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Understanding occupants’ thermal sensation and comfort is essential to defining the operational settings
for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings. Due to the continuous impact
of human and environmental factors, occupants’ thermal sensation and comfort level can change over
time. Thus, to dynamically control the environment, thermal comfort should be monitored in real time.
This paper presents a novel non-intrusive infrared thermography framework to estimate an occupant’s
thermal comfort level by measuring skin temperature collected from different facial regions using low-
cost thermal cameras. Unlike existing methods that rely on placing sensors directly on humans for skin
temperature measurement, the proposed framework is able to detect the presence of occupants, extract
facial regions, measure skin temperature features, and interpret thermal comfort conditions with minimal
interruption of the building occupants. The method is validated by collecting thermal comfort data from
a total of twelve subjects under cooling, heating and steady-state experiments. The results demonstrate
that ears, nose and cheeks are most indicative of thermal comfort and the proposed framework can be
used to assess occupants’ thermal comfort with an average accuracy of 85%.
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1. INTRODUCTION

In the US. and worldwide, Heating, Ventilation and Air Condi-
tioning (HVAC) systems represent the biggest energy end use ac-
counting for approximately 50% of the total energy required to op-
erate residential and commercial buildings [[16],[18]]. Despite the
significant energy footprint of the HVAC systems, occupants in the
built environment are often dissatisfied with their thermal comfort
[[23],[31]]. For example, a large-scale survey involving 52,980 oc-
cupants in 351 office buildings suggested that only 38% of respon-
dents are satisfied (i.e., voted “slightly satisfied” to “very satisfied”)
with the thermal comfort in their workplace [31].

Thermal comfort is defined as “the condition of mind which ex-
presses satisfaction with the thermal environment and is assessed
by subjective evaluation” [2]. The thermal sensation measure is af-
fected by several human factors including physiological (e.g., gen-
der, age), psychological (e.g., expectation, stress), and behavioral
(e.g., activity level) attributes [[4],[30],[34],[39]]. As a result, ther-
mal sensation and satisfaction have been observed to change over
time in a single individual, and also vary from one person to an-
other [26]. Even exposed to the same indoor environment, occu-
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pants can still have diverse thermal sensations and preferences due
to variations in their personal factors.

It is not surprising that thermal comfort has been identified as
an influential factor of occupants’ health and well-being [50]. For
example, a high room temperature can increase the reports of sick
building syndrome symptoms, such as eye, nose and throat irrita-
tion [51]. In office buildings, several studies have suggested that
a satisfied thermal environment can lead to a reduced number of
complaints, absenteeism, and improved working productivity [44].
However, in typical office buildings, the indoor thermal environ-
ment is usually maintained in a fixed and uniform manner. First,
the thermostat is conventionally set at a consistent setpoint ac-
cording to the routine practice or industry guidelines. For example,
ASHRAE Standard 55 “The Environmental Conditions for Human Oc-
cupancy” recommends the comfort range as 20 °C to 24 °C in win-
ter and 24 °C to 27 °C in summer. As a result, the HVAC system is
always delivering the pre-determined amount of heating/cooling.
Considering the diverse internal factors from the human perspec-
tive, such fixed industry recommendations are not satisfactory as
occupants’ thermal preference is evolving over time. For exam-
ple, an individual entering a cool room in summer may initially
feel comfortable. However, the same individual can feel cold af-
ter a while due to the continuous heat loss of human body (i.e.,
steady-state versus transient state sensation) [39]. Second, the cur-
rent HVAC operation strategies also assume that different occu-
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pants in a multi-occupancy space have the same thermal sensa-
tion and preference. This is mainly due to the lack of human data
for personal comfort evaluation, as well as, the assumption that
indoor environmental conditions are uniform without any spatial
variations (e.g., uniformly distributed room temperature and rel-
ative humidity). Therefore, the widely adopted human-decoupled
HVAC control strategy is rarely able to reach the goal of providing
satisfaction to 80% of occupants [31].

In order to overcome these limitations, building HVAC systems
must dynamically consider each occupant’s unique thermal re-
quirement in the control process. To achieve this goal, it is par-
ticularly important that occupants’ thermal sensation and prefer-
ence are interpreted and analyzed on a timely basis, if not in real-
time. To this end, prior studies have established methods that re-
quire direct thermal comfort feedback from the occupants (e.g.,
[[17],[42]]), as well as, the use of intrusive data collection methods
(e.g., [[11],[24],[34]] and [35]) to understand the thermal condition.

Therefore, the objective of this paper is to explore the feasibility
of using infrared thermography as a truly non-intrusive method to
interpret human thermal comfort in indoor environments. Specifi-
cally, the authors adopted thermal preference (“warmer”, “cooler”,
“neutral”) as the target variable because it indicates the preferred
comfort state of an occupant [[31],[33]]. As opposed to the existing
studies which used expensive commodity cameras that need to be
placed at a fixed distance from the user (detailed in Section 2.3),
this study investigates an automated and real-time approach to
non-intrusively obtain, retrieve, and analyze facial skin tempera-
ture features for each building occupant in real, operational indoor
environments using low-cost infrared thermal cameras, computer
vision and machine learning techniques.

The paper is organized to first provide a detailed review of ex-
isting research studies on the personalized control of HVAC system
and thermal comfort interpretation using human data, followed by
the discussion of main limitations of these studies and the contri-
butions of our work to this body of knowledge. Then the methods
for skin temperature feature extraction and data collection experi-
ments are explained in detail in the methodology section. Finally,
the comfort prediction models and the research findings are pre-
sented in the results and discussion section.

2. Background

In this section, the authors will present a review of relevant lit-
erature about methods that have been historically used for thermal
comfort assessment in the HVAC controlled environments. First,
the classic Predicted Mean Vote (PMV) and Predicted Percentage
of Dissatisfied (PPD) models were reviewed. Second, the authors
evaluated the “human-in-the-loop” approach which interprets oc-
cupants’ thermal sensation and preference by requesting human
feedback of the ambient environment. Third, the authors discussed
the selected studies which predict an individual’s thermal com-
fort level using personal bio-signals. The limitations of each study
were analyzed to identify the research gaps in existing methods for
evaluating thermal comfort in real operational indoor environment,
which lead to the objectives of the proposed framework discussed
at the end of this section.

2.1. PMV and PPD models

The PMV and PPD models are the most widely used methods
to evaluate the indoor thermal comfort [19]. The PMV model was
developed based on the thermal balance equation of human body.
Four environment factors (i.e., air temperature, mean radiant tem-
perature, air velocity, and relative humidity) and two human fac-
tors (metabolic rate and clothing insulation) are identified for ther-
mal comfort assessment. The PMV model predicts the mean ther-

mal comfort level of a large group of people using a seven-point
thermal sensation scale (from —3 for cold to 3 for hot). A ther-
mally acceptable indoor environment is defined to maintain the
PMV index within the range between —0.5 and 0.5. The PPD in-
dex is associated with the PMV index and it predicts the percent-
age of occupants that are dissatisfied with the thermal conditions
at any given time. ASHRAE Standards 55 recommends maintaining
the PPD index at less than 10%.

Despite the PMV and PPD models have been intensively used
in the field of thermal comfort assessment, this method suffers
from several limitations. First, the PMV model is developed based
on the mean feedback of a large group of people in laboratory
settings. This generalization can have a strong bias towards cer-
tain occupants in a given office environment. For example, an
occupant who prefers cold environments may be treated as an
outlier. Also, the PMV model assumes the same parameters (e.g.,
metabolic rate) for all occupants in the same space, which is un-
able to provide a personalized comfort prediction [32]. Second, the
PMV model is originally developed for the steady-state sensations
in mechanically conditioned spaces. The predictions may not hold
under the transient-state conditions [[14],[52]]. In addition, occu-
pants can perform various adaptive behaviors, e.g., opening win-
dows or putting on an extra layer of cloth, to maintain or restore
the thermally comfortable state. These adaptive behaviors can re-
sult in a wider comfort range than predictions of the PMV model
[[13],[14],[45]]. Third, expensive devices are required to measure
parameters such as the mean radiant temperature and metabolic
rate in the PMV model, which makes it not suitable to be applied
in real operational settings.

2.2. Participation-oriented thermal comfort assessment

To understand occupants’ requirement of thermal environment,
recent studies on personalized HVAC control have extensively in-
vestigated the “human-in-the-loop” approach which brings occu-
pants’ actual thermal sensations (also known as thermal vote) into
the HVAC control loop [[17],[20],[25],[28],[33],[42]]. This control
approach is initiated by thermal votes received from building oc-
cupants using a phone or web application. In each cycle, decision
algorithms calculate the comfortable setpoint based on the envi-
ronmental conditions and the actual thermal votes collected during
this period.

For example, Feldmeier and Paradiso [20] collected occupants’
thermal votes (hot, cold and neutral) together with the ambient
temperature and humidity from a wrist-worn sensor to model
one’s thermal comfort state under various environment conditions.
Jazizadeh et al. [28] used a phone application to collect thermal
preferences and developed fuzzy predictive models to interpret
an individual’'s comfort level under different room temperatures.
Other studies such as Erickson and Cerpa [17] and Purdon et al.
[42] adopted the similar approach which used occupants’ actual
thermal votes from phone applications and environment data from
commodity sensors to either directly adjust the HVAC settings or
model the comfort state using different statistical methods. In a
recent study, Kim et al. [33] developed a personal comfort chair
which can record occupants’ heating/cooling requests over time.
Using personal comfort models, this study achieved a 73% accu-
racy in predicting three-point thermal preferences (i.e., warmer,
no change, cooler), which significantly outperformed the PMV and
adaptive models.

Although this direct occupant participation-oriented approach
provides a feasible way to understand occupants’ thermal comfort
in the HVAC control loop, there exist three significant limitations.
First, these aforementioned studies failed to consider the influen-
tial human physiological or behavioral factors when interpreting
occupants’ thermal comfort. As a result, these methods may fail to
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predict thermal comfort in certain scenarios due to lack of knowl-
edge of what the human factors are under certain scenarios. For
example, the same individual with different workload can have di-
rect opposite thermal sensations and preferences in the same en-
vironment. In this case, a direct mapping from the measured envi-
ronment conditions to a certain thermal comfort level is incapable
of producing a robust prediction, not to mention that human fac-
tors are changing over time.

Second, in these studies, human body is assumed as a passive
recipient of thermal stimuli. Several field studies suggested that
occupants’ adaptive behaviors (e.g., wearing a jacket when feeling
cold) can play an important role in determining thermal comfort.
However, this behavioral adaptation is not considered in the cur-
rent voting methods. Developing a capability to capture the effects
of this behavioral adaptation can result in a more flexible comfort-
able temperature [14].

Third and most importantly, this action-required approach
heavily relies on continuous human feedback to understand occu-
pants’ comfort state over time. This is based on the assumption
that the human body is the best “comfort sensor” of the ther-
mal environment which can periodically, if not always, indicate
the need to adjust temperature setpoint through feedback (i.e., re-
quests to make the room warmer or cooler). In this case, human
feedback is either used as the ground truth to rectify the comfort
prediction or to directly determine the new temperature setpoint.
In real life circumstances, however, this assumption is far from ex-
pected as (1) the frequency of feedback tends to decrease with
time as the novelty and excitement of the system fades away [34];
and (2) the requirement of human effort in the feedback can be
distracting during regular work time (especially over heavy work-
load periods or in any frustrating situations) and sometimes occu-
pants are unable to vote due to a variety of reasons (e.g., the phone
is not at hand).

2.3. Bio-signal oriented thermal comfort assessment

Human physiological responses (e.g., vasodilation, increased
respiration) have been shown to be correlated with thermal sen-
sations and discomfort [[29],[39]]. Therefore, detecting these hu-
man physiological responses provides a way for researchers to un-
derstand people’s thermal comfort level under different conditions.
This idea is implemented by measuring the variations of human
bio-signals such as skin temperature, heart rate, and respiration
rate. The benefits of applying bio-signals in the thermal comfort
assessment are twofold: (1) bio-signals collected from each occu-
pant allow the researchers to develop personalized comfort mod-
els, which can improve the prediction accuracy [[32],[35],[36]]; (2)
bio-signals contain useful information to interpret comfort condi-
tions and thus reduce the dependence on human participation.

Among these bio-signals, skin temperature has been intensively
investigated in prior studies. The human body maintains its core
temperature at around 37 °C through the thermoregulatory control
of blood flow to the skin surface. During heat stress, vasodilation
increases the flow of blood to the skin surface to dissipate excess
internal heat, and vice versa, vasoconstriction decreases the blood
flow to limit heat loss during cold stress [9]. As skin temperature
is directly affected by the changes in blood flow, it is often used to
estimate human thermal sensation and comfort. In practice, skin
temperature can be measured using thermocouples [[10-12],[53]],
infrared thermometers [24], and commodity infrared thermal cam-
eras [[1],[5],[6],[15],[37],[43]]. Table 1 lists the device accuracy and
cost in the selected studies.

Contact thermocouples are the most widely adopted devices to
measure skin temperature due to their high accuracy, low-cost, and
easy installation. To interpret thermal sensation and discomfort,
existing studies usually attach the thermocouples to a certain body

region or multiple body locations and correlate the measured tem-
perature data under different environment settings with the local
or overall thermal sensation. For example, Yao et al. [53] collected
the skin temperature of different body regions from 16 copper-
constantan thermocouples directly attached to the human subject.
This study suggested a close relationship between the thermal sen-
sation/comfort and the local skin temperature and developed a
linear regression model to predict comfort level. Similarly, Choi
and Loftness [12] measured skin temperature of multiple body
parts using contact thermometers at different room temperatures,
clothing and activity conditions in a climate chamber. The results
showed that the gradients of temperature on hand, wrist and up-
per arm are good indicators to predict thermal sensation. However,
this data collection method is very intrusive as the electrodes of
the thermocouple should be directly attached to the skin surface.
This drawback limits this approach to be feasible only in the labo-
ratory settings as it is not possible to equip each occupant with the
thermocouples in the operational residential or office environment
without interfering with their activities.

An infrared thermometer is a low-cost temperature sensor that
can provide a non-contact measurement of skin temperature. How-
ever, in order to get an acceptable skin temperature measure-
ment, infrared thermometers need to be placed close to the skin
surface usually within a few centimeters. This is due to the fact
that its field-of-view (FOV) becomes increasingly large as it moves
away from the target. For example, Ghahramani [24] installed four
MLX90614 infrared thermometers on an eyeglass frame to collect
a user’s skin temperature of the front face, cheekbone, nose and
ear. The infrared thermometer adopted in this study has a FOV
of 90° and thus for every 1cm away from the object, the sens-
ing area grows by 2cm [46], which makes the eyeglass frame an
ideal (and possibly the only feasible) location to place the sensors.
This study observed significant variations in skin temperature un-
der cold and heat stresses. However, this approach has two ma-
jor limitations: (1) due to its limited working range, infrared ther-
mometers can only measure a fixed predetermined set of locations.
It is unknown whether these selected sensing points are the most
significant locations to measure skin temperature; and more im-
portantly (2) this approach is not suitable in a real operational or
multi-occupancy environment as it requires each occupant to wear
such devices, which can be inconvenient and lacks scalability in a
large space with multiple occupants such as a lounge or a confer-
ence room.

Using thermographic cameras (also known as thermal cameras)
is an alternative way to collect skin temperature data without con-
tacting the object. Thermal cameras have a longer and a more flex-
ible working range but usually suffer from a relatively lower accu-
racy compared to the thermocouples and infrared thermometers.
However, they are able to provide a full image frame of thermo-
graphic measurements from which the users can get the tempera-
ture reading at each pixel location. Prior studies such as Abouele-
nien et al. [1], Burzo et al. [[5],[6]], De Oliveira et al. [15], Ranjan
and Scott [43] have used commodity thermal cameras to collect
skin temperature and correlated it with thermal sensations using
different statistical methods. A recent study by Metzmacher et al.
[37] used Microsoft Kinect and a dynamically calibrated commod-
ity thermal camera to track human faces and measure skin tem-
perature of different facial regions. The temperature measurements
from the thermal camera were validated using a reference sensor
which was attached to the skin.

In addition, three significant limitations of these aforemen-
tioned studies should be acknowledged: (1) thermal camera is
used as an independent tool to measure human skin tempera-
ture which is then analyzed offline in a disconnected way, rather
than a built-in component of the building automation system (BAS)
or HVAC system which can dynamically monitor the indoor ther-
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Table 1
Comparison of skin temperature measurement devices in different studies.

Studies Device Accuracy Cost

[10] Corte DermaLab System* > +0.2 °C ~$1,200

[11] STS-BTA Surface temperature sensor* +0.2°C at 0°C,£0.5°C at 100°C ~ ~$250 (including the hub)

[24] MLX90614 infrared thermometer* +0.5°C ~$150 (including the Arduino)

[5,6] FLIR Thermovision A40 +2 °C or + 2% of Reading ~$6,000

[43] FLIR A655sc thermographic camera 42 °C or £ 2% of Reading ~$22,000

[1] FLIR SC6700 thermal camera +2°C or+ 2% of Reading ~$15,000

[37] FLIR A35 thermographic camera +5 °C or + 5% of Reading ~$5,000

This study  FLIR Lepton 2.5 +5°C or +5% of Reading ~$200 for camera

* denotes the intrusive data collection method.

mal environment; (2) as these works are more exploratory stud-
ies, thermal cameras are required to be placed directly in front of
the subject, usually within a fixed distance. Again, this significantly
limits the applicability of thermal cameras in the real operational
settings as occupants can move around at will; and (3) the com-
modity thermal cameras are cost prohibitive (in excess of $5000,
see Table 1) and not suitable for large scale applications. It is still
unknown whether low-cost thermal cameras (at the cost of accu-
racy) can be used for thermal comfort assessment which is what
this paper aims to investigate.

Prior work by the authors [[34],[35]] investigated personalized
thermal comfort prediction using integrated human and environ-
ment data collected from multiple sources including wristbands,
polling apps, and commodity sensors. The results from these stud-
ies indicated that quantitative human data (such as skin tempera-
ture, heart rate) can significantly improve the accuracy of thermal
comfort prediction. However, this approach still suffers the prob-
lem in terms of intrusiveness as occupants are required to wear
the wristband and use the phone app.

To overcome the research gaps identified in the existing body of
knowledge, it is critical to explore a truly non-intrusive and scal-
able framework which can predict human thermal comfort prefer-
ences in various settings in real time. Thanks to the current ad-
vancements in infrared thermography, low-cost thermal cameras
are available in the market and offer an ideal approach due to their
capability to non-intrusively capture infrared signals emitted from
the human body, their affordable price and compact size, ease of
installation, and preservation of occupants’ privacy. To this end,
this paper investigates an automated and scalable framework to
non-intrusively obtain, retrieve, and analyze skin temperature data
to achieve a robust thermal comfort assessment for each build-
ing occupant in a real building environment using infrared thermal
cameras and computer vision techniques.

3. Methodology

This study leverages a range of techniques to develop an inte-
grated framework for comfort assessment using low-cost/off-the-
shelf thermal cameras. These techniques include (1) computer vi-
sion (e.g., Haar cascade object detection) to detect human face and
extract region of interest (ROI); (2) statistical methods to clean
and analyze the raw skin temperature data (e.g., Kernel smoother);
and (3) machine learning methods to develop personalized com-
fort prediction models and analyze significant facial skin temper-
ature features (e.g., Random Forest classifier). An overview of the
operating principle of the proposed non-intrusive thermal comfort
assessment framework is shown in Fig. 1. In this framework, fa-
cial skin temperature is selected as the targeted bio-signal. This
is because the human face has a higher density of blood vessels
than other skin surfaces, leading to a larger skin temperature vari-
ation when the condition of human body or ambient environment
changes [48]. As a result, facial skin temperature can be used as
a physiological indicator of an individual’s overall thermal comfort

Table 2
Specifications of FLIR Lepton 2.5.

Features Descriptions

Dimensions 8.5x 11.7 x 5.6 mm

Resolution 80(h) x 60(v) pixels

Thermal sensitivity < 50 mK

Accuracy +5 °C or £ 5% of reading in the working range
Price $199

[[24],[54]]. Second, human faces are not covered by clothing and
thus the emitted infrared energy can be directly measured by the
thermal camera. In addition, human faces allow the computer vi-
sion algorithms to detect and locate ROI in the image frame for
data analysis.

The remaining methodology section was organized to first in-
troduce the sensors and devices adopted in this study. Second, the
authors discussed how computer vision is applied to extract skin
temperature of the ROL Finally, the data collection experiment was
explained in detail.

3.1. Low-cost thermal camera

In this study, the FLIR Lepton 2.5 radiometric thermal camera
core was used to collect skin temperature data (see Fig. 2). FLIR
Lepton 2.5 is an uncooled long-wave infrared thermal imaging core
with a factory-calibrated temperature value. Relevant specifications
can be found in Table 2 [21].

As a low-cost thermal camera, the radiometric accuracy of Lep-
ton 2.5 is relatively low in its full operational temperature range
(=10°C to 65°C) compared to the advanced models or thermo-
couples. However, its feasibility is still worth investigation due to
four reasons: (1) the nominal accuracy in Table 2 (5% of read-
ing) can be overestimated as the measuring objects in this study
are human faces whose surface temperatures are not high (ap-
proximately 35°C); (2) the room temperature of the experiment
is set between 22 °C and 28 °C rather than the camera’s full oper-
ational temperature range. As a result, the impact of environmen-
tal temperature variations on the measurement accuracy should be
low [21]; (3) continuous thermal videos rather than a single image
frame are used to interpret thermal comfort. The random measure-
ment errors can follow a Gaussian distribution and thus it is possi-
ble to reduce the error to an acceptable level for thermal comfort
interpretation by removing outliers and averaging multiple image
frames; (4) the objective in this study is to predict a 3-point ther-
mal preference, i.e., warmer, neutral, and cooler. This is considered
a classification problem, rather than a regression problem which
calculates a seven-point scale thermal sensation (e.g., [55]). There-
fore, the problem setting is more robust to the error of measure-
ments. For example, an error of 0.5 °C might lead to a prediction
error between slightly warm and warm sensations; however, this
error is acceptable since both are categorized into “preferring a
cooler environment”. In addition, the three-point preference pre-
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Fig 1. Overview of the non-intrusive thermal comfort interpretation framework.

Fig. 2. FLIR lepton 2.5 radiometric thermal camera core (left) and thermal image (right).

diction should not be considered as a limitation as the control sys-
tem can dynamically determine whether to increase or decrease
the setpoint by continuously predicting one’s preferences, which
can lead to a better thermal environment.

In order to evaluate the measurements from the low-cost Lep-
ton 2.5, the authors conducted a comparative preliminary experi-
ment using a FLIR T450SC thermal camera (accuracy &1 °C or £+ 1%
of reading, approximate cost is in excess of $10,000). Facial skin
temperature measurements from these two cameras (i.e., FLIR Lep-
ton 2.5 and FLIR T450SC) were compared to confirm the feasibil-
ity of the proposed approach before conducting the following data
collection experiments. Details about the comparative validation
can be found in Section 3.2.2.

3.2. Face detection and skin temperature feature extraction

To extract skin temperature features, the contour of human
faces and the interested facial regions are first detected in each
thermal image frame. The temperature measurements of each
identified region are then extracted and processed to produce the
skin temperature features, which are validated in the comparative
study.

3.2.1. Face detection from the thermal image

Although Lepton 2.5 has a lower resolution (80 by 60), the
outline of the interested regions (e.g., forehead, nose, cheeks) are
clearly preserved in the thermal image (see Fig. 2, which was
taken from 1 m away to represent a non-intrusive distance), which
makes the Haar Cascade algorithm suitable for this task. Haar Cas-
cade is a fast and effective algorithm for frontal and profile face
recognition by detecting the existence of certain characteristics in
the image, such as edges or changes in texture [49]. In this study,
the Haar Cascade algorithm was applied to detect the existence of
the facial contour, the eyes, and the nose using the OpenCV pack-
age. Other regions such as forehead, cheeks, ears, mouth, and neck
were inferenced from their relative locations (facial geometry) to

Fig. 3. Detection of ROI and extraction of temperature (for demonstration purpose,
each region was highlighted in a solid rectangle).

the known regions (i.e., facial contour, eyes, and nose can help
identify the location of the cheeks) during the runtime. These ROIs
were selected based on prior studies such as Ghahramani [24],
Metzmacher et al. [37], and Yi and Choi [54]. The size and loca-
tion of each inferenced ROI were tuned on several subjects prior to
data collection experiments to ensure the algorithm can correctly
detect all features across different subjects. The measurements of
each pixel located within the identified ROI were averaged to rep-
resent the corresponding skin temperature of each facial region (as
shown in Fig. 3). In each ROI, pixel values exceeded certain thresh-
olds (e.g., below 28 °C or above 38 °C based on the preliminary re-
sults) were filtered out as they were likely to be the background or
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noise, which can interfere with the measurements of skin tempera-
ture features. For example, a close-by light bulb might be detected
in the ROIs on faces. If not removed, the resulting high measure-
ments can lead to a wrong prediction that the subject is too warm.
Using this approach, the authors extracted a total of 26 facial skin
temperature features which include the maximum measurement
of human face and its gradient, as well as, the maxima, minima,
mean, and gradient temperature of six facial regions (i.e., forehead,
nose, cheeks, ears, mouth, and neck). For the gradient temperature,
the mean gradient over a five-minute period (e.g., [7]) was calcu-
lated as shown in Eqgs. (1) and (2).

(Tc — Te_i)

V=Tl i1, 2, 3, 4, 5) (1)

Where VT, is the gradient temperature for time interval i; T is
the temperature measurement at time c; VT is the mean gradient
temperature over five minutes which is selected as a feature.

After extracting skin temperature for the six facial regions from
each frame, the thermal image is immediately discarded to allevi-
ate the privacy concerns.

Based on the preliminary experiments, this approach can suc-
cessfully perform face detection within a camera distance of 2 m,
which is a reasonable non-intrusive distance as the thermal cam-
eras can be mounted on the wall or desktop in front of the users
at this distance. If the thermal cameras were placed further away
from the subject, this approach may fail as the edges on the hu-
man face are blurred in the thermal images. To overcome this lim-
itation, the authors have explored RGB camera guided feature ex-
traction, which can achieve a robust detection of ROI from a fur-
ther distance. The preliminary results were promising but beyond
the scope of this paper.

3.2.2. Preliminary accuracy evaluation of the Low-cost thermal
camera

As mentioned earlier in Section 3.1, in order to evaluate the
accuracy of the proposed low-cost Lepton 2.5, comparative pre-
liminary experiments were conducted in a climate chamber un-
der three experimental conditions (i.e., cooling from 28 °C to 22 °C,
heating from 22 °C to 28 °C, steady-state condition at 25 °C). Each
experiment lasted for 40 minutes and a thermal image was taken
by the reference FLIR T450SC camera every 5 minutes. Each ROI
in the reference image was labeled using the FLIR ResearchIR soft-
ware (see Fig. 4) which provides the mean measurement in each
selected region (after removing the outliers). The Lepton 2.5 cam-
era was placed at 1 m from the participant. The authors compared
the reference measurements (from the FLIR T450SC) with the tem-
perature retrieved (from Lepton 2.5) using the approach discussed
in Section 3.2.1. The results showed that in most cases the dif-
ferences between two cameras were within 1°C. A few examples
from the steady-state experiment were presented in Fig. 5. How-
ever, it should be noted that this comparison was a sanity test
of the face detection and skin temperature extraction approach as
discussed in Section 3.2.1. The temperature deviations highly de-
pend on how each region was labeled in the ResearchIR software.
For example, the forehead region in Fig. 3 is larger and contains
some low temperature pixels (e.g., the eyebrows and pixels close
to hairs) compared to the same region in Fig. 4, which can be a
major cause of the large deviation (about 1 °C). However, the nose
region in the two images look identical and the deviations can be
as low as 0.2-0.3 °C, which is acceptable given this results from a
low-cost camera.

Fig. 4. Reference thermal image taken by FLIR T450SC (colored boxes represent the
manually labeled ROI).

3.3. Data collection experiments

For data collection, the authors designed an experiment to col-
lect skin temperature data and the participants’ corresponding
thermal responses under three thermal conditions. The data collec-
tion experiment was conducted in a research office at the Univer-
sity of Michigan (UM) during the heating season from December
2017 to February 2018. During this period, the average high and
low outdoor temperature was 1.6 °C and —6.7 °C, correspondingly.

In the testbed office, one thermal camera was placed 1 m
away from the subject which monitors the frontal face (see Fig.
6). The testbed office had two COZIR temperature/humidity sensors
(humidity accuracy: & 5%; temperature accuracy: +1°C) to contin-
uously monitor the ambient conditions within the close proximity
to the subject during the experiment. The two sensors were placed
at the waist level (0.65m above the floor) which is close to the
specified height of 0.6 m for seated occupants in ASHRAE standards
55 [2]. The testbed also had a thermostat by which the research
team can freely change the indoor temperature from 20 °C to 28 °C.
In the experiments, the room temperature was set between 22 °C
and 28 °C, which conforms to typical indoor conditions controlled
by the mechanical HVAC system (ASHRAE 55).

Each subject in this study was assigned a reference ID num-
ber for data storage and analysis. The subjects were all students
from UM aged between 22 and 27 and were healthy at the time of
the data collection. Subjects were asked to wear a sweatshirt and
pants and keep the same clothes during the experiment as out-
lined in Fig. 7. The experiment started by an interview to under-
stand the subject’s interpretation of thermal comfort (e.g., when
you feel cold, do you focus on overall body sensation or the sensa-
tion of specific body parts?). Introductions about the devices, re-
search objectives, and other related information have been pro-
vided to help subjects understand this study. Then, each subject
completed an experiment consisting of four phases (see Fig. 7).
In the preparation phase, each subject was provided with a desig-
nated phone app (see Fig. 8) which was customized for this study
(more details about the phone app can be found in [35]). Subjects
can vote their thermal preferences using the three-point scale (i.e.,
warmer, cooler, neutral) through this phone app.

During the whole data collection experiment, subjects were
asked to use the phone app to provide thermal feedback every
three minutes which will be used to develop and evaluate comfort
prediction models. At the same time, the facial skin temperature
and environment conditions were continuously monitored and up-
loaded to the database. In the 60-min steady-state phase, subjects
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Fig. 5. Comparison of the low-cost camera with the reference camera.

Fig. 6. Experiment setup.

were asked to perform daily office activities such as reading, typ-
ing, or browsing. In this phase, room temperature was maintained
at 25°C to represent a neutral steady-state condition. Next, the
cold stress or heat stress phase started in a random order. In the
60-min heat stress phase, room temperature was increased from
22 °C to 28°C while for the cold stress phase, room temperature
was decreased from 28 °C to 22 °C. The two environment sensors
showed that in both phases the room temperature was approxi-
mately changed in a linear manner with time (at a rate of+1°C
per 10 minutes). It is worth noting that this random order configu-
ration was chosen to help eliminate subjects’ bias towards thermal
sensation and comfort. For example, if a subject knows the current
room temperature is decreasing, he/she may unconsciously think
he/she is getting cold. The data collection experiment has been ap-
proved by UM Institutional Review Board (IRB) for conducting hu-
man subjects research.

®|§ﬁ )
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60 mins (25 °C)
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Pick one

®:‘,>I¢ ORf_ﬁ

60 mins (22~28 °C)
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60 mins (22~28 °C)
Heating or Cooling

<=

Pick the
other

Fig. 7. Timeline of the data collection experiment.

4. Results
4.1. Data cleaning and smoothing

In the proposed approach, the measurement errors of skin tem-
perature mainly came from three sources: (1) thermal camera’s
systematic error caused by the temporal drift which accumulates
over time [21]. For example, thermal images appear blotchy due
to the degrade uniformity which affects the radiometric accuracy;
(2) random experiment error which may vary from one observa-
tion to another. For example, hands are detected as the mouth re-
gion when subjects drink water during the experiment which cor-
responds to a spike in the raw data; and (3) random measurement
error of the thermal camera which is assumed to follow a Gaus-
sian distribution with a zero mean. For the camera’s systematic er-
ror, Lepton 2.5 automatically performs a flat-field correction (FFC)
every three minutes to compensate for the drift effect. During FFC,
the camera closes the shutter and recalibrates the sensor based on
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Table 3

Summary of environment conditions in three phases.

Cooling Heating Steady-State

Range Mean S.D.  Range Mean  S.D. Range Mean  S.D.
T(°C) 275-226 251 14 225-277 253 15 245-252 2438 0.2
RH (%) 202-334 277 3.6 325-214 258 2.2 206 - 26,5  23.2 0.5

1 KRN
Preference {Wmmm Cooler ]

Overall

N ‘
\/

Sensation

Fig. 8. UI for the designed app [35].

a uniform thermal scene. For the other two random errors, the au-
thors first averaged the image frames captured in each minute and
removed outliers by checking the difference of adjacent measure-
ments using Eq. (3).

d = {outlier, if di—di_1>30 (3)

not an outlier,  otherwise
Where d; and d;_; are the data collected at time i and i—1,
and o is the standard deviation of data collected from time O till
time i. After removing the outliers, a Gaussian filter was applied to
smooth the raw data. Different widths of the Gaussian filter have
been compared (width=5, 7 and 10). Considering the duration of
the experiment, the authors chose the filter width to be 7 as it
smoothed the data well and also preserved the trend of measure-
ments. For example, Fig. 9 shows a subject’s maximum skin tem-
perature in three phases (i.e., heating, cooling, steady-state) where
the dashed lines represent the raw data collected directly from the
thermal camera and the thick solid lines represent the processed
data after removing outliers and smoothing. Through data process-
ing, large measurement errors are removed before applying further
analysis, resulting in a smoothed curve for each experiment. In ad-
dition, it is easy to observe the increasing and decreasing trend of
skin temperature in the heating and cooling phases while the mea-
surements are relatively stable in the steady-state phase, which in-
dicates that useful information is well preserved after the process-
ing step.

4.2. Correlation analysis between identified regions

A total of 12 subjects (7 male, 5 female) participated in the
data collection experiments as discussed in Section 3.3. The en-
vironment conditions of the three phases were summarized in
Table 3. As shown in the table, room temperature in the steady-
state phase was maintained at around 25°C with a standard de-
viation of 0.2 °C, which was close to the mean temperature of
cooling and heating phases. Skin moisture level has been suggested
to influence the emissivity of skin surface, which affects the accu-
racy of temperature measurements [22]. However, the authors did
not observe obvious and excessive sweating for any subject at the
high room temperature (around 28 °C), suggesting the emissivity
can be assumed consistent in the experiment given the insignifi-
cant changes in skin moisture level. This is supported by the work

of Owda et al. [38] which compared the emissivity of wet skin
sample (taken from a human cadaver and rinsed in water) and dry
samples (dried for a 4.0 h prior to measurements). Table 4 shows a
summary of skin temperature feature statistics in the three phases.
The mean and standard deviation (SD) of each feature were calcu-
lated from Eqgs. (4) and (5) as shown below.

> (e ) o

R _
== e SD(R) =
k=1

Where 1 and SD(jt) are the mean and standard deviation of
skin temperature of all subjects in a particular phase; s and SD(S)
are the mean and standard deviation of the sample standard devi-
ation; n is the number of subjects which is 12 in this study.

In the heating and cooling phases, subjects in general demon-
strated all the three thermal preferences considered for this study
at different times of the experiment. For example, in the heat-
ing phase a subject may initially prefer a warmer environment
as the room temperature starts from 22 °C; gradually he/she feels
thermally neutral as the room temperature increases; and finally
he/she may prefer a cooler environment as the room temperature
exceeds the comfortable range. However, as the room temperature
is controlled at a constant level in the steady-state phase, subjects
usually have the same preference throughout this phase.

As shown in Table 4, the standard deviations of the mean skin
temperature range from 0.62°C to 1.84°C (see SD(jt) shown in
bold in column 1, 3, and 5), which indicate temperature vari-
ations of each facial region between different subjects. In the
cooling and heating phases, the cheek region shows the high-
est skin temperature variation across all subjects (cooling: SD:
1.84 °C, heating: SD: 1.66 °C) and the same for the nose region (SD:
1.54 °C) in the steady-state phase. The lowest personal variations in
the three phases are observed in the neck (cooling: SD: 0.83 °C),
nose region (heating: SD: 0.66°C), and facial maxima (steady-
state: SD: 0.62 °C), correspondingly. In addition, the forehead re-
gion has the highest skin temperature measurements among all
identified regions (cooling: 33.55 +0.92 °C, heating: 33.02 + 1.50 °C,
steady-state: 33.7740.73 °C) while the ear region has the low-
est measurements (cooling: 27.01 &+ 1.36 °C, heating: 26.59 4 1.47 °C,
steady-state: 27.6141.51°C). By examining column 2, 4, and 6,
the skin temperature variations in the cooling (column 2) and
heating (column 4) phases are much larger than those in the
steady-state phase (column 6), which implies that facial skin tem-
perature is affected by the ambient room temperature. On the
other hand, the relatively small skin temperature deviations in
the steady-state phase (column 6) suggest that the measurements
are consistent when ambient room temperature is controlled at
a constant level, which also indicates accurate measurements af-
ter applying the pre-processing approach discussed in Section 4.1.
Moreover, nose and ear region have a larger temperature varia-
tion compared to other regions in the cooling (nose: 0.6040.25 °C,
ear: 0.67+£0.20°C) and heating phases (nose: 0.774+0.34°C, ear:
0.71 £0.43 °C). These two identified regions are potentially useful
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Fig. 9. Raw and processed maximum skin temperature of a subject in three phases (S: steady-state; C: cooling; H: heating).

Table 4

Statistics of skin temperature features in three phases.

Features Cooling Heating Steady-State

a£SD(p) (1) $£SDES) (2) A£SD() (3)  s£SD(S) (4) A£SD() (5)  5+SD(S) (6)
maxVal 34.38+0.84 0.31+0.11 34.17 +£0.93 0.12+0.04 34.52+0.62 0.08 +0.03
VmaxVal —0.016 +0.005 0.013+0.006 0.004+0.003 0.009 +0.002 —0.003 +0.003 0.006+0.003
forehead_avg 33.55+0.92 0.34+0.15 33.02+1.50 0.19+0.11 33.77+0.73 0.07 +0.02
forehead_max 3417 +£0.86 0.33+0.13 34.01+1.08 0.13+0.05 34.49 +0.62 0.09+0.03
forehead_min 30.05+0.72 0.44+0.25 29.58 £0.48 0.20+0.17 30.16+0.71 0.10+0.09
Vforehead —0.018 +£0.007 0.013 +0.005 0.006 +0.009 0.010+0.002 —0.002 £ 0.002 0.006 +0.003
nose_avg 32.46 +1.61 0.60 +0.25 31.85+0.66 0.77 +0.34 32.38+1.54 0.22+0.11
nose_max 33.33+1.20 0.45+0.17 32.80+0.58 0.46 £0.17 33.21+1.07 0.17 +0.09
nose_min 30.87+2.51 0.56 +0.20 30.29+1.50 0.81+0.33 31.15+2.05 0.20+0.08
Vnose —0.032+0.012 0.022 +0.009 0.032 +£0.021 0.034+0.015 —0.007 £0.007 0.017 +0.012
cheek_avg 3235+1.84 0.35+0.15 31.86 +1.66 0.31+0.12 32.70+1.46 0.09 +0.05
cheek_max 33.62+135 0.28 £0.15 3321+1.16 0.22 +0.08 33.73+1.12 0.10+0.04
cheek_min 29.47 +2.40 0.53+0.19 29.05+2.18 0.56 +£0.23 30.32+1.98 0.11+0.05
Vcheek —-0.017+0.006  0.018+0.005  0.016 +0.006 0.010+£0.002  -0.001+£0.005  0.007 +0.003
mouth_avg 3342 +1.04 0.32+0.13 32.54+1.10 0.17 £ 0.05 33.30+0.90 0.17 £ 0.06
mouth_max 33.96 £0.95 0.28+0.16 33.4340.81 0.15+0.06 33.88+0.81 0.12+0.04
mouth_min 32.75+1.28 0.42+0.16 31.69+1.39 0.26 +£0.13 32.66+1.10 0.20+0.08
Vmouth —0.016 +0.006 0.019+0.010 0.004 +0.006 0.015+0.008 0.000+0.007 0.013 £0.005
ear_avg 27.01 +1.36 0.67 +0.20 26.59 +1.47 0.71+0.43 27.61+1.51 0.11 +0.05
ear_max 29.76 + 1.81 0.62+0.20 29.21+2.02 0.70+0.38 30.35+1.66 0.19+0.08
ear_min 2530+ 1.12 0.66+0.25 24.69+1.21 0.60 +0.46 25.67+1.39 0.15+0.10
Vear —0.035+0.010 0.032+0.090 0.039+0.024 0.021 +0.014 0.003 +0.005 0.010+0.004
neck_avg 32.75+0.83 0.29+£0.18 32.35+0.96 0.24+0.11 32.94+0.92 0.12+0.06
neck_max 33.79+0.61 0.30+0.12 33.55+0.64 0.14+0.05 33.90+0.53 0.07 +£0.03
neck_min 29.78 +1.09 0.40+0.29 29.50 + 1.11 0.38 +£0.31 30.33+1.28 0.28+£0.21
Vneck —0.014+0.009 0.018 +0.009 0.011 +£0.008 0.010+0.001 0.000+0.005 0.011 +£0.004

Note: all numbers are in °C.
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Fig. 10. Thermal images of the same subject in the heating phase at different time stamps (absolute temperature measurements are shown in the thermal images).

features to predict thermal preferences as they are more sensi-
tive to the change of ambient environment. As an example, Fig.
10 shows three thermal images of the same subject captured at
different time stamps in the heating phase. It is obvious that the
nose region initially has a lower skin temperature which is shown
in black (31.1°C). This region gradually warms up (as shown in
light red in the middle figure, 32.0 °C) and finally reaches its high-
est temperature (as shown in yellow in the right figure, 33.5 °C).
It should be noted that the thermal images are generated based
on normalized radiometric measurements to display a better tem-
perature distribution in each frame. As a result, the colormap of
thermal images is adjusted in real-time and the colors do not rep-
resent an absolute temperature scale. As shown in Fig. 10, while
the face gradually warms up (the range of temperature increases),
the glasses remain at an almost identical temperature and thus be-
come darker over time (i.e., from grey to black).

In Table 4, all facial regions have negative mean temperature
gradients in the cooling phase. On the other hand, all the mean
temperature gradients are positive in the heating phase. These re-
sults are intuitive as during these two phases, human faces are
constantly losing/gaining heat to/from the ambient environment.
However, it is interesting to note that some facial regions (facial
maxima, forehead, mouth) are more sensitive to cold stress than
heat stress. For example, in the cooling phase the forehead region
has a larger gradient than in the heating phase (|-0.018| > |0.006|)
even though these two phases are kind of symmetric in terms of
environment temperature (see Table 3). This finding implies that
the significant features to predict thermal comfort may not remain
the same under hot and cold stress and thus leads to different
models based on the condition of the ambient environment.

To evaluate the relationship between different skin temperature
features retrieved from the human face, Pearson correlation coef-
ficients of all unique feature pairs in the three phases were cal-
culated. Pearson correlation coefficient measures the strength and
direction of the linear relationship between two variables (range
between —1 and 1) where 1 represents perfect positive linear cor-
relation and —1 represents perfect negative linear correlation [47].
Fig. 11- 13 summarize the mean Pearson correlation coefficients of
the 12 subjects in each particular phase of the experiment.

In the cooling phase (see Fig. 11), both intra-region (features ex-
tracted from a single facial region, e.g., mean, maxima and minima
of the forehead) and inter-region features (features extracted from
different facial regions, e.g., features in the forehead and cheeks)
are highly correlated (minimum coefficient p =0.74). This is due
to the fact that different facial regions react in the same way un-
der the cold stress and the corresponding skin temperature fea-
tures are simultaneously decreasing over time.
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Fig. 11. Averaged Pearson correlation of different features in the cooling phase.
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Fig. 13. Averaged Pearson correlation of different features in the steady-state phase.

However in the heating phase (see Fig. 12), it is important to
note that only about one-third of features are highly correlated
with a coefficient greater than 0.7. After checking the correlation
coefficients of each subject, the authors found out that about one-
half of the subjects have the similar correlation coefficients as
shown in the cooling phase while the other half have low cor-
relations for some features, which indicates that personal varia-
tions in skin temperature responses exist in the heating phase. In
the heating phase, the highly correlated features are mainly intra-
region ones (e.g., the mean, maxima, minima of nose, cheeks, and
ears) and inter-regions with larger variations or gradients in skin
temperature (e.g., nose: 0.77 +0.34 °C; ears: 0.71 £0.43 °C; cheeks:
0.31+£0.12°C, see Table 4). This result may be attributed to the
lower sensitivity of certain facial regions (e.g., forehead) to the heat
stress as discussed above. The skin temperature of these insensitive
regions only varies in a limited range and may remain constant
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during a certain period of time in the heating phase, which leads
to the low correlations.

For the steady-state phase (Fig. 13) where the room temper-
ature is maintained relatively constant, only a few features are
highly correlated (the pattern is also similar across several sub-
jects). This is due to the same reason as discussed in the heating
phase while in this case only the nose and mouth region show
some temperature variations.

4.3. Thermal comfort prediction using the extracted features

In this paper, thermal comfort preference prediction can be
translated into a classification problem where the subjects’ prefer-
ences have three categorical values, i.e.,, warmer, cooler and neu-
tral. Thus, the comfort prediction model is formulated as TC =
(Tfqcial> V faciat)» Where TC is the targeted variable thermal comfort.
Tacialr Vfaciat r€ the skin temperature features extracted from each
facial region and the corresponding gradients. Common machine
learning methods including Support Vector Machine, Classification
Tree, and Random Forest have been investigated to classify thermal
comfort [[7],[8],[32-35]]. Among these existing methods, Chaud-
huri et al. [[7],[8]], Li et al. [35], and Kim et al. [33] suggested that
the Random Forest model produces better prediction results and
provides useful interpretations (e.g., which feature is important).

Random Forest is an ensemble method which classifies an ob-
ject by averaging a large collection of decision trees. This method
applies bootstrap aggregating and can reduce the overfitting prob-
lem originated from decision trees [3]. As in this study, a total of
26 features (see Table 4) are considered for model training, Ran-
dom Forest is an ideal method to randomly sample the training
features at each split to reduce the variances in the training data.
Also, it is worth noting that even though many features selected
in this study are highly correlated (see Fig. 11-13), it does not af-
fect the classification accuracy [27]. Correlated features generally
reduce the interpretability of the model and are usually solved by
feature extraction methods such as Principal Component Analysis.
However, this is beyond the scope of this paper.

In this study, comfort prediction models were trained on each
subject’s dataset to develop personalized models. The Random
Forest model was trained using the Python Scikit-learn package
[40]. Hyper-parameters were tuned through the grid search to
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Fig. 14. Random Forest structure for a subject.
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Table 5

Prediction accuracy of the Random Forest model for each subject.
Subject ID 1 2 3 4 5 6 7 8 9 10 1 12 Avg.
Cooling 0.935 0.825 0.875 0921 0935 0947 0921 0946 0942 0921 0943 0882 0916
Heating 0916 0.840 0932 0946 0955 0955 0942 0933 0933 0952 0942 0.873 0.927
General 0.730 0.801 0829 0921 0900 0878 0859 0.854 0830 0885 0906 0.812 0.850

exhaustively evaluate the accuracy of each configuration for per-
formance optimization (i.e., 'n_estimators’: [300, 500, 700, 1000],
'max_features’: ['auto’, 'sqrt’, 'log2’ |, 'max_depth’: [2, 3, 4, 5]). The
maximum number of features allowed in the estimators and the
maximum tree depth were intentionally controlled at a small size
to reduce the problem of overfitting. Fig. 14 shows a Random For-
est structure for a subject which consists of 500 classification trees.
In this example, each tree is allowed to have a maximum depth of
3 and up to 5 features.

The optimal hyper-parameters for each subject’s personalized
comfort prediction model are shown in Appendix Table A.l. For
each subject, three prediction models were evaluated, i.e., models
for the cooling phase (denoted as “cooling” in Appendix Table A.1,
which were developed using the data collected in the cooling
phase); models for the heating phase (denoted as “heating”, which
were developed using the data collected in the heating phase); and
general models (denoted as “general”, which were developed using
data from all three phases). Models for the steady-state phase were
not developed separately as subjects’ thermal preferences generally
did not change throughout that phase.

After tuning the hyper-parameters, ten-fold cross validations
were conducted to evaluate the prediction accuracy of comfort pre-
diction models. The prediction accuracy of each subject’s person-
alized comfort prediction model is shown in Table 5. On average,
by using the selected facial skin temperature features, the person-
alized methods can achieve an 85.0% accuracy in predicting sub-
jects’ thermal comfort preferences and a slightly higher accuracy
of 91.6% and 92.7% in the cooling and heating phases, respectively.

To identify the most significant features for thermal comfort
prediction, the selected skin temperature features were ranked ac-
cording to their contributions to reducing the loss function. The
five most important features for each subject are presented in Ap-
pendix Table A.2. It can be seen that the significant features are
subject-dependent. Also, these features are data-driven and may
not remain identical as more data are collected in further exper-
iments, e.g., in cooling seasons. However, features extracted from
facial regions with a larger skin temperature variation such as ears,
nose, and cheeks mostly appear to be the significant predictors,
which indicates the ideal facial regions for future studies to ana-
lyze and interpret occupant’s thermal preferences.

5. Discussion

The experimental results confirm that people’s facial skin tem-
perature varies with respect to the change of environment temper-
ature. Due to the thermoregulatory control of human body, in gen-
eral skin temperature tends to increase under the heat stress while
decrease under the cold stress. In the heating phase, all the se-
lected facial skin temperature features are highly correlated while
for the cooling phase only about one third of these features still
show a similar correlation. This finding indicates different sensitiv-
ities and response behaviors of the selected facial regions in the
cooling and heating phases, which might be the effect of sweating
under heat stress [39]. Another possible reason for this observa-
tion is that room temperature is not increased significantly in the
heating phase (i.e., in excess of 30°C) to observe large variations
in some facial regions (e.g., forehead, nose).

In the experiments, the ambient room temperature is controlled
to vary by about 5 °C (cooling phase: 27.5 - 22.6 °C; heating phase:
22.5 - 27.7°C) as opposed to existing studies in which the room
temperature variations can be as high as 10°C [7,12,24]. Despite
the relatively small changes in room temperature, statistically sig-
nificant variations in skin temperature have been observed. Data
from 12 subjects suggest that skin temperature of the selected fa-
cial regions react in different magnitudes, which may due to the
different thickness of the subcutaneous fat layer, the density of
blood vessels, and the amount of skin blood flow [41]. Under the
cold stress, ears have the highest skin temperature variation, fol-
lowed by the nose, cheeks, and forehead. Under the heat stress,
the nose, ears, and cheeks tend to have larger temperature varia-
tions.

The significant regions for comfort prediction vary across sub-
jects (Appendix Table A.2), which can be caused by personal varia-
tions that some subjects have a relatively stable overall or regional
skin temperature than others. But in general, the susceptible fa-
cial regions to the change of environment temperature are proved
to be the good predictors of thermal comfort in the Random For-
est model. Except for a few cases (e.g., the general model for id9
and id11), the temperature gradients are not very helpful in the
comfort interpretation. This is probably due to the fact that tem-
perature gradient only implies how skin temperature changes but
does not provide additional information about a subject’s thermal
comfort state. For example, a negative and substantial temperature
gradient suggests that human body is losing heat to the ambient
environment, however, this scenario can happen at any time dur-
ing the cooling phase when the environment temperature is de-
creasing over time, which leads to a negative temperature gradient
as observed in the data.

For the comfort prediction models, increasing the number of
trees in the Random Forest by tuning ‘n_estimators’ does not al-
ways yield a better performance (as shown in Appendix Table A.1).
In fact, there exists an optimal number of trees for each dataset
such that a larger forest will make the prediction worse and also
computationally expensive. This is probably because this model
randomly samples features provided by the user in each tree. If
the number of significant features is small compared to the non-
significant ones, there is a higher chance that the model is built
upon non-significant features (in other words, the noise) when
the number of estimators becomes larger. For the maximum tree
depth (i.e., the ‘max_depth’ parameter), a smaller depth (e.g., 2 or
3) is generally preferred as a deeper tree can cause the overfitting
problem.

In terms of the prediction accuracy, as shown in Table 5, mod-
els solely trained on the cooling and heating dataset demonstrate a
higher accuracy compared to the integrated dataset which consists
of all three experiment phases. This can be attributed to the dif-
ferent thermal sensations under cooling, heating, and steady-state
conditions even though the selected skin temperatures features
are numerically close in different phases, which caused seemingly
“contradictory”. For example, when a subject’s skin temperature
increases to 34 °C under heat stress, he/she may have a different
thermal sensation compared to the scenario when the skin tem-
perature decreases to 34 °C under cold stress. In this case, the tem-
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perature gradients might be a useful predictor because they help to
differentiate the cold and heat stress.

It is also worth noting that the personalized prediction mod-
els only need to be trained once in the data collection experi-
ment. Later, the pre-developed models can be applied to continu-
ously predict each subject’s comfort level in a non-intrusive man-
ner. The potential applications of this non-intrusive comfort inter-
pretation method can be adopted in a variety of thermal comfort
related applications and contexts such as multi-occupancy offices,
cars, trains where a promising approach to automatically and dy-
namically control the HVAC is much needed. During its usage, if
more data are collected from the subjects (e.g., in different sea-
sons), the prediction models can be updated using the newly re-
ceived data to evolve over time.

However, this study also has some limitations. First, the exper-
iments were only conducted in the heating seasons. The correla-
tions of skin temperature features in the three phases (discussed
in Section 4.2) and the performance of comfort prediction mod-
els (discussed in Section 4.3) may not hold for the cooling sea-
sons. Thus, further investigations on different seasonal climates are
still needed to evaluate the proposed approach. Second, some fa-
cial features may not always be visible to the camera in the opera-
tion. For example, during the experiment the authors found that
fringes can interfere with the skin temperature measurement of
the forehead region. In this case, the forehead region will have
a lower measurement which may affect the result of predictions.
Even worse, if the subject is blocked from the thermal camera, this
method will not work due to the failure of data collection. Third,
human factors such as clothing insulation and activity level were
controlled and assumed constant in the experiments. However, in
practice occupants’ activity level or adaptive behaviors (e.g., put on
a jacket, drink hot water) may affect their thermal sensations and
preferences. Despite this framework being capable of capturing the
thermoregulatory control of human body by monitoring the skin
temperature, its performance in such situations still requires more
detailed investigations. In this case, it can be helpful to incorporate
additional human data from other data collection methods into the
comfort prediction model, such as heart rate and activity level col-
lected from a wristband as discussed in the authors’ previous work
[35]. Fourth, the impacts of glasses worn around the eyes on the
measurement accuracy and facial skin temperature are unknown.
For example, glasses may reflect the background temperature of
the room, resulting in inaccurate measurements. As an additional
layer, glasses may also affect the facial temperature in the heating
and cooling processes. In this case, a comparative testing of sub-
jects with and without glasses can be helpful to understand its im-
pact. Fifth, despite the low-cost camera can achieve an acceptable
accuracy through the pre-processing (Section 4.1), dynamic calibra-
tion of thermal camera (e.g., [37]) may further improve the predic-
tion accuracy of thermal preference.

6. Conclusions

This paper presented a novel framework for real-time thermal
comfort interpretation using infrared thermography. The main con-
tribution of this paper is the proposed data collection and analy-
sis framework to non-intrusively and automatically obtain, retrieve,
and analyze facial skin temperature data and interpret thermal
comfort conditions for each building occupant in real operational
environments. The proposed framework leverages interdisciplinary
techniques including the thermoregulatory theory, computer vi-
sion, and machine learning. Results demonstrate that facial skin
temperature collected from non-intrusive low-cost infrared ther-
mal cameras can help achieve a robust prediction of thermal com-
fort in real time, and offers the possibility for synchronous control
of indoor environments with minimal interruption of building oc-
cupants. The resulting new knowledge from this study has the po-
tential to transition the current building HVAC control from a pas-
sive and user-empirical process to an automated, user-centric and
data-driven mechanism that can simultaneously improve occupant
satisfaction and well-being in indoor environments.

The main conclusions from this study include: first, facial skin
temperature is a useful bio-signal to analyze subjects’ thermal
comfort preferences. In the experiment, a variation of 5°C in
the room temperature shows statistically significant impacts on
the facial skin temperature. Second, the data suggest that facial
skin temperature is more sensitive to the cold stress than heat
stress. A higher correlation between facial skin temperature fea-
tures has been observed in the cooling experiments. Third, human
ears, noses, and cheeks suggest a larger skin temperature varia-
tion. Features retrieved from these regions have been proven to
be the most significant predictors for thermal comfort interpreta-
tion. Fourth, despite the low-cost thermal camera having a lower
accuracy compared to the contact thermocouples or infrared ther-
mometers adopted in other studies, by incorporating features col-
lected from different facial regions, subjects’ thermal comfort pref-
erence can be predicted with an 85% accuracy using the proposed
framework.
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Appendix

Tables A.1 and A.2.

Table A1
Optimal hyper-parameters for each subject.
Subject ID Cooling Heating General
1 - n_estimators: 300 - n_estimators: 500 - n_estimators: 300
- max_depth: 2 - max_depth: 2 - max_depth: 2
« max_features: auto » max_features: auto + max_features: auto
2 « n_estimators: 500 « n_estimators: 300 + n_estimators: 1000
- max_depth: 2 - max_depth: 2 - max_depth: 2
- max_features: sqrt - max_features: sqrt « max_features: auto
3 « n_estimators: 300 - n_estimators: 300 « n_estimators: 500

- max_depth: 4
- max_features: log2

- max_depth: 2
« max_features: auto

» max_depth: 2
+ max_features: auto

(continued on next page)
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Table A.1 (continued)

Subject ID Cooling Heating General
4 « n_estimators: 300 + n_estimators: 300 + n_estimators: 1000
- max_depth: 2 - max_depth: 2 - max_depth: 3
- max_features: auto - max_features: auto - max_features: log2
5 - n_estimators: 300 + n_estimators: 300 « n_estimators: 300
- max_depth: 2 » max_depth: 2 - max_depth: 3
« max_features: auto » max_features: log2 - max_features: log2
6 « n_estimators: 300 « n_estimators: 300 « n_estimators: 500
« max_depth: 2 » max_depth: 2 « max_depth: 3
« max_features: auto » max_features: auto - max_features: sqrt
7 « n_estimators: 300 + n_estimators: 500 « n_estimators: 700
- max_depth: 2 - max_depth: 2 - max_depth: 2
- max_features: auto - max_features: auto - max_features: log2
8 « n_estimators: 300 « n_estimators: 300 « n_estimators: 700
- max_depth: 2 » max_depth: 2 - max_depth: 5
« max_features: auto + max_features: auto - max_features: log2
9 - n_estimators: 300 - n_estimators: 700 - n_estimators: 300
- max_depth: 2 » max_depth: 2 - max_depth: 5
- max_features: auto - max_features: auto - max_features: log2
10 « n_estimators: 300 + n_estimators: 300 « n_estimators: 700
- max_depth: 2 - max_depth: 2 - max_depth: 3
- max_features: auto - max_features: auto - max_features: log2
1n « n_estimators: 300 + n_estimators: 300 « n_estimators: 700
- max_depth: 2 - max_depth: 2 - max_depth: 3
- max_features: auto + max_features: auto - max_features: sqrt
12 - ‘n_estimators: 500 « ‘n_estimators: 500 - ‘n_estimators: 500
- max_depth: 3 - max_depth: 3 - max_depth: 3
- max_features: log2 - max_features: log2 - max_features: auto
Table A.2
Features importance of the Random Forest model for each subject.
Subject ID Cooling Heating General
1 - 'ear_avg’ « ’ear_max’ « 'cheek_min’
- 'ear_max’ « 'cheek_max’ * 'nose_avg’
* 'nose_avg’ * 'nose_avg’ * 'nose_max’
« 'forehead_min’ « 'forehead_avg’ « 'ear_max’
- 'ear_min’ « "cheek_min’ - 'ear_avg’
2 « 'forehead_min’ « 'ear_max’ « 'cheek_max’
- 'forehead_avg’ < 'mouth_min’ - 'cheek_avg’
* 'nose_min’ « 'cheek_max’ « 'ear_max’
* 'neck_max’ « 'neck_min’ « 'forehead_min’
« "'cheek_max’ « 'mouth_avg’ * 'nose_max’
3 « 'cheek_max’ « 'Vforehead’ « 'ear_avg’
- 'ear_max’ < ’ear_max’ « 'ear_min’
* 'nose_min’ « "cheek_max’ « 'ear_max’
* 'nose_max’ - 'ear_avg’ « 'forehead_avg’
« 'nose_avg’ « 'nose_min’ * 'neck_avg’
4 * 'mouth_min’ « ’ear_max’ « 'ear_max’
« 'mouth_avg’ « "cheek_max’ « 'cheek_min’
« 'cheek_max’ « 'neck_min’ « 'forehead_min’
« 'ear_max’ - 'cheek_avg’ + 'ear_min’
« 'nose_avg’ «’ear_avg’ - 'ear_avg’
5 « 'ear_max’ « "cheek_max’ « 'maxVval’
* 'nose_min’ « ’ear_max’ « 'forehead_avg’
- 'forehead_min’ « 'nose_avg’ - 'forehead_max’
* 'nose_avg’ * 'nose_max’ « "cheek_min’
« 'mouth_avg’ « 'neck_avg’ * 'neck_avg’
6 « 'ear_max’ « 'ear_max’ « 'ear_avg’
« 'cheek_max’ « 'nose_avg’ « 'ear_max’
* 'nose_max’ « "cheek_avg’ « 'cheek_avg’
« 'mouth_avg’ «'ear_avg’ « "cheek_max’
« 'mouth_min’ « 'nose_max’ * 'mouth_max’

(continued on next page)
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Table A.2 (continued)

Subject ID Cooling Heating General
7 - 'nose_avg’ « ’ear_max’ « ’ear_max’
- 'nose_min’ « 'nose_avg’ « ‘mouth_avg’
« 'ear_min’ « 'nose_max’ « 'forehead_avg’
« 'forehead_min’ - 'ear_avg’ « 'mouth_min’
« 'mouth_avg’ « 'cheek_min’ « 'neck_avg’
8 * 'nose_max’ « "cheek_max’ « 'nose_avg’
« 'nose_avg’ « 'neck_min’ « 'ear_avg’
« 'forehead_min’ « 'ear_avg’ « 'neck_max’
« 'forehead_avg’ « ’ear_min’ « 'nose_min’
- ’ear_avg’ » 'neck_max’ « 'ear_min’
9 « 'forehead_min’ « 'ear_max’ « 'nose_max’
- 'forehead_avg’ « 'Vneck’ « 'nose_min’
« 'Vneck’ « 'forehead_avg’ « 'nose_avg'
« 'maxVal’ « 'cheek_avg’ « 'forehead_min’
« 'neck_max’ - 'ear_avg’ « 'Vneck’
10 « 'cheek_max’ - 'ear_avg’ « 'mouth_max’
« 'mouth_min’ « 'cheek_min’ « 'nose_max’
« 'ear_max’ < ’ear_min’ « ‘mouth_avg’
* 'nose_min’ « 'Vear « 'mouth_min’
- 'nose_avg’ « 'mouth_min’ « "cheek_max’
1 - 'forehead_min’ « 'cheek_max’ * 'nose_max’
* 'nose_max’ « ’ear_max’ « 'forehead_avg’
« 'Vear’ « 'nose_avg' « 'neck_max’
« 'forehead_avg’ « 'neck_min’ « 'forehead_min’
« 'maxVal’ « 'mouth_avg’ « 'Vear’
12 « ‘nose_avg’ «'ear_avg « ‘nose_avg’
« ‘cheek_avg’ « 'forehead_avg’ « 'forehead_avg’
- 'forehead_avg’ - ‘ear_max’ « 'nose_max’
« ‘ear_max’ < 'mouth_avg’ « ‘ear_avg’
« 'cheek_min’ « ‘forehead_max’ « ‘cheek_avg’
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