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Sustainable energy conversion requires zero emissions of
greenhouse gases and criteria pollutants using primary energy
sources that the earth naturally replenishes quickly, like
renewable resources. Solar and wind power conversion
technologies have become cost effective recently, but
challenges remain to manage electrical grid dynamics and to
meet end-use requirements for energy dense fuels and
chemicals. Renewable hydrogen provides the best opportunity
for a zero emissions fuel and is the best feedstock for
production of zero emission liquid fuels and some chemical
and heat end-uses. Renewable hydrogen can be made at very
high efficiency using electrolysis systems that are dynamically
operated to complement renewable wind and solar power
dynamics. Hydrogen can be stored within the existing natural
gas system to provide low cost massive storage capacity that
(1) could be sufficient to enable a 100% zero emissions grid; (2)
has sufficient energy density for end-uses including heavy duty
transport; (3) is a building block for zero emissions fertilizer and
chemicals; and (4) enables sustainable primary energy in all
sectors of the economy.
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Introduction

The world population is steadily increasing, expected to
reach 9.7 billion by 2050 [1]. Additionally, modern societal
living standards, the industrialization and urbanization
of developing nations, long-distance travel, shipping,
and freight transport are experiencing rapid growth
[2-6]. Hence, global demands for energy services, includ-
ing transportation, residential and commercial buildings,

@ CrossMark

electricity generation, and industrial applications, will
increase substantially over this century [7-14].

Since the Industrial Revolution, the vast majority of
energy converted in society has been obtained from
fossil fuels — coal, natural gas, and petroleum — which
require tremendously long times for earth and the power
of the sun to produce. This trend is widely expected to
continue in coming decades [15-18]. Although the avail-
able global quantity of these fuels is extremely large, they
are nevertheless finite and so will inevitably ‘run out’ at
some near future time as we consume them much faster
than the earth produces them [19]. A primary reason for
their continued use is economics — energy from fossil fuels
has been more cost effective than most other sustainable
forms of energy, including renewable resources.

In addition, the continued use of fossil fuels is associated
with increased criteria pollutant and greenhouse gas emis-
sions [20]. Emissions from fossil fuel combustion degrade
air quality, pose human health risks, and drive global cli-
mate change. In 2017, global energy-related CO, emis-
sions reached an historic high of 32.5 Gt as a result of
global economic growth, reduced fossil-fuel prices and
weaker energy efficiency efforts [21]. Additionally, the un-
even geographic distribution of energy resources is associ-
ated with conflicts between nations. Given these issues, it
is clear that eventually societies across the world must ac-
complish all energy conversion from renewable resources
[22-43,44° 45-51].

This review article provides an overview of renewable en-
ergy resources, challenges associated with integrating and
managing renewable power and demand dynamics in the
electric grid, and electrification of end-uses, and suggests
that renewable hydrogen (via Power to Gas (P2G) tech-
nology) is the only zero emissions means for massive and
seasonal energy storage and widespread distribution and
use in difficult to electrify end-uses.

Renewable energy resources

While the earth rapidly and naturally replenishes many
forms of primary energy (solar, wind, geothermal, hy-
dropower, biomass, biogas, and wave and tidal energy),
this paper will focus upon photovoltaic (PV) and wind
power as they have become increasingly competitive
in the power generation market [52-67]. The global
weighted average Levelized Cost of Electricity (LCOE)
from both solar PV and an onshore wind turbines in 2017
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were in the middle of fossil fuel cost ranges, and will be
close to the lower end of this range by 2022 (Figure 1)
[68°°]. Reductions in LCOE are making renewable en-
ergy from solar PV panels and wind turbines more desir-
able than other renewable resources, and even preferred
over fossil resources [69,70]. As a result, renewable elec-
tricity capacity growth has largely been associated with so-

lar PV and wind (Figure 2) [71°].

Electrification of end-uses

Many research efforts have suggested that the bulk of fu-
ture energy conversion could be generated by renewables
(largely wind and solar power) in combination with en-
ergy storage (including large-scale battery energy storage)
and the electrification of end-use sectors, for example,
transportation, residential and commercial buildings, and
industry [72-74]. Indeed, a significant body of research
exists regarding technologies, costs and performance anal-
ysis of electrification options, with technology projections
in the various sectors [75-78,79°,80-85].

Figure 3 presents the U.S. subsector primary energy con-
version shares in 2015 [86°°]. While in the transportation

sector, initial electrification of light duty vehicles is oc-
curring now, complete electrification of the light duty
fleet and electrification of heavy duty transportation
face challenges including upfront costs, range limitations,
payload requirements, and infrastructure development
[87-89]. The residential and commercial building sectors
are widely amenable to electrification and should be elec-
trified as much as possible using various, potentially cost
effective technologies [90-94]. For the industrial sector,
studies examining the potential electrification of its sub-
sectors, including cost and performance analysis, are lim-
ited due to the complexity and challenges associated with
the industrial sector [94-98].

It must be considered that electrification of all end-use
sectors will be potentially more expensive and less re-
silient than transforming both electricity and fuel produc-
tion to zero emissions technologies [80,99]. In addition,
some end-uses (Figure 3) such as aviation, long-haul
trucking, shipping, heavy industry (e.g., cement, steel
production) and the fertilizer industry, which account
for roughly 30% of global carbon emissions, are difficult
to electrify [100-103]. Furthermore, demands for these
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Figure 2
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sectors are expected to grow substantially in the coming
decades. Hence, it is essential to find a solution for these
difficult-to-electrify energy services [5,104°°,105,106].

Challenges for integrating renewable
electricity into the electric grid

While integrating wind and solar power into electric
grids at low levels has been accomplished throughout
the world, integrating increasing amounts is challeng-
ing. First, the intermittent and uncontrollable nature of
some renewable resources (particularly solar and wind)
increases the dynamics of electrical grid operation, which
can have major impacts on the performance of the system
[107-110]. Moreover, the integration of renewable energy
sources into existing electric power systems increases

the interdependence between natural gas and electric-
ity transmission networks, and as a result the required
dynamic operation of the gas grid increases [111,112].
Integrating high levels of solar and wind power into elec-
tric grids requires various types of technologies that can
provide instantaneous, hourly, daily, weekly and seasonal
storage, power generation, and ancillary services to ensure
the stability of the grid [113°°]. Moreover, characterizing
resource variability and implementing different balanc-
ing strategies in different regions with different resources
requires detailed planning by utility providers and other
stakeholders [114]. The potential use of and interactions
between firm low-carbon resources (e.g., natural gas
with carbon capture and sequestration), variable renew-
able resources, and highly dynamic electric resources
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(short-duration battery energy storage and demand-
side flexibility) must likely all contribute to a highly
renewable electric grid [115]. Even in 2017, current
renewable resources are creating significant amounts
of excess generation that is curtailed in many regions
[116,117°°,118]. Finding a promising solution to store the
otherwise curtailed, large-scale excess renewable energy
produced during peak generation times and seasons, fol-
lowed by use in later demand periods is an increasingly
important issue.

Storage of otherwise curtailed renewable
electricity

Different forms of energy storage can be used in various
levels and for various purposes in the electric grid to en-
sure that the supply of power generation matches power
demand at every instant. Energy storage technologies

include thermal storage, compressed air, pumped hy-
droelectric storage, flywheels, batteries, flow batteries,
capacitors and hydrogen [119-134].

Battery energy storage is a good candidate for small
isolated power systems to store small amounts of ex-
cess renewable electricity for short durations (hours to
days) [135-137]. However, for large-scale and long dura-
tion storage, it must be considered that lithium-ion bat-
tery systems will be limited due to immutable features
of: (1) insufficient global reserves of lithium and cobalt
to produce enough batteries to meet all of the storage
required [138°,139,140°,141], (2) challenges with self-
discharge that preclude seasonal storage [142°,143-149],
(3) challenges with recycling and waste [147,150], and (4)
lithium-ion battery energy density may not become suffi-
cient to meet some end-uses [151-153].
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Renewable hydrogen as storage medium and
clean future fuel

P2G technology, which involves the conversion of elec-
trical power into a gaseous energy carrier, is a promising
prospect for future energy systems seeking sustainabil-
ity, as it can address many of the challenges associated
with 100% renewable systems [154,155]. Integrating high
levels of solar and wind requires a large storage capac-
ity which can be provided by hydrogen production via
a P2G approach [156,157,158°°, 159-161]. Hydrogen can
be supplied completely from excess renewable energy
using P2G, which benefits both balancing the electrical
grid with high use of variable, unpredictable renewable
power, and providing high capacity, long-term energy stor-
age for seasonal shifting [162,163,164°,165-169,170°°].
Hydrogen production via P2G has also been shown to
be the most cost-effective approach for long-term energy
storage [171]. Newly developed smart energy systems
provide more efficient, more cost-effective, and more sus-
tainable solutions by combining both renewable energy
sources and hydrogen energy systems [172]. Energy man-
agement strategies, as well as predictive controllers, are
important components of combined renewable energy
sources and hydrogen energy systems because they allow
hydrogen production using surplus renewable energy and
power production from hydrogen when renewable energy
is insufficient [173-176].

P2G has shown considerable potential in transitions to
100% renewable energy systems in different countries
[177,178°°,179°°,180-182,183°°,184,185,186°]. While the
emergence of hydrogen over other low-carbon technolo-
gies will require reductions in cost [187], these reductions
can be facilitated with appropriate policies that support
development of infrastructure to transition to a hydrogen
economy.

Renewable hydrogen provides the best opportunity for
a zero carbon and zero criteria pollutant emissions
fuel across its life cycle, from production to end-use
[188,189°°,190-195]. P2G enables the production of a
clean feedstock that can be used in difficult to electrify
applications [196°,197]. P2G can also support the utiliza-
tion of intermittent renewables in decarbonizing the in-
dustrial sector [198-200].

P2G is also a means of coupling renewable electric-
ity and the transportation sector by producing a re-
newable fuel that can be used in state-of-art fuel
cell vehicles with considerable environmental benefits
[201,202,203°°,204,205,206°°]. Also, renewable hydrogen
can be methanated with CO; to produce synthetic fu-
els like methane and methanol as alternative fuels for
heavy duty transport [207-209,210°,211°]. In addition,
P2G provides a path to store large-scale excess renew-
able electricity in the form of methane by using CO; cap-
ture process, which can be used in different applications

for example, combine cycle gas turbine power plants
[212-215,216°,217,218].

Although electrification is a good option for residential
and commercial sectors, hydrogen as an energy carrier
appears to be feasible in residential and commercial
applications, as well as in microgrids and for cases when
long duration or large magnitude storage is required
[219,220°°,221-223]. Hydrogen can be used in different
residential and commercial applications for example, as
an environmentally sustainable cooking fuel relative to
conventional cooking fuels typically used in developing
countries, such as liquefied petroleum gas, charcoal, and
firewood. The use of produced renewable hydrogen
via P2G can reduce carbon emissions between 2.5 and
14 times (0.04kg CO,eq/M]) compared to firewood
(0.1 kg COzeq/M]) and liquefied petroleum gas (0.57 kg
COzeq/M]) [224].

Figure 4 shows residual load resulting from simulations of
a 100% renewable California electric grid, hourly match-
ing demand with available solar and wind resources. Two
cases are considered: (1) wind dominant, and (2) solar
dominant. While the amount of electric energy produced
is slightly greater than the demand, it is clear that massive
and seasonal energy storage is required. Options for stor-
age technologies are also presented in Figure 4 showing
that both the power and energy capacity of hydrogen en-
ergy storage in current gas infrastructure (pipelines and
storage facilities) is the only option that can technically
balance renewable power and energy with load on an an-
nual basis. The magnitude of hydrogen energy storage
compared to existing pumped hydro and to lithium-ion
batteries (from complete electrification of the light and
medium duty fleet of 21 million vehicles) is the only one
sufficient to hourly and seasonally balance load and gener-
ation. This fact, together with the lack of self-discharge or
evaporation, and separate power and energy scaling that
enables cost effective seasonal storage, make hydrogen
essential for achieving our zero-emission goals. While sea-
sonal storage appears more clearly required for the wind
dominant case (Figure 4(a)), similar amounts of seasonal
storage and more daily storage are required for the solar
dominant case (Figure 4(b)).

Hydrogen generation via solid oxide
electrolysis

Solid Oxide Electrolysis (SOE) system has attracted con-
siderable attention as an efficient large-scale hydrogen
production system that can create a sustainable pathway
to hydrogen production [225°]. A vast body of research
has been aimed at developing electrochemical, thermo-
dynamic and fluid mechanics models to investigate the
effects of operating conditions, component materials, as
well as cell geometry on the performance of SOE cells.
They showed inherently high energetic and exergetic ef-
ficiencies for using SOE systems for both hydrogen and
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other synthetic gases (e.g., methane synthesized from re-
newable hydrogen and captured CO,) via electrolysis and
co-electrolysis processes [226-228,229°]. The high op-
erating temperature of SOE cells, that is, 800-1300 K,
eliminates the need for expensive catalysts and increases
conversion efficiency and system integration opportuni-
ties. The high operating temperature also allows use of
thermal inputs to reduce the electrical power demand of
the SOE system and enhance the hydrogen production
by using thermal energy for water to steam conversion
[230,231]. These electrolysis systems can be operated dy-
namically to well complement renewable wind and solar
power dynamics [232,233]. One of the main challenges
associated with operating at high-temperature is degra-
dation of materials, but, recent studies have shown that

the mixed conductor and proton conductor SOE cells are
more stable and showing lower degradation rate [234,235].

Hydrogen distribution and storage

Hydrogen storage, transmission and distribution (T&D)
are regarded as critical issues that must be solved
before a technically and economically viable hydro-
gen economy can be established. Various hydrogen
storage-delivery scenarios have been evaluated in terms
of cost, performance and environmental impacts for
both large-scale and small-scale hydrogen production
[236°°,237-239,240°°]. Blending increasing amounts of
hydrogen into the existing natural gas pipeline network
has been proposed as a low cost means of handling re-
newable hydrogen, which makes large-scale hydrogen

www.sciencedirect.com

Current Opinion in Electrochemistry 2018, 12:166-181



172 Fuel Cells and Electrolyzers

storage and distribution possible [241,242]. The analy-
ses of Figure 4 are corroborated by others who have
determined that natural gas infrastructure can accommo-
date large-scale gaseous fuel injection whenever there is
a huge imbalance between renewable supply and grid
demand [243°°]. Hydrogen also enables T&D of energy
over long distances, which is simpler to manage and less
costly than electric grid T&D.

P2G is the only energy storage concept that addresses
massive energy storage in a range of more than 100 GWh
[244°°] in addition to T'&D by using the existing natural
gas system, which should provide the lowest cost solution
for massive storage capacity. Using the gas network in this
manner avoids unwanted installation of electric T&D in-
frastructure to manage the electric grid [245]. This strat-
egy of storing and delivering renewable energy to markets
appears to be viable without significantly increasing risks
associated with gas end-uses (such as household appli-
ances), overall public safety, or the durability and integrity
of the existing natural gas pipeline network [246-249].

Over time, as hydrogen concentrations increase there
may be some required alterations to current natural gas
pipelines, including replacement of some pipelines, and
adding new compressor stations and pressure manage-
ment equipment to assure safety [250°]. This should be
followed by piecewise conversion of some pipelines to
100% hydrogen over time, until the entire gas network
is converted to a zero emissions hydrogen storage and
delivery system. The dynamics for transferring hydrogen
through a long natural gas transmission pipeline appear to
be viable without significantly increasing risks in the gas
system [251°°].

More studies and long-term measurements and demon-
strations are required to further understand and address
the impacts of increased hydrogen injection on existing
natural gas infrastructure and to evaluate the required
changes for metering systems and other components
[252°°]. However, it is clear from historical use of town
gas (containing primarily hydrogen and carbon monox-
ide) [253], from the safe operation of existing hydrogen
storage and T&D infrastructure throughout Europe, the
south-eastern US (from Texas to Florida), and in Califor-
nia [254], and from the current standards for hydrogen
injection into the natural gas system that have already
been set in Germany, Japan, Canada, England and other
jurisdictions [168,255,256], that this evolution of the gas
system is possible.

Summary and conclusions

While we must electrify as many end-uses as possible and
must power end-uses with zero emissions sources (e.g., so-
lar, wind) complemented by battery energy storage, this
strategy alone cannot achieve the sustainable and zero
emissions future that we need. This electrification plus

battery strategy using lithium-ion batteries, as we are to-
day, is limited due to immutable features of insufficient
global reserves of lithium and cobalt to produce enough
batteries for all the storage required, challenges with self-
discharge that preclude seasonal storage, challenges with
recycling and waste, insufficient energy density for heavy
duty transport, and inability to produce chemicals or fer-
tilizer. Hydrogen has unique features as a zero emissions
fuel, energy storage medium, and industrial and chemical
feedstock that can enable the massive and seasonal en-
ergy storage that is required for a zero emissions electric
grid and introduce zero emissions energy conversion into
most sectors of the economy.
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