
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5599–5611

Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5599

Observing Dialogue in Therapy:
Categorizing and Forecasting Behavioral Codes

Jie Cao†, Michael Tanana‡, Zac E. Imel‡, Eric Poitras‡,

David C. Atkins♦, Vivek Srikumar†

†School of Computing, University of Utah
‡Department of Educational Psychology, University of Utah

♦Department of Psychiatry and Public Health, University of Washington

{jcao, svivek}@cs.utah.edu,
{michael.tanana, zac.imel, eric.poitras}@utah.edu,

datkins@u.washington.edu

Abstract

Automatically analyzing dialogue can help un-

derstand and guide behavior in domains such

as counseling, where interactions are largely

mediated by conversation. In this paper, we

study modeling behavioral codes used to asses

a psychotherapy treatment style called Motiva-

tional Interviewing (MI), which is effective for

addressing substance abuse and related prob-

lems. Specifically, we address the problem

of providing real-time guidance to therapists

with a dialogue observer that (1) categorizes

therapist and client MI behavioral codes and,

(2) forecasts codes for upcoming utterances

to help guide the conversation and potentially

alert the therapist. For both tasks, we define

neural network models that build upon recent

successes in dialogue modeling. Our experi-

ments demonstrate that our models can outper-

form several baselines for both tasks. We also

report the results of a careful analysis that re-

veals the impact of the various network design

tradeoffs for modeling therapy dialogue.

1 Introduction

Conversational agents have long been studied in

the context of psychotherapy, going back to chat-

bots such as ELIZA (Weizenbaum, 1966) and

PARRY (Colby, 1975). Research in modeling

such dialogue has largely sought to simulate a par-

ticipant in the conversation.

In this paper, we argue for modeling dialogue

observers instead of participants, and focus on

psychotherapy. An observer could help an ongo-

ing therapy session in several ways. First, by mon-

itoring fidelity to therapy standards, a helper could

guide both veteran and novice therapists towards

better patient outcomes. Second, rather than gen-

erating therapist utterances, it could suggest the

type of response that is appropriate. Third, it could

alert a therapist about potentially important cues

from a patient. Such assistance would be espe-

cially helpful in the increasingly prevalent online

or text-based counseling services.1

We ground our study in a style of therapy called

Motivational Interviewing (MI, Miller and Roll-

nick, 2003, 2012), which is widely used for treat-

ing addiction-related problems. To help train ther-

apists, and also to monitor therapy quality, ut-

terances in sessions are annotated using a set of

behavioral codes called Motivational Interviewing

Skill Codes (MISC, Miller et al., 2003). Table 1

shows standard therapist and patient (i.e., client)

codes with examples. Recent NLP work (Tanana

et al., 2016; Xiao et al., 2016; Pérez-Rosas et al.,

2017; Huang et al., 2018, inter alia) has studied

the problem of using MISC to assess completed

sessions. Despite its usefulness, automated post

hoc MISC labeling does not address the desiderata

for ongoing sessions identified above; such mod-

els use information from utterances yet to be said.

To provide real-time feedback to therapists, we de-

fine two complementary dialogue observers:

1. Categorization: Monitoring an ongoing ses-

sion by predicting MISC labels for therapist

and client utterances as they are made.

2. Forecasting: Given a dialogue history, fore-

casting the MISC label for the next utterance,

thereby both alerting or guiding therapists.

Via these tasks, we envision a helper that offers as-

sistance to a therapist in the form of MISC labels.

We study modeling challenges associated with

these tasks related to: (1) representing words and

utterances in therapy dialogue, (2) ascertaining

relevant aspects of utterances and the dialogue his-

tory, and (3) handling label imbalance (as evi-

denced in Table 1). We develop neural models that

address these challenges in this domain.

Experiments show that our proposed models

1For example, Crisis Text Line (https://www.
crisistextline.org), 7 Cups (https://www.7cups.com), etc.
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Code Count Description Examples

Client Behavioral Codes

FN 47715
Follow/ Neutral: unrelated to changing or
sustaining behavior.

“You know, I didn’t smoke for a while.”
“I have smoked for forty years now.”

CT 5099 Utterances about changing unhealthy behavior. “I want to stop smoking.”
ST 4378 Utterances about sustaining unhealthy behavior. “I really don’t think I smoke too much.”

Therapist Behavioral Codes

FA 17468 Facilitate conversation “Mm Hmm.”, “OK.”,“Tell me more.”
GI 15271 Give information or feedback. “I’m Steve.”, “Yes, alcohol is a depressant.”

RES 6246 Simple reflection about the clients most re-
cent utterance.

C: “I didn’t smoke last week”
T: “Cool, you avoided smoking last week.”

REC 4651
Complex reflection based on a client’s his-
tory or the broader conversation.

C: “I didn’t smoke last week.”
T: “You mean things begin to change”.

QUC 5218 Closed question “Did you smoke this week?”
QUO 4509 Open question “Tell me more about your week.”

MIA 3869
Other MI adherent,e.g., affirmation, advis-
ing with permission, etc.

“You’ve accomplished a difficult task.”
“Is it OK if I suggested something?”

MIN 1019
MI non-adherent, e.g., confrontation, advis-
ing without permission, etc.

“You hurt the baby’s health for cigarettes?”
“You ask them not to drink at your house.”

Table 1: Distribution, description and examples of MISC labels.

outperform baselines by a large margin. For the

categorization task, our models even outperform

previous session-informed approaches that use in-

formation from future utterances. For the more

difficult forecasting task, we show that even with-

out having access to an utterance, the dialogue his-

tory provides information about its MISC label.

We also report the results of an ablation study that

shows the impact of the various design choices.2.

In summary, in this paper, we (1) define the

tasks of categorizing and forecasting Motivational

Interviewing Skill Codes to provide real-time as-

sistance to therapists, (2) propose neural mod-

els for both tasks that outperform several base-

lines, and (3) show the impact of various modeling

choices via extensive analysis.

2 Background and Motivation

Motivational Interviewing (MI) is a style of psy-

chotherapy that seeks to resolve a client’s am-

bivalence towards their problems, thereby moti-

vating behavior change. Several meta-analyses

and empirical studies have shown the high efficacy

and success of MI in psychotherapy (Burke et al.,

2004; Martins and McNeil, 2009; Lundahl et al.,

2010). However, MI skills take practice to mas-

ter and require ongoing coaching and feedback to

sustain (Schwalbe et al., 2014). Given the empha-

sis on using specific types of linguistic behaviors

2The code is available online at https://github.com/
utahnlp/therapist-observer.

in MI (e.g., open questions and reflections), fine-

grained behavioral coding plays an important role

in MI theory and training.

Motivational Interviewing Skill Codes (MISC,

table 1) is a framework for coding MI ses-

sions. It facilitates evaluating therapy sessions

via utterance-level labels that are akin to dialogue

acts (Stolcke et al., 2000; Jurafsky and Martin,

2019), and are designed to examine therapist and

client behavior in a therapy session.3

As Table 1 shows, client labels mark utterances

as discussing changing or sustaining problematic

behavior (CT and ST, respectively) or being neu-

tral (FN). Therapist utterances are grouped into

eight labels, some of which (RES, REC) correlate

with improved outcomes, while MI non-adherent

(MIN) utterances are to be avoided. MISC label-

ing was originally done by trained annotators per-

forming multiple passes over a session recording

or a transcript. Recent NLP work speeds up this

process by automatically annotating a completed

MI session (e.g., Tanana et al., 2016; Xiao et al.,

2016; Pérez-Rosas et al., 2017).

Instead of providing feedback to a therapist af-

ter the completion of a session, can a dialogue

observer provide online feedback? While past

work has shown the helpfulness of post hoc eval-

3The original MISC description of Miller et al. (2003) in-
cluded 28 labels (9 client, 19 therapist). Due to data scarcity
and label confusion, various strategies are proposed to merge
the labels into a coarser set. We adopt the grouping proposed
by Xiao et al. (2016); the appendix gives more details.



5601

i si ui li
1 T: Have you used drugs recently? QUC

2 C: I stopped for a year, but relapsed. FN

3 T: You will suffer if you keep using. MIN

4 C: Sorry, I just want to quit. CT

· · · · · · · · ·

Table 2: An example of ongoing therapy session

uations of a session, prompt feedback would be

more helpful, especially for MI non-adherent re-

sponses. Such feedback opens up the possibility

of the dialogue observer influencing the therapy

session. It could serve as an assistant that offers

suggestions to a therapist (novice or veteran) about

how to respond to a client utterance. Moreover, it

could help alert the therapist to potentially impor-

tant cues from the client (specifically, CT or ST).

3 Task Definitions

In this section, we will formally define the two

NLP tasks corresponding to the vision in §2 using

the conversation in table 2 as a running example.

Suppose we have an ongoing MI session with

utterances u1, u2, · · · , un: together, the dialogue

history Hn. Each utterance ui is associated with

its speaker si, either C (client) or T (therapist).

Each utterance is also associated with the MISC

label li, which is the object of study. We will refer

to the last utterance un as the anchor.

We will define two classification tasks over a

fixed dialogue history with n elements — catego-

rization and forecasting. As the conversation pro-

gresses, the history will be updated with a sliding

window. Since the therapist and client codes share

no overlap, we will design separate models for the

two speakers, giving us four settings in all.

Task 1: Categorization. The goal of this task is

to provide real-time feedback to a therapist during

an ongoing MI session. In the running example,

the therapist’s confrontational response in the third

utterance is not MI adherent (MIN); an observer

should flag it as such to bring the therapist back

on track. The client’s response, however, shows an

inclination to change their behavior (CT). Alerting

a therapist (especially a novice) can help guide the

conversation in a direction that encourages it.

In essence, we have the following real-time

classification task: Given the dialogue history Hn

which includes the speaker information, predict

the MISC label ln for the last utterance un.

The key difference from previous work in pre-

dicting MISC labels is that we are restricting the

input to the real-time setting. As a result, models

can only use the dialogue history to predict the la-

bel, and in particular, we can not use models such

as a conditional random field or a bi-directional

LSTM that need both past and future inputs.

Task 2: Forecasting. A real-time therapy ob-

server may be thought of as an expert therapist

who guides a session with suggestions to the ther-

apist. For example, after a client discloses their

recent drug use relapse, a novice therapist may re-

spond in a confrontational manner (which is not

recommended, and hence coded MIN). On the

other hand, a seasoned therapist may respond with

a complex reflection (REC) such as “Sounds like

you really wanted to give up and you’re unhappy

about the relapse.” Such an expert may also antic-

ipate important cues from the client.

The forecasting task seeks to mimic the intent

of such a seasoned therapist: Given a dialogue his-

tory Hn and the next speaker’s identity sn+1, pre-

dict the MISC code ln+1 of the yet unknown next

utterance un+1.

The MISC forecasting task is a previously un-

studied problem. We argue that forecasting the

type of the next utterance, rather than selecting or

generating its text as has been the focus of several

recent lines of work (e.g., Schatzmann et al., 2005;

Lowe et al., 2015; Yoshino et al., 2018), allows

the human in the loop (the therapist) the freedom

to creatively participate in the conversation within

the parameters defined by the seasoned observer,

and perhaps even rejecting suggestions. Such an

observer could be especially helpful for training

therapists (Imel et al., 2017). The forecasting task

is also related to recent work on detecting anti-

social comments in online conversations (Zhang

et al., 2018) whose goal is to provide an early

warning for such events.

4 Models for MISC Prediction

Modeling the two tasks defined in §3 requires ad-

dressing four questions: (1) How do we encode a

dialogue and its utterances? (2) Can we discover

discriminative words in each utterance? (3) Can

we discover which of the previous utterances are

relevant? (4) How do we handle label imbalance

in our data? Many recent advances in neural net-

works can be seen as plug-and-play components.

To facilitate the comparative study of models, we

will describe components that address the above
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questions. In the rest of the paper, we will use

boldfaced terms to denote vectors and matrices

and SMALL CAPS to denote component names.

4.1 Encoding Dialogue

Since both our tasks are classification tasks over

a dialogue history, our goal is to convert the

sequence of utterences into a single vector that

serves as input to the final classifier.

We will use a hierarchical recurrent encoder (Li

et al., 2015; Sordoni et al., 2015; Serban et al.,

2016, and others) to encode dialogues, specifically

a hierarchical gated recurrent unit (HGRU) with

an utterance and a dialogue encoder. We use a

bidirectional GRU over word embeddings to en-

code utterances. As is standard, we represent an

utterance ui by concatenating the final forward

and reverse hidden states. We will refer to this

utterance vector as vi. Also, we will use the hid-

den states of each word as inputs to the attention

components in §4.2. We will refer to such contex-

tual word encoding of the jth word as vij . The

dialogue encoder is a unidirectional GRU that op-

erates on a concatenation of utterance vectors vi

and a trainable vector representing the speaker si.
4

The final state of the GRU aggregates the entire di-

alogue history into a vector Hn.

The HGRU skeleton can be optionally aug-

mented with the word and dialogue attention de-

scribed next. All the models we will study are two-

layer MLPs over the vector Hn that use a ReLU

hidden layer and a softmax layer for the outputs.

4.2 Word-level Attention

Certain words in the utterance history are impor-

tant to categorize or forecast MISC labels. The

identification of these words may depend on the

utterances in the dialogue. For example, to iden-

tify that an utterance is a simple reflection (RES)

we may need to discover that the therapist is mir-

roring a recent client utterance; the example in ta-

ble 1 illustrates this. Word attention offers a natu-

ral mechanism for discovering such patterns.

We can unify a broad collection of attention

mechanisms in NLP under a single high level ar-

chitecture (Galassi et al., 2019). We seek to define

attention over the word encodings vij in the his-

tory (called queries), guided by the word encod-

ings in the anchor vnk (called keys). The output is

4For the dialogue encoder, we use a unidirectional GRU
because the dialogue is incomplete. For words, since the ut-
terances are completed, we can use a BiGRU.

Method fm fc
BiDAF

vnkv
T
ij

[vij ; aij ;
vij ⊙ aij ; vij ⊙ a′]

GMGRU
we tanh(W kvnk [vij ;aij ]+W q[vij ;hj−1])

Table 3: Summary of word attention mechanisms.

We simplify BiDAF with multiplicative attention be-

tween word pairs for fm, while GMGRU uses addi-

tive attention influenced by the GRU hidden state. The

vector we ∈ R
d, and matrices W k ∈ R

d×d and

W q ∈ R
2d×2d are parameters of the BiGRU. The vec-

tor hj−1 is the hidden state from the BiGRU in GM-

GRU at previous position j− 1. For combination func-

tion, BiDAF concatenates bidirectional attention infor-

mation from both the key-aware query vector aij and a

similarly defined query-aware key vector a′. GMGRU

uses simple concatenation for fc.

a sequence of attention-weighted vectors, one for

each word in the ith utterance. The jth output vec-

tor aj is computed as a weighted sum of the keys:

aij =
∑

k

αk
jvnk (1)

The weighting factor αk
j is the attention weight be-

tween the jth query and the kth key, computed as

αk
j =

exp (fm(vnk,vij))
∑

j′ exp
(

fm(vnk,vij′)
) (2)

Here, fm is a match scoring function between the

corresponding words, and different choices give us

different attention mechanisms.

Finally, a combining function fc combines

the original word encoding vij and the above

attention-weighted word vector aij into a new vec-

tor representation zij as the final representation of

the query word encoding:

zij = fc(vij ,aij) (3)

The attention module, identified by the choice

of the functions fm and fc, converts word encod-

ings in each utterance vij into attended word en-

codings zij . To use them in the HGRU skeleton,

we will encode them a second time using a BiGRU

to produce attention-enhanced utterance vectors.

For brevity, we will refer to these vectors as vi for

the utterance ui. If word attention is used, these at-

tended vectors will be treated as word encodings.

To complete this discussion, we need to instan-

tiate the two functions. We use two commonly

used attention mechanisms: BiDAF (Seo et al.,
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2016) and gated matchLSTM (Wang et al., 2017).

For simplicity, we replace the sequence encoder in

the latter with a BiGRU and refer to it as GMGRU.

Table 3 shows the corresponding definitions of fc
and fm. We refer the reader to the original papers

for further details. In subsequent sections, we will

refer to the two attended versions of the HGRU as

BIDAFH and GMGRUH .

4.3 Utterance-level Attention

While we assume that the history of utterances is

available for both our tasks, not every utterance is

relevant to decide a MISC label. For categoriza-

tion, the relevance of an utterance to the anchor

may be important. For example, a complex reflec-

tion (REC) may depend on the relationship of the

current therapist utterance to one or more of the

previous client utterances. For forecasting, since

we do not have an utterance to label, several pre-

vious utterances may be relevant. For example, in

the conversation in Table 2, both u2 and u4 may

be used to forecast a complex reflection.

To model such utterance-level attention, we will

employ the multi-head, multi-hop attention mech-

anism used in Transformer networks (Vaswani

et al., 2017). As before, due to space constraints,

we refer the reader to the original work for details.

We will use the (Q,K,V ) notation from the orig-

inal paper here. These matrices represent a query,

key and value respectively. The multi-head atten-

tion is defined as:

Multihead(Q,K,V ) = [head1; · · · ; headh]W
O (4)

headi = softmax

(

QW
Q
i

(

KWK
i

)T

√
dk

)

V W V
i

The W i’s refer to projection matrices for the three

inputs, and the final W o projects the concatenated

heads into a single vector.

The choices of the query, key and value defines

the attention mechanism. In our work, we com-

pare two variants: anchor-based attention, and

self-attention. The anchor-based attention is de-

fined by Q = [vn] and K = V = [v1 · · ·vn].
Self-attention is defined by setting all three matri-

ces to [v1 · · ·vn]. For both settings, we use four

heads and stacking them for two hops, and refer to

them as SELF42 and ANCHOR42.

4.4 Addressing Label Imbalance

From Table 1, we see that both client and ther-

apist labels are imbalanced. Moreover, rarer la-

bels are more important in both tasks. For exam-

ple, it is important to identify CT and ST utter-

ances. For therapists, it is crucial to flag MI non-

adherent (MIN) utterances; seasoned therapists are

trained to avoid them because they correlate nega-

tively with patient improvements. If not explicitly

addressed, the frequent but less useful labels can

dominate predictions.

To address this, we extend the focal loss (FL

Lin et al., 2017) to the multiclass case. For a label

l with probability produced by a model pt, the loss

is defined as

FL(pt) = −αt(1− pt)
γ log(pt) (5)

In addition to using a label-specific balance weight

αt, the loss also includes a modulating fac-

tor (1− pt)
γ

to dynamically downweight well-

classified examples with pt ≫ 0.5. Here, the αt’s

and the γ are hyperparameters. We use FL as the

default loss function for all our models.

5 Experiments

The original psychotherapy sessions were col-

lected for both clinical trials and Motivational In-

terviewing dissemination studies including hospi-

tal settings (Roy-Byrne et al., 2014), outpatient

clinics (Baer et al., 2009), college alcohol inter-

ventions (Tollison et al., 2008; Neighbors et al.,

2012; Lee et al., 2013, 2014). All sessions

were annotated with the Motivational Interview-

ing Skills Codes (MISC) (Atkins et al., 2014). We

use the train/test split of Can et al. (2015); Tanana

et al. (2016) to give 243 training MI sessions and

110 testing sessions. We used 24 training sessions

for development. As mentioned in §2, all our ex-

periments are based on the MISC codes grouped

by Xiao et al. (2016).

5.1 Preprocessing and Model Setup

An MI session contains about 500 utterances on

average. We use a sliding window of size N = 8
utterances with padding for the initial ones. We

assume that we always know the identity of the

speaker for all utterances. Based on this, we split

the sliding windows into a client and therapist win-

dows to train separate models. We tokenized and

lower-cased utterances using spaCy (Honnibal and

Montani, 2017). To embed words, we concate-

nated 300-dimensional Glove embeddings (Pen-

nington et al., 2014) with ELMo vectors (Peters

et al., 2018). The appendix details the model setup

and hyperparameter choices.
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5.2 Results

Best Models. Our goal is to discover the best

client and therapist models for the two tasks. We

identified the following best configurations using

F1 score on the development set:

1. Categorization: For client, the best model

does not need any word or utterance atten-

tion. For the therapist, it uses GMGRUH for

word attention and ANCHOR42 for utterance

attention. We refer to these models as CC and

CT respectively

2. Forecasting: For both client and therapist,

the best model uses no word attention, and

uses SELF42 utterance attention. We refer to

these models as FC and FT respectively.

Here, we show the performance of these mod-

els against various baselines. The appendix gives

label-wise precision, recall and F1 scores.

Results on Categorization. Tables 4 and 5 show

the performance of the CC and CT models and the

baselines. For both therapist and client catego-

rization, we compare the best models against the

same set of baselines. The majority baseline il-

lustrates the severity of the label imbalance prob-

lem. Xiao et al. (2016), BiGRUgeneric, Can et al.

(2015) and Tanana et al. (2016) are the previous

published baselines. The best results of previous

published baselines are underlined. The last row

∆ in each table lists the changes of our best model

from them. BiGRUELMo, CONCATC , GMGRUH

and BiDAFH are new baselines we define below.

Method macro FN CT ST

Majority 30.6 91.7 0.0 0.0
Xiao et al. (2016) 50.0 87.9 32.8 29.3
BiGRUgeneric 50.2 87.0 35.2 28.4
BiGRUELMo 52.9 87.6 39.2 32.0

Can et al. (2015) 44.0 91.0 20.0 21.0
Tanana et al. (2016) 48.3 89.0 29.0 27.0

CONCATC 51.8 86.5 38.8 30.2

GMGRUH 52.6 89.5 37.1 31.1

BiDAFH 50.4 87.6 36.5 27.1

CC 53.9 89.6 39.1 33.1
∆ = CC − score +3.5 -2.1 +3.9 +3.8

Table 4: Main results on categorizing client codes, in

terms of macro F1, and F1 for each client code. Our

model CC uses final dialogue vector Hn and current ut-

terance vector vn as input of MLP for final prediction.

We found that predicting using MLP(Hn) + MLP(vn)
performs better than just MLP(Hn).

The first set of baselines (above the line) do not

encode dialogue history and use only the current

utterance encoded with a BiGRU. The work of

Xiao et al. (2016) falls in this category, and uses a

100-dimensional domain-specific embedding with

weighted cross-entropy loss. Previously, it was the

best model in this class. We also re-implemented

this model to use either ELMo or Glove vectors

with focal loss.5

The second set of baselines (below the line)

are models that use dialogue context. Both Can

et al. (2015) and Tanana et al. (2016) use well-

studied linguistic features and then tagging the

current utterance with both past and future ut-

terance with CRF and MEMM, respectively. To

study the usefulness of the hierarchical encoder,

we implemented a model that uses a bidirectional

GRU over a long sequence of flattened utterance.

We refer to this as CONCATC . This model is rep-

resentative of the work of Huang et al. (2018), but

was reimplemented to take advantage of ELMo.

For categorizing client codes, BiGRUELMo is a

simple but robust baseline model. It outperforms

the previous best no-context model by more than

2 points on macro F1. Using the dialogue history,

the more sophisticated model CC further gets 1

point improvement. Especially important is its im-

provement on the infrequent, yet crucial labels CT

and ST. It shows a drop in the F1 on the FN label,

which is essentially considered to be an unimpor-

tant, background class from the point of view of

assessing patient progress. For therapist codes, as

the highlighted numbers in Table 5 show, only in-

corporating GMGRU-based word-level attention,

GMGRUH has already outperformed many base-

lines, our proposed model FT which uses both

GMGRU-based word-level attention and anchor-

based multi-head multihop sentence-level atten-

tion can further achieve the best overall perfor-

mance. Also, note that our models outperform ap-

proaches that take advantage of future utterances.

For both client and therapist codes, concatenat-

ing dialogue history with CONCATC always per-

forms worse than the hierarchical method and even

the simpler BiGRUELMo.

Results on Forecasting. Since the forecasting

task is new, there are no published baselines to

compare against. Our baseline systems essentially

differ in their representation of dialogue history.

The model CONCATF uses the same architecture

5Other related work in no context exists (e.g., Pérez-Rosas
et al., 2017; Gibson et al., 2017), but they either do not out-
perform (Xiao et al., 2016) or use different data.
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Method macro FA RES REC GI QUC QUO MIA MIN

Majority 5.87 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Xiao et al. (2016) 59.3 94.7 50.2 48.3 71.9 68.7 80.1 54.0 6.5
BiGRUgeneric 60.2 94.5 50.5 49.3 72.0 70.7 80.1 54.0 10.8
BiGRUELMo 62.6 94.5 51.6 49.4 70.7 72.1 80.8 57.2 24.2

Can et al. (2015) - 94.0 49.0 45.0 74.0 72.0 81.0 - -
Tanana et al. (2016) - 94.0 48.0 39.0 69.0 68.0 77.0 - -

CONCATC 61.0 94.5 54.6 34.3 73.3 73.6 81.4 54.6 22.0

GMGRUH 64.9 94.9 56.0 54.4 75.5 75.7 83.0 58.2 21.8

BiDAFH 63.8 94.7 55.9 49.7 75.4 73.8 80.7 56.2 24.0

CT 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7
∆ = CT − score +5.2 +0.3 +3.9 +3.8 +0.2 +2.8 +1.6 +2.6 +18.9

Table 5: Main results on categorizing therapist codes, in terms of macro F1, and F1 for each therapist code. Models

are the same as Table 4, but tuned for therapist codes. For the two grouped MISC set MIA and MIN, their results

are not reported in the original work due to different setting.

Method
Dev Test

CT ST macro FN CT ST

CONCATF 20.4 30.2 43.6 84.4 23.0 23.5
HGRU 19.9 31.2 44.4 85.7 24.9 22.5

GMGRUH 19.4 30.5 44.3 87.1 23.3 22.4

FC 21.1 31.3 44.3 85.2 24.7 22.7

(a) Main results on forecasting client

codes, in terms of F1 for ST, CT on dev

set, and macro F1, and F1 for each client

code on the test set.

Method
Recall F1

R@3 macro FA RES REC GI QUC QUO MIA MIN

CONCATF 72.5 23.5 63.5 0.6 0.0 53.7 27.0 15.0 18.2 9.0
HGRU 76.0 28.6 71.4 12.7 24.9 58.3 28.8 5.9 17.4 9.7

GMGRUH 76.6 26.6 72.6 10.2 20.6 58.8 27.4 6.0 8.9 7.9

FT 77.0 31.1 71.9 19.5 24.7 59.2 29.1 16.4 15.2 12.8

(b) Main results on forecasting therapist codes, in terms of Recall@3,

macro F1, and F1 for each label on test set

Table 6: Main results on forecasting task

as the model CONCATC from the categorizing

task. We also show comparisons to the simple

HGRU model and the GMGRUH model that uses

a gated matchGRU for word attention.6

Tables 6 (a,b) show our forecasting results for

client and therapist respectively. For client codes,

we also report the CT and ST performance on the

development set because of their importance. For

the therapist codes, we also report the recall@3 to

show the performance of a suggestion system that

displayed three labels instead of one. The results

show that even without an utterance, the dialogue

history conveys signal about the next MISC label.

Indeed, the performance for some labels is even

better than some categorization baseline systems.

Surprisingly, word attention (GMGRUH ) in Table

6 did not help in forecasting setting, and a model

with the SELF42 utterance attention is sufficient.

6The forecasting task bears similarity to the next utter-
ance selection task in dialogue state tracking work (Yoshino
et al., 2018). In preliminary experiments, we found that the
Dual-Encoder approach used for that task consistently under-
performed the other baselines described here.

For the therapist labels, if we always predicted the

three most frequent labels (FA, GI, and RES), the

recall@3 is only 67.7, suggesting that our models

are informative if used in this suggestion-mode.

6 Analysis and Ablations

This section reports error analysis and an abla-

tion study of our models on the development set.

The appendix shows a comparison of pretrained

domain-specific ELMo/glove with generic ones

and the impact of the focal loss compared to sim-

ple or weighted cross-entropy.

6.1 Label Confusion and Error Breakdown

Figure 1 shows the confusion matrix for the client

categorization task. The confusion between FN

and CT/ST is largely caused by label imbalance.

There are 414 CT examples that are predicted as

ST and 391 examples vice versa. To further under-

stand their confusion, we selected 100 of each for

manual analysis. We found four broad categories

of confusion, shown in Table 7.
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Category and Explaination Client Examples (Gold MISC)

Reasoning is required to understand whether a client
wants to change behavior, even with full context (50,42)

T: On a scale of zero to ten how confident are you that you can
implement this change ? C: I don’t know, seven maybe (CT);
I have to wind down after work (ST)

Concise utterances which are easy for humans to un-
derstand, but missing information such as coreference,
zero pronouns (22,31)

I mean I could try it (CT)
Not a negative consequence for me (ST)
I want to get every single second and minute out of it(CT)

Extremely short (≤ 5) or long sentence (≥ 40), caused
by incorrect turn segementation. (21,23)

It is a good thing (ST)
Painful (CT)

Ambivalent speech, very hard to understand even for
human. (7,4)

What if it does n’t work I mean what if I can’t do it (ST)
But I can stop whenever I want(ST)

Table 7: Categorization of CT/ST confusions.The two numbers in the brackets are the count of errors for predicting

CT as ST and vice versa. We exampled 100 examples for each case.

FN CT ST
Predicted label

FN

CT

ST

Tr
ue

 la
be

l

0.86 0.07 0.07

0.39 0.45 0.16

0.36 0.18 0.46

Confusion matrix on Categorizing

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1: Confusion matrix for categorizing client

codes, normalized by row.

The first category requires more complex rea-

soning than just surface form matching. For ex-

ample, the phrase seven out of ten indicates that

the client is very confident about changing behav-

ior; the phrase wind down after work indicates, in

this context, that the client drinks or smokes af-

ter work. We also found that the another frequent

source of error is incomplete information. In a

face-to-face therapy session, people may use con-

cise and effient verbal communication, with gues-

tures and other body language conveying informa-

tion without explaining details about, for example,

coreference. With only textual context, it is diffi-

cult to infer the missing information. The third

category of errors is introduced when speech is

transcribed into text. The last category is about

ambivalent speech. Discovering the real attitude

towards behavior change behind such utterances

could be difficult, even for an expert therapist.

Figures 1 and 2 show the label confusion ma-

trices for the best categorization models. We will

examine confusions that are not caused purely by

a label being frequent. We observe a common

confusion between the two reflection labels, REC

and RES. Compared to the confusion matrix from

Xiao et al. (2016), we see that our models show

much-decreased confusion here. There are two

FA RES REC GI QUC QUO MIA MIN
Predicted label

FA

RES

REC

GI

QUC

QUO

MIA

MIN

Tr
ue

 la
be

l

0.97 0.01 0.00 0.01 0.00 0.00 0.01 0.00

0.02 0.65 0.19 0.08 0.02 0.01 0.02 0.01

0.01 0.30 0.58 0.03 0.02 0.01 0.03 0.02

0.02 0.10 0.04 0.75 0.01 0.01 0.04 0.03

0.01 0.12 0.01 0.03 0.72 0.08 0.02 0.01

0.01 0.02 0.00 0.02 0.07 0.89 0.00 0.00

0.02 0.06 0.07 0.21 0.01 0.02 0.57 0.03

0.02 0.13 0.15 0.25 0.05 0.03 0.02 0.36

Normalized confusion matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix for categorizing therapist

codes, normalized by row.

reason for this confusion persisting. First, the re-

flections may require a much longer information

horizon. We found that by increasing the win-

dow size to 16, the overall reflection results im-

proved. Second, we need to capture richer mean-

ing beyond surface word overlap for RES. We

found that complex reflections usually add mean-

ing or emphasis to previous client statements using

devices such as analogies, metaphors, or similes

rather than simply restating them.

Closed questions (QUC) and simple reflections

(RES) are known to be a confusing set of labels.

For example, an utterance like Sounds like you’re

suffering? may be both. Giving information (GI)

is easily confused with many labels because they

relate to providing information to clients, but with

different attitudes. The MI adherent (MIA) and

non-adherent (MIN) labels may also provide infor-

mation, but with supportive or critical attitude that

may be difficult to disentangle, given the limited
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Ablation Options macro FN CT ST

history
window
size

0 51.6 87.6 39.2 32.0
4 52.6 88.5 37.8 31.5
8∗ 53.9 89.6 39.1 33.1
16 52.0 89.6 39.1 33.1

word
attention

+ GMGRU 52.6 89.5 37.1 31.1
+ BiDAF 50.4 87.6 36.5 27.1

sentence
attention

+ SELF42 53.9 89.2 39.1 33.2
+ ANCHOR42 53.0 88.2 38.9 32.0

Table 8: Ablation study on categorizing client code. ∗
is our best model CC . All ablation is based on it. The

symbol + means adding a component to it. The default

window size is 8 for our ablation models in the word

attention and sentence attention parts.

number of examples.

6.2 How Context and Attention Help?

We evaluated various ablations of our best mod-

els to see how changing various design choices

changes performance. We focused on the context

window size and impact of different word level

and sentence level attention mechanisms. Tables

8 and 9 summarize our results.

History Size. Increasing the history window size

generally helps. The biggest improvements are for

categorizing therapist codes (Table 9), especially

for the RES and REC. However, increasing the

window size beyond 8 does not help to categorize

client codes (Table 8) or forecasting (in appendix).

Word-level Attention. Only the model CT uses

word-level attention. As shown in Table 9, when

we remove the word-level attention from it, the

overall performance drops by 3.4 points, while

performances of RES and REC drop by 3.3 and

5 points respectively. Changing the attention to

BiDAF decreases performance by about 2 points

(still higher than the model without attention).

Sentence-level Attention. Removing sentence at-

tention from the best models that have it decreases

performance for the models CT and FT (in ap-

pendix). It makes little impact on the FC , how-

ever. Table 8 shows that neither attention helps

categorizing clients codes.

6.3 Can We Suggest Empathetic Responses?

Our forecasting models are trained on regular MI

sessions, according to the label distribution on Ta-

ble 1, there are both MI adherent or non-adherent

data. Hence, our models are trained to show how

the therapist usually respond to a given statement.

Ablation Options macro RES REC MIN

history
window
size

0 62.6 51.6 49.4 24.2
4 64.4 54.3 53.2 23.7
8∗ 65.4 55.7 54.9 29.7
16 65.6 55.4 56.7 26.7

word
attention

- GMGRU 62.0 51.9 51.7 16.0
\ BiDAF 63.5 54.2 51.3 22.6

sentence
attention

- ANCHOR42 64.9 56.0 54.4 21.8
\ SELF42 63.4 55.5 48.2 21.1

Table 9: Ablation study on categorizing therapist

codes, ∗ is our proposed model CT . \ means substitut-

ing and − means removing that component. Here, we

only report the important REC, RES labels for guiding,

and the MIN label for warning a therapist.

To show whether our model can mimic good

MI policies, we selected 35 MI sessions from our

test set which were rated 5 or higher on a 7-point

scale empathy or spirit. On these sessions, we still

achieve a recall@3 of 76.9, suggesting that we can

learn good MI policies by training on all therapy

sessions. These results suggest that our models

can help train new therapists who may be uncer-

tain about how to respond to a client.

7 Conclusion

We addressed the question of providing real-time

assistance to therapists and proposed the tasks of

categorizing and forecasting MISC labels for an

ongoing therapy session. By developing a mod-

ular family of neural networks for these tasks, we

show that our models outperform several baselines

by a large margin. Extensive analysis shows that

our model can decrease the label confusion com-

pared to previous work, especially for reflections

and rare labels, but also highlights directions for

future work.
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A Appendix

Different Clustering Strategies for MISC The

original MISC description of Miller et al. (2003)

included 28 labels (9 client, 19 therapist). Due

to data scarcity and label confusion, some labels

were merged into a coarser set. Can et al. (2015)

retain 6 original labels FA, GI, QUC, QUO, REC,

RES, and merge remaining 13 rare labels into a
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Code Count Description Examples

MIA 3869

Group of MI Adherent codes : Af-
firm(AF); Reframe(RF); Emphasize Con-
trol(EC); Support(SU); Filler(FI); Ad-
vise with permission(ADP); Structure(ST);
Raise concern with permission(RCP)

“You’ve accomplished a difficult task.” (AF)
“Its your decision whether you quit or not” (EC)
“That must have been difficult.” (SU)
“Nice weather today!” (FI)
“Is it OK if I suggested something?” (ADP)
“Let’s go to the next topic” (ST)
“Frankly, it worries me.” (RCP)

MIN 1019

Group of MI Non-adherent codes: Con-
front(CO); Direct(DI); Advise without per-
mission(ADW); Warn(WA); Raise concern
without permission(RCW)

“You hurt the baby’s health for cigarettes?” (CO)
“You need to xxx.” (DI)
“You ask them not to drink at your house.” (ADW)
“You will die if you don’t stop smoking.” (WA)
“You may use it again with your friends.” (RCW)

Table 10: Label distribution, description and exmaples for MIA and MIN

single COU label, they merge all 9 client codes

into a single CLI label. Instead, Tanana et al.

(2016) merge only 8 of rare labels into a OTHER

label and they cluster client codes according to the

valence of changing, sustaining or being neutral on

the addictive behavior(Atkins et al., 2014). Then

Xiao et al. (2016) combine and improve above two

clustering strategies by splitting the all 13 rare la-

bels according to whether the code represents MI-

adherent(MIA) and MI-nonadherent (MIN) We

show more details about the original labels in MIA

and MIN in Table 10

Model Setup We use 300-dimensional Glove

embeddings pre-trained on 840B tokens from

Common Crawl (Pennington et al., 2014). We do

not update the embedding during training. Tokens

not covered by Glove are using a randomly ini-

tialized UNK embedding. We also use character-

level deep contextualized embedding ELMo 5.5B

model by concatenating the corresponding ELMo

word encoding after the word embedding vector.

For speaker information, we randomly initialize

them with 8 dimensional vectors and update them

during training. We used a dropout rate of 0.3 for

the embedding layers.

We trained all models using Adam (Kingma and

Ba, 2015) with learning rate chosen by cross val-

idation between [1e−4, 5 ∗ 1e−4], gradient norms

clipping from at [1.0, 5.0], and minibatch sizes of

32 or 64. We use the same hidden size for both ut-

terance encoder, dialogue encoder and other atten-

tion memory hidden size; it has been selected from

{64, 128, 256, 512}. We set a smaller dropout

0.2 for the final two fully connected layers. All

the models are trained for 100 epochs with early-

stoping based on macro F1 over development re-

sults.

Detailed Results of Our Main Models In the

main text, we only show the F1 score of each our

proposed models. We summarize the performance

of our best models for both categorzing and fore-

casting MISC codes in Table 11 with precision,

recall and F1 for each codes.

Label
Categorizing Forecasting

P R F1 P R F1

FN 92.5 86.8 89.6 90.8 80.3 85.2

CT 34.8 44.7 39.1 18.9 28.6 22.7

ST 28.2 39.9 33.1 19.5 33.7 24.7

FA 95.1 94.7 94.9 70.7 73.2 71.9

RES 50.3 61.3 55.2 20.1 18.8 19.5

REC 52.8 55.5 54.1 19.2 34.7 24.7

GI 74.6 75.1 74.8 52.8 67.5 59.2

QUC 80.6 70.4 75.1 36.2 24.3 29.1

QUO 85.3 81.2 83.2 27.0 11.8 16.4

MIA 61.8 52.4 56.7 27.0 10.6 15.2

MIN 27.7 28.5 28.1 17.2 10.2 12.8

Table 11: Performance of our proposed models with

respect to precision, recall and F1 on categorizing and

forecasting tasks for client and therapist codes

Domain Specific Glove and ELMo We use the

general psychotherapy corpus with 6.5M words

(Alexander Street Press) to train the domain spe-

cific word embeddings Glovepsyc with 50, 100,

300 dimension. Also, we trained ELMo with 1

highway connection and 256-dimensional output

size to get ELMopsyc. We found that ELMo 5.5B

performs better than ELMo psyc in our experi-

ments, and general Glove-300 is better than the

Glovepsyc. Hence for main results of our models,

we use ELMogeneric by default. Please see more

details in Table 12
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Model Embedding macro FN CT ST macro FA RES REC GI QUC QUO MIA MIN

C

ELMo 53.9 89.6 39.1 33.1 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7
ELMopsyc 46.9 88.9 27.5 24.3 64.2 94.9 53.3 53.3 75.8 74.8 82.2 56.1 23.5
Glove 50.6 89.9 33.4 28.6 62.2 94.6 53.7 54.2 70.3 70.0 79.1 54.7 20.9
Glovepysc 47.4 88.4 23.9 30.0 63.4 94.9 54.7 52.8 75.2 71.4 80.8 53.6 23.5

F

ELMo 44.3 85.2 24.7 22.7 31.1 71.9 19.5 24.7 59.2 28.3 17.7 15.9 9.0
ELMopsyc 43.8 84.0 22.4 25.0 29.1 73.5 15.5 24.3 59.1 29.1 9.5 12.1 10.1
Glove 42.7 83.9 21.0 23.1 30.0 72.8 20.8 23.7 58.2 26.2 14.5 14.5 9.6
Glovepysc 43.6 81.9 23.3 25.7 30.8 72.1 19.7 24.4 57.3 28.9 13.7 17.8 23.5

Table 12: Ablation study for our proposed model with embeddings trained on the psychotherapy corpus.

Ablation Options CT ST R@3 FA RES REC GI QUC QUO MIA MIN

history size

1 17.2 15.1 66.4 59.4 12.6 9.0 44.6 16.3 14.8 11.9 4.1
4 16.8 22.6 75.3 71.4 15.6 21.1 57.1 29.3 11.0 11.2 14.4
8∗ 24.7 22.7 77.0 72.8 20.8 23.1 58.1 28.3 17.7 15.9 9.0
16 23.9 20.7 76.5 71.2 13.7 24.1 58.5 25.9 9.7 16.2 12.7

word
attention

GMGRU 14.0 23.2 75.7 71.7 14.2 23.0 57.5 26.5 8.0 15.4 11.6
GMGRU4h 19.1 22.9 76.3 71.3 12.1 23.3 58.1 24.5 12.6 11.7 14.0

sentence
attention

− SELF42 24.9 22.5 76.0 71.4 12.7 24.9 58.3 28.8 5.9 17.4 9.7
\ ANCHOR42 22.9 22.9 76.2 72.2 15.5 24.6 59.5 27.1 7.7 16.3 8.3

+ GMGRU \ ANCHOR42 6.8 23.4 76.9 70.8 8.0 24.5 58.3 24.6 10.6 14.9 12.1

Table 13: Ablation on forecasting task on both client and therapist code. ∗ row are results of our best forecasting

model FC , and FT . \ means substitute anchor attention with self attention. +GMGRU ANCHOR42 means using

word-level attention and achor-based sentence-level attention together.

Full Results for Ablation on Forecasting Tasks

In addition to the ablation table in the main pa-

per for categorizing tasks, we reported more abla-

tion details on forecasting task in Table 13. Word-

level attention shows no help for both client and

therapist codes. While sentence-level attention

helps more on therapist codes than on client codes.

Multi-head self attention alsoachieves better per-

formance than anchor-based attention in forecast-

ing tasks.

Label Imbalance We always use the same α

for all weighted focal loss. Besides considering

the label frequency, we also consider the perfor-

mance gap between previous reported F1. We

choose to balance weights α as {1.0,1.0,0.25} for

CT,ST and FN respectively, and {0.5, 1.0, 1.0,

1.0, 0.75, 0.75,1.0,1.0} for FA, RES, REC, GI,

QUC, QUO, MIA, MIN. As shown in Table 14,

we report our ablation studies on cross-entropy

loss, weighted cross-entropy loss, and focal loss.

Besides the fixed weights, focal loss offers flexi-

ble hyperparameters to weight examples in differ-

ent tasks. Experiments shows that except for the

model CT , focal loss outperforms cross-entropy

loss and weighted cross entropy.

Loss
Client Therapist

F1 CT ST F1 RES REC MIA MIN

Cce 47.0 28.4 22.0 60.9 54.3 53.8 53.7 4.8
Cwce 53.5 39.2 32.0 65.4 55.7 54.9 56.6 29.7

Cfl 53.9 39.1 33.1 65.4 55.7 54.9 56.6 29.7

F ce 42.1 17.7 18.5 26.8 3.3 20.8 16.3 8.3
Fwce 43.1 20.6 23.3 30.7 17.9 25.0 17.7 10.9

Ffl 44.2 24.7 22.7 31.1 19.5 24.7 15.2 12.8

Table 14: Abalation study of different loss function

on categorizing and forecasting task. Based on our

proposed model for our four settings, we compared

our best model with crossentropy loss(ce), α balanced

cross-entropy(wce) and focal loss. Here we only report

the macro F1 for rare labels and the overall macro F1.

γ = 1 is the best for both the model CC and FC , while

γ = 0 is the best for CT and γ = 3 for FT . Worth to

mention, when γ = 0, the focal loss degraded into α-

balanced crossentropy, that first two rows are the same

for therspit model.


