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Abstract

Automatically analyzing dialogue can help un-
derstand and guide behavior in domains such
as counseling, where interactions are largely
mediated by conversation. In this paper, we
study modeling behavioral codes used to asses
a psychotherapy treatment style called Motiva-
tional Interviewing (MI), which is effective for
addressing substance abuse and related prob-
lems. Specifically, we address the problem
of providing real-time guidance to therapists
with a dialogue observer that (1) categorizes
therapist and client MI behavioral codes and,
(2) forecasts codes for upcoming utterances
to help guide the conversation and potentially
alert the therapist. For both tasks, we define
neural network models that build upon recent
successes in dialogue modeling. Our experi-
ments demonstrate that our models can outper-
form several baselines for both tasks. We also
report the results of a careful analysis that re-
veals the impact of the various network design
tradeoffs for modeling therapy dialogue.

1 Introduction

Conversational agents have long been studied in
the context of psychotherapy, going back to chat-
bots such as ELIZA (Weizenbaum, 1966) and
PARRY (Colby, 1975). Research in modeling
such dialogue has largely sought to simulate a par-
ticipant in the conversation.

In this paper, we argue for modeling dialogue
observers instead of participants, and focus on
psychotherapy. An observer could help an ongo-
ing therapy session in several ways. First, by mon-
itoring fidelity to therapy standards, a helper could
guide both veteran and novice therapists towards
better patient outcomes. Second, rather than gen-
erating therapist utterances, it could suggest the
type of response that is appropriate. Third, it could
alert a therapist about potentially important cues

from a patient. Such assistance would be espe-
cially helpful in the increasingly prevalent online
or text-based counseling services.!

We ground our study in a style of therapy called
Motivational Interviewing (MI, Miller and Roll-
nick, 2003, 2012), which is widely used for treat-
ing addiction-related problems. To help train ther-
apists, and also to monitor therapy quality, ut-
terances in sessions are annotated using a set of
behavioral codes called Motivational Interviewing
Skill Codes (MISC, Miller et al., 2003). Table 1
shows standard therapist and patient (i.e., client)
codes with examples. Recent NLP work (Tanana
et al., 2016; Xiao et al., 2016; Pérez-Rosas et al.,
2017; Huang et al., 2018, inter alia) has studied
the problem of using MISC to assess completed
sessions. Despite its usefulness, automated post
hoc MISC labeling does not address the desiderata
for ongoing sessions identified above; such mod-
els use information from utterances yet to be said.
To provide real-time feedback to therapists, we de-
fine two complementary dialogue observers:

1. Categorization: Monitoring an ongoing ses-
sion by predicting MISC labels for therapist
and client utterances as they are made.

2. Forecasting: Given a dialogue history, fore-
casting the MISC label for the next utterance,
thereby both alerting or guiding therapists.

Via these tasks, we envision a helper that offers as-
sistance to a therapist in the form of MISC labels.

We study modeling challenges associated with
these tasks related to: (1) representing words and
utterances in therapy dialogue, (2) ascertaining
relevant aspects of utterances and the dialogue his-
tory, and (3) handling label imbalance (as evi-
denced in Table 1). We develop neural models that
address these challenges in this domain.

Experiments show that our proposed models

'"For example, Crisis Text Line (https://www.
crisistextline.org), 7 Cups (https://www.7cups.com), etc.
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Code Count Description

Examples

Client Behavioral Codes

N 47715 sustaining behavior.

Follow/ Neutral: unrelated to changing or

“You know, I didn’t smoke for a while.”
“I have smoked for forty years now.”

Ct 5099  Utterances about changing unhealthy behavior. ~ “I want to stop smoking.”
ST 4378  Utterances about sustaining unhealthy behavior. “I really don’t think I smoke too much.”
Therapist Behavioral Codes
Fa 17468 Facilitate conversation “Mm Hmm.”, “OK.”,*Tell me more.”
GI 15271 Give information or feedback. “I’'m Steve.”, “Yes, alcohol is a depressant.”
RES 6246 Simple reflection about the clients most re- C: “I didn’t smoke last week”
’ cent utterance. T: “Cool, you avoided smoking last week.”

REC 4651 Complex reflection based on a client’s his- C: “I didn’t smoke last week.”

i tory or the broader conversation. T: “You mean things begin to change”.
Quc 5218  Closed question “Did you smoke this week?”
Quo 4509  Open question “Tell me more about your week.”
MiA 3869 Other MI adherent,e.g., affirmation, advis- “You’ve accomplished a difficult task.”

ing with permission, etc. “Is it OK if I suggested something?”

MIN 1019 MI non-adherent, e.g., confrontation, advis- “You hurt the baby’s health for cigarettes?”

ing without permission, etc.

“You ask them not to drink at your house.”

Table 1: Distribution, description and examples of MISC labels.

outperform baselines by a large margin. For the
categorization task, our models even outperform
previous session-informed approaches that use in-
formation from future utterances. For the more
difficult forecasting task, we show that even with-
out having access to an utterance, the dialogue his-
tory provides information about its MISC label.
We also report the results of an ablation study that
shows the impact of the various design choices.”.

In summary, in this paper, we (1) define the
tasks of categorizing and forecasting Motivational
Interviewing Skill Codes to provide real-time as-
sistance to therapists, (2) propose neural mod-
els for both tasks that outperform several base-
lines, and (3) show the impact of various modeling
choices via extensive analysis.

2 Background and Motivation

Motivational Interviewing (MI) is a style of psy-
chotherapy that seeks to resolve a client’s am-
bivalence towards their problems, thereby moti-
vating behavior change. Several meta-analyses
and empirical studies have shown the high efficacy
and success of MI in psychotherapy (Burke et al.,
2004; Martins and McNeil, 2009; Lundahl et al.,
2010). However, MI skills take practice to mas-
ter and require ongoing coaching and feedback to
sustain (Schwalbe et al., 2014). Given the empha-
sis on using specific types of linguistic behaviors

>The code is available online at https:/github.com/
utahnlp/therapist-observer.

in MI (e.g., open questions and reflections), fine-
grained behavioral coding plays an important role
in MI theory and training.

Motivational Interviewing Skill Codes (MISC,
table 1) is a framework for coding MI ses-
sions. It facilitates evaluating therapy sessions
via utterance-level labels that are akin to dialogue
acts (Stolcke et al., 2000; Jurafsky and Martin,
2019), and are designed to examine therapist and
client behavior in a therapy session.’

As Table 1 shows, client labels mark utterances
as discussing changing or sustaining problematic
behavior (CT and ST, respectively) or being neu-
tral (FN). Therapist utterances are grouped into
eight labels, some of which (RES, REC) correlate
with improved outcomes, while MI non-adherent
(MIN) utterances are to be avoided. MISC label-
ing was originally done by trained annotators per-
forming multiple passes over a session recording
or a transcript. Recent NLP work speeds up this
process by automatically annotating a completed
MI session (e.g., Tanana et al., 2016; Xiao et al.,
2016; Pérez-Rosas et al., 2017).

Instead of providing feedback to a therapist af-
ter the completion of a session, can a dialogue
observer provide online feedback? While past
work has shown the helpfulness of post hoc eval-

3The original MISC description of Miller et al. (2003) in-
cluded 28 labels (9 client, 19 therapist). Due to data scarcity
and label confusion, various strategies are proposed to merge
the labels into a coarser set. We adopt the grouping proposed
by Xiao et al. (2016); the appendix gives more details.
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T: Have you used drugs recently?  QuUC
C: Istopped for a year, but relapsed. FN
T: You will suffer if you keep using. MIN
C: Sorry, I just want to quit. Ct

BN =

Table 2: An example of ongoing therapy session

uations of a session, prompt feedback would be
more helpful, especially for MI non-adherent re-
sponses. Such feedback opens up the possibility
of the dialogue observer influencing the therapy
session. It could serve as an assistant that offers
suggestions to a therapist (novice or veteran) about
how to respond to a client utterance. Moreover, it
could help alert the therapist to potentially impor-
tant cues from the client (specifically, CT or ST).

3 Task Definitions

In this section, we will formally define the two
NLP tasks corresponding to the vision in §2 using
the conversation in table 2 as a running example.

Suppose we have an ongoing MI session with
utterances uj, ug, - - - , Uy together, the dialogue
history H,,. Each utterance u; is associated with
its speaker s;, either C (client) or T (therapist).
Each utterance is also associated with the MISC
label /;, which is the object of study. We will refer
to the last utterance wu,, as the anchor.

We will define two classification tasks over a

fixed dialogue history with n elements — catego-
rization and forecasting. As the conversation pro-
gresses, the history will be updated with a sliding
window. Since the therapist and client codes share
no overlap, we will design separate models for the
two speakers, giving us four settings in all.
Task 1: Categorization. The goal of this task is
to provide real-time feedback to a therapist during
an ongoing MI session. In the running example,
the therapist’s confrontational response in the third
utterance is not MI adherent (MIN); an observer
should flag it as such to bring the therapist back
on track. The client’s response, however, shows an
inclination to change their behavior (CT). Alerting
a therapist (especially a novice) can help guide the
conversation in a direction that encourages it.

In essence, we have the following real-time
classification task: Given the dialogue history H,,
which includes the speaker information, predict
the MISC label [, for the last utterance u,,.

The key difference from previous work in pre-

dicting MISC labels is that we are restricting the
input to the real-time setting. As a result, models
can only use the dialogue history to predict the la-
bel, and in particular, we can not use models such
as a conditional random field or a bi-directional
LSTM that need both past and future inputs.

Task 2: Forecasting. A real-time therapy ob-
server may be thought of as an expert therapist
who guides a session with suggestions to the ther-
apist. For example, after a client discloses their
recent drug use relapse, a novice therapist may re-
spond in a confrontational manner (which is not
recommended, and hence coded MIN). On the
other hand, a seasoned therapist may respond with
a complex reflection (REC) such as “Sounds like
you really wanted to give up and you're unhappy
about the relapse.” Such an expert may also antic-
ipate important cues from the client.

The forecasting task seeks to mimic the intent
of such a seasoned therapist: Given a dialogue his-
tory H,, and the next speaker’s identity syy1, pre-
dict the MISC code 1,1 of the yet unknown next
utterance Up41.

The MISC forecasting task is a previously un-
studied problem. We argue that forecasting the
type of the next utterance, rather than selecting or
generating its text as has been the focus of several
recent lines of work (e.g., Schatzmann et al., 2005;
Lowe et al., 2015; Yoshino et al., 2018), allows
the human in the loop (the therapist) the freedom
to creatively participate in the conversation within
the parameters defined by the seasoned observer,
and perhaps even rejecting suggestions. Such an
observer could be especially helpful for training
therapists (Imel et al., 2017). The forecasting task
is also related to recent work on detecting anti-
social comments in online conversations (Zhang
et al.,, 2018) whose goal is to provide an early
warning for such events.

4 Models for MISC Prediction

Modeling the two tasks defined in §3 requires ad-
dressing four questions: (1) How do we encode a
dialogue and its utterances? (2) Can we discover
discriminative words in each utterance? (3) Can
we discover which of the previous utterances are
relevant? (4) How do we handle label imbalance
in our data? Many recent advances in neural net-
works can be seen as plug-and-play components.
To facilitate the comparative study of models, we
will describe components that address the above
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questions. In the rest of the paper, we will use
boldfaced terms to denote vectors and matrices
and SMALL CAPS to denote component names.

4.1 Encoding Dialogue

Since both our tasks are classification tasks over
a dialogue history, our goal is to convert the
sequence of utterences into a single vector that
serves as input to the final classifier.

We will use a hierarchical recurrent encoder (Li
et al., 2015; Sordoni et al., 2015; Serban et al.,
2016, and others) to encode dialogues, specifically
a hierarchical gated recurrent unit (HGRU) with
an utterance and a dialogue encoder. We use a
bidirectional GRU over word embeddings to en-
code utterances. As is standard, we represent an
utterance u; by concatenating the final forward
and reverse hidden states. We will refer to this
utterance vector as v;. Also, we will use the hid-
den states of each word as inputs to the attention
components in §4.2. We will refer to such contex-
tual word encoding of the j** word as v;j. The
dialogue encoder is a unidirectional GRU that op-
erates on a concatenation of utterance vectors v;
and a trainable vector representing the speaker s;.*
The final state of the GRU aggregates the entire di-
alogue history into a vector H,.

The HGRU skeleton can be optionally aug-
mented with the word and dialogue attention de-
scribed next. All the models we will study are two-
layer MLPs over the vector H,, that use a ReLU
hidden layer and a softmax layer for the outputs.

4.2 Word-level Attention

Certain words in the utterance history are impor-
tant to categorize or forecast MISC labels. The
identification of these words may depend on the
utterances in the dialogue. For example, to iden-
tify that an utterance is a simple reflection (RES)
we may need to discover that the therapist is mir-
roring a recent client utterance; the example in ta-
ble 1 illustrates this. Word attention offers a natu-
ral mechanism for discovering such patterns.

We can unify a broad collection of attention
mechanisms in NLP under a single high level ar-
chitecture (Galassi et al., 2019). We seek to define
attention over the word encodings v;; in the his-
tory (called queries), guided by the word encod-
ings in the anchor v, (called keys). The output is

“For the dialogue encoder, we use a unidirectional GRU
because the dialogue is incomplete. For words, since the ut-
terances are completed, we can use a BiGRU.

Method  fr, fe
BiDAF v ’UT- [’Uij; Qij,
e vij © @ij; vi; © a']
w® tanh(WFv )
- Wy b)) | 7]

GMGRU

Table 3: Summary of word attention mechanisms.
We simplify BiDAF with multiplicative attention be-
tween word pairs for f,,, while GMGRU uses addi-
tive attention influenced by the GRU hidden state. The
vector w, € RY, and matrices W € RI%d and
W ¢ R?4%2d gre parameters of the BIGRU. The vec-
tor h;_; is the hidden state from the BiGRU in GM-
GRU at previous position j — 1. For combination func-
tion, BiDAF concatenates bidirectional attention infor-
mation from both the key-aware query vector a;; and a
similarly defined query-aware key vector a’. GMGRU
uses simple concatenation for f,.

a sequence of attention-weighted vectors, one for
each word in the 7*" utterance. The j*" output vec-
tor a; is computed as a weighted sum of the keys:

a;; = Zaé?vnk (1)
k

The weighting factor aé‘? is the attention weight be-
tween the j*" query and the k*" key, computed as

o exp (fm(Vnk,vij))

“= Zj/ €xp (fm(vnka 'Uij’))

Here, f,, is a match scoring function between the
corresponding words, and different choices give us
different attention mechanisms.

Finally, a combining function f. combines
the original word encoding wv;; and the above
attention-weighted word vector a;; into a new vec-
tor representation z;; as the final representation of
the query word encoding:

2

zij = fe(vij, asj) 3)

The attention module, identified by the choice
of the functions f,,, and f., converts word encod-
ings in each utterance v;; into attended word en-
codings z;;. To use them in the HGRU skeleton,
we will encode them a second time using a BIGRU
to produce attention-enhanced utterance vectors.
For brevity, we will refer to these vectors as v; for
the utterance u;. If word attention is used, these at-
tended vectors will be treated as word encodings.

To complete this discussion, we need to instan-
tiate the two functions. We use two commonly
used attention mechanisms: BiDAF (Seo et al.,
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2016) and gated matchLSTM (Wang et al., 2017).
For simplicity, we replace the sequence encoder in
the latter with a BiIGRU and refer to it as GMGRU.
Table 3 shows the corresponding definitions of f.
and f,,,. We refer the reader to the original papers
for further details. In subsequent sections, we will
refer to the two attended versions of the HGRU as
BIDAF# and GMGRU™.

4.3 Utterance-level Attention

While we assume that the history of utterances is
available for both our tasks, not every utterance is
relevant to decide a MISC label. For categoriza-
tion, the relevance of an utterance to the anchor
may be important. For example, a complex reflec-
tion (REC) may depend on the relationship of the
current therapist utterance to one or more of the
previous client utterances. For forecasting, since
we do not have an utterance to label, several pre-
vious utterances may be relevant. For example, in
the conversation in Table 2, both us and w4 may
be used to forecast a complex reflection.

To model such utterance-level attention, we will
employ the multi-head, multi-hop attention mech-
anism used in Transformer networks (Vaswani
et al., 2017). As before, due to space constraints,
we refer the reader to the original work for details.
We will use the (Q, K, V') notation from the orig-
inal paper here. These matrices represent a query,
key and value respectively. The multi-head atten-
tion is defined as:

Multihead(Q, K, V') = [heady; - - - ; head,|W? (4)

QW (Kwi)"
Vi

The W ;’s refer to projection matrices for the three
inputs, and the final W projects the concatenated
heads into a single vector.

The choices of the query, key and value defines
the attention mechanism. In our work, we com-
pare two variants: anchor-based attention, and
self-attention. The anchor-based attention is de-
fined by Q = [vy] and K = V = [v1---vy).
Self-attention is defined by setting all three matri-
ces to [vy - --vy,]. For both settings, we use four
heads and stacking them for two hops, and refer to
them as SELF49 and ANCHOR 5.

head; = softmax ( ) vwY

4.4 Addressing Label Imbalance

From Table 1, we see that both client and ther-
apist labels are imbalanced. Moreover, rarer la-

bels are more important in both tasks. For exam-
ple, it is important to identify CT and ST utter-
ances. For therapists, it is crucial to flag MI non-
adherent (MIN) utterances; seasoned therapists are
trained to avoid them because they correlate nega-
tively with patient improvements. If not explicitly
addressed, the frequent but less useful labels can
dominate predictions.

To address this, we extend the focal loss (FL
Lin et al., 2017) to the multiclass case. For a label
[ with probability produced by a model p;, the loss
is defined as

FL(p) = —ay (1 — py) " log(pe) (5)

In addition to using a label-specific balance weight
oy, the loss also includes a modulating fac-
tor (1 —p;)” to dynamically downweight well-
classified examples with p; > 0.5. Here, the ay’s
and the v are hyperparameters. We use FL as the
default loss function for all our models.

5 Experiments

The original psychotherapy sessions were col-
lected for both clinical trials and Motivational In-
terviewing dissemination studies including hospi-
tal settings (Roy-Byrne et al., 2014), outpatient
clinics (Baer et al., 2009), college alcohol inter-
ventions (Tollison et al., 2008; Neighbors et al.,
2012; Lee et al., 2013, 2014). All sessions
were annotated with the Motivational Interview-
ing Skills Codes (MISC) (Atkins et al., 2014). We
use the train/test split of Can et al. (2015); Tanana
et al. (2016) to give 243 training MI sessions and
110 testing sessions. We used 24 training sessions
for development. As mentioned in §2, all our ex-
periments are based on the MISC codes grouped
by Xiao et al. (2016).

5.1 Preprocessing and Model Setup

An MI session contains about 500 utterances on
average. We use a sliding window of size N = 8
utterances with padding for the initial ones. We
assume that we always know the identity of the
speaker for all utterances. Based on this, we split
the sliding windows into a client and therapist win-
dows to train separate models. We tokenized and
lower-cased utterances using spaCy (Honnibal and
Montani, 2017). To embed words, we concate-
nated 300-dimensional Glove embeddings (Pen-
nington et al., 2014) with ELMo vectors (Peters
etal., 2018). The appendix details the model setup
and hyperparameter choices.
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5.2 Results

Best Models. Our goal is to discover the best
client and therapist models for the two tasks. We
identified the following best configurations using
F; score on the development set:

1. Categorization: For client, the best model
does not need any word or utterance atten-
tion. For the therapist, it uses GMGRU for
word attention and ANCHOR,9 for utterance
attention. We refer to these models as C and
Cr respectively

2. Forecasting: For both client and therapist,
the best model uses no word attention, and
uses SELF49 utterance attention. We refer to
these models as F¢ and JFr respectively.

Here, we show the performance of these mod-
els against various baselines. The appendix gives
label-wise precision, recall and F; scores.
Results on Categorization. Tables 4 and 5 show
the performance of the Co and Cr models and the
baselines. For both therapist and client catego-
rization, we compare the best models against the
same set of baselines. The majority baseline il-
lustrates the severity of the label imbalance prob-
lem. Xiao et al. (2016), BiGRUgeperic, Can et al.
(2015) and Tanana et al. (2016) are the previous
published baselines. The best results of previous
published baselines are underlined. The last row
A in each table lists the changes of our best model
from them. BiGRUgmo, CONCAT®, GMGRU*
and BiDAF! are new baselines we define below.

Method macro FN CT ST
Majority 306 91.7 0.0 00
Xiao et al. (2016) 50.0 87.9 32.8 29.3
BiGRU eneric 50.2 87.0 35.2 284
BiGRUEgLMmo 529 87.6 39.2 32.0

Can et al. (2015) 44.0 91.0 20.0 21.0
Tanana et al. (2016) 48.3 89.0 29.0 27.0

CONCAT® 51.8 86.5 38.8 302
GMGRU¥H 526 89.5 37.1 31.1
BiDAF? 504 87.6 36.5 27.1
Ce 539 89.6 39.1 33.1

A = Cc — score +3.5 -2.1 +39 +3.8

Table 4: Main results on categorizing client codes, in
terms of macro Fq, and F; for each client code. Our
model C¢ uses final dialogue vector H,, and current ut-
terance vector v,, as input of MLP for final prediction.
We found that predicting using MLP(H,,) + MLP(v,,)
performs better than just MLP(H,, ).

The first set of baselines (above the line) do not

encode dialogue history and use only the current
utterance encoded with a BiGRU. The work of
Xiao et al. (2016) falls in this category, and uses a
100-dimensional domain-specific embedding with
weighted cross-entropy loss. Previously, it was the
best model in this class. We also re-implemented
this model to use either ELMo or Glove vectors
with focal loss.’

The second set of baselines (below the line)
are models that use dialogue context. Both Can
et al. (2015) and Tanana et al. (2016) use well-
studied linguistic features and then tagging the
current utterance with both past and future ut-
terance with CRF and MEMM, respectively. To
study the usefulness of the hierarchical encoder,
we implemented a model that uses a bidirectional
GRU over a long sequence of flattened utterance.
We refer to this as CONCATC. This model is rep-
resentative of the work of Huang et al. (2018), but
was reimplemented to take advantage of ELMo.

For categorizing client codes, BIGRUgp o 1S a
simple but robust baseline model. It outperforms
the previous best no-context model by more than
2 points on macro F;. Using the dialogue history,
the more sophisticated model Cc further gets 1
point improvement. Especially important is its im-
provement on the infrequent, yet crucial labels CT
and ST. It shows a drop in the F; on the FN label,
which is essentially considered to be an unimpor-
tant, background class from the point of view of
assessing patient progress. For therapist codes, as
the highlighted numbers in Table 5 show, only in-
corporating GMGRU-based word-level attention,
GMGRU has already outperformed many base-
lines, our proposed model Fr which uses both
GMGRU-based word-level attention and anchor-
based multi-head multihop sentence-level atten-
tion can further achieve the best overall perfor-
mance. Also, note that our models outperform ap-
proaches that take advantage of future utterances.

For both client and therapist codes, concatenat-
ing dialogue history with CONCAT® always per-
forms worse than the hierarchical method and even
the simpler BiIGRUE1 Mmo.
Results on Forecasting. Since the forecasting
task is new, there are no published baselines to
compare against. Our baseline systems essentially
differ in their representation of dialogue history.
The model CONCAT!" uses the same architecture

3Other related work in no context exists (e.g., Pérez-Rosas

et al., 2017; Gibson et al., 2017), but they either do not out-
perform (Xiao et al., 2016) or use different data.
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Method macro  FA RES REC GI Quc Quo MiA MIN
Majority 587 470 00 0.0 0.0 0.0 0.0 0.0 0.0
Xiao et al. (2016) 593 947 502 483 719 68.7 80.1 54.0 6.5
BiGRU generic 60.2 945 505 493 720 70.7 80.1 54.0 10.8
BiGRUELmo 62.6 945 516 494 707 721 808 572 242
Can et al. (2015) - 940 49.0 450 740 720 81.0 - -
Tanana et al. (2016) - 94.0 480 390 690 680 77.0 - -
CONCAT® 61.0 945 546 343 733 736 814 546 220
GMGRU# 649 949 56.0 544 755 757 830 582 21.8
BiDAFH? 63.8 947 559 497 754 738 80.7 562 240
Cr 654 950 557 549 742 748 826 566 @ 29.7
A = Cr — score +52 +03 +39 +38 +02 +28 +1.6 +2.6 +189

Table 5: Main results on categorizing therapist codes, in terms of macro F, and F; for each therapist code. Models
are the same as Table 4, but tuned for therapist codes. For the two grouped MISC set M1A and MIN, their results
are not reported in the original work due to different setting.

Dev Test

Method

Ct ST macro FN CT ST

Method

Recall F1
R@3 macro FA RES REC GI Quc QUO MIA MIN

CONCATY 20.4 30.2 43.6 84.423.0 235

CONCATY 725

235 635 0.6 0.0 53.7 27.0 15.0 182 9.0

HGRU 199 31.2 444 857249225 HGRU 76.0 28.6 71.412.7 24.9 58.3 28.8 59 174 9.7
GMGRUY 19.4 30.5 44.3 87.1 23.3 22.4 GMGRUY 76.6 26.6 72.6 10.2 20.6 58.8 27.4 6.0 89 7.9
Fc 21.1 31.3 443 85.224.722.7 Fr 77.0 31.1 71.919.524.7 59.2 29.1 16.4 15.2 12.8

(a) Main results on forecasting client
codes, in terms of F; for ST, CT on dev
set, and macro Fq, and F; for each client
code on the test set.

(b) Main results on forecasting therapist codes, in terms of Recall @3,
macro Fy, and F; for each label on test set

Table 6: Main results on forecasting task

as the model CONCATC from the categorizing
task. We also show comparisons to the simple
HGRU model and the GMGRU” model that uses
a gated matchGRU for word attention.®

Tables 6 (a,b) show our forecasting results for
client and therapist respectively. For client codes,
we also report the CT and ST performance on the
development set because of their importance. For
the therapist codes, we also report the recall@3 to
show the performance of a suggestion system that
displayed three labels instead of one. The results
show that even without an utterance, the dialogue
history conveys signal about the next MISC label.
Indeed, the performance for some labels is even
better than some categorization baseline systems.
Surprisingly, word attention (GMGRU) in Table
6 did not help in forecasting setting, and a model
with the SELF4, utterance attention is sufficient.

SThe forecasting task bears similarity to the next utter-
ance selection task in dialogue state tracking work (Yoshino
et al., 2018). In preliminary experiments, we found that the
Dual-Encoder approach used for that task consistently under-
performed the other baselines described here.

For the therapist labels, if we always predicted the
three most frequent labels (FA, GI, and RES), the
recall@3 is only 67.7, suggesting that our models
are informative if used in this suggestion-mode.

6 Analysis and Ablations

This section reports error analysis and an abla-
tion study of our models on the development set.
The appendix shows a comparison of pretrained
domain-specific ELMo/glove with generic ones
and the impact of the focal loss compared to sim-
ple or weighted cross-entropy.

6.1 Label Confusion and Error Breakdown

Figure 1 shows the confusion matrix for the client
categorization task. The confusion between FN
and CT/ST is largely caused by label imbalance.
There are 414 CT examples that are predicted as
ST and 391 examples vice versa. To further under-
stand their confusion, we selected 100 of each for
manual analysis. We found four broad categories
of confusion, shown in Table 7.
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Category and Explaination

Client Examples (Gold MISC)

Reasoning is required to understand whether a client

T: On a scale of zero to ten how confident are you that you can
implement this change ? C: I don’t know, seven maybe (CT);

wants to change behavior, even with full context (50,42)

1 have to wind down after work (ST)

Concise utterances which are easy for humans to un-
derstand, but missing information such as coreference,
zero pronouns (22,31)

I mean I could try it (CT)
Not a negative consequence for me (ST)
I want to get every single second and minute out of it(CT)

Extremely short (< 5) or long sentence (> 40), caused
by incorrect turn segementation. (21,23)

Itis a good thing (ST)
Painful (CT)

Ambivalent speech, very hard to understand even for
human. (7,4)

What if it does n’t work I mean what if I can’t do it (ST)
But I can stop whenever I want(ST)

Table 7: Categorization of CT/ST confusions.The two numbers in the brackets are the count of errors for predicting
CT as ST and vice versa. We exampled 100 examples for each case.

True label

FN cT ST
Predicted label

Figure 1: Confusion matrix for categorizing client
codes, normalized by row.

The first category requires more complex rea-
soning than just surface form matching. For ex-
ample, the phrase seven out of ten indicates that
the client is very confident about changing behav-
ior; the phrase wind down after work indicates, in
this context, that the client drinks or smokes af-
ter work. We also found that the another frequent
source of error is incomplete information. In a
face-to-face therapy session, people may use con-
cise and effient verbal communication, with gues-
tures and other body language conveying informa-
tion without explaining details about, for example,
coreference. With only textual context, it is diffi-
cult to infer the missing information. The third
category of errors is introduced when speech is
transcribed into text. The last category is about
ambivalent speech. Discovering the real attitude
towards behavior change behind such utterances
could be difficult, even for an expert therapist.

Figures 1 and 2 show the label confusion ma-
trices for the best categorization models. We will
examine confusions that are not caused purely by
a label being frequent. We observe a common
confusion between the two reflection labels, REC
and RES. Compared to the confusion matrix from
Xiao et al. (2016), we see that our models show
much-decreased confusion here. There are two

FA

RES 4 0.8
REC A

0.6
Gl

True label

Quc A L oa

QUO 4

MIA [o2

MIN 4 0.02 0.13 0.15 0.25 0.05 0.03 0.02 0.36

T T T T T T T T
FA RES REC Gl QuC Quo MIA MIN
Predicted label

Figure 2: Confusion matrix for categorizing therapist
codes, normalized by row.

reason for this confusion persisting. First, the re-
flections may require a much longer information
horizon. We found that by increasing the win-
dow size to 16, the overall reflection results im-
proved. Second, we need to capture richer mean-
ing beyond surface word overlap for RES. We
found that complex reflections usually add mean-
ing or emphasis to previous client statements using
devices such as analogies, metaphors, or similes
rather than simply restating them.

Closed questions (QUC) and simple reflections
(RES) are known to be a confusing set of labels.
For example, an utterance like Sounds like you’re
suffering? may be both. Giving information (GT1)
is easily confused with many labels because they
relate to providing information to clients, but with
different attitudes. The MI adherent (MIA) and
non-adherent (MIN) labels may also provide infor-
mation, but with supportive or critical attitude that
may be difficult to disentangle, given the limited
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Ablation Options macro FN CT ST
hi 0 51.6 87.6 39.2 32.0
1;t3ry 4 52.6 88.5 37.8 31.5
window 8* 53.9 89.6 39.1 33.1
s1ze 16 52.0 89.6 39.1 33.1
word +GMGRU 52.6 89.5 37.1 31.1
attention + BiDAF 50.4 87.6 36.5 27.1
sentence + SELF42 53.9 89.2 39.1 33.2

attention + ANCHOR42 53.0 88.2 38.9 32.0

Table 8: Ablation study on categorizing client code. *
is our best model C. All ablation is based on it. The
symbol + means adding a component to it. The default
window size is 8 for our ablation models in the word
attention and sentence attention parts.

number of examples.

6.2 How Context and Attention Help?

We evaluated various ablations of our best mod-
els to see how changing various design choices
changes performance. We focused on the context
window size and impact of different word level
and sentence level attention mechanisms. Tables
8 and 9 summarize our results.

History Size. Increasing the history window size
generally helps. The biggest improvements are for
categorizing therapist codes (Table 9), especially
for the RES and REC. However, increasing the
window size beyond 8 does not help to categorize
client codes (Table 8) or forecasting (in appendix).
Word-level Attention. Only the model Cr uses
word-level attention. As shown in Table 9, when
we remove the word-level attention from it, the
overall performance drops by 3.4 points, while
performances of RES and REC drop by 3.3 and
5 points respectively. Changing the attention to
BiDAF decreases performance by about 2 points
(still higher than the model without attention).
Sentence-level Attention. Removing sentence at-
tention from the best models that have it decreases
performance for the models Cr and Fr (in ap-
pendix). It makes little impact on the F¢, how-
ever. Table 8 shows that neither attention helps
categorizing clients codes.

6.3 Can We Suggest Empathetic Responses?

Our forecasting models are trained on regular MI
sessions, according to the label distribution on Ta-
ble 1, there are both MI adherent or non-adherent
data. Hence, our models are trained to show how
the therapist usually respond to a given statement.

Ablation Options  macro RES REC MIN
hi 0 62.6 51.6 494 242
story 4 64.4 543 532 237
window 8* 654 557 549 297
size 16 65.6 554 56.7 26.7
word -GMGRU 62.0 519 51.7 16.0
attention \ BiDAF  63.5 542 513 226
sentence - ANCHOR42 64.9 56.0 544 21.8
attention \ SELFs2  63.4 555 482 21.1
Table 9:  Ablation study on categorizing therapist

codes, * is our proposed model Cr. \ means substitut-
ing and — means removing that component. Here, we
only report the important REC, RES labels for guiding,
and the MIN label for warning a therapist.

To show whether our model can mimic good
MI policies, we selected 35 MI sessions from our
test set which were rated 5 or higher on a 7-point
scale empathy or spirit. On these sessions, we still
achieve a recall@3 of 76.9, suggesting that we can
learn good MI policies by training on all therapy
sessions. These results suggest that our models
can help train new therapists who may be uncer-
tain about how to respond to a client.

7 Conclusion

We addressed the question of providing real-time
assistance to therapists and proposed the tasks of
categorizing and forecasting MISC labels for an
ongoing therapy session. By developing a mod-
ular family of neural networks for these tasks, we
show that our models outperform several baselines
by a large margin. Extensive analysis shows that
our model can decrease the label confusion com-
pared to previous work, especially for reflections
and rare labels, but also highlights directions for
future work.
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A Appendix

Different Clustering Strategies for MISC The
original MISC description of Miller et al. (2003)
included 28 labels (9 client, 19 therapist). Due
to data scarcity and label confusion, some labels
were merged into a coarser set. Can et al. (2015)
retain 6 original labels FA, GI, QUc, QUo, REC,
RES, and merge remaining 13 rare labels into a
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Code Count Description

Examples

“You’ve accomplished a difficult task.” (AF)

Group O_f MI Adhereflt COdeS. AR “Its your decision whether you quit or not” (EC)
firm(AF); Reframe(RF); Emphasize Con- ., . '
. That must have been difficult.” (SU)
Mia 3869  trol(EC); Support(SU); Filler(FI); Ad- ... »
. . o ) ~ “Nice weather today!” (FI)
vise with permission(ADP); Structure(ST); “Is it OK if I d hine? (ADP
Raise concern with permission(RCP) s 1t 111 suggeste s'omet ing?” ( )
“Let’s go to the next topic” (ST)
“Frankly, it worries me.” (RCP)
< 5 - 5
Group of MI Non-adherent codes: Con- “You hurt the babZ s health for cigarettes?” (CO)
front(CO); Direct(DI); Advise without per- You need to xxx.” (DI)
MiN 1019 i ’ p “You ask them not to drink at your house.” (ADW)

mission(ADW); Warn(WA); Raise concern .,

without permission(RCW)

You will die if you don’t stop smoking.” (WA)
“You may use it again with your friends.” (RCW)

Table 10: Label distribution, description and exmaples for M1A and MIN

single COU label, they merge all 9 client codes
into a single CLI label. Instead, Tanana et al.
(2016) merge only 8 of rare labels into a OTHER
label and they cluster client codes according to the
valence of changing, sustaining or being neutral on
the addictive behavior(Atkins et al., 2014). Then
Xiao et al. (2016) combine and improve above two
clustering strategies by splitting the all 13 rare la-
bels according to whether the code represents MI-
adherent(M1A) and MI-nonadherent (MIN) We
show more details about the original labels in MTA
and MIN in Table 10

Model Setup We use 300-dimensional Glove
embeddings pre-trained on 840B tokens from
Common Crawl (Pennington et al., 2014). We do
not update the embedding during training. Tokens
not covered by Glove are using a randomly ini-
tialized UNK embedding. We also use character-
level deep contextualized embedding ELMo 5.5B
model by concatenating the corresponding ELMo
word encoding after the word embedding vector.
For speaker information, we randomly initialize
them with 8 dimensional vectors and update them
during training. We used a dropout rate of 0.3 for
the embedding layers.

We trained all models using Adam (Kingma and
Ba, 2015) with learning rate chosen by cross val-
idation between [le~4,5 x 1e~4], gradient norms
clipping from at [1.0, 5.0], and minibatch sizes of
32 or 64. We use the same hidden size for both ut-
terance encoder, dialogue encoder and other atten-
tion memory hidden size; it has been selected from
{64,128,256,512}. We set a smaller dropout
0.2 for the final two fully connected layers. All
the models are trained for 100 epochs with early-
stoping based on macro F; over development re-
sults.

Detailed Results of Our Main Models In the
main text, we only show the F; score of each our
proposed models. We summarize the performance
of our best models for both categorzing and fore-
casting MISC codes in Table 11 with precision,
recall and F} for each codes.

Categorizing  Forecasting
P R FL| P R F
FN 92.5 86.8 89.6/90.8 80.3 85.2
Ct 34.8 447 39.1|18.9 28.6 22.7
ST 28.2 39.9 33.1|19.5 33.7 24.7
FA 95.1 947 949170.7 73.2 71.9

Label

RES [50.3 61.3 55.2|20.1 18.8 19.5
REC [52.8 55.5 54.1|19.2 34.7 24.7
GI 74.6 75.1 74.8|52.8 67.5 59.2
Quc [80.6 70.4 75.1|36.2 24.3 29.1
Quo |85.3 81.2 83.2{27.0 11.8 164
Mia |61.8 524 56.7({27.0 10.6 15.2
MIN |27.7 28.5 28.1|17.2 10.2 12.8

Table 11: Performance of our proposed models with
respect to precision, recall and F; on categorizing and
forecasting tasks for client and therapist codes

Domain Specific Glove and ELMo We use the
general psychotherapy corpus with 6.5M words
(Alexander Street Press) to train the domain spe-
cific word embeddings Glove,,,. with 50, 100,
300 dimension. Also, we trained ELMo with 1
highway connection and 256-dimensional output
size to get ELMo,,,.. We found that ELMo 5.5B
performs better than ELMo psyc in our experi-
ments, and general Glove-300 is better than the
Glove,,,.. Hence for main results of our models,
we use ELMogyeperic by default. Please see more
details in Table 12

5610



Model | Embedding | macro FN CT ST |macro FA RES REC GI Quc Quo MIA MIN
ELMo 539 89.6 39.1 33.1| 654 95.0 55.7 549 742 74.8 82.6 56.6 29.7

c ELMopsyc 469 88.9 27.5 243| 642 949 533 533 758 74.8 822 56.1 235
Glove 50.6 89.9 334 28.6| 622 94.6 53.7 542 703 70.0 79.1 54.7 209
Glove™** 474 88.4 239 30.0| 634 949 547 52.8 752 714 80.8 53.6 235
ELMo 44.3 85.2 24.7 22.7| 31.1 719 19.5 24.7 59.2 283 17.7 159 9.0

F ELMopsyc 43.8 84.0 224 250 29.1 73.5 155 243 59.1 291 95 121 10.1
Glove 427 839 21.0 23.1| 30.0 72.8 20.8 23.7 582 262 145 145 9.6
GloveP*** 43.6 819 233 25.7| 30.8 72.1 19.7 244 573 289 13.7 17.8 235

Table 12: Ablation study for our proposed model with embeddings trained on the psychotherapy corpus.

Ablation Options Ct ST R@3 FA RES REC GI Quc QuOo MiA MIN
1 172 15.1 664 594 126 9.0 446 163 148 119 4.1

history size 4 16.8 22.6 753 71.4 15.6 21.1 57.1 29.3 11.0 112 14.4
SOty ¢ 8* 24.7 22.7 77.0 72.8 20.8 23.1 58.1 283 17.7 159 9.0
16 23.9 207 76.5 712 13.7 24.1 585 259 97 162 127

word GMGRU 14.0 232 757 71.7 142 23.0 57.5 265 80 154 11.6
attention GMGRUyy, 19.1 229 763 713 12.1 23.3 58.1 245 12.6 11.7 14.0
. — SELFy2 249 225 760 714 12.7 249 583 288 59 174 9.7
Sft“ etl.‘ce \ ANCHOR 45 229 229 762 722 155 24.6 595 27.1 7.7 163 83
atiention | GMGRU \ ANCHOR4> 6.8 234 769 70.8 8.0 245 583 246 10.6 149 12.1

Table 13: Ablation on forecasting task on both client and therapist code. * row are results of our best forecasting
model F¢, and Fr. \ means substitute anchor attention with self attention. +GMGRU ANCHOR45 means using

word-level attention and achor-based sentence-level attention together.

Full Results for Ablation on Forecasting Tasks
In addition to the ablation table in the main pa-
per for categorizing tasks, we reported more abla-
tion details on forecasting task in Table 13. Word-
level attention shows no help for both client and
therapist codes. While sentence-level attention
helps more on therapist codes than on client codes.
Multi-head self attention alsoachieves better per-
formance than anchor-based attention in forecast-
ing tasks.

Label Imbalance We always use the same «
for all weighted focal loss. Besides considering
the label frequency, we also consider the perfor-
mance gap between previous reported F;. We
choose to balance weights «v as {1.0,1.0,0.25} for
CT,ST and FN respectively, and {0.5, 1.0, 1.0,
1.0, 0.75, 0.75,1.0,1.0} for FA, REs, REC, GI,
Quc, Quo, MIA, MIN. As shown in Table 14,
we report our ablation studies on cross-entropy
loss, weighted cross-entropy loss, and focal loss.
Besides the fixed weights, focal loss offers flexi-
ble hyperparameters to weight examples in differ-
ent tasks. Experiments shows that except for the
model C”, focal loss outperforms cross-entropy
loss and weighted cross entropy.

Loss

Client

Therapist

F

Ct

ST

[

RES

REC

MiA

MIN

T
cvee
Cﬁ

47.0
53.5
53.9

28.4
39.2

39.

22.0
32.0
1 33.1

60.9
65.4
65.4

54.3
55.7
55.7

53.8
54.9
54.9

53.7
56.6
56.6

4.8
29.7
29.7

]_—ce
Fvee
]_—ﬁ

21
43.1
442

17.7
20.6
24.7

18.5
233
22.7

26.8
30.7
31.1

33
17.9
19.5

20.8
25.0
24.7

16.3
17.7
15.2

8.3
10.9
12.8

Table 14: Abalation study of different loss function
on categorizing and forecasting task. Based on our
proposed model for our four settings, we compared
our best model with crossentropy loss(ce), o balanced
cross-entropy(wce) and focal loss. Here we only report
the macro F; for rare labels and the overall macro F;.
~ = 1 is the best for both the model C¢ and F¢, while
~v = 0 is the best for Cr and v = 3 for Fp. Worth to
mention, when v = 0, the focal loss degraded into a-
balanced crossentropy, that first two rows are the same
for therspit model.
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