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Review Article 

Hydrogen is essential for sustainability 

Alireza Saeedmanesh, Michael A. Mac Kinnon and 

Jack Brouwer ∗

Sustainable energy conversion requires zero emissions of 
greenhouse gases and criteria pollutants using primary energy 
sources that the earth naturally replenishes quickly, like 
renewable resources. Solar and wind power conversion 
technologies have become cost effective recently, but 
challenges remain to manage electrical grid dynamics and to 
meet end-use requirements for energy dense fuels and 
chemicals. Renewable hydrogen provides the best opportunity 
for a zero emissions fuel and is the best feedstock for 
production of zero emission liquid fuels and some chemical 
and heat end-uses. Renewable hydrogen can be made at very 
high efficiency using electrolysis systems that are dynamically 
operated to complement renewable wind and solar power 
dynamics. Hydrogen can be stored within the existing natural 
gas system to provide low cost massive storage capacity that 
(1) could be sufficient to enable a 100% zero emissions grid; (2) 
has sufficient energy density for end-uses including heavy duty 
transport; (3) is a building block for zero emissions fertilizer and 
chemicals; and (4) enables sustainable primary energy in all 
sectors of the economy. 
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ntroduction 

he world population is steadily increasing, expected to 
each 9.7 billion by 2050 [1] . Additionally, modern societal
iving standards, the industrialization and urbanization 

f developing nations, long-distance travel, shipping,
nd freight transport are experiencing rapid growth 

2–6] . Hence, global demands for energy services, includ- 
ng transportation, residential and commercial buildings,
urrent Opinion in Electrochemistry 2018, 12 :166–181 
lectricity generation, and industrial applications, will 
ncrease substantially over this century [7–14] . 

ince the Industrial Revolution, the vast majority of
nergy converted in society has been obtained from
ossil fuels – coal, natural gas, and petroleum – which 

equire tremendously long times for earth and the power
f the sun to produce. This trend is widely expected to
ontinue in coming decades [15–18] . Although the avail-
ble global quantity of these fuels is extremely large, they
re nevertheless finite and so will inevitably ‘run out’ at
ome near future time as we consume them much faster
han the earth produces them [19] . A primary reason for
heir continued use is economics – energy from fossil fuels
as been more cost effective than most other sustainable
orms of energy, including renewable resources. 

n addition, the continued use of fossil fuels is associated
ith increased criteria pollutant and greenhouse gas emis-
ions [20] . Emissions from fossil fuel combustion degrade
ir quality, pose human health risks, and drive global cli-
ate change. In 2017, global energy-related CO 2 emis-
ions reached an historic high of 32.5 Gt as a result of
lobal economic growth, reduced fossil-fuel prices and 

eaker energy efficiency efforts [21] . Additionally, the un-
ven geographic distribution of energy resources is associ-
ted with conflicts between nations. Given these issues, it
s clear that eventually societies across the world must ac-
omplish all energy conversion from renewable resources 
22–43,44 •,45–51] . 

his review article provides an overview of renewable en-
rgy resources, challenges associated with integrating and 

anaging renewable power and demand dynamics in the
lectric grid, and electrification of end-uses, and suggests
hat renewable hydrogen (via Power to Gas (P2G) tech-
ology) is the only zero emissions means for massive and
easonal energy storage and widespread distribution and 

se in difficult to electrify end-uses. 

enewable energy resources 

hile the earth rapidly and naturally replenishes many 
orms of primary energy (solar, wind, geothermal, hy-
ropower, biomass, biogas, and wave and tidal energy),
his paper will focus upon photovoltaic (PV) and wind
ower as they have become increasingly competitive 
n the power generation market [52–67] . The global
eighted average Levelized Cost of Electricity (LCOE) 
rom both solar PV and an onshore wind turbines in 2017
www.sciencedirect.com 
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Figure 1 

(a) Solar PV global weighted average LCOE 2010–2017 and (b) onshore wind global weighted average LCOE 2010–2017. 
Source: Data gathered from Ref. [68] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were in the middle of fossil fuel cost ranges, and will be
close to the lower end of this range by 2022 ( Figure 1 )
[68 ••] . Reductions in LCOE are making renewable en-
ergy from solar PV panels and wind turbines more desir-
able than other renewable resources, and even preferred
over fossil resources [69,70] . As a result, renewable elec-
tricity capacity growth has largely been associated with so-
lar PV and wind ( Figure 2 ) [71 •] . 

Electrification of end-uses 

Many research efforts have suggested that the bulk of fu-
ture energy conversion could be generated by renewables
(largely wind and solar power) in combination with en-
ergy storage (including large-scale battery energy storage)
and the electrification of end-use sectors, for example,
transportation, residential and commercial buildings, and
industry [72–74] . Indeed, a significant body of research
exists regarding technologies, costs and performance anal-
ysis of electrification options, with technology projections
in the various sectors [75–78,79 •,80–85] . 

Figure 3 presents the U.S. subsector primary energy con-
version shares in 2015 [86 ••] . While in the transportation
www.sciencedirect.com 
sector, initial electrification of light duty vehicles is oc-
curring now, complete electrification of the light duty
fleet and electrification of heavy duty transportation
face challenges including upfront costs, range limitations,
payload requirements, and infrastructure development
[87–89] . The residential and commercial building sectors
are widely amenable to electrification and should be elec-
trified as much as possible using various, potentially cost
effective technologies [90–94] . For the industrial sector,
studies examining the potential electrification of its sub-
sectors, including cost and performance analysis, are lim-
ited due to the complexity and challenges associated with
the industrial sector [94–98] . 

It must be considered that electrification of all end-use
sectors will be potentially more expensive and less re-
silient than transforming both electricity and fuel produc-
tion to zero emissions technologies [80,99] . In addition,
some end-uses ( Figure 3 ) such as aviation, long-haul
trucking, shipping, heavy industry (e.g., cement, steel
production) and the fertilizer industry, which account
for roughly 30% of global carbon emissions, are difficult
to electrify [100–103] . Furthermore, demands for these
Current Opinion in Electrochemistry 2018, 12 :166–181 
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Figure 2 

Renewable electricity capacity growth by technology 1994–2022. 
Source: Reproduced with permission from Ref. [71] , ©OECD/IEA 2017 Renewables, IEA Publishing. License: www.iea.org/t&c 

< http:// www.iea.org/ t&c > . 
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ectors are expected to grow substantially in the coming 
ecades. Hence, it is essential to find a solution for these
ifficult-to-electrify energy services [5,104 ••,105,106] . 

hallenges for integrating renewable 

lectricity into the electric grid 

hile integrating wind and solar power into electric 
rids at low levels has been accomplished throughout 
he world, integrating increasing amounts is challeng- 
ng. First, the intermittent and uncontrollable nature of 
ome renewable resources (particularly solar and wind) 
ncreases the dynamics of electrical grid operation, which 

an have major impacts on the performance of the system
107–110] . Moreover, the integration of renewable energy 
ources into existing electric power systems increases 
urrent Opinion in Electrochemistry 2018, 12 :166–181 
he interdependence between natural gas and electric- 
ty transmission networks, and as a result the required
ynamic operation of the gas grid increases [111,112] .
ntegrating high levels of solar and wind power into elec-
ric grids requires various types of technologies that can
rovide instantaneous, hourly, daily, weekly and seasonal 
torage, power generation, and ancillary services to ensure 
he stability of the grid [113 ••] . Moreover, characterizing
esource variability and implementing different balanc- 
ng strategies in different regions with different resources 
equires detailed planning by utility providers and other 
takeholders [114] . The potential use of and interactions
etween firm low-carbon resources (e.g., natural gas 
ith carbon capture and sequestration), variable renew- 
ble resources, and highly dynamic electric resources 
www.sciencedirect.com 
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Figure 3 

Depiction of U.S. primary energy consumption and electricity penetration shares for different energy subsectors in 2015. 
Source: Reproduced from Ref. [86] , with permission from National Renewable Energy Laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(short-duration battery energy storage and demand-
side flexibility) must likely all contribute to a highly
renewable electric grid [115] . Even in 2017, current
renewable resources are creating significant amounts
of excess generation that is curtailed in many regions
[116,117 ••,118] . Finding a promising solution to store the
otherwise curtailed, large-scale excess renewable energy
produced during peak generation times and seasons, fol-
lowed by use in later demand periods is an increasingly
important issue. 

Storage of otherwise curtailed renewable 

electricity 

Different forms of energy storage can be used in various
levels and for various purposes in the electric grid to en-
sure that the supply of power generation matches power
demand at every instant. Energy storage technologies
www.sciencedirect.com 
include thermal storage, compressed air, pumped hy-
droelectric storage, flywheels, batteries, flow batteries,
capacitors and hydrogen [119–134] . 

Battery energy storage is a good candidate for small
isolated power systems to store small amounts of ex-
cess renewable electricity for short durations (hours to
days) [135–137] . However, for large-scale and long dura-
tion storage, it must be considered that lithium-ion bat-
tery systems will be limited due to immutable features
of: (1) insufficient global reserves of lithium and cobalt
to produce enough batteries to meet all of the storage
required [138 •,139,140 •,141] , (2) challenges with self-
discharge that preclude seasonal storage [142 •,143–149] ,
(3) challenges with recycling and waste [147,150] , and (4)
lithium-ion battery energy density may not become suffi-
cient to meet some end-uses [151–153] . 
Current Opinion in Electrochemistry 2018, 12 :166–181 
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enewable hydrogen as storage medium and 

lean future fuel 
2G technology, which involves the conversion of elec- 
rical power into a gaseous energy carrier, is a promising
rospect for future energy systems seeking sustainabil- 
ty, as it can address many of the challenges associated
ith 100% renewable systems [154,155] . Integrating high 

evels of solar and wind requires a large storage capac- 
ty which can be provided by hydrogen production via 
 P2G approach [ 156,157,158 ••, 159–161 ]. Hydrogen can 

e supplied completely from excess renewable energy 
sing P2G, which benefits both balancing the electrical 
rid with high use of variable, unpredictable renewable 
ower, and providing high capacity, long-term energy stor- 
ge for seasonal shifting [162,163,164 •,165–169,170 ••] .
ydrogen production via P2G has also been shown to 
e the most cost-effective approach for long-term energy 
torage [171] . Newly developed smart energy systems 
rovide more efficient, more cost-effective, and more sus- 
ainable solutions by combining both renewable energy 
ources and hydrogen energy systems [172] . Energy man- 
gement strategies, as well as predictive controllers, are 
mportant components of combined renewable energy 
ources and hydrogen energy systems because they allow 

ydrogen production using surplus renewable energy and 

ower production from hydrogen when renewable energy 
s insufficient [173–176] . 

2G has shown considerable potential in transitions to 
00% renewable energy systems in different countries 
177,178 ••,179 ••,180–182,183 ••,184,185,186 •] . While the 
mergence of hydrogen over other low-carbon technolo- 
ies will require reductions in cost [187] , these reductions
an be facilitated with appropriate policies that support 
evelopment of infrastructure to transition to a hydrogen 

conomy. 

enewable hydrogen provides the best opportunity for 
 zero carbon and zero criteria pollutant emissions 
uel across its life cycle, from production to end-use 
188,189 ••,190–195] . P2G enables the production of a 
lean feedstock that can be used in difficult to electrify
pplications [196 •,197] . P2G can also support the utiliza-
ion of intermittent renewables in decarbonizing the in- 
ustrial sector [198–200] . 

2G is also a means of coupling renewable electric- 
ty and the transportation sector by producing a re- 
ewable fuel that can be used in state-of-art fuel 
ell vehicles with considerable environmental benefits 
201,202,203 ••,204,205,206 ••] . Also, renewable hydrogen 

an be methanated with CO 2 to produce synthetic fu- 
ls like methane and methanol as alternative fuels for 
eavy duty transport [207–209,210 •,211 •] . In addition,
2G provides a path to store large-scale excess renew- 
ble electricity in the form of methane by using CO 2 cap-
ure process, which can be used in different applications 
urrent Opinion in Electrochemistry 2018, 12 :166–181 
or example, combine cycle gas turbine power plants
212–215,216 •,217,218] . 

lthough electrification is a good option for residential
nd commercial sectors, hydrogen as an energy carrier
ppears to be feasible in residential and commercial 
pplications, as well as in microgrids and for cases when
ong duration or large magnitude storage is required 

219,220 ••,221–223] . Hydrogen can be used in different
esidential and commercial applications for example, as 
n environmentally sustainable cooking fuel relative to 
onventional cooking fuels typically used in developing 
ountries, such as liquefied petroleum gas, charcoal, and 

rewood. The use of produced renewable hydrogen 

ia P2G can reduce carbon emissions between 2.5 and
4 times (0.04 kg CO 2 eq/MJ) compared to firewood
0.1 kg CO 2 eq/MJ) and liquefied petroleum gas (0.57 kg
O 2 eq/MJ) [224] . 

igure 4 shows residual load resulting from simulations of
 100% renewable California electric grid, hourly match- 
ng demand with available solar and wind resources. Two
ases are considered: (1) wind dominant, and (2) solar
ominant. While the amount of electric energy produced 

s slightly greater than the demand, it is clear that massive
nd seasonal energy storage is required. Options for stor-
ge technologies are also presented in Figure 4 showing
hat both the power and energy capacity of hydrogen en-
rgy storage in current gas infrastructure (pipelines and 

torage facilities) is the only option that can technically
alance renewable power and energy with load on an an-
ual basis. The magnitude of hydrogen energy storage 
ompared to existing pumped hydro and to lithium-ion
atteries (from complete electrification of the light and 

edium duty fleet of 21 million vehicles) is the only one
ufficient to hourly and seasonally balance load and gener-
tion. This fact, together with the lack of self-discharge or
vaporation, and separate power and energy scaling that
nables cost effective seasonal storage, make hydrogen 

ssential for achieving our zero-emission goals. While sea-
onal storage appears more clearly required for the wind
ominant case ( Figure 4 (a)), similar amounts of seasonal
torage and more daily storage are required for the solar
ominant case ( Figure 4 (b)). 

ydrogen generation via solid oxide 

lectrolysis 

olid Oxide Electrolysis (SOE) system has attracted con- 
iderable attention as an efficient large-scale hydrogen 

roduction system that can create a sustainable pathway 
o hydrogen production [225 •] . A vast body of research
as been aimed at developing electrochemical, thermo- 
ynamic and fluid mechanics models to investigate the
ffects of operating conditions, component materials, as 
ell as cell geometry on the performance of SOE cells.
hey showed inherently high energetic and exergetic ef-
ciencies for using SOE systems for both hydrogen and
www.sciencedirect.com 
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Figure 4 

1-year hourly simulation of the load and power generation dynamics of a 100% renewable grid in California, and the capacity of different storage 
technologies for (a) wind dominant case (37 GW solar capacity and 80 GW wind capacity installed) and (b) solar dominant case (162 GW solar 
capacity, 5.6 GW wind capacity installed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other synthetic gases (e.g., methane synthesized from re-
newable hydrogen and captured CO 2 ) via electrolysis and
co-electrolysis processes [226–228,229 •] . The high op-
erating temperature of SOE cells, that is, 800–1300 K,
eliminates the need for expensive catalysts and increases
conversion efficiency and system integration opportuni-
ties. The high operating temperature also allows use of
thermal inputs to reduce the electrical power demand of
the SOE system and enhance the hydrogen production
by using thermal energy for water to steam conversion
[230,231] . These electrolysis systems can be operated dy-
namically to well complement renewable wind and solar
power dynamics [232,233] . One of the main challenges
associated with operating at high-temperature is degra-
dation of materials, but, recent studies have shown that
www.sciencedirect.com 
the mixed conductor and proton conductor SOE cells are
more stable and showing lower degradation rate [234,235] .

Hydrogen distribution and storage 

Hydrogen storage, transmission and distribution (T&D)
are regarded as critical issues that must be solved
before a technically and economically viable hydro-
gen economy can be established. Various hydrogen
storage-delivery scenarios have been evaluated in terms
of cost, performance and environmental impacts for
both large-scale and small-scale hydrogen production
[236 ••,237–239,240 ••] . Blending increasing amounts of
hydrogen into the existing natural gas pipeline network
has been proposed as a low cost means of handling re-
newable hydrogen, which makes large-scale hydrogen
Current Opinion in Electrochemistry 2018, 12 :166–181 
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torage and distribution possible [241,242] . The analy- 
es of Figure 4 are corroborated by others who have
etermined that natural gas infrastructure can accommo- 
ate large-scale gaseous fuel injection whenever there is 
 huge imbalance between renewable supply and grid 

emand [243 ••] . Hydrogen also enables T&D of energy
ver long distances, which is simpler to manage and less
ostly than electric grid T&D. 

2G is the only energy storage concept that addresses 
assive energy storage in a range of more than 100 GWh

244 ••] in addition to T&D by using the existing natural
as system, which should provide the lowest cost solution 

or massive storage capacity. Using the gas network in this
anner avoids unwanted installation of electric T&D in- 
rastructure to manage the electric grid [245] . This strat-
gy of storing and delivering renewable energy to markets 
ppears to be viable without significantly increasing risks 
ssociated with gas end-uses (such as household appli- 
nces), overall public safety, or the durability and integrity 
f the existing natural gas pipeline network [246–249] . 

ver time, as hydrogen concentrations increase there 
ay be some required alterations to current natural gas 
ipelines, including replacement of some pipelines, and 

dding new compressor stations and pressure manage- 
ent equipment to assure safety [250 •] . This should be
ollowed by piecewise conversion of some pipelines to 
00% hydrogen over time, until the entire gas network 

s converted to a zero emissions hydrogen storage and 

elivery system. The dynamics for transferring hydrogen 

hrough a long natural gas transmission pipeline appear to 
e viable without significantly increasing risks in the gas 
ystem [251 ••] . 

ore studies and long-term measurements and demon- 
trations are required to further understand and address 
he impacts of increased hydrogen injection on existing 
atural gas infrastructure and to evaluate the required 

hanges for metering systems and other components 
252 ••] . However, it is clear from historical use of town
as (containing primarily hydrogen and carbon monox- 
de) [253] , from the safe operation of existing hydrogen 

torage and T&D infrastructure throughout Europe, the 
outh-eastern US (from Texas to Florida), and in Califor- 
ia [254] , and from the current standards for hydrogen 

njection into the natural gas system that have already 
een set in Germany, Japan, Canada, England and other 
urisdictions [168,255,256] , that this evolution of the gas 
ystem is possible. 

ummary and conclusions 

hile we must electrify as many end-uses as possible and
ust power end-uses with zero emissions sources (e.g., so- 

ar, wind) complemented by battery energy storage, this 
trategy alone cannot achieve the sustainable and zero 
missions future that we need. This electrification plus 
urrent Opinion in Electrochemistry 2018, 12 :166–181 
attery strategy using lithium-ion batteries, as we are to-
ay, is limited due to immutable features of insufficient
lobal reserves of lithium and cobalt to produce enough
atteries for all the storage required, challenges with self-
ischarge that preclude seasonal storage, challenges with 

ecycling and waste, insufficient energy density for heavy 
uty transport, and inability to produce chemicals or fer-
ilizer. Hydrogen has unique features as a zero emissions
uel, energy storage medium, and industrial and chemical 
eedstock that can enable the massive and seasonal en-
rgy storage that is required for a zero emissions electric
rid and introduce zero emissions energy conversion into
ost sectors of the economy. 
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