HBMM parameter to r = 1, which simplifies
the HBMM to an HMM. For cepstral feature extraction, the
number of samples for calculating cepstrum is N = 256
and the total size of the cepstral component vector is K =
2M1082(N)1 where [-] denotes the ceiling operator. This formula
for K is used in all of our numerical experiments. The size of
the cepstral feature vector ¢,, in (6) is set to 11, i.e., L = 12.
We use the zeroth component, ¢, (0), of the cepstrum as the
observation data for HBMM-based spectrum sensing since it
is closely related to the energy of the signal.

Figure 2 depicts the probability of detection of the cepstrum-
based spectrum envelope detection scheme for several values
of v under SNR from -20 to 20 dB when the false alarm rate
is Py, = 0.01. Evidently, the performance of the spectrum
envelope detector is not very sensitive to the value of ~.
The spectrum envelope detector performs well in the regime
of moderate to high SNR. Taking into consideration that
the SUs in the cognitive radio network transmit with low
power, they will not cause harmful interference to the PUs
if the SNR of a given received PU signal is quite low at
their locations. Consequently, in dynamic spectrum access, the
SUs generally focus their sensing efforts more on PU signals
with moderate to high SNR. Figure 3 shows the receiver
operating characteristic (ROC) performance of the cepstrum-
based spectrum envelope detector for different SNR values
of 2, 4, and 6 in units of dB. The threshold v = 0.01 and
we vary 7 to obtain the ROC curve. In the ROC diagram,
the x-axis is the probability of false alarm P, and the y-axis
is the probability of detection Py. In this case, the number
of samples used for cepstral feature extraction is N = 128.
When the SNR is greater than 6 dB, almost all of the spectrum
envelope changes are detected correctly.

B. Number of Samples Per Observation

We have also studied the performance impact of the number
of samples NV used for cepstral feature extraction. Here, the
signal is generated under an SNR value of 0 dB. As before,
we set L = 12 and » = 1. In Fig. 4, the performance of the
proposed spectrum envelope is shown for N = 128,192, 256.
It turns out that the performance increases dramatically with a
small increment of the number of samples /N. Even when the
SNR is only 0 dB, the performance is still acceptable when
N = 256.

C. Number of Underlying States

We have compared the performance of the proposed spec-
trum envelope detector with different values of r, the number
of states of the underlying auxiliary process S of the HBMM;
in particular, we set » = 1,2,5,10. The signal is generated
under an SNR of 3 dB. The number of received signal samples
used for cepstral feature extraction is N = 128. Figure 5
shows that the performance of the proposed spectrum envelope
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Fig. 4: ROC curves of the spectrum envelope detector with
N =128,192,256 (SNR = 0 dB).

09fF 7 7

0.85

Pd

{
i
!
1
!
|
!
08l E
!
i
!
075
!

-

0.7

-

ﬂ
I non
“ TN =
o

-

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pfa

Fig. 5: ROC curves of the spectrum envelope detector with
the HBMM parameter r = 1,2,5,10 (SNR = 3 dB).

detector improves when r increases. The ROC curves of
r = 2,5, 10 are close to each other but are all much better than
that of » = 1. In particular, the performance of the proposed
detector is almost perfect when r = 10. However, » = 2 is
more feasible in practice since the computational complexity
increases exponentially as r increases while the performance
is not improved much when r > 2.

V. CONCLUSION

We have proposed a cepstrum-based scheme for detecting a
change in the configuration of a primary user channel in con-
junction with a hidden bivariate Markov model for wideband
temporal spectrum sensing. Such a change is indicated by a
change in the spectrum envelope of the signal occupying the
channel. The observation data for hidden Markov modeling

consists of a cepstral feature vector extracted from the first
several low-order cepstral components of the received signal
except for the energy-dependent zeroth order component.
The proposed spectrum envelope detector can be computed
efficiently. Our numerical results show that the cepstrum-based
spectrum envelope detector performs well in moderate to high
SNR environments. In ongoing work, we are investigating the
use of feature vectors based on the cyclostationary spectrum
for efficiently detecting spectrum envelope changes in low
SNR scenarios.
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