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a b s t r a c t 

Understanding occupants’ thermal sensation and comfort is essential to defining the operational settings 

for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings. Due to the continuous impact 

of human and environmental factors, occupants’ thermal sensation and comfort level can change over 

time. Thus, to dynamically control the environment, thermal comfort should be monitored in real time. 

This paper presents a novel non-intrusive infrared thermography framework to estimate an occupant’s 

thermal comfort level by measuring skin temperature collected from different facial regions using low- 

cost thermal cameras. Unlike existing methods that rely on placing sensors directly on humans for skin 

temperature measurement, the proposed framework is able to detect the presence of occupants, extract 

facial regions, measure skin temperature features, and interpret thermal comfort conditions with minimal 

interruption of the building occupants. The method is validated by collecting thermal comfort data from 

a total of twelve subjects under cooling, heating and steady-state experiments. The results demonstrate 

that ears, nose and cheeks are most indicative of thermal comfort and the proposed framework can be 

used to assess occupants’ thermal comfort with an average accuracy of 85%. 

© 2018 Elsevier B.V. All rights reserved. 
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1. INTRODUCTION 

In the U.S. and worldwide, Heating, Ventilation and Air Condi-

tioning (HVAC) systems represent the biggest energy end use ac-

counting for approximately 50% of the total energy required to op-

erate residential and commercial buildings [ [16] , [18] ]. Despite the

significant energy footprint of the HVAC systems, occupants in the

built environment are often dissatisfied with their thermal comfort

[ [23] , [31] ]. For example, a large-scale survey involving 52,980 oc-

cupants in 351 office buildings suggested that only 38% of respon-

dents are satisfied (i.e., voted “slightly satisfied” to “very satisfied”)

with the thermal comfort in their workplace [31] . 

Thermal comfort is defined as “the condition of mind which ex-

presses satisfaction with the thermal environment and is assessed

by subjective evaluation ” [2] . The thermal sensation measure is af-

fected by several human factors including physiological (e.g., gen-

der, age), psychological (e.g., expectation, stress), and behavioral

(e.g., activity level) attributes [ [4] , [30] , [34] , [39] ]. As a result, ther-

mal sensation and satisfaction have been observed to change over

time in a single individual, and also vary from one person to an-

other [26] . Even exposed to the same indoor environment, occu-
∗ Corresponding author. 
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ants can still have diverse thermal sensations and preferences due

o variations in their personal factors. 

It is not surprising that thermal comfort has been identified as

n influential factor of occupants’ health and well-being [50] . For

xample, a high room temperature can increase the reports of sick

uilding syndrome symptoms, such as eye, nose and throat irrita-

ion [51] . In office buildings, several studies have suggested that

 satisfied thermal environment can lead to a reduced number of

omplaints, absenteeism, and improved working productivity [44] .

owever, in typical office buildings, the indoor thermal environ-

ent is usually maintained in a fixed and uniform manner. First,

he thermostat is conventionally set at a consistent setpoint ac-

ording to the routine practice or industry guidelines. For example,

SHRAE Standard 55 “The Environmental Conditions for Human Oc-

upancy ” recommends the comfort range as 20 °C to 24 °C in win-

er and 24 °C to 27 °C in summer. As a result, the HVAC system is

lways delivering the pre-determined amount of heating/cooling.

onsidering the diverse internal factors from the human perspec-

ive, such fixed industry recommendations are not satisfactory as

ccupants’ thermal preference is evolving over time. For exam-

le, an individual entering a cool room in summer may initially

eel comfortable. However, the same individual can feel cold af-

er a while due to the continuous heat loss of human body (i.e.,

teady-state versus transient state sensation) [39] . Second, the cur-

ent HVAC operation strategies also assume that different occu-
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ants in a multi-occupancy space have the same thermal sensa-

ion and preference. This is mainly due to the lack of human data

or personal comfort evaluation, as well as, the assumption that

ndoor environmental conditions are uniform without any spatial

ariations (e.g., uniformly distributed room temperature and rel-

tive humidity). Therefore, the widely adopted human-decoupled

VAC control strategy is rarely able to reach the goal of providing

atisfaction to 80% of occupants [31] . 

In order to overcome these limitations, building HVAC systems

ust dynamically consider each occupant’s unique thermal re-

uirement in the control process. To achieve this goal, it is par-

icularly important that occupants’ thermal sensation and prefer-

nce are interpreted and analyzed on a timely basis, if not in real-

ime. To this end, prior studies have established methods that re-

uire direct thermal comfort feedback from the occupants (e.g.,

 [17] , [42] ]), as well as, the use of intrusive data collection methods

e.g., [ [11] , [24] , [34] ] and [35] ) to understand the thermal condition.

Therefore, the objective of this paper is to explore the feasibility

f using infrared thermography as a truly non-intrusive method to

nterpret human thermal comfort in indoor environments. Specifi-

ally, the authors adopted thermal preference (“warmer”, “cooler”,

neutral”) as the target variable because it indicates the preferred

omfort state of an occupant [ [31] , [33] ]. As opposed to the existing

tudies which used expensive commodity cameras that need to be

laced at a fixed distance from the user (detailed in Section 2.3 ),

his study investigates an automated and real-time approach to

on-intrusively obtain, retrieve, and analyze facial skin tempera-

ure features for each building occupant in real, operational indoor

nvironments using low-cost infrared thermal cameras, computer

ision and machine learning techniques. 

The paper is organized to first provide a detailed review of ex-

sting research studies on the personalized control of HVAC system

nd thermal comfort interpretation using human data, followed by

he discussion of main limitations of these studies and the contri-

utions of our work to this body of knowledge. Then the methods

or skin temperature feature extraction and data collection experi-

ents are explained in detail in the methodology section. Finally,

he comfort prediction models and the research findings are pre-

ented in the results and discussion section. 

. Background 

In this section, the authors will present a review of relevant lit-

rature about methods that have been historically used for thermal

omfort assessment in the HVAC controlled environments. First,

he classic Predicted Mean Vote (PMV) and Predicted Percentage

f Dissatisfied (PPD) models were reviewed. Second, the authors

valuated the “human-in-the-loop” approach which interprets oc- 

upants’ thermal sensation and preference by requesting human

eedback of the ambient environment. Third, the authors discussed

he selected studies which predict an individual’s thermal com-

ort level using personal bio-signals. The limitations of each study

ere analyzed to identify the research gaps in existing methods for

valuating thermal comfort in real operational indoor environment,

hich lead to the objectives of the proposed framework discussed

t the end of this section. 

.1. PMV and PPD models 

The PMV and PPD models are the most widely used methods

o evaluate the indoor thermal comfort [19] . The PMV model was

eveloped based on the thermal balance equation of human body.

our environment factors (i.e., air temperature, mean radiant tem-

erature, air velocity, and relative humidity) and two human fac-

ors (metabolic rate and clothing insulation) are identified for ther-

al comfort assessment. The PMV model predicts the mean ther-
al comfort level of a large group of people using a seven-point

hermal sensation scale (from −3 for cold to 3 for hot). A ther-

ally acceptable indoor environment is defined to maintain the

MV index within the range between −0.5 and 0.5. The PPD in-

ex is associated with the PMV index and it predicts the percent-

ge of occupants that are dissatisfied with the thermal conditions

t any given time. ASHRAE Standards 55 recommends maintaining

he PPD index at less than 10%. 

Despite the PMV and PPD models have been intensively used

n the field of thermal comfort assessment, this method suffers

rom several limitations. First, the PMV model is developed based

n the mean feedback of a large group of people in laboratory

ettings. This generalization can have a strong bias towards cer-

ain occupants in a given office environment. For example, an

ccupant who prefers cold environments may be treated as an

utlier. Also, the PMV model assumes the same parameters (e.g.,

etabolic rate) for all occupants in the same space, which is un-

ble to provide a personalized comfort prediction [32] . Second, the

MV model is originally developed for the steady-state sensations

n mechanically conditioned spaces. The predictions may not hold

nder the transient-state conditions [ [14] , [52] ]. In addition, occu-

ants can perform various adaptive behaviors, e.g., opening win-

ows or putting on an extra layer of cloth, to maintain or restore

he thermally comfortable state. These adaptive behaviors can re-

ult in a wider comfort range than predictions of the PMV model

 [13] , [14] , [45] ]. Third, expensive devices are required to measure

arameters such as the mean radiant temperature and metabolic

ate in the PMV model, which makes it not suitable to be applied

n real operational settings. 

.2. Participation-oriented thermal comfort assessment 

To understand occupants’ requirement of thermal environment,

ecent studies on personalized HVAC control have extensively in-

estigated the “human-in-the-loop” approach which brings occu- 

ants’ actual thermal sensations (also known as thermal vote) into

he HVAC control loop [ [17] , [20] , [25] , [28] , [33] , [42] ]. This control

pproach is initiated by thermal votes received from building oc-

upants using a phone or web application. In each cycle, decision

lgorithms calculate the comfortable setpoint based on the envi-

onmental conditions and the actual thermal votes collected during

his period. 

For example, Feldmeier and Paradiso [20] collected occupants’

hermal votes (hot, cold and neutral) together with the ambient

emperature and humidity from a wrist-worn sensor to model

ne’s thermal comfort state under various environment conditions.

azizadeh et al. [28] used a phone application to collect thermal

references and developed fuzzy predictive models to interpret

n individual’s comfort level under different room temperatures.

ther studies such as Erickson and Cerpa [17] and Purdon et al.

42] adopted the similar approach which used occupants’ actual

hermal votes from phone applications and environment data from

ommodity sensors to either directly adjust the HVAC settings or

odel the comfort state using different statistical methods. In a

ecent study, Kim et al. [33] developed a personal comfort chair

hich can record occupants’ heating/cooling requests over time.

sing personal comfort models, this study achieved a 73% accu-

acy in predicting three-point thermal preferences (i.e., warmer,

o change, cooler), which significantly outperformed the PMV and

daptive models. 

Although this direct occupant participation-oriented approach

rovides a feasible way to understand occupants’ thermal comfort

n the HVAC control loop, there exist three significant limitations.

irst, these aforementioned studies failed to consider the influen-

ial human physiological or behavioral factors when interpreting

ccupants’ thermal comfort. As a result, these methods may fail to
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predict thermal comfort in certain scenarios due to lack of knowl-

edge of what the human factors are under certain scenarios. For

example, the same individual with different workload can have di-

rect opposite thermal sensations and preferences in the same en-

vironment. In this case, a direct mapping from the measured envi-

ronment conditions to a certain thermal comfort level is incapable

of producing a robust prediction, not to mention that human fac-

tors are changing over time. 

Second, in these studies, human body is assumed as a passive

recipient of thermal stimuli. Several field studies suggested that

occupants’ adaptive behaviors (e.g., wearing a jacket when feeling

cold) can play an important role in determining thermal comfort.

However, this behavioral adaptation is not considered in the cur-

rent voting methods. Developing a capability to capture the effects

of this behavioral adaptation can result in a more flexible comfort-

able temperature [14] . 

Third and most importantly, this action-required approach

heavily relies on continuous human feedback to understand occu-

pants’ comfort state over time. This is based on the assumption

that the human body is the best “comfort sensor” of the ther-

mal environment which can periodically, if not always, indicate

the need to adjust temperature setpoint through feedback (i.e., re-

quests to make the room warmer or cooler). In this case, human

feedback is either used as the ground truth to rectify the comfort

prediction or to directly determine the new temperature setpoint.

In real life circumstances, however, this assumption is far from ex-

pected as (1) the frequency of feedback tends to decrease with

time as the novelty and excitement of the system fades away [34] ;

and (2) the requirement of human effort in the feedback can be

distracting during regular work time (especially over heavy work-

load periods or in any frustrating situations) and sometimes occu-

pants are unable to vote due to a variety of reasons (e.g., the phone

is not at hand). 

2.3. Bio-signal oriented thermal comfort assessment 

Human physiological responses (e.g., vasodilation, increased

respiration) have been shown to be correlated with thermal sen-

sations and discomfort [ [29] , [39] ]. Therefore, detecting these hu-

man physiological responses provides a way for researchers to un-

derstand people’s thermal comfort level under different conditions.

This idea is implemented by measuring the variations of human

bio-signals such as skin temperature, heart rate, and respiration

rate. The benefits of applying bio-signals in the thermal comfort

assessment are twofold: (1) bio-signals collected from each occu-

pant allow the researchers to develop personalized comfort mod-

els, which can improve the prediction accuracy [ [32] , [35] , [36] ]; (2)

bio-signals contain useful information to interpret comfort condi-

tions and thus reduce the dependence on human participation. 

Among these bio-signals, skin temperature has been intensively

investigated in prior studies. The human body maintains its core

temperature at around 37 °C through the thermoregulatory control

of blood flow to the skin surface. During heat stress, vasodilation

increases the flow of blood to the skin surface to dissipate excess

internal heat, and vice versa, vasoconstriction decreases the blood

flow to limit heat loss during cold stress [9] . As skin temperature

is directly affected by the changes in blood flow, it is often used to

estimate human thermal sensation and comfort. In practice, skin

temperature can be measured using thermocouples [ [10–12] , [53] ],

infrared thermometers [24] , and commodity infrared thermal cam-

eras [ [1] , [5] , [6] , [15] , [37] , [43] ]. Table 1 lists the device accuracy and

cost in the selected studies. 

Contact thermocouples are the most widely adopted devices to

measure skin temperature due to their high accuracy, low-cost, and

easy installation. To interpret thermal sensation and discomfort,

existing studies usually attach the thermocouples to a certain body
egion or multiple body locations and correlate the measured tem-

erature data under different environment settings with the local

r overall thermal sensation. For example, Yao et al. [53] collected

he skin temperature of different body regions from 16 copper-

onstantan thermocouples directly attached to the human subject.

his study suggested a close relationship between the thermal sen-

ation/comfort and the local skin temperature and developed a

inear regression model to predict comfort level. Similarly, Choi

nd Loftness [12] measured skin temperature of multiple body

arts using contact thermometers at different room temperatures,

lothing and activity conditions in a climate chamber. The results

howed that the gradients of temperature on hand, wrist and up-

er arm are good indicators to predict thermal sensation. However,

his data collection method is very intrusive as the electrodes of

he thermocouple should be directly attached to the skin surface.

his drawback limits this approach to be feasible only in the labo-

atory settings as it is not possible to equip each occupant with the

hermocouples in the operational residential or office environment

ithout interfering with their activities. 

An infrared thermometer is a low-cost temperature sensor that

an provide a non-contact measurement of skin temperature. How-

ver, in order to get an acceptable skin temperature measure-

ent, infrared thermometers need to be placed close to the skin

urface usually within a few centimeters. This is due to the fact

hat its field-of-view (FOV) becomes increasingly large as it moves

way from the target. For example, Ghahramani [24] installed four

LX90614 infrared thermometers on an eyeglass frame to collect

 user’s skin temperature of the front face, cheekbone, nose and

ar. The infrared thermometer adopted in this study has a FOV

f 90 ° and thus for every 1 cm away from the object, the sens-

ng area grows by 2 cm [46] , which makes the eyeglass frame an

deal (and possibly the only feasible) location to place the sensors.

his study observed significant variations in skin temperature un-

er cold and heat stresses. However, this approach has two ma-

or limitations: (1) due to its limited working range, infrared ther-

ometers can only measure a fixed predetermined set of locations.

t is unknown whether these selected sensing points are the most

ignificant locations to measure skin temperature; and more im-

ortantly (2) this approach is not suitable in a real operational or

ulti-occupancy environment as it requires each occupant to wear

uch devices, which can be inconvenient and lacks scalability in a

arge space with multiple occupants such as a lounge or a confer-

nce room. 

Using thermographic cameras (also known as thermal cameras)

s an alternative way to collect skin temperature data without con-

acting the object. Thermal cameras have a longer and a more flex-

ble working range but usually suffer from a relatively lower accu-

acy compared to the thermocouples and infrared thermometers.

owever, they are able to provide a full image frame of thermo-

raphic measurements from which the users can get the tempera-

ure reading at each pixel location. Prior studies such as Abouele-

ien et al. [1] , Burzo et al. [ [5] , [6] ], De Oliveira et al. [15] , Ranjan

nd Scott [43] have used commodity thermal cameras to collect

kin temperature and correlated it with thermal sensations using

ifferent statistical methods. A recent study by Metzmacher et al.

37] used Microsoft Kinect and a dynamically calibrated commod-

ty thermal camera to track human faces and measure skin tem-

erature of different facial regions. The temperature measurements

rom the thermal camera were validated using a reference sensor

hich was attached to the skin. 

In addition, three significant limitations of these aforemen-

ioned studies should be acknowledged: (1) thermal camera is

sed as an independent tool to measure human skin tempera-

ure which is then analyzed offline in a disconnected way, rather

han a built-in component of the building automation system (BAS)

r HVAC system which can dynamically monitor the indoor ther-
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Table 1 

Comparison of skin temperature measurement devices in different studies. 

Studies Device Accuracy Cost 

[10] Corte DermaLab System 

∗> ±0.2 °C ∼$1,200 

[11] STS-BTA Surface temperature sensor ∗ ±0.2 °C at 0 °C, ± 0.5 °C at 100 °C ∼$250 (including the hub) 

[24] MLX90614 infrared thermometer ∗ ±0.5 °C ∼$150 (including the Arduino) 

[5,6] FLIR Thermovision A40 ±2 °C or ± 2% of Reading ∼$6,0 0 0 

[43] FLIR A655sc thermographic camera ±2 °C or ± 2% of Reading ∼$22,0 0 0 

[1] FLIR SC6700 thermal camera ±2 °C or ± 2% of Reading ∼$15,0 0 0 

[37] FLIR A35 thermographic camera ±5 °C or ± 5% of Reading ∼$5,0 0 0 

This study FLIR Lepton 2.5 ±5 °C or ± 5% of Reading ∼$200 for camera 

∗ denotes the intrusive data collection method. 
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Table 2 

Specifications of FLIR Lepton 2.5. 

Features Descriptions 

Dimensions 8.5 × 11.7 × 5.6 mm 

Resolution 80(h) x 60(v) pixels 

Thermal sensitivity < 50 mK 

Accuracy ±5 °C or ± 5% of reading in the working range 

Price $199 
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al environment; (2) as these works are more exploratory stud-

es, thermal cameras are required to be placed directly in front of

he subject, usually within a fixed distance. Again, this significantly

imits the applicability of thermal cameras in the real operational

ettings as occupants can move around at will; and (3) the com-

odity thermal cameras are cost prohibitive (in excess of $50 0 0,

ee Table 1 ) and not suitable for large scale applications. It is still

nknown whether low-cost thermal cameras (at the cost of accu-

acy) can be used for thermal comfort assessment which is what

his paper aims to investigate. 

Prior work by the authors [ [34] , [35] ] investigated personalized

hermal comfort prediction using integrated human and environ-

ent data collected from multiple sources including wristbands,

olling apps, and commodity sensors. The results from these stud-

es indicated that quantitative human data (such as skin tempera-

ure, heart rate) can significantly improve the accuracy of thermal

omfort prediction. However, this approach still suffers the prob-

em in terms of intrusiveness as occupants are required to wear

he wristband and use the phone app. 

To overcome the research gaps identified in the existing body of

nowledge, it is critical to explore a truly non-intrusive and scal-

ble framework which can predict human thermal comfort prefer-

nces in various settings in real time. Thanks to the current ad-

ancements in infrared thermography, low-cost thermal cameras

re available in the market and offer an ideal approach due to their

apability to non-intrusively capture infrared signals emitted from

he human body, their affordable price and compact size, ease of

nstallation, and preservation of occupants’ privacy. To this end,

his paper investigates an automated and scalable framework to

on-intrusively obtain, retrieve, and analyze skin temperature data

o achieve a robust thermal comfort assessment for each build-

ng occupant in a real building environment using infrared thermal

ameras and computer vision techniques. 

. Methodology 

This study leverages a range of techniques to develop an inte-

rated framework for comfort assessment using low-cost/off-the-

helf thermal cameras. These techniques include (1) computer vi-

ion (e.g., Haar cascade object detection) to detect human face and

xtract region of interest (ROI); (2) statistical methods to clean

nd analyze the raw skin temperature data (e.g., Kernel smoother);

nd (3) machine learning methods to develop personalized com-

ort prediction models and analyze significant facial skin temper-

ture features (e.g., Random Forest classifier). An overview of the

perating principle of the proposed non-intrusive thermal comfort

ssessment framework is shown in Fig. 1 . In this framework, fa-

ial skin temperature is selected as the targeted bio-signal. This

s because the human face has a higher density of blood vessels

han other skin surfaces, leading to a larger skin temperature vari-

tion when the condition of human body or ambient environment

hanges [48] . As a result, facial skin temperature can be used as

 physiological indicator of an individual’s overall thermal comfort
 [24] , [54] ]. Second, human faces are not covered by clothing and

hus the emitted infrared energy can be directly measured by the

hermal camera. In addition, human faces allow the computer vi-

ion algorithms to detect and locate ROI in the image frame for

ata analysis. 

The remaining methodology section was organized to first in-

roduce the sensors and devices adopted in this study. Second, the

uthors discussed how computer vision is applied to extract skin

emperature of the ROI. Finally, the data collection experiment was

xplained in detail. 

.1. Low-cost thermal camera 

In this study, the FLIR Lepton 2.5 radiometric thermal camera

ore was used to collect skin temperature data (see Fig. 2 ). FLIR

epton 2.5 is an uncooled long-wave infrared thermal imaging core

ith a factory-calibrated temperature value. Relevant specifications

an be found in Table 2 [21] . 

As a low-cost thermal camera, the radiometric accuracy of Lep-

on 2.5 is relatively low in its full operational temperature range

 −10 °C to 65 °C) compared to the advanced models or thermo-

ouples. However, its feasibility is still worth investigation due to

our reasons: (1) the nominal accuracy in Table 2 ( ±5% of read-

ng) can be overestimated as the measuring objects in this study

re human faces whose surface temperatures are not high (ap-

roximately 35 °C); (2) the room temperature of the experiment

s set between 22 °C and 28 °C rather than the camera’s full oper-

tional temperature range. As a result, the impact of environmen-

al temperature variations on the measurement accuracy should be

ow [21] ; (3) continuous thermal videos rather than a single image

rame are used to interpret thermal comfort. The random measure-

ent errors can follow a Gaussian distribution and thus it is possi-

le to reduce the error to an acceptable level for thermal comfort

nterpretation by removing outliers and averaging multiple image

rames; (4) the objective in this study is to predict a 3-point ther-

al preference, i.e., warmer, neutral, and cooler. This is considered

 classification problem, rather than a regression problem which

alculates a seven-point scale thermal sensation (e.g., [55] ). There-

ore, the problem setting is more robust to the error of measure-

ents. For example, an error of 0.5 °C might lead to a prediction

rror between slightly warm and warm sensations; however, this

rror is acceptable since both are categorized into “preferring a

ooler environment”. In addition, the three-point preference pre-
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Fig 1. Overview of the non-intrusive thermal comfort interpretation framework. 

Fig. 2. FLIR lepton 2.5 radiometric thermal camera core (left) and thermal image (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Detection of ROI and extraction of temperature (for demonstration purpose, 

each region was highlighted in a solid rectangle). 
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diction should not be considered as a limitation as the control sys-

tem can dynamically determine whether to increase or decrease

the setpoint by continuously predicting one’s preferences, which

can lead to a better thermal environment. 

In order to evaluate the measurements from the low-cost Lep-

ton 2.5, the authors conducted a comparative preliminary experi-

ment using a FLIR T450SC thermal camera (accuracy ± 1 °C or ± 1%

of reading, approximate cost is in excess of $10,0 0 0). Facial skin

temperature measurements from these two cameras (i.e., FLIR Lep-

ton 2.5 and FLIR T450SC) were compared to confirm the feasibil-

ity of the proposed approach before conducting the following data

collection experiments. Details about the comparative validation

can be found in Section 3.2.2 . 

3.2. Face detection and skin temperature feature extraction 

To extract skin temperature features, the contour of human

faces and the interested facial regions are first detected in each

thermal image frame. The temperature measurements of each

identified region are then extracted and processed to produce the

skin temperature features, which are validated in the comparative

study. 

3.2.1. Face detection from the thermal image 

Although Lepton 2.5 has a lower resolution (80 by 60), the

outline of the interested regions (e.g., forehead, nose, cheeks) are

clearly preserved in the thermal image (see Fig. 2 , which was

taken from 1 m away to represent a non-intrusive distance), which

makes the Haar Cascade algorithm suitable for this task. Haar Cas-

cade is a fast and effective algorithm for frontal and profile face

recognition by detecting the existence of certain characteristics in

the image, such as edges or changes in texture [49] . In this study,

the Haar Cascade algorithm was applied to detect the existence of

the facial contour, the eyes, and the nose using the OpenCV pack-

age. Other regions such as forehead, cheeks, ears, mouth, and neck

were inferenced from their relative locations (facial geometry) to
he known regions (i.e., facial contour, eyes, and nose can help

dentify the location of the cheeks) during the runtime. These ROIs

ere selected based on prior studies such as Ghahramani [24] ,

etzmacher et al. [37] , and Yi and Choi [54] . The size and loca-

ion of each inferenced ROI were tuned on several subjects prior to

ata collection experiments to ensure the algorithm can correctly

etect all features across different subjects. The measurements of

ach pixel located within the identified ROI were averaged to rep-

esent the corresponding skin temperature of each facial region (as

hown in Fig. 3 ). In each ROI, pixel values exceeded certain thresh-

lds (e.g., below 28 °C or above 38 °C based on the preliminary re-

ults) were filtered out as they were likely to be the background or
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Fig. 4. Reference thermal image taken by FLIR T450SC (colored boxes represent the 

manually labeled ROI). 
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oise, which can interfere with the measurements of skin tempera-

ure features. For example, a close-by light bulb might be detected

n the ROIs on faces. If not removed, the resulting high measure-

ents can lead to a wrong prediction that the subject is too warm.

sing this approach, the authors extracted a total of 26 facial skin

emperature features which include the maximum measurement

f human face and its gradient, as well as, the maxima, minima,

ean, and gradient temperature of six facial regions (i.e., forehead,

ose, cheeks, ears, mouth, and neck). For the gradient temperature,

he mean gradient over a five-minute period (e.g., [7] ) was calcu-

ated as shown in Eqs. (1) and (2) . 

 T i = 

( T c − T c−i ) 

i 
, i = { 1 , 2 , 3 , 4 , 5 } (1)

T = 

1 

5 

5 ∑ 

i =1 

∇ T i (2) 

Where ∇T i is the gradient temperature for time interval i; T c is

he temperature measurement at time c ; ∇T is the mean gradient

emperature over five minutes which is selected as a feature. 

After extracting skin temperature for the six facial regions from

ach frame, the thermal image is immediately discarded to allevi-

te the privacy concerns. 

Based on the preliminary experiments, this approach can suc-

essfully perform face detection within a camera distance of 2 m,

hich is a reasonable non-intrusive distance as the thermal cam-

ras can be mounted on the wall or desktop in front of the users

t this distance. If the thermal cameras were placed further away

rom the subject, this approach may fail as the edges on the hu-

an face are blurred in the thermal images. To overcome this lim-

tation, the authors have explored RGB camera guided feature ex-

raction, which can achieve a robust detection of ROI from a fur-

her distance. The preliminary results were promising but beyond

he scope of this paper. 

.2.2. Preliminary accuracy evaluation of the Low-cost thermal 

amera 

As mentioned earlier in Section 3.1 , in order to evaluate the

ccuracy of the proposed low-cost Lepton 2.5, comparative pre-

iminary experiments were conducted in a climate chamber un-

er three experimental conditions (i.e., cooling from 28 °C to 22 °C,

eating from 22 °C to 28 °C, steady-state condition at 25 °C). Each

xperiment lasted for 40 minutes and a thermal image was taken

y the reference FLIR T450SC camera every 5 minutes. Each ROI

n the reference image was labeled using the FLIR ResearchIR soft-

are (see Fig. 4 ) which provides the mean measurement in each

elected region (after removing the outliers). The Lepton 2.5 cam-

ra was placed at 1 m from the participant. The authors compared

he reference measurements (from the FLIR T450SC) with the tem-

erature retrieved (from Lepton 2.5) using the approach discussed

n Section 3.2.1 . The results showed that in most cases the dif-

erences between two cameras were within 1 °C. A few examples

rom the steady-state experiment were presented in Fig. 5 . How-

ver, it should be noted that this comparison was a sanity test

f the face detection and skin temperature extraction approach as

iscussed in Section 3.2.1 . The temperature deviations highly de-

end on how each region was labeled in the ResearchIR software.

or example, the forehead region in Fig. 3 is larger and contains

ome low temperature pixels (e.g., the eyebrows and pixels close

o hairs) compared to the same region in Fig. 4 , which can be a

ajor cause of the large deviation (about 1 °C). However, the nose

egion in the two images look identical and the deviations can be

s low as 0.2–0.3 °C, which is acceptable given this results from a

ow-cost camera. 
.3. Data collection experiments 

For data collection, the authors designed an experiment to col-

ect skin temperature data and the participants’ corresponding

hermal responses under three thermal conditions. The data collec-

ion experiment was conducted in a research office at the Univer-

ity of Michigan (UM) during the heating season from December

017 to February 2018. During this period, the average high and

ow outdoor temperature was 1.6 °C and −6.7 °C, correspondingly. 

In the testbed office, one thermal camera was placed 1 m

way from the subject which monitors the frontal face (see Fig.

 ). The testbed office had two COZIR temperature/humidity sensors

humidity accuracy: ± 5%; temperature accuracy: ± 1 °C) to contin-

ously monitor the ambient conditions within the close proximity

o the subject during the experiment. The two sensors were placed

t the waist level (0.65 m above the floor) which is close to the

pecified height of 0.6 m for seated occupants in ASHRAE standards

5 [2] . The testbed also had a thermostat by which the research

eam can freely change the indoor temperature from 20 °C to 28 °C.

n the experiments, the room temperature was set between 22 °C
nd 28 °C, which conforms to typical indoor conditions controlled

y the mechanical HVAC system (ASHRAE 55). 

Each subject in this study was assigned a reference ID num-

er for data storage and analysis. The subjects were all students

rom UM aged between 22 and 27 and were healthy at the time of

he data collection. Subjects were asked to wear a sweatshirt and

ants and keep the same clothes during the experiment as out-

ined in Fig. 7 . The experiment started by an interview to under-

tand the subject’s interpretation of thermal comfort (e.g., when

ou feel cold, do you focus on overall body sensation or the sensa-

ion of specific body parts?). Introductions about the devices, re-

earch objectives, and other related information have been pro-

ided to help subjects understand this study. Then, each subject

ompleted an experiment consisting of four phases (see Fig. 7 ).

n the preparation phase, each subject was provided with a desig-

ated phone app (see Fig. 8 ) which was customized for this study

more details about the phone app can be found in [35] ). Subjects

an vote their thermal preferences using the three-point scale (i.e.,

armer, cooler, neutral) through this phone app. 

During the whole data collection experiment, subjects were

sked to use the phone app to provide thermal feedback every

hree minutes which will be used to develop and evaluate comfort

rediction models. At the same time, the facial skin temperature

nd environment conditions were continuously monitored and up-

oaded to the database. In the 60-min steady-state phase, subjects
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Fig. 5. Comparison of the low-cost camera with the reference camera. 

Fig. 6. Experiment setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Timeline of the data collection experiment. 
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were asked to perform daily office activities such as reading, typ-

ing, or browsing. In this phase, room temperature was maintained

at 25 °C to represent a neutral steady-state condition. Next, the

cold stress or heat stress phase started in a random order. In the

60-min heat stress phase, room temperature was increased from

22 °C to 28 °C while for the cold stress phase, room temperature

was decreased from 28 °C to 22 °C. The two environment sensors

showed that in both phases the room temperature was approxi-

mately changed in a linear manner with time (at a rate of ± 1 °C
per 10 minutes). It is worth noting that this random order configu-

ration was chosen to help eliminate subjects’ bias towards thermal

sensation and comfort. For example, if a subject knows the current

room temperature is decreasing, he/she may unconsciously think

he/she is getting cold. The data collection experiment has been ap-

proved by UM Institutional Review Board (IRB) for conducting hu-

man subjects research. 
. Results 

.1. Data cleaning and smoothing 

In the proposed approach, the measurement errors of skin tem-

erature mainly came from three sources: (1) thermal camera’s

ystematic error caused by the temporal drift which accumulates

ver time [21] . For example, thermal images appear blotchy due

o the degrade uniformity which affects the radiometric accuracy;

2) random experiment error which may vary from one observa-

ion to another. For example, hands are detected as the mouth re-

ion when subjects drink water during the experiment which cor-

esponds to a spike in the raw data; and (3) random measurement

rror of the thermal camera which is assumed to follow a Gaus-

ian distribution with a zero mean. For the camera’s systematic er-

or, Lepton 2.5 automatically performs a flat-field correction (FFC)

very three minutes to compensate for the drift effect. During FFC,

he camera closes the shutter and recalibrates the sensor based on
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Table 3 

Summary of environment conditions in three phases. 

Cooling Heating Steady-State 

Range Mean S.D. Range Mean S.D. Range Mean S.D. 

T ( °C) 27.5 - 22.6 25.1 1.4 22.5 - 27.7 25.3 1.5 24.5 - 25.2 24.8 0.2 

RH (%) 20.2 - 33.4 27.7 3.6 32.5 - 21.4 25.8 2.2 20.6 - 26.5 23.2 0.5 

Fig. 8. UI for the designed app [35] . 
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 uniform thermal scene. For the other two random errors, the au-

hors first averaged the image frames captured in each minute and

emoved outliers by checking the difference of adjacent measure-

ents using Eq. (3) . 

 i = 

{
outlier, i f d i − d i −1 ≥ 3 σ
not an outlier, otherwise 

(3) 

Where d i and d i −1 are the data collected at time i and i − 1 ,

nd σ is the standard deviation of data collected from time 0 till

ime i . After removing the outliers, a Gaussian filter was applied to

mooth the raw data. Different widths of the Gaussian filter have

een compared (width = 5, 7 and 10). Considering the duration of

he experiment, the authors chose the filter width to be 7 as it

moothed the data well and also preserved the trend of measure-

ents. For example, Fig. 9 shows a subject’s maximum skin tem-

erature in three phases (i.e., heating, cooling, steady-state) where

he dashed lines represent the raw data collected directly from the

hermal camera and the thick solid lines represent the processed

ata after removing outliers and smoothing. Through data process-

ng, large measurement errors are removed before applying further

nalysis, resulting in a smoothed curve for each experiment. In ad-

ition, it is easy to observe the increasing and decreasing trend of

kin temperature in the heating and cooling phases while the mea-

urements are relatively stable in the steady-state phase, which in-

icates that useful information is well preserved after the process-

ng step. 

.2. Correlation analysis between identified regions 

A total of 12 subjects (7 male, 5 female) participated in the

ata collection experiments as discussed in Section 3.3 . The en-

ironment conditions of the three phases were summarized in

able 3 . As shown in the table, room temperature in the steady-

tate phase was maintained at around 25 °C with a standard de-

iation of ± 0.2 °C, which was close to the mean temperature of

ooling and heating phases. Skin moisture level has been suggested

o influence the emissivity of skin surface, which affects the accu-

acy of temperature measurements [22] . However, the authors did

ot observe obvious and excessive sweating for any subject at the

igh room temperature (around 28 °C), suggesting the emissivity

an be assumed consistent in the experiment given the insignifi-

ant changes in skin moisture level. This is supported by the work
f Owda et al. [38] which compared the emissivity of wet skin

ample (taken from a human cadaver and rinsed in water) and dry

amples (dried for a 4.0 h prior to measurements). Table 4 shows a

ummary of skin temperature feature statistics in the three phases.

he mean and standard deviation (SD) of each feature were calcu-

ated from Eqs. (4) and (5) as shown below. 

¯ = 

1 

n 

n ∑ 

k =1 

μk , SD ( ̄μ) = 

√ 

1 

n − 1 

n ∑ 

k =1 

( μk − μ̄) (4) 

¯
 = 

1 

n 

n ∑ 

k =1 

s k , SD ( ̄s ) = 

√ 

1 

n − 1 

n ∑ 

k =1 

( s k − s̄ ) (5) 

Where μ̄ and SD ( ̄μ) are the mean and standard deviation of

kin temperature of all subjects in a particular phase; s̄ and SD ( ̄s )

re the mean and standard deviation of the sample standard devi-

tion; n is the number of subjects which is 12 in this study. 

In the heating and cooling phases, subjects in general demon-

trated all the three thermal preferences considered for this study

t different times of the experiment. For example, in the heat-

ng phase a subject may initially prefer a warmer environment

s the room temperature starts from 22 °C; gradually he/she feels

hermally neutral as the room temperature increases; and finally

e/she may prefer a cooler environment as the room temperature

xceeds the comfortable range. However, as the room temperature

s controlled at a constant level in the steady-state phase, subjects

sually have the same preference throughout this phase. 

As shown in Table 4 , the standard deviations of the mean skin

emperature range from 0.62 °C to 1.84 °C (see SD ( ̄μ) shown in

old in column 1, 3, and 5), which indicate temperature vari-

tions of each facial region between different subjects. In the

ooling and heating phases, the cheek region shows the high-

st skin temperature variation across all subjects (cooling: SD:

.84 °C, heating: SD: 1.66 °C) and the same for the nose region (SD:

.54 °C) in the steady-state phase. The lowest personal variations in

he three phases are observed in the neck (cooling: SD: 0.83 °C),

ose region (heating: SD: 0.66 °C), and facial maxima (steady-

tate: SD: 0.62 °C), correspondingly. In addition, the forehead re-

ion has the highest skin temperature measurements among all

dentified regions (cooling: 33.55 ± 0.92 °C, heating: 33.02 ± 1.50 °C,

teady-state: 33.77 ± 0.73 °C) while the ear region has the low-

st measurements (cooling: 27.01 ± 1.36 °C, heating: 26.59 ± 1.47 °C,

teady-state: 27.61 ± 1.51 °C). By examining column 2, 4, and 6,

he skin temperature variations in the cooling (column 2) and

eating (column 4) phases are much larger than those in the

teady-state phase (column 6), which implies that facial skin tem-

erature is affected by the ambient room temperature. On the

ther hand, the relatively small skin temperature deviations in

he steady-state phase (column 6) suggest that the measurements

re consistent when ambient room temperature is controlled at

 constant level, which also indicates accurate measurements af-

er applying the pre-processing approach discussed in Section 4.1 .

oreover, nose and ear region have a larger temperature varia-

ion compared to other regions in the cooling (nose: 0.60 ± 0.25 °C,

ar: 0.67 ± 0.20 °C) and heating phases (nose: 0.77 ± 0.34 °C, ear:

.71 ± 0.43 °C). These two identified regions are potentially useful
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Fig. 9. Raw and processed maximum skin temperature of a subject in three phases (S: steady-state; C: cooling; H: heating). 

Table 4 

Statistics of skin temperature features in three phases. 

Features Cooling Heating Steady-State 

μ̄± SD ( ̄μ) (1) s̄ ± SD ( ̄s ) (2) μ̄± SD ( ̄μ) (3) s̄ ± SD ( ̄s ) (4) μ̄± SD ( ̄μ) (5) s̄ ± SD ( ̄s ) (6) 

maxVal 34.38 ± 0.84 0.31 ± 0.11 34.17 ± 0.93 0.12 ± 0.04 34.52 ± 0.62 0.08 ± 0.03 

∇maxVal −0.016 ± 0.005 0.013 ± 0.006 0.004 ± 0.003 0.009 ± 0.002 −0.003 ± 0.003 0.006 ± 0.003 

forehead_avg 33.55 ± 0.92 0.34 ± 0.15 33.02 ± 1.50 0.19 ± 0.11 33.77 ± 0.73 0.07 ± 0.02 

forehead_max 34.17 ± 0.86 0.33 ± 0.13 34.01 ± 1.08 0.13 ± 0.05 34.49 ± 0.62 0.09 ± 0.03 

forehead_min 30.05 ± 0.72 0.44 ± 0.25 29.58 ± 0.48 0.20 ± 0.17 30.16 ± 0.71 0.10 ± 0.09 

∇forehead −0.018 ± 0.007 0.013 ± 0.005 0.006 ± 0.009 0.010 ± 0.002 −0.002 ± 0.002 0.006 ± 0.003 

nose_avg 32.46 ± 1.61 0.60 ± 0.25 31.85 ± 0.66 0.77 ± 0.34 32.38 ± 1.54 0.22 ± 0.11 

nose_max 33.33 ± 1.20 0.45 ± 0.17 32.80 ± 0.58 0.46 ± 0.17 33.21 ± 1.07 0.17 ± 0.09 

nose_min 30.87 ± 2.51 0.56 ± 0.20 30.29 ± 1.50 0.81 ± 0.33 31.15 ± 2.05 0.20 ± 0.08 

∇nose −0.032 ± 0.012 0.022 ± 0.009 0.032 ± 0.021 0.034 ± 0.015 −0.007 ± 0.007 0.017 ± 0.012 

cheek_avg 32.35 ± 1.84 0.35 ± 0.15 31.86 ± 1.66 0.31 ± 0.12 32.70 ± 1.46 0.09 ± 0.05 

cheek_max 33.62 ± 1.35 0.28 ± 0.15 33.21 ± 1.16 0.22 ± 0.08 33.73 ± 1.12 0.10 ± 0.04 

cheek_min 29.47 ± 2.40 0.53 ± 0.19 29.05 ± 2.18 0.56 ± 0.23 30.32 ± 1.98 0.11 ± 0.05 

∇cheek −0.017 ± 0.006 0.018 ± 0.005 0.016 ± 0.006 0.010 ± 0.002 −0.001 ± 0.005 0.007 ± 0.003 

mouth_avg 33.42 ± 1.04 0.32 ± 0.13 32.54 ± 1.10 0.17 ± 0.05 33.30 ± 0.90 0.17 ± 0.06 

mouth_max 33.96 ± 0.95 0.28 ± 0.16 33.43 ± 0.81 0.15 ± 0.06 33.88 ± 0.81 0.12 ± 0.04 

mouth_min 32.75 ± 1.28 0.42 ± 0.16 31.69 ± 1.39 0.26 ± 0.13 32.66 ± 1.10 0.20 ± 0.08 

∇mouth −0.016 ± 0.006 0.019 ± 0.010 0.004 ± 0.006 0.015 ± 0.008 0.0 0 0 ± 0.007 0.013 ± 0.005 

ear_avg 27.01 ± 1.36 0.67 ± 0.20 26.59 ± 1.47 0.71 ± 0.43 27.61 ± 1.51 0.11 ± 0.05 

ear_max 29.76 ± 1.81 0.62 ± 0.20 29.21 ± 2.02 0.70 ± 0.38 30.35 ± 1.66 0.19 ± 0.08 

ear_min 25.30 ± 1.12 0.66 ± 0.25 24.69 ± 1.21 0.60 ± 0.46 25.67 ± 1.39 0.15 ± 0.10 

∇ear −0.035 ± 0.010 0.032 ± 0.090 0.039 ± 0.024 0.021 ± 0.014 0.003 ± 0.005 0.010 ± 0.004 

neck_avg 32.75 ± 0.83 0.29 ± 0.18 32.35 ± 0.96 0.24 ± 0.11 32.94 ± 0.92 0.12 ± 0.06 

neck_max 33.79 ± 0.61 0.30 ± 0.12 33.55 ± 0.64 0.14 ± 0.05 33.90 ± 0.53 0.07 ± 0.03 

neck_min 29.78 ± 1.09 0.40 ± 0.29 29.50 ± 1.11 0.38 ± 0.31 30.33 ± 1.28 0.28 ± 0.21 

∇neck −0.014 ± 0.009 0.018 ± 0.009 0.011 ± 0.008 0.010 ± 0.001 0.0 0 0 ± 0.005 0.011 ± 0.004 

Note: all numbers are in °C . 
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Fig. 10. Thermal images of the same subject in the heating phase at different time stamps (absolute temperature measurements are shown in the thermal images). 
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Fig. 11. Averaged Pearson correlation of different features in the cooling phase. 
eatures to predict thermal preferences as they are more sensi-

ive to the change of ambient environment. As an example, Fig.

0 shows three thermal images of the same subject captured at

ifferent time stamps in the heating phase. It is obvious that the

ose region initially has a lower skin temperature which is shown

n black (31.1 °C). This region gradually warms up (as shown in

ight red in the middle figure, 32.0 °C) and finally reaches its high-

st temperature (as shown in yellow in the right figure, 33.5 °C).

t should be noted that the thermal images are generated based

n normalized radiometric measurements to display a better tem-

erature distribution in each frame. As a result, the colormap of

hermal images is adjusted in real-time and the colors do not rep-

esent an absolute temperature scale. As shown in Fig. 10 , while

he face gradually warms up (the range of temperature increases),

he glasses remain at an almost identical temperature and thus be-

ome darker over time (i.e., from grey to black). 

In Table 4 , all facial regions have negative mean temperature

radients in the cooling phase. On the other hand, all the mean

emperature gradients are positive in the heating phase. These re-

ults are intuitive as during these two phases, human faces are

onstantly losing/gaining heat to/from the ambient environment.

owever, it is interesting to note that some facial regions (facial

axima, forehead, mouth) are more sensitive to cold stress than

eat stress. For example, in the cooling phase the forehead region

as a larger gradient than in the heating phase (| −0.018| > |0.006|)

ven though these two phases are kind of symmetric in terms of

nvironment temperature (see Table 3 ). This finding implies that

he significant features to predict thermal comfort may not remain

he same under hot and cold stress and thus leads to different

odels based on the condition of the ambient environment. 

To evaluate the relationship between different skin temperature

eatures retrieved from the human face, Pearson correlation coef-

cients of all unique feature pairs in the three phases were cal-

ulated. Pearson correlation coefficient measures the strength and

irection of the linear relationship between two variables (range

etween −1 and 1) where 1 represents perfect positive linear cor-

elation and −1 represents perfect negative linear correlation [47] .

ig. 11 – 13 summarize the mean Pearson correlation coefficients of

he 12 subjects in each particular phase of the experiment. 

In the cooling phase (see Fig. 11 ), both intra-region (features ex-

racted from a single facial region, e.g., mean, maxima and minima

f the forehead) and inter-region features (features extracted from

ifferent facial regions, e.g., features in the forehead and cheeks)

re highly correlated (minimum coefficient ρ = 0.74). This is due

o the fact that different facial regions react in the same way un-

er the cold stress and the corresponding skin temperature fea-

ures are simultaneously decreasing over time. 

Fig. 12. Averaged Pearson correlation of different features in the heating phase. 
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Fig. 13. Averaged Pearson correlation of different features in the steady-state phase. 
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However in the heating phase (see Fig. 12 ), it is important to

note that only about one-third of features are highly correlated

with a coefficient greater than 0.7. After checking the correlation

coefficients of each subject, the authors found out that about one-

half of the subjects have the similar correlation coefficients as

shown in the cooling phase while the other half have low cor-

relations for some features, which indicates that personal varia-

tions in skin temperature responses exist in the heating phase. In

the heating phase, the highly correlated features are mainly intra-

region ones (e.g., the mean, maxima, minima of nose, cheeks, and

ears) and inter-regions with larger variations or gradients in skin

temperature (e.g., nose: 0.77 ± 0.34 °C; ears: 0.71 ± 0.43 °C; cheeks:

0.31 ± 0.12 °C, see Table 4 ). This result may be attributed to the

lower sensitivity of certain facial regions (e.g., forehead) to the heat

stress as discussed above. The skin temperature of these insensitive

regions only varies in a limited range and may remain constant
Fig. 14. Random Forest str
uring a certain period of time in the heating phase, which leads

o the low correlations. 

For the steady-state phase ( Fig. 13 ) where the room temper-

ture is maintained relatively constant, only a few features are

ighly correlated (the pattern is also similar across several sub-

ects). This is due to the same reason as discussed in the heating

hase while in this case only the nose and mouth region show

ome temperature variations. 

.3. Thermal comfort prediction using the extracted features 

In this paper, thermal comfort preference prediction can be

ranslated into a classification problem where the subjects’ prefer-

nces have three categorical values, i.e., warmer, cooler and neu-

ral. Thus, the comfort prediction model is formulated as T C =
( T facial , ∇ facial ) , where TC is the targeted variable thermal comfort.

 facial , ∇ facial are the skin temperature features extracted from each

acial region and the corresponding gradients. Common machine

earning methods including Support Vector Machine, Classification

ree, and Random Forest have been investigated to classify thermal

omfort [ [7] , [8] , [32–35] ]. Among these existing methods, Chaud-

uri et al. [ [7] , [8] ], Li et al. [35] , and Kim et al. [33] suggested that

he Random Forest model produces better prediction results and

rovides useful interpretations (e.g., which feature is important). 

Random Forest is an ensemble method which classifies an ob-

ect by averaging a large collection of decision trees. This method

pplies bootstrap aggregating and can reduce the overfitting prob-

em originated from decision trees [3] . As in this study, a total of

6 features (see Table 4 ) are considered for model training, Ran-

om Forest is an ideal method to randomly sample the training

eatures at each split to reduce the variances in the training data.

lso, it is worth noting that even though many features selected

n this study are highly correlated (see Fig. 11 –13), it does not af-

ect the classification accuracy [27] . Correlated features generally

educe the interpretability of the model and are usually solved by

eature extraction methods such as Principal Component Analysis.

owever, this is beyond the scope of this paper. 

In this study, comfort prediction models were trained on each

ubject’s dataset to develop personalized models. The Random

orest model was trained using the Python Scikit-learn package

40] . Hyper-parameters were tuned through the grid search to
ucture for a subject. 
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Table 5 

Prediction accuracy of the Random Forest model for each subject. 

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Cooling 0.935 0.825 0.875 0.921 0.935 0.947 0.921 0.946 0.942 0.921 0.943 0.882 0.916 

Heating 0.916 0.840 0.932 0.946 0.955 0.955 0.942 0.933 0.933 0.952 0.942 0.873 0.927 

General 0.730 0.801 0.829 0.921 0.900 0.878 0.859 0.854 0.830 0.885 0.906 0.812 0.850 
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xhaustively evaluate the accuracy of each configuration for per-

ormance optimization (i.e., ’n_estimators’: [30 0, 50 0, 70 0, 10 0 0],

max_features’: [’auto’, ’sqrt’, ’log2 ′ ], ’max_depth’: [2, 3, 4, 5]). The

aximum number of features allowed in the estimators and the

aximum tree depth were intentionally controlled at a small size

o reduce the problem of overfitting. Fig. 14 shows a Random For-

st structure for a subject which consists of 500 classification trees.

n this example, each tree is allowed to have a maximum depth of

 and up to 5 features. 

The optimal hyper-parameters for each subject’s personalized

omfort prediction model are shown in Appendix Table A.1 . For

ach subject, three prediction models were evaluated, i.e., models

or the cooling phase (denoted as “cooling” in Appendix Table A.1 ,

hich were developed using the data collected in the cooling

hase); models for the heating phase (denoted as “heating”, which

ere developed using the data collected in the heating phase); and

eneral models (denoted as “general”, which were developed using

ata from all three phases). Models for the steady-state phase were

ot developed separately as subjects’ thermal preferences generally

id not change throughout that phase. 

After tuning the hyper-parameters, ten-fold cross validations

ere conducted to evaluate the prediction accuracy of comfort pre-

iction models. The prediction accuracy of each subject’s person-

lized comfort prediction model is shown in Table 5 . On average,

y using the selected facial skin temperature features, the person-

lized methods can achieve an 85.0% accuracy in predicting sub-

ects’ thermal comfort preferences and a slightly higher accuracy

f 91.6% and 92.7% in the cooling and heating phases, respectively. 

To identify the most significant features for thermal comfort

rediction, the selected skin temperature features were ranked ac-

ording to their contributions to reducing the loss function. The

ve most important features for each subject are presented in Ap-

endix Table A.2 . It can be seen that the significant features are

ubject-dependent. Also, these features are data-driven and may

ot remain identical as more data are collected in further exper-

ments, e.g., in cooling seasons. However, features extracted from

acial regions with a larger skin temperature variation such as ears,

ose, and cheeks mostly appear to be the significant predictors,

hich indicates the ideal facial regions for future studies to ana-

yze and interpret occupant’s thermal preferences. 

. Discussion 

The experimental results confirm that people’s facial skin tem-

erature varies with respect to the change of environment temper-

ture. Due to the thermoregulatory control of human body, in gen-

ral skin temperature tends to increase under the heat stress while

ecrease under the cold stress. In the heating phase, all the se-

ected facial skin temperature features are highly correlated while

or the cooling phase only about one third of these features still

how a similar correlation. This finding indicates different sensitiv-

ties and response behaviors of the selected facial regions in the

ooling and heating phases, which might be the effect of sweating

nder heat stress [39] . Another possible reason for this observa-

ion is that room temperature is not increased significantly in the

eating phase (i.e., in excess of 30 °C) to observe large variations

n some facial regions (e.g., forehead, nose). 
In the experiments, the ambient room temperature is controlled

o vary by about 5 °C (cooling phase: 27.5 – 22.6 °C; heating phase:

2.5 – 27.7 °C) as opposed to existing studies in which the room

emperature variations can be as high as 10 °C [7,12,24] . Despite

he relatively small changes in room temperature, statistically sig-

ificant variations in skin temperature have been observed. Data

rom 12 subjects suggest that skin temperature of the selected fa-

ial regions react in different magnitudes, which may due to the

ifferent thickness of the subcutaneous fat layer, the density of

lood vessels, and the amount of skin blood flow [41] . Under the

old stress, ears have the highest skin temperature variation, fol-

owed by the nose, cheeks, and forehead. Under the heat stress,

he nose, ears, and cheeks tend to have larger temperature varia-

ions. 

The significant regions for comfort prediction vary across sub-

ects (Appendix Table A.2 ), which can be caused by personal varia-

ions that some subjects have a relatively stable overall or regional

kin temperature than others. But in general, the susceptible fa-

ial regions to the change of environment temperature are proved

o be the good predictors of thermal comfort in the Random For-

st model. Except for a few cases (e.g., the general model for id9

nd id11), the temperature gradients are not very helpful in the

omfort interpretation. This is probably due to the fact that tem-

erature gradient only implies how skin temperature changes but

oes not provide additional information about a subject’s thermal

omfort state. For example, a negative and substantial temperature

radient suggests that human body is losing heat to the ambient

nvironment, however, this scenario can happen at any time dur-

ng the cooling phase when the environment temperature is de-

reasing over time, which leads to a negative temperature gradient

s observed in the data. 

For the comfort prediction models, increasing the number of

rees in the Random Forest by tuning ‘n_estimators’ does not al-

ays yield a better performance (as shown in Appendix Table A.1 ).

n fact, there exists an optimal number of trees for each dataset

uch that a larger forest will make the prediction worse and also

omputationally expensive. This is probably because this model

andomly samples features provided by the user in each tree. If

he number of significant features is small compared to the non-

ignificant ones, there is a higher chance that the model is built

pon non-significant features (in other words, the noise) when

he number of estimators becomes larger. For the maximum tree

epth (i.e., the ‘max_depth’ parameter), a smaller depth (e.g., 2 or

) is generally preferred as a deeper tree can cause the overfitting

roblem. 

In terms of the prediction accuracy, as shown in Table 5 , mod-

ls solely trained on the cooling and heating dataset demonstrate a

igher accuracy compared to the integrated dataset which consists

f all three experiment phases. This can be attributed to the dif-

erent thermal sensations under cooling, heating, and steady-state

onditions even though the selected skin temperatures features

re numerically close in different phases, which caused seemingly

contradictory”. For example, when a subject’s skin temperature

ncreases to 34 °C under heat stress, he/she may have a different

hermal sensation compared to the scenario when the skin tem-

erature decreases to 34 °C under cold stress. In this case, the tem-
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perature gradients might be a useful predictor because they help to

differentiate the cold and heat stress. 

It is also worth noting that the personalized prediction mod-

els only need to be trained once in the data collection experi-

ment. Later, the pre-developed models can be applied to continu-

ously predict each subject’s comfort level in a non-intrusive man-

ner. The potential applications of this non-intrusive comfort inter-

pretation method can be adopted in a variety of thermal comfort

related applications and contexts such as multi-occupancy offices,

cars, trains where a promising approach to automatically and dy-

namically control the HVAC is much needed. During its usage, if

more data are collected from the subjects (e.g., in different sea-

sons), the prediction models can be updated using the newly re-

ceived data to evolve over time. 

However, this study also has some limitations. First, the exper-

iments were only conducted in the heating seasons. The correla-

tions of skin temperature features in the three phases (discussed

in Section 4.2 ) and the performance of comfort prediction mod-

els (discussed in Section 4.3 ) may not hold for the cooling sea-

sons. Thus, further investigations on different seasonal climates are

still needed to evaluate the proposed approach. Second, some fa-

cial features may not always be visible to the camera in the opera-

tion. For example, during the experiment the authors found that

fringes can interfere with the skin temperature measurement of

the forehead region. In this case, the forehead region will have

a lower measurement which may affect the result of predictions.

Even worse, if the subject is blocked from the thermal camera, this

method will not work due to the failure of data collection. Third,

human factors such as clothing insulation and activity level were

controlled and assumed constant in the experiments. However, in

practice occupants’ activity level or adaptive behaviors (e.g., put on

a jacket, drink hot water) may affect their thermal sensations and

preferences. Despite this framework being capable of capturing the

thermoregulatory control of human body by monitoring the skin

temperature, its performance in such situations still requires more

detailed investigations. In this case, it can be helpful to incorporate

additional human data from other data collection methods into the

comfort prediction model, such as heart rate and activity level col-

lected from a wristband as discussed in the authors’ previous work

[35] . Fourth, the impacts of glasses worn around the eyes on the

measurement accuracy and facial skin temperature are unknown.

For example, glasses may reflect the background temperature of

the room, resulting in inaccurate measurements. As an additional

layer, glasses may also affect the facial temperature in the heating

and cooling processes. In this case, a comparative testing of sub-

jects with and without glasses can be helpful to understand its im-

pact. Fifth, despite the low-cost camera can achieve an acceptable

accuracy through the pre-processing ( Section 4.1 ), dynamic calibra-

tion of thermal camera (e.g., [37] ) may further improve the predic-

tion accuracy of thermal preference. 
Table A.1 

Optimal hyper-parameters for each subject. 

Subject ID Cooling Heat

1 • n_estimators: 300 • n_e

• max_depth: 2 • ma

• max_features: auto • ma

2 • n_estimators: 500 • n_e

• max_depth: 2 • ma

• max_features: sqrt • ma

3 • n_estimators: 300 • n_e

• max_depth: 4 • ma

• max_features: log2 • ma
. Conclusions 

This paper presented a novel framework for real-time thermal

omfort interpretation using infrared thermography. The main con-

ribution of this paper is the proposed data collection and analy-

is framework to non-intrusively and automatically obtain, retrieve,

nd analyze facial skin temperature data and interpret thermal

omfort conditions for each building occupant in real operational

nvironments. The proposed framework leverages interdisciplinary

echniques including the thermoregulatory theory, computer vi-

ion, and machine learning. Results demonstrate that facial skin

emperature collected from non-intrusive low-cost infrared ther-

al cameras can help achieve a robust prediction of thermal com-

ort in real time, and offers the possibility for synchronous control

f indoor environments with minimal interruption of building oc-

upants. The resulting new knowledge from this study has the po-

ential to transition the current building HVAC control from a pas-

ive and user-empirical process to an automated, user-centric and

ata-driven mechanism that can simultaneously improve occupant

atisfaction and well-being in indoor environments. 

The main conclusions from this study include: first, facial skin

emperature is a useful bio-signal to analyze subjects’ thermal

omfort preferences. In the experiment, a variation of 5 °C in

he room temperature shows statistically significant impacts on

he facial skin temperature. Second, the data suggest that facial

kin temperature is more sensitive to the cold stress than heat

tress. A higher correlation between facial skin temperature fea-

ures has been observed in the cooling experiments. Third, human

ars, noses, and cheeks suggest a larger skin temperature varia-

ion. Features retrieved from these regions have been proven to

e the most significant predictors for thermal comfort interpreta-

ion. Fourth, despite the low-cost thermal camera having a lower

ccuracy compared to the contact thermocouples or infrared ther-

ometers adopted in other studies, by incorporating features col-

ected from different facial regions, subjects’ thermal comfort pref-

rence can be predicted with an 85% accuracy using the proposed

ramework. 
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ppendix 

Tables A.1 and A.2 . 
ing General 

stimators: 500 • n_estimators: 300 

x_depth: 2 • max_depth: 2 

x_features: auto • max_features: auto 

stimators: 300 • n_estimators: 10 0 0 

x_depth: 2 • max_depth: 2 

x_features: sqrt • max_features: auto 

stimators: 300 • n_estimators: 500 

x_depth: 2 • max_depth: 2 

x_features: auto • max_features: auto 

( continued on next page ) 
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Table A.1 ( continued ) 

Subject ID Cooling Heating General 

4 • n_estimators: 300 • n_estimators: 300 • n_estimators: 10 0 0 

• max_depth: 2 • max_depth: 2 • max_depth: 3 

• max_features: auto • max_features: auto • max_features: log2 

5 • n_estimators: 300 • n_estimators: 300 • n_estimators: 300 

• max_depth: 2 • max_depth: 2 • max_depth: 3 

• max_features: auto • max_features: log2 • max_features: log2 

6 • n_estimators: 300 • n_estimators: 300 • n_estimators: 500 

• max_depth: 2 • max_depth: 2 • max_depth: 3 

• max_features: auto • max_features: auto • max_features: sqrt 

7 • n_estimators: 300 • n_estimators: 500 • n_estimators: 700 

• max_depth: 2 • max_depth: 2 • max_depth: 2 

• max_features: auto • max_features: auto • max_features: log2 

8 • n_estimators: 300 • n_estimators: 300 • n_estimators: 700 

• max_depth: 2 • max_depth: 2 • max_depth: 5 

• max_features: auto • max_features: auto • max_features: log2 

9 • n_estimators: 300 • n_estimators: 700 • n_estimators: 300 

• max_depth: 2 • max_depth: 2 • max_depth: 5 

• max_features: auto • max_features: auto • max_features: log2 

10 • n_estimators: 300 • n_estimators: 300 • n_estimators: 700 

• max_depth: 2 • max_depth: 2 • max_depth: 3 

• max_features: auto • max_features: auto • max_features: log2 

11 • n_estimators: 300 • n_estimators: 300 • n_estimators: 700 

• max_depth: 2 • max_depth: 2 • max_depth: 3 

• max_features: auto • max_features: auto • max_features: sqrt 

12 • ‘n_estimators: 500 • ‘n_estimators: 500 • ‘n_estimators: 500 

• max_depth: 3 • max_depth: 3 • max_depth: 3 

• max_features: log2 • max_features: log2 • max_features: auto 

Table A.2 

Features importance of the Random Forest model for each subject. 

Subject ID Cooling Heating General 

1 • ’ear_avg’ • ’ear_max’ • ’cheek_min’ 

• ’ear_max’ • ’cheek_max’ • ’nose_avg’ 

• ’nose_avg’ • ’nose_avg’ • ’nose_max’ 

• ’forehead_min’ • ’forehead_avg’ • ’ear_max’ 

• ’ear_min’ • ’cheek_min’ • ’ear_avg’ 

2 • ’forehead_min’ • ’ear_max’ • ’cheek_max’ 

• ’forehead_avg’ • ’mouth_min’ • ’cheek_avg’ 

• ’nose_min’ • ’cheek_max’ • ’ear_max’ 

• ’neck_max’ • ’neck_min’ • ’forehead_min’ 

• ’cheek_max’ • ’mouth_avg’ • ’nose_max’ 

3 • ’cheek_max’ • ’ ∇forehead’ • ’ear_avg’ 

• ’ear_max’ • ’ear_max’ • ’ear_min’ 

• ’nose_min’ • ’cheek_max’ • ’ear_max’ 

• ’nose_max’ • ’ear_avg’ • ’forehead_avg’ 

• ’nose_avg’ • ’nose_min’ • ’neck_avg’ 

4 • ’mouth_min’ • ’ear_max’ • ’ear_max’ 

• ’mouth_avg’ • ’cheek_max’ • ’cheek_min’ 

• ’cheek_max’ • ’neck_min’ • ’forehead_min’ 

• ’ear_max’ • ’cheek_avg’ • ’ear_min’ 

• ’nose_avg’ • ’ear_avg’ • ’ear_avg’ 

5 • ’ear_max’ • ’cheek_max’ • ’maxVal’ 

• ’nose_min’ • ’ear_max’ • ’forehead_avg’ 

• ’forehead_min’ • ’nose_avg’ • ’forehead_max’ 

• ’nose_avg’ • ’nose_max’ • ’cheek_min’ 

• ’mouth_avg’ • ’neck_avg’ • ’neck_avg’ 

6 • ’ear_max’ • ’ear_max’ • ’ear_avg’ 

• ’cheek_max’ • ’nose_avg’ • ’ear_max’ 

• ’nose_max’ • ’cheek_avg’ • ’cheek_avg’ 

• ’mouth_avg’ • ’ear_avg’ • ’cheek_max’ 

• ’mouth_min’ • ’nose_max’ • ’mouth_max’ 

( continued on next page ) 
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Table A.2 ( continued ) 

Subject ID Cooling Heating General 

7 • ’nose_avg’ • ’ear_max’ • ’ear_max’ 

• ’nose_min’ • ’nose_avg’ • ’mouth_avg’ 

• ’ear_min’ • ’nose_max’ • ’forehead_avg’ 

• ’forehead_min’ • ’ear_avg’ • ’mouth_min’ 

• ’mouth_avg’ • ’cheek_min’ • ’neck_avg’ 

8 • ’nose_max’ • ’cheek_max’ • ’nose_avg’ 

• ’nose_avg’ • ’neck_min’ • ’ear_avg’ 

• ’forehead_min’ • ’ear_avg’ • ’neck_max’ 

• ’forehead_avg’ • ’ear_min’ • ’nose_min’ 

• ’ear_avg’ • ’neck_max’ • ’ear_min’ 

9 • ’forehead_min’ • ’ear_max’ • ’nose_max’ 

• ’forehead_avg’ • ’ ∇neck’ • ’nose_min’ 

• ’ ∇neck’ • ’forehead_avg’ • ’nose_avg’ 

• ’maxVal’ • ’cheek_avg’ • ’forehead_min’ 

• ’neck_max’ • ’ear_avg’ • ’ ∇neck’ 

10 • ’cheek_max’ • ’ear_avg’ • ’mouth_max’ 

• ’mouth_min’ • ’cheek_min’ • ’nose_max’ 

• ’ear_max’ • ’ear_min’ • ’mouth_avg’ 

• ’nose_min’ • ’ ∇ear’ • ’mouth_min’ 

• ’nose_avg’ • ’mouth_min’ • ’cheek_max’ 

11 • ’forehead_min’ • ’cheek_max’ • ’nose_max’ 

• ’nose_max’ • ’ear_max’ • ’forehead_avg’ 

• ’ ∇ear’ • ’nose_avg’ • ’neck_max’ 

• ’forehead_avg’ • ’neck_min’ • ’forehead_min’ 

• ’maxVal’ • ’mouth_avg’ • ’ ∇ear’ 

12 • ‘nose_avg’ • ’ear_avg • ‘nose_avg’ 

• ‘cheek_avg’ • ’forehead_avg’ • ’forehead_avg’ 

• ’forehead_avg’ • ‘ear_max’ • ’nose_max’ 

• ‘ear_max’ • ’mouth_avg’ • ‘ear_avg’ 

• ’cheek_min’ • ‘forehead_max’ • ‘cheek_avg’ 
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