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HIGHLIGHTS

® Characteristics of the non-intrusive thermal comfort detection are defined.

® A camera network is introduced to assess thermal comfort in multi-occupancy spaces.
® Thermal and RGB-D cameras are fused to measure facial skin temperature.

® Subjects can have flexible postures and movements during the data collection.

® Facial mean skin temperature can serve as an indicator of one’s thermal comfort.

ARTICLE INFO ABSTRACT

About 40% of the energy produced globally is consumed within buildings, primarily for providing occupants
with comfortable work and living spaces. However, despite the significant impacts of such energy consumption
on the environment, the lack of thermal comfort among occupants is a common problem that can lead to health
complications and reduced productivity. To address this problem, it is particularly important to understand
occupants’ thermal comfort in real-time to dynamically control the environment. This study investigates an
infrared thermal camera network to extract skin temperature features and predict occupants’ thermal pre-
ferences at flexible distances and angles. This study distinguishes from existing methods in two ways: (1) the
proposed method is a non-intrusive data collection approach which does not require human participation or
personal devices; (2) it uses low-cost thermal cameras and RGB-D sensors which can be rapidly reconfigured to
adapt to various settings and has little or no hardware infrastructure dependency. The proposed camera network
is verified using the facial skin temperature collected from 16 subjects in a multi-occupancy experiment. The
results show that all 16 subjects observed a statistically higher skin temperature as the room temperature in-
creases. The variations in skin temperature also correspond to the distinct comfort states reported by the sub-
jects. The post-experiment evaluation suggests that the networked thermal cameras have a minimal interruption
of building occupants. The proposed approach demonstrates the potential to transition the human physiological
data collection from an intrusive and wearable device-based approach to a truly non-intrusive and scalable
approach.
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1. Introduction

Buildings consume approximately 40% of the energy produced
globally resulting in significant impacts on critical non-renewable re-
sources and climate change [1,2]. At the same time, heating, ventila-
tion, and air conditioning (HVAC) systems represent the biggest energy
end use in buildings, which account for 48% of the total energy re-
quired to operate residential and commercial buildings [3]. However,
despite the significant impact of such energy consumption on the

environment, the lack of thermal comfort among building occupants is
a common problem where studies reveal that up to 43% of occupants
are dissatisfied with the thermal environment in their workplace [4].
The importance of thermal comfort cannot be overemphasized.
Several studies have suggested that satisfying thermal environments
can lead to a reduced number of complaints, absenteeism, and im-
proved work productivity [5]. On the other hand, it is also not sur-
prising that thermal comfort is an influential factor on occupants’
health and well-being, especially given that people spend more than
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90% of their time indoors [6]. For example, the reports of sick building
syndrome symptoms, such as headaches, eye and throat irritation, have
been found to be correlated with the high room temperature [7].
Therefore, optimizing the HVAC operation to improve human sa-
tisfaction, health, and energy efficiency can lead to significant social,
economic, and environmental benefits.

To this end, a good understanding of occupants’ thermal comfort is
much needed as it provides useful insights to control the HVAC systems.
However, assessing occupants’ thermal comfort is not an easy task.
Thermal comfort is defined as “the condition of mind which expresses
satisfaction with the thermal environment” [8], which implies that it is
determined by one’s subjective assessment of the environmental con-
dition (e.g., air temperature, relative humidity). In addition, an in-
dividual’s thermal comfort is also significantly affected by personal
conditions consisting of physiological (e.g., gender, body mass index),
psychological (e.g., expectation, stress), and behavioral factors (e.g.,
clothing and activity level) [9-12]. As a result, both personal and
temporal variations should be considered to achieve a robust thermal
comfort assessment.

To date, researchers have explored different methods to assess
thermal comfort. The most well-known approach is the Predicted Mean
Vote (PMV) model, which is based on the thermal transfer of the human
body and the environment [13]. The PMV model considers four en-
vironmental factors (air temperature, mean radiant temperature, air
speed, relative humidity) and two human factors (clothing level and
metabolic rate) affecting one’s thermal sensation and comfort. Later,
the adaptive comfort models were proposed to account for adaptive
behaviors from occupants (e.g., open the window) to maintain ther-
mally comfortable states in naturally ventilated environments and
suggested a wider comfort zone than that of the PMV model [14]. Re-
cently, more attention has been paid to personal comfort models
[9,15-18]. In this case, “personal” indicates that the predictive model
was entirely and exclusively developed based on one’s subjective
thermal comfort states under various environmental and human con-
ditions. As a result, the training data of personal comfort models typi-
cally vary from one person to another, which reflects occupants’ un-
iqueness and subjectivity in evaluating thermal comfort. Regarding the
model training, different machine learning methods can be applied and
tuned to choose the best model that yields the highest accuracy in the
cross-validation. For example, Li et al. [9] collected environmental and
human data (e.g., skin temperature, heart rate) from seven office em-
ployees using environment sensors and wristband bio-sensors, and
trained personal comfort model for each occupant using the Random
Forest classifier, which showed an 80% accuracy in predicting a three-
point thermal preference. In general, personal comfort models de-
monstrate a better predictive power than the PMV and adaptive comfort
models as they are highly customized to account for the characteristics
of each occupant [17]. In addition, understanding personal thermal
comfort provides insights into designing the HVAC control algorithms
to optimize overall comfort in a multi-occupancy setting [9] and also
enables personalized comfort zones for each individual (e.g., through
local HVAC units) in a large space when coupling with occupant posi-
tioning systems [16]. From the energy’s perspective, personal comfort
profiles can be incorporated into the building energy models or agent-
based models for detailed energy simulation and occupant feedback
(e.g., [19-22]).

To apply personal comfort models, the environmental condition
within the proximity of an occupant (also known as the micro-climate
around a person) and/or actionable human physiological data, such as
skin temperature, heart rate, and respiration rate, are often required as
input variables of the model. However, these input variables are gen-
erally measured in an “intrusive” way in existing studies. The intru-
siveness of data collection comes from (1) the continuous requirement
of human participation for real-time thermal comfort evaluation (e.g.,
[23]); (2) the dependence on wearable devices or personal equipment
(e.g., [24,25]); and (3) the requirement of occupants to remain at a
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static posture or refrain from excessive body movements (e.g., [26]).
The intrusiveness resulting from conventional methods is a significant
limitation as it is distracting during regular work time and also im-
practical in operational built environments.

Therefore, to leverage personal comfort models and address the
intrusiveness of conventional data collection methods, this study pro-
poses a non-intrusive and low-cost thermal and RGB-D cameras net-
work to simultaneously assess multiple occupants’ thermal comfort
states in real multi-occupancy environments with minimal interruption
of building occupants. Also, this networked system has high scalability
and flexibility and can be easily applied to various built environments.

The paper is organized to first provide a comprehensive review of
existing studies on the related topics, which is followed by a discussion
of the anticipated characteristics of a non-intrusive data collection ap-
proach in Section 2. Then, the technical details of the proposed ap-
proach are explained in Section 3. The protocol of data collection ex-
periments is described in Section 4. The experimental results and
capabilities of the proposed approach are discussed in Section 5. Fi-
nally, Section 6 concludes this study.

2. Background
2.1. Related work

Researchers have explored various approaches and tools to measure
the input variables of personal comfort models. In general, existing data
collection approaches can be categorized into two main categories: (1)
environment oriented comfort assessment, and (2) human physiological
measurement oriented comfort assessment.

The environment oriented comfort assessment aims to collect var-
ious environmental factors within the proximity of an occupant and
then map these factors to his/her self-reported thermal comfort con-
ditions. For example, Feldmeier and Paradiso [23] used wearable
sensor nodes to monitor the local temperature and humidity sur-
rounding an occupant and developed decision boundaries based on
these two parameters using the Fisher discriminant analysis. Jazizadeh
et al. [27] developed a phone application through which occupants can
provide their thermal preferences. Personal fuzzy predicted models
were developed to correlate each occupant’s preference and the am-
bient air temperature. Recently, Kim et al. [17] designed a comfort
chair which can deliver personal heating and cooling through the heat
strips and fans mounted on the chair. The control behaviors (i.e., re-
quests to heat and cool) received by the chair and several environ-
mental conditions measured by sensors were included in the personal
comfort models for thermal preference prediction. However, these ap-
proaches generally fail to consider human physiological data which
have been proved as useful indicators of one’s thermal comfort state.
Lacking such human data can lead to sub-optimal predictions due to the
varying human physiological, psychological, and behavioral conditions.
For example, occupants can have distinct comfort levels with an extra
layer of clothing under the same environmental conditions, which im-
plies the need to leverage human data for robust comfort assessment.

On the other hand, researchers also explored human data in per-
sonal comfort models to address the aforementioned limitation, which
leads to the physiological measurement based comfort assessment.
Among various human physiological data, skin temperature has drawn
significant attention due to its strong correlation with thermal comfort.
According to thermoregulation mechanisms, the human body maintains
its core internal temperature at around 37 °C. When thermoreceptors
detect heat or cold stress, the hypothalamus will control body muscles,
organs, and nervous system to maintain the homeostasis state [11]. In
this process, the human body adjusts heat production and also controls
heat loss through the vasodilation and vasoconstriction, which will
cause variations in skin temperature. Therefore, skin temperature is
commonly adopted as a proxy of the thermoregulation.

To leverage the skin temperature as an effective indicator of thermal
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comfort, prior studies have proposed various approaches to con-
tinuously measure one’s skin temperature, which include (1) wearable
sensors or thermocouples that directly contact the skin surface; and (2)
infrared thermometers (spot pyrometer) or thermal imaging cameras
that can infer non-contact temperature from the infrared radiation. For
example, Li et al. [9,18] adopted a wrist-worn fitness tracker to con-
tinuously measure occupants’ wrist skin temperature and other phy-
siological variables under different thermal conditions. This study
compared baseline models which are trained only using the environ-
mental data with those that use both environmental and human phy-
siological data. Results suggested that incorporating human data can
significantly improve the predictive power of personal comfort models.

To reduce the intrusiveness resulting from the wearable sensors,
infrared thermometers and cameras are ideal tools as they can infer the
temperature in a non-contact way. For example, Ghahramani et al. [24]
installed infrared thermometers on an eyeglass frame to collect the skin
temperature of the front face, cheek, nose, and ear regions and observed
statistically significant differences in skin temperature under heat and
cold stress conditions.

Compared to infrared thermometers, thermal camera (or infrared
imaging cameras) can capture a full thermal image consisting of tem-
perature values of each pixel (as opposed to a single spot measurement
from infrared thermometers) and measure objects’ temperature from a
longer distance [28]. The measurements are also invariant to ambient
illumination. In existing studies, researchers used thermal cameras in
different ways to model occupants’ thermal preference. For example,
Ranjan and Scott [29] used the FLIR A655sc camera to take thermo-
graphic images of occupants twice per day during a five-week data
collection period. Each thermal image is manually labeled offline to
identify the skin temperature of different body regions (e.g., palm,
forehead), which were then correlated with the reported overall
thermal preference. To continuously collect an occupant’s skin tem-
perature for real-time analysis, Metzmacher et al. [30] proposed a face
and body tracking method to extract the skin temperature of different
facial regions in each thermographic image collected from a FLIR A35
camera. However, commodity thermal cameras are generally expensive
(over $5000 as mentioned in the two examples) and cannot be directly
incorporated in the building management system due to their large
sizes and compatibility issues, which significantly limits their applica-
tions in built environments.

To overcome this limitation, previous work by the authors [31]
explored a low-cost thermal camera (FLIR Lepton, cost: $200, dimen-
sion: 8.5 x 11.7 X 5.6 mm) to assess thermal comfort through the skin
temperature of six facial regions (e.g., forehead, nose). The proposed
method can automatically and continuously detect human faces, mea-
sure the skin temperature of each facial region, clean and process raw
data, and interpret thermal comfort using personal comfort models.
Results of this study suggested an 85% accuracy in predicting a three-
point thermal preference. More importantly, this pilot study verified the
feasibility of incorporating low-cost thermal cameras into the HVAC or
building management systems to understand thermal comfort in real
time.

Besides infrared thermography, researchers also explored non-con-
tact approaches to measure other physiological factors, such as heart
rate, blood perfusion, and respiration activity. For example, Kwon et al.
[32] applied the independent component analysis and fast Fourier
transform on images captured by regular RGB cameras to detect subtle
changes in skin color, which indicates the frequency of cardiac pulses.
Similarly, Jung and Jazizadeh [33] compared the facial skin color
under cold and hot environments using the Eulerian Video Magnifica-
tion algorithm. Significant color differences were observed, which
suggests variations in the blood perfusion. In another study, Jung and
Jazizadeh [34] measured movements of the chest and abdomen using
the Doppler radar as a proxy of respiration activities and observed a
higher respiration intensity in high temperature environments. How-
ever, these studies require the subjects to remain at a static posture as
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body movements can affect colors and distances measured by the RGB
camera and the Doppler radar.

2.2. Characteristics of non-intrusive thermal comfort assessment

Although the related studies significantly contribute to the current
body of knowledge in assessing thermal comfort, these approaches are
generally limited to experimental conditions due to the varying degrees
of intrusiveness on occupants. Considering the limitations of each re-
viewed study, a truly non-intrusive approach which can be readily
adopted in real operational multi-occupancy environments should have
specific characteristics summarized as follows:

e The approach should continuously collect human physiological data
for real-time and robust thermal comfort assessment. Therefore,
approaches that require manual data collection and offline proces-
sing fail this criterion.

e The collection of human physiological data should not require
wearable devices, personal equipment, or excessive human feed-
back, which can cause discomfort, inconvenience or interruptions of
building occupants.

e Occupants can have flexible and relaxed postures and possibly move
around in the built environment. In other words, occupants are not
required to remain at a static posture while the approach is in op-
eration.

e The approach should have high scalability potential such that it can
be flexibly configured to various built environments, especially in
multi-occupancy spaces where multiple occupants’ thermal comfort
can be simultaneously assessed without incurring additional ad-
justments. Typically, studies that require personal equipment fail
this criterion due to their hardware dependency. For example, each
occupant has to wear a wristband or use the phone app for data
collection, which can be cumbersome in large multi-occupancy
spaces. If some occupants do not have access to such devices, their
comfort preferences are not taken into account.

e The approach should be robust against variations in ambient con-
ditions, such as the lighting intensity. Studies that rely on analyzing
different channels of RGB images may fail this criterion due to their
sensitivity to lighting variations. For example, a dimmer room or
background reflection can substantially change the value of each
pixel in an image.

In summary, Table 1 shows the list of significant characteristics of a
non-intrusive approach for thermal comfort assessment and Table 2
summarizes the limitations of each related study reviewed in Section
2.1.

Therefore, the objective of this study is to develop a truly non-in-
trusive physiological sensing approach which satisfies the five main
requirements as summarized in Table 1. To this end, this study proposes
a camera-occupant network consisting of multiple low-cost thermal and
RGB-D cameras to achieve good viewing coverage of the environment
and simultaneous interpretations of thermal comfort in operational
multi-occupancy built environments. The main challenges of the pro-
posed approach, such as the network formation, camera registration,
and skin temperature extraction, are detailed in Section 3.

Table 1
Characteristics of the problem statement.

Serial number Characteristics of the problem statement

Continuous collection of human physiological data
Does not require personal devices or human feedback
Flexible postures or body movements

High scalability in multi-occupancy scenarios

Robust against variations in ambient conditions

a b wWwN =
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Table 2

Limitations of existing studies in thermal comfort assessment.
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Sources

Devices

Input variables

Unaddressed characteristics

Feldmeier and Paradiso [23]
Jazizadeh et al. [27]

Kim et al. [17]

Li et al. [9,18]

Ghahramani et al. [24]

Ranjan and Scott [29]
Metzmacher et al. [30]
Liet al. [31]

Kwon et al. [32]

Jung and Jazizadeh [33]
Jung and Jazizadeh [34]

Wearable sensor nodes (wrist, neck)
Phone application

Personal comfort chair
Wrist-worn fitness tracker, phone
application

Infrared thermometers on eyeglass
frame

FLIR A655sc thermal camera

FLIR A35 thermal camera

FLIR Lepton 2.5 (low-cost)

RGB camera

RGB camera

Doppler radar

Local temperature and humidity

Room temperature and humidity

Control behavior, indoor and outdoor environment factors

Skin temperature, heart rate, activity level, clothing level, indoor and
outdoor environmental factors

Skin temperature of the front face, cheek, nose, and ears

Skin temperature of multiple body regions

Skin temperature of multiple facial regions

Skin temperature of forehead, nose, cheeks, mouth, ears, and neck.
RGB videos to infer heart rate

RGB videos to infer blood perfusion

Chest and abdomen movement to infer respiration rate

N o=
ENN I SN
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Wwwww =
N N N N N
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3. Technical approach

The networked camera system leverages a range of cutting-edge
techniques, such as (1) deep neural network to robustly detect multiple
occupants from different angles and distances; (2) computer vision to
register and track occupants in different camera views and stitch indoor
scenes; (3) signal and data processing approaches to remove outliers
and smooth the data; and (4) machine learning to develop personal
comfort models using skin temperature data. Fig. 1 presents an over-
view of the thermal camera network.

The thermal camera network is proposed based on the authors’ prior
work in Li et al. [31] which verified the feasibility of a single low-cost
thermal camera for thermal comfort assessment. However, several
limitations from Li et al. [31] should be acknowledged: First, the single
thermal camera is placed in front of the occupant, which is not suitable
for multi-occupancy spaces due to the camera’s limited field of view.
Second, the thermal camera alone may fail to detect profile faces or
frontal faces at a long distance due to its low image resolution. As a
result, high resolution RGB cameras are incorporated to achieve robust
face detection. Third, the thermal camera is placed at a fixed distance
(1 m) from the occupant. As an influential factor of the thermal cam-
era’s measurement, occupants’ distances to the camera can vary over
time in real operational settings. Thus, the viewing distance should be
accounted for when measuring skin temperature. To address these

limitations, several improvements are made in this current study
(summarized in Table 3). Details in Table 3 are explained in the fol-
lowing subsections which are organized to first introduce the compo-
nent of the camera network - that is, a single camera node; followed by
descriptions of the camera-occupant network including its graph ab-
straction, occupant registration, data communication, data cleaning,
and feature extraction.

3.1. Thermal and RGB-D dual camera system

The camera network shown in Fig. 1 consists of multiple camera
nodes that are placed at different locations in a built environment. Each
camera node is a low-cost dual camera system comprised of a FLIR
Lepton 2.5 thermal camera module and a Microsoft Kinect (an RGB-D
camera). As shown in Fig. 2, the thermal camera is rigidly mounted on
top of the Kinect.

This dual camera system performs a synergistic function where the
Kinect will implement the human detection (by its RGB camera) and
provide distance information (by its depth sensor) to register the dual
camera system and complement temperature measurements taken at
different distances by the thermal camera. Table 4 shows the specifi-
cations of these two cameras. Previous work by the authors conducted a
preliminary study which demonstrated that the low-cost thermal
camera can achieve an acceptable accuracy to interpret thermal

=l

Camera Ngde 2 Camerg Node 3

< ; : ,,a — _-1

Thermal and RGB
image registration

A A -
w\ww\vw\ B
W “'\,,._A- W \

Data cleaning
and processing
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YT P

Personal comfort
prediction

S\

Camera-Occupant Network =
=\ = []
L\TL\:\J— 0 Q A |
1008 | )¢

¥ 4

Camera Node 4 Camera Node 5

Step 1: Simultaneous skin temperature collection

Step 2: Feature extraction, processing, and
thermal comfort prediction “\

184

>
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Fig. 1. Overview of the proposed thermal camera network.
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Table 3
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Comparison of the proposed thermal camera network and the authors’ prior work Li et al. [31].

Descriptions Prior work by the authors [31]

This study

Intended application

Type of camera

Number of cameras

Face detection approach

Camera placement

Occupant posture and body movement
Camera-occupant Distance

Feature selection

Single occupancy
Thermal camera only
Single camera node
Haar cascade algorithm
In front of the occupant

Not considered

Refrain from large movements (avoid being out of the camera view)

Local skin temperature features from each facial region

Multi-occupancy

Fusion of thermal and RGB-D cameras

Multiple camera nodes

Can apply various state-of-the-art algorithms

Flexible camera placement

No constraints

Compensated for distances

Global skin temperature features from the whole facial area

Thermal cam

\\
Fig. 2. The dual camera system (thermal camera coupled with Microsoft
Kinect).

Table 4
Specifications of the thermal camera and Microsoft Kinect.

FLIR Lepton 2.5 Dimensions 8.5 X 11.7 X 5.6 mm
Resolution 80 (h) x 60 (v) pixels
Thermal sensitivity < 50 mK
Accuracy + 5°C or + 5% of reading in the

working range
Field of view 51° (h) and 42° (v)
Price $199

Microsoft Kinect RGB camera 640 (h) x 480 (v) pixels
resolution

Field of view
Effective range of
depth sensor

Depth accuracy

57° (h) and 43° (v)
0.8-5m

+ 4 cm at the maximum working
range (5m)
Price $48

comfort. For details, please refer to Li et al. [31].

3.1.1. Kinect face detection

The human face is selected as the region of interest as it has a higher
density of blood vessels where the variations in skin temperature are
more significant due to vasodilation and vasoconstriction [35]. In ad-
dition, the human face is generally not covered by clothing such that
the emitted infrared energy can be directly received by the thermal
camera. In this study, thermal reflection on the human face is not
considered under the assumption that the diffuse reflection by the skin
surface will not significantly affect the measurement. To detect human
faces in thermal images, prior work by the authors tested the Haar
Cascade algorithm [36], Histogram of Oriented Gradients [37], and
Eigenfaces [38] and found that the Haar Cascade algorithm to be the
only feasible method to detect frontal faces as only certain edges (e.g.,
nose) are preserved in the low-resolution images (80 by 60) [31]. In
terms of profile faces, however, none of these methods can robustly
detect faces due to the blurred edges, which limits the application of
such single thermal camera system in the real built environment as
occupants’ poses and locations can be very flexible over time. To ad-
dress this limitation, in this study the authors adopted a Kinect (RGB-D
camera) to assist the thermal camera in the face detection. Kinect is

suitable for this task as the high-resolution RGB images (640 by 480)
contain more color information than thermal images and thus support
more advanced face detection algorithms. In this study, the authors
adopted the deep neural network (DNN) based face detectors im-
plemented in the OpenCV library (OpenCV 3.3). Based on the authors’
preliminary test, the DNN detector demonstrates a much higher accu-
racy than the Haar cascade algorithm in both frontal and profile face
detections at distances between 0.8 and 5m, distances typically en-
countered in indoor environments. However, other algorithms such as
the Faster R-CNN and DeepFace (e.g., [39]) can also be applied to assist
the thermal camera to locate human faces.

3.1.2. Occupant tracking in a single dual camera node

As more than one occupant can be observed by a single camera node
in a multi-occupancy environment, the authors implemented the cen-
troid tracking algorithm to track occupants across image frames. This
algorithm assumes that centroids of the same object in the two con-
secutive frames will have the closest distance [40]. In the first frame,
the centroid of each face can be detected using the face detection al-
gorithm introduced in Section 3.1.1. In the subsequent frame at time
t + 1, the Euclidean distances between each pair of centroids in the
current frame ¢ + 1 and the previous frame ¢ are calculated and each
occupant in frame ¢ + 1 is assigned to the ID of its closed centroid in the
previous frame ¢ (see Eq. (1)).
Occupant ID = argmin||x;4; — m||

meM; (€)]

where M, is a set of the centroids of all subjects at time ¢; m is the
centroid of one subject in the set M;; X, is the centroid of a subject at
time ¢ + 1 (which needs to be updated), and ||-|| is the L2-norm. This
recursive subject tracking process is illustrated in Fig. 3 with an ex-
ample of two occupants. As shown in Fig. 3a, at time ¢t + 1 the unknown
centroids i and j (denoted in triangles) are updated based on their
closest Euclidean distances to the centroids at time ¢ (denoted in cir-
cles). The unknown centroids at time ¢ + 2 (denoted in squares) are
updated accordingly (Fig. 3b).

3.1.3. Kinect and thermal camera registration

As the Kinect and thermal camera have different fields of view and
resolutions, these two cameras should be registered to find point cor-
respondences such that face coordinates detected in the RGB images
can be mapped to thermal images. In this case, both Kinect and thermal
camera can be modeled as a pinhole camera which projects the 3D
world scene into a 2D image plane through the perspective transfor-
mation shown in Eq. (2) [41,42].

u f 0 e oy M3h
= P T
s|v 0 f, ¢ff™ ™2 13 &

00 1 31 I3

N

I3 B

(2
Alternatively, in a more concise form,
sm = K[R|IT|M

where M is a 4 X 1 vector representing the homogeneous coordinate of
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(a) 0 Centroid x at frame t

Unknown centroid i
atframet + 1

dis 2

dj

Currenttime:t + 1
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Centroid x at frame
(b) r+1

Unknown centroid at
"= framet + 2

Current time: t + 2

Fig. 3. Centroid tracking algorithm: (a) update at time ¢ + 1; (b) update at time ¢ + 2.

a 3D point in the world coordinate space; m is a 3 X 1 vector re-
presenting the homogeneous coordinate of a 2D point in the image
coordinate; K is the 3 X 3 intrinsic matrix of the camera consisting of
the focal lengths (f,, fy)and principal points (C,, C,); [R|T] is the 3 X 4
extrinsic matrix consisting of a rotation Rand a translation T; and s is a
scaling factor.

In the dual camera system, the registration process is to estimate the
intrinsic matrix of the thermal camera Ky, the intrinsic matrix of the
RGB camera Kggg, and the homogeneous transformation matrix [R|T]
between the thermal and RGB cameras (see Fig. 4). Once these three
unknown matrices are estimated, the point correspondences in two
cameras (e.g., (4,, vy)and (u,, v;)) can be determined according to the
pinhole camera model in Eq. (2). In practice, such a dual camera system
can be calibrated using the stereo vision calibration process. As shown
in Fig. 4, the calibration requires both cameras to observe a planner and
predefined pattern, such as a checkerboard or a square grid, from at
least two different orientations to determine the unknowns using the
maximum likelihood estimation [43].

However, thermal cameras typically cannot detect the regular
black-and-white calibration patterns printed on the paper as the in-
frared energy emitted is uniform across the patterns. Therefore, the
authors made a special 6 X 7 checkerboard pattern from the aluminum
foil (in silver) and the vinyl polymer (in black) (Fig. 5a). Each black or
silver square has a dimension of 62.5 mm. Due to the color differences,
the checkerboard pattern can be detected by the RGB camera to extract
corner points (Fig. 5a and c). On the other hand, as the aluminum foil
has a higher emissivity, it emits more infrared energy and thus looks

World
coordinate P

Projected Point
P in Camera 1

(uy,v4)

Projected Point
P in Camera 2

[R|T]
\ (uz,v7)

Camera 2
(Kinect Kpgp)

Camera 1
(thermal camera K;)

Fig. 4. Stereo vision calibration for Kinect and thermal camera registration.

brighter in thermal images. As shown in Fig. 5b and d, the checkerboard
corner points can be easily observed by a thermal camera, especially
when the pattern is heated up by a hair dryer.

The authors captured twenty pairs of RGB and thermal images from
different orientations relative to the dual camera system and im-
plemented the calibration using the Matlab Stereo Camera Calibrator
[44]. Although the thermal camera has a low resolution, results showed
that the re-projected points are close to the detected points (Fig. 6a),
and the mean re-projection error is 1.02 pixels (Fig. 6b), which is ac-
ceptable for this application. It is also worth noting that the three un-
known matrices only depend on the intrinsic properties of two cameras
and their relative pose (how thermal camera is mounted), which are not
affected by the distance between the camera and the checkerboard
pattern. As a result, the registration process only needs to be done once
when configuring the dual camera system.

Fig. 7 shows this result of dual camera registration where the face in
the thermal image (labeled in the bounding box, see Fig. 7c) is located
based on the face coordinates detected in the RGB image (Fig. 7b) and
its corresponding depth data from the Kinect (Fig. 7a).

3.1.4. Distance calibration of the thermal camera

The infrared energy reaching the thermal camera is affected by the
distance between the camera and the object surface [45]. Thus, the
real-time distance of the camera and each occupant should be measured
to fuse the skin temperature data collected from multiple camera nodes.
To calibrate distances, the authors conducted a pilot experiment using
the low-cost thermal camera to collect mean temperature of the frontal
face at different distances from 0.8 m to 2m with a step size of 0.05m
(room temperature: 26.0 °C, relative humidity: 28.5%). The facial mean
temperature was calculated by averaging the measurements of all pixels
that exceed a predefined threshold (e.g., measurements below 27 °C
were excluded) within the bounding box. The distance was calculated
from the point cloud produced by the Kinect. The depth measurement
of the Kinect has an accuracy of = 4 cm within its working range of 5m
which is considered sufficient for this study [46]. At each distance,
three thermal images of a subject’s frontal face were collected and
averaged to represent the measurement at that distance. The whole
experiment is conducted within one minute thus the facial skin tem-
perature can be assumed constant during this short period. This cali-
bration experiment was repeated on five different subjects to quantify
the impact of distances on temperature measurements and the averaged
slope was retained. It is worth noting that the viewing angle is fixed
during the calibration (i.e., perpendicular to the face). However, ad-
justing the angles also affects the facial regions observed by the camera,
which will lead to different temperature measurements. For example,
an image capturing the frontal face can have a higher measurement
than that of a profile face as the forehead region (which has a high
temperature) is well captured in the former image.

As shown in Fig. 8a, a linear relationship can be observed from the
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Fig. 5. (a) Special checkerboard for the dual camera registration; (b) Thermal image of the checkerboard (bright squares are regions with higher infrared energy); (c)

Corner detection using the Kinect; (d) Corner detection using the thermal camera.

samples (y = —0.50x + 35.02, adjusted R-square = 0.96, RMSE: 0.04),
which implies that skin temperature measurements will drop by 0.5 °C
for every one-meter increase in distance for the low-cost thermal
camera. Fig. 8b shows the residual plots of the linear fit. It can be seen
that the residuals are symmetrically distributed around zero and no
clear patterns are observed, which also indicates a good fit of the linear
model.

3.2. The camera-occupant network

The camera-occupant network is proposed to non-intrusively and
simultaneously interpret occupants’ thermal comfort in real multi-oc-
cupancy spaces. Specifically, this network aims to achieve compre-
hensive coverage of the environment such that all the occupants can not
only be seen by cameras but also have flexible postures and movements
during the data collection. It should also be noted that cameras in the
network are not placed in front of faces like Li et al. [31] and the images
are discarded immediately after retrieving skin temperature data to
address the privacy concerns that may arise from any camera systems.
This sub-section is organized to first introduce the configuration of the
camera network, including its graph abstraction, occupant registration
of different camera views, and the data communication between
camera nodes.

3.2.1. Graph abstraction of the network

The camera-occupant network is an observation system which
contains multiple camera nodes to observe one or more occupants from
arbitrary angles and distances. This network can be represented in a
graph abstraction adapted from Feng et al. [47] consisting of nodes and
edges. Fig. 9 is an example network which contains three subjects and

Detected points
+ Reprojected points
Checkerboard origin

Mean Error in Pixels

0.5

two camera nodes. In this graph abstraction, there exist three types of
nodes including a camera node (denoted as two triangles bounded by a
rectangle which represent the dual camera system discussed in Section
3.1), an occupant node (denoted as a square), and a world coordinate
node which represents the origin in the 3D world (denoted as a circle).
In addition, there are two types of edges connecting each pair of nodes
including observations (denoted as solid lines) and constraints (denoted
as dashed lines). The observation represents the pose between a camera
node and an occupant node which can vary over time as occupants
change their posture or move around. The observation edges can be
estimated using the pinhole camera model introduced in Section 3.1.3.
As shown in Fig. 9, occupant nodes 1 and 2 are both observed by
camera nodes 1 and 2, while occupant node 3 is only observed by
camera node 2.

On the other hand, the constraint edges represent a known geo-
metric relationship within a dual camera system (i.e., the relative pose
between the thermal camera and the Kinect) or between dual camera
systems (i.e., the relative pose between two dual camera systems
mounted in an environment). The constraints can be determined when
the camera network is configured up front through the calibration
process introduced in Section 3.1.3 and will not be affected by the
number, poses, and locations of occupants in the environment. In ad-
dition, the origin in the 3D world can be assigned to the location of a
camera node and thus their relationship is also represented as a con-
straint.

To scale up the camera-occupant network in a large multi-occu-
pancy space, more camera nodes can be added to the network. The
camera network will be configured such that any occupant node is
connected to at least one camera node. Therefore, the skin temperature
of each occupant is guaranteed to be collected. To achieve this, the

Mean Reprojection Error per Image

I Camera 1

[C—Jcamera2

Overall Mean Error: 1.02 pixel

A

1 2 3 4 5 6 7 8 9
Image Pairs

Fig. 6. Dual camera registration results: (a) detected corner points and the re-projected points after registration; (b) mean re-projection error in pixels.
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Fig. 7. Dual camera face detection: (a) depth data from the Kinect; (b) RGB images from the Kinect (for face detection); (c) thermal images from the thermal camera

(bounding box is mapped from the RGB image).

camera network can be recursively configured to maximize the ag-
gregate observability of facial regions of occupants, which is an opti-
mization problem that is subject to a series of constraints such as the
number of camera nodes, and distances between cameras and occu-
pants. However, this is beyond the scope of this study.

3.2.2. Occupant registration among different camera nodes in the network

In Section 3.1.2, the authors introduced the centroid tracking al-
gorithm (which was implemented in a single camera node) to track
multiple occupants across video frames. However, in a camera-occu-
pant network, thermal profiles collected by multiple camera nodes from
different viewpoints should be associated with the same occupants in
the 3D world coordinate system. This process is called occupant regis-
tration. For example, as shown in Fig. 9, camera node 1 observes only
two of three occupants (occupant 3 is outside of the view), while
camera node 2 observes all three of these three occupants. In this case,
the network should correctly associate the two thermal profiles in
camera node 1 with the two corresponding occupants in camera node 2.
Typically, the registration can be achieved by calculating the de-
scriptors of feature points of occupants in different viewpoints and then

mapping these feature points according to their similarities [48].
However, this feature-based method is not suitable for the camera-oc-
cupant network as (1) feature points detected from two viewpoints in
the network can be very different, e.g., one camera node observes the
fontal face while another observes a profile face; and (2) calculating the
feature descriptors can be computationally expensive, which is not
optimal for real-time registration.

Therefore, the authors implemented the location-based occupant
registration using the stereo vision and the pinhole camera model in-
troduced in Section 3.1.3. In this case, instead of registering a thermal
camera with an RGB camera (see Fig. 4), each pair of RGB cameras are
registered through the same stereo vision calibration process to get the
transformation matrix [R|T] using a paper printed checkerboard pat-
tern. Then, the 3D world coordinate [X Y Z 1]7 of each occupant with
respect to the world origin can be calculated from Eq. (2). Finally, the
occupant ID in the camera nodei can be mapped to that from a different
viewpoint j based on the closest distance using Eq. (3), which is a
modified version of Eq. (1).

Occupant ID = argmin||x; — m||

34.7 T T T

34.6 -

345

344 |

Temperature (°C)

« Temperature vs. distance

—— Linear fit

y =-0.50 x + 35.02
Adjusted R-square = 0.96 -
RMSE: 0.04

0.8 1.0 1.2

Distance (m)

14 1.6 18 2.0

0.06 [ T ! T

0.04 -

o
o
T
.

T T T T

| — Linear fit - residuals |

Temperature (°C)
1<) ¢
S o N

-0.04
-0.06

(b)

1 1 1

[TTTTTT]

1 1 1

0.8 1.0 1.2

1
14 1.6 18 2.0

Distance (m)

Fig. 8. A linear fit of distance and temperature measurements: (a) linear regression line; (b) linear fit residuals.
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Fig. 9. Camera-occupant network.

where M, is a set of world coordinates of all subjects in the camera node
j; m is the world coordinate of a subject in the set M;; x; is the world
coordinate of a subject in the camera node i (which needs to be regis-
tered); ||-|| is the L2-norm. Thus, the camera network can recursively
register all occupants observed by different camera nodes.

3.2.3. Data communication among camera nodes

In the camera network, camera nodes need to exchange occupants’
world coordinates and register the same occupant from different
viewpoints. For the scalability purpose, the program was coded for each
single camera node such that the network can be quickly configured
when adding or removing camera nodes. In this study, the data com-
munication was implemented using the User Datagram Protocol (UDP).
UDP has advantages of low latency and loss-tolerating, which are sui-
table for real-time video streaming.

3.3. Data cleaning and feature extraction

The facial skin temperature collected directly from each bounding
box in thermal images are the raw data which can contain several types
of random noises such as the false detection of background as faces,
inaccurate face coordinates mapping due to occlusions, and inter-
ference of a high temperature object in the environment (e.g., hot water
cup). These noises are typically shown as out-of-range isolated noises in
the measurements. As a result, the authors applied the median filter
shown in Eq. (4) to remove such noises before data analysis.

ylk] = median{x[i], i€ w} 4)

where y[k] is the kth value after filtering; w is a neighborhood defined
by the user; x[i]is the raw data in the neighborhood w.

Then, the moving average filter as shown in Eq. (5) was applied to
further filter out noises from fluctuations.

1 i=n .
v = o X, vkl ®

where y[k] is the kth value after filtering; 2n + 1 is the window size of
the moving average; y [k + i] is the raw data in the sliding window.

As images of frontal faces are not guaranteed in the camera net-
work, unlike Li et al. [31] which segmented the frontal face into six
local facial regions (e.g., forehead, nose) and extracted skin tempera-
ture from each local region as the features of personal comfort models,
this study extracted the skin temperature from the whole facial region
which consists of both frontal and profile faces. The features collected
from the detected facial region are summarized as follows:

o The mean, first quartile, third quartile, and maximum of all pixels in
the detected facial region. These features describe the distribution of

skin temperature over a facial region.
e The skin temperature variance of all pixels in the detected facial
region. As suggested in Li et al. [31], the nose, ears, and cheeks
regions have larger skin temperature variations than other regions
when the ambient air temperature changes. Therefore, large skin
temperature variations over the whole facial region can imply that
an individual is experiencing cold stress (as some local regions be-
come significantly colder than others).
The skin temperature gradients of every minute. As suggested in Li
et al. [31], the gradients can imply the heat or cold stress in the
environment which is useful to predict an occupant’s thermal
comfort state.

4. Experimental setup and protocol

The proposed camera network was experimentally tested in a
transient heating environment to verify its applicability in real opera-
tional built environments. The experiment included a 20-minute pre-
paration phase and a 50-minute data collection phase to collect sub-
jects’ facial skin temperature. The experiment was conducted in a
research office at the University of Michigan (UM) during the heating
season in 2018. The experiment office has equipped a thermostat which
can control the indoor temperature from low (23 °C) to high (27 °C)
through two HVAC diffusers. As shown in Fig. 10, two dual camera
nodes were placed approximately 1.3 m away from a table where sub-
jects sat at during the experiment to represent a simplified camera
network. Two temperature and humidity sensors (humidity accu-
racy: + 5%, temperature accuracy: + 1 °C) continuously monitored the
ambient environmental conditions. The two sensors were placed at the
waist level (0.65m above the floor) which was close to the specified

Camera node 2

/ X[O HVAC

diffuser

Camera node 1

&

. 13m 13m .~

T/H sensor T/H sensor HVAC

diffuser

Subject 1 Subject 2

Fig. 10. The experimental setup.
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Fig. 11. Room condition in a transient heating experiment.

height of 0.6 m for seated occupants in ASHRAE standards 55. To re-
present a multi-occupancy scenario, 2 subjects were required to parti-
cipate in the experiment each time. In total, 16 subjects (10 males and 6
females for a total of 8 experiments) were recruited. All subjects were
UM students and were healthy at the time of the experiment. The ex-
periment has been approved by the UM Institutional Review Board for
conducting human subjects research.

Before the experiment started, the room temperature was set at
23°C to represent a cool environment. During the 20-minute prepara-
tion phase, subjects were asked to remain seated in the testbed to reach
a steady-state skin temperature. Then, during the following 50-minute
data collection phase, the thermostat was set at 27 °C to create a tran-
sient heating environment (see Fig. 11). During this period, subjects
were asked to perform daily office activities such as reading, typing,
browsing, or chatting with each other while their facial skin tempera-
ture was extracted by the camera network. To collect the ground truth
thermal comfort, subjects were required to report their thermal sensa-
tions in a five-point scale (from “cold” to “hot”) and preferences in a
three-point scale (from “prefer warmer” to “prefer cooler”) through a
phone application and also wear a wristband sensor (Microsoft Band 2)
to record the wrist skin temperature (only for the purpose of compar-
ison). For more details about the phone application and the wristband,
please refer to Li et al. [9]. After the experiment, subjects participated
in a survey to evaluate their experience regarding the user acceptance,
privacy concern, and level of intrusiveness of the camera network.

It is worth noting that unlike existing experimental studies which
typically require subjects to stay in the same posture and refrain from
body movements during data collection (e.g., [30,33]), subjects in this
study were allowed to move their body (e.g., stretching), change their
postures and facing directions, or even move around in the room to
represent scenarios in real office settings and also make them feel as
comfortable as possible (to achieve the least intrusiveness caused by the
system). The authors believe such an experimental study verifies the
applicability of the proposed system.

Fig. 12 shows the image frames collected in the experiment. The two
rows of images are the views of camera nodes 1 and 2, respectively. The
three columns are the depth images, RGB images, and thermal images
collected from the dual camera nodes. It can be seen that for the right
subject (denoted in a green bounding box), camera node 1 detects the
profile face at a distance of 1.11 m while camera node 2 detects the
frontal face at a distance of 1.30 m. This demonstrates the idea of a
camera network which observes each subject from different angles and
distances to overcome the limitations of a single camera. Skin tem-
perature features (discussed in Section 3.3) are automatically and
continuously extracted from the identified facial region and compen-
sated by viewing distances (discussed in Section 3.1.4) for data analysis.
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5. Results and discussion

In this section, we presented the statistics of facial skin temperature
features (discussed in Section 3.3) and their correlations during the
thermoregulation process. Correlations between the facial mean skin
temperature and wrist skin temperature were also evaluated to validate
the proposed networked camera system. Then, we mapped facial mean
skin temperature to each subject’s feedback and explored if an in-
dividual’s thermal comfort state can be reflected by the facial skin
temperature. Finally, a post-experiment survey was conducted to
evaluate subjects’ experience with the proposed approach.

5.1. Summary of facial skin temperature features and gender differences

Tables 5 and 6 present a summary of skin temperature features
collected by camera node 1 and 2, correspondingly. The mean () and
standard deviation (5) of each feature are calculated using Eq. (6) and
(7) as shown below.

1 n [ 1 n
f=— zk:l K SD(@) = V‘m Zk:l (=)

n 6)
1 | 1 n >
5= " Zk:l S SD(S) = \/m Zk=1 (5 = S_) %)

where @ and SD (i) are the mean and standard deviation of skin tem-
perature features; § and SD(35)are the mean and standard deviation of
the sample standard deviation; n is the number of subjects which is 16
in this study.

Statistics in Tables 5 and 6 are divided into three categories: all
subjects, all males, and all females, respectively. For each category, two
statistics # = SD(z) and § * SD(3) are calculated for each feature:
@ * SD(u) indicates the mean value of each feature and its variations
across different subjects, and § + SD(S) reflects how much each fea-
ture changes in the experiment and its variations across subjects. As
shown in Tables 5 and 6, the first quartile temperature of the facial
region has a higher variation (node 1: 0.72 %= 0.16°C, node 2:
0.63 = 0.20°C) than all other features while the maximum tempera-
ture feature has a smaller variation (node 1: 0.43 = 0.10 °C, node 2:
0.41 + 0.10°C). This result suggests that as room temperature gradu-
ally increases in the experiment, a subject’s facial skin temperature
increases correspondingly due to the thermoregulation, however, gaps
between the baseline temperature and high temperature regions tend to
become narrower over time. This finding is also partially reflected by
the facial temperature variances (node 1: 0.40 = 0.16°C, node 2:
0.59 + 0.26°C) as 9 out of 16 subjects observe a slight decrease in the
variances over time, which is supported by Li et al. [31] where low skin
temperature regions such as nose and checks change more significantly
than high temperature regions like forehead under heat stress. For the
rest of subjects who hold steady or increasing variances, this may be
caused by the frequent changes of their facing directions and body
movements such that a camera node does not observe the same facial
region over time.

As shown in Tables 5 and 6, females generally have a slightly higher
skin temperature and larger variations than males. To evaluate if there
exist significant gender differences in each feature, the t-test is con-
ducted (two-sided 95% confidence interval). The result suggests that
except one group (denoted in the light grey shading in Table 6), males
and females do not show significant differences in the selected skin
temperature features.

By comparing Tables 5 and 6, it can be found that the facial skin
temperature () and variation (5) of each feature collected by the
camera node 1 are slightly higher than those by the camera node 2. This
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Fig. 12. Image frames collected in the experiment (row 1: views from camera node 1; row 2: views from camera node 2).

Table 5
Statistics of skin temperature features collected by camera node 1.
Features All subjects Males Females
i = SD() 5 = SDGS) i = D) § = SDGS) a = SD(R) § = SDGS)
Mean 32.76 + 0.38 0.55 = 0.12 32.64 + 0.38 0.51 = 0.12 32.98 + 0.31 0.60 = 0.12
1st quartile 32.12 + 0.46 0.72 = 0.16 31.99 + 0.45 0.66 = 0.16 32.35 = 0.42 0.82 = 0.10
3rd quartile 33.86 = 0.40 0.55 = 0.15 33.75 £ 0.43 0.53 = 0.15 34.04 £ 0.29 0.58 *= 0.15
Max 35.02 + 0.31 0.43 = 0.10 34.93 + 0.31 0.43 = 0.11 35.18 + 0.27 0.44 = 0.11
Variance 2.53 = 0.32 0.40 = 0.16 2.54 = 0.38 0.39 = 0.16 2.51 = 0.23 0.41 = 0.19
Note: All numbers are in °C.
Table 6
Statistics of skin temperature features collected by camera node 2.
All subjects Males Females
Features
i+ SD(in) 5+£5D(5) g+SD(@) | 5+SD(S) | p+=SD(p) | 5+SD(5)
Mean 32.16+£0.22 | 047+0.16 | 32.08+0.21 | 0.45+0.15 | 32.29+0.16 | 0.49+0.18
Ist quartile | 31.44+0.32 | 0.63+0.20 | 31.32+0.29 | 0.60+0.19 | 31.65+0.27 | 0.68 +0.22
3rd quartile | 33.17+0.31 | 0.48+0.13 | 33.12+0.35 | 047+0.13 | 33.26+0.22 | 0.50 +£0.15
Max 3432+027 | 041+0.10 | 3429+0.33 | 0.40+0.09 | 3437+0.14 | 0.42+0.13
Variance 2.24+0.79 | 0.59+0.26 226+0.82 | 0.58+0.29 | 2.20+0.81 | 0.62+0.22

Note: All numbers are in °C. Grey shading indicates the means of two groups are statistically different.

difference can be caused by the fact that one camera node captures
more warmer regions than the other in the experiment (i.e., node 1
observes more frames of the frontal face which contains the forehead
region that is typically warmer than cheeks). However, the trends of
skin temperature features resulted from the two camera nodes are both
increasing over time, which can be used to interpret an individual’s
comfort state. This will be further discussed in Sections 5.2 and 5.3.

5.2. Correlation analysis between different skin temperature features

Correlation analysis is conducted to further investigate the re-
lationships between different features. As shown in Tables 7 and 8, the
Pearson correlation coefficients of all features except for variances
suggest a strong positive correlation between each feature pair (ranged
from 0.63 to 0.94). The weak correlations between variances and other
features indicate that variances are relatively steady in the experiment
compared to others. To reduce the dimensionality of features, we adopt
the facial mean skin temperature of the whole facial region detected in

11

Table 7
Correlations between skin temperature features collected by camera node 1.
Mean 1st quartile 3rd quartile Max Var
Mean 1.00 0.92 0.91 0.88 —0.00
1st quartile 0.92 1.00 0.78 0.75 —-0.16
3rd quartile 0.91 0.78 1.00 0.94 0.15
Max 0.88 0.75 0.94 1.00 0.19
Var —-0.00 -0.16 0.15 0.19 1.00
Table 8

Correlations between skin temperature features collected by camera node 2.

Mean 1st quartile 3rd quartile Max Var
Mean 1.00 0.88 0.83 0.82 -0.11
1st quartile 0.88 1.00 0.63 0.63 -0.35
3rd quartile 0.83 0.63 1.00 0.94 0.13
Max 0.82 0.63 0.94 1.00 0.20
Var -0.11 —-0.35 0.13 0.20 1.00
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Table 9

Pearson correlation coefficients between the facial mean skin temperature and

wrist skin temperature of each subject.

Subject ID 1 2 3 4 5 6 7 8
Node 1 0.78 0.74 0.84 0.71 0.77 0.80 0.62 0.62
Node 2 0.77 0.77 0.73 0.71 0.75 0.79 0.60 0.64
Subject ID 9 10 11 12 13 14 15 16
Node 1 0.47 0.82 0.70 0.64 0.84 0.92 0.77 0.77
Node 2 0.50 0.52 0.49 0.45 0.65 0.64 0.59 —0.21

the cameras as the main feature for further analysis because it is re-
presentative of other features (due to the high correlations) and also

more precise than others due to averaging.
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5.3. Correlation analysis between the facial mean skin temperature and
wrist skin temperature

Skin temperature from a wristband sensor is used to validate the
proposed camera network. The wristband sensor has a resolution of 1 °C
and takes a measurement every 30 s. Due to the differences between the
wrist and facial skin temperature and the systematic error of different
instruments, measurements from these two sources are not directly
compared. Instead, we analyze their correlations as room temperature
increases. As shown in Table 9, all coefficients, except one (subject 16,
node 2), suggest moderate to strong positive correlations between the
facial mean skin temperature and wrist temperature (ranged from 0.45
to 0.92), which indicates the non-intrusive camera network is able to
capture the same thermoregulatory responses as the wearables. Also,
for the same subject, it can be seen that the coefficient resulted from
one camera can be much higher than that of the other (e.g., subject 10).
This finding suggests that despite an occupant can be observed by
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Fig. 13. Polynomial fit of the facial mean skin temperature of each subject.
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Table 10
t-tests between the starting and ending facial mean temperature in the experiment.
Subject Camera node Tytart CC) Tona (°C) p-value TCSstart TCSena
Exp. 1 Id1 1 31.6 33.4 < 0.001 Cold Warm
2 31.2 32.9 < 0.001 (warmer) (no change)
1d2 1 31.5 33.6 < 0.001 Cold Hot
2 314 32.8 < 0.001 (warmer) (cooler)
Exp. 2 1d3 1 31.8 33.6 < 0.001 Cold Warm
2 31.6 32.6 < 0.001 (warmer) (no change)
Id4 1 31.4 335 < 0.001 Cold Neutral
2 31.7 32.6 < 0.001 (warmer) (no change)
Exp. 3 1d5 1 321 33.4 < 0.001 Cool Warm
2 31.5 33.5 < 0.001 (warmer) (cooler)
1d6 1 321 33.2 < 0.001 Cool Neutral
2 31.3 32.9 < 0.001 (warmer) (no change)
Exp. 4 1d7 1 31.3 325 < 0.001 Cool Warm
2 31.3 32.3 < 0.001 (no change) (cooler)
1d8 1 31.4 32,5 < 0.001 Cold Neutral
31.1 32.0 < 0.001 (warmer) (no change)
Exp. 5 1d9 1 321 33.0 < 0.001 Cool Neutral
32.0 32.4 < 0.001 (warmer) (no change)
1d10 1 321 33.1 < 0.001 Neutral Warm
31.9 32.2 < 0.001 (no change) (no change)
Exp. 6 1d11 1 31.4 32.8 < 0.001 Cool Neutral
32.0 32.6 < 0.001 (warmer) (no change)
1d12 1 31.6 32.7 < 0.001 Neutral Warm
32.0 32.6 < 0.001 (no change) (no change)
Exp. 7 1d13 1 31.7 33.6 < 0.001 Cold Warm
31.7 33.0 < 0.001 (warmer) (no change)
1d14 1 31.9 33.7 < 0.001 Neutral Neutral
31.7 32.8 < 0.001 (no change) (cooler)
Exp. 8 1d15 1 31.7 33.8 < 0.001 Cool Warm
32.2 32.6 < 0.001 (no change) (cooler)
1d16 1 321 33.9 < 0.001 Neutral Hot
32.1 31.9 < 0.001 (no change) (cooler)

Note: Subjects’ thermal preferences are shown in the parentheses in the TCS columns.

multiple camera nodes, data from different cameras may not be equally
important in assessing changes in their skin temperature. Therefore,
future studies by the authors will assign different weights to cameras in
the comfort assessment according to their viewing distances and angles.

5.4. Mapping facial mean skin temperature to thermal comfort state

To visualize the changes of skin temperature in the transient heating
experiment, each subject’s facial mean skin temperature is fitted using
the polynomial regression. Specifically, the lower degree of poly-
nomials is selected if the coefficient of determination R* does not in-
crease significantly with a higher degree of polynomials (we used 5% as
a threshold). As shown in Fig. 13, each subplot shows the result of an
experiment measured by a camera node. In each subplot, the two dotted
lines denote the processed skin temperature data of two subjects (dis-
cussed in Section 3.3), which are then fitted by polynomials of degree
ranged from 1 to 3. All fitted curves (denoted in solid lines of the
corresponding colors) in Fig. 13, except subject 16, demonstrate an
increasing trend of skin temperature over time, which implies the in-
creases in skin blood flow under heat stress.
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To map the thermoregulatory process to thermal comfort state, fa-
cial mean skin temperature of the first five minutes (denoted as Ty,,,)
and the last five minutes (denoted as T,,4) in the heating experiment
(from 23 °C to 27 °C) are calculated to represent a subject’s starting and
ending physiological states, respectively. As shown in Table 10, two-
tailed t-test shows that all 16 subjects have a statistically higher facial
skin temperature (p < .001) as the room temperature increases in the
experiment. In addition, all subjects reported distinct thermal comfort
states (i.e., thermal sensation and preference) at these two stages,
which are denoted as TCSy,,; and TCS,,q in Table 10. As an example,
Fig. 14 presents a subject’s thermal sensation votes and his/her corre-
sponding facial mean skin temperature. Results of the analysis of var-
iance (ANOVA) show that the means of different votes are significantly
different, which suggests that facial skin temperature collected by the
proposed camera network can serve as an indicator of subjects’ thermal
comfort state.

5.5. Post-experiment evaluations of user experience

A survey is distributed to all subjects to understand their experience
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Fig. 14. Thermal sensation vote and the corresponding facial mean skin temperature of a subject.
Please rate the degree to which you agree or disagree with each of the following
statements related to the camera network (5 - Strongly agree, 4 - Agree, 3 -
Neutral, 2 - Disagree, 1 - Strongly disagree):
User Acceptance — [ would recommend such camera network systems to be applied
in multi-occupancy spaces to assess occupants’ thermal comfort (e.g., classroom, rest
lounge).
Privacy Concern — I do NOT have any privacy concern about such camera network
systems if they are applied in the built environment.
Level of Intrusiveness Q1 — Based on my experience in the experiment, I think the
camera network is not intrusive at all.
Level of Intrusiveness Q2 — Compared to wristband sensors, I prefer using the
camera network to collect my skin temperature data as it is less interruptive and does
not cause any pain or strain that may arise from wearables.
Fig. 15. Post-experiment survey questions.
Table 11
Subjects’ post-experiment evaluation.
Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean
User Acceptance 4 4 4 5 4 5 5 4 4 3 4 5 5 4 4 5 4.31
Privacy Concern 4 4 4 3 4 3 5 4 4 4 4 4 4 4 4 4 3.94
Intrusiveness Q1 4 4 4 3 5 5 5 4 5 4 5 5 5 5 4 5 4.50
Intrusiveness Q2 5 5 5 4 5 5 5 4 5 5 5 5 5 5 4 5 4.81

with the camera network regarding the user acceptance, privacy con-
cerns, and level of intrusiveness caused by the system (see Fig. 15). The
feedback suggests that the proposed approach has a high user accep-
tance regarding its application in the built environment (mean: 4.31,
see Table 11), relatively low privacy concern caused by the use of
cameras (mean: 3.94), and strong agreement in the non-intrusiveness of
the approach (Q1 mean: 4.50, Q2 mean: 4.81).

5.6. Limitations and future work

Four limitations of this study should be acknowledged. First, the
skin temperature collected from frontal and profile faces is not differ-
entiated in the current approach, which can be a reason for the fluc-
tuations in the measurements. As a result, future studies by the authors
will keep the frontal and profile faces (or possibly different facing
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directions) as separate datasets to evaluate subjects’ thermal comfort
state. In addition, previous studies by the authors suggested that regions
such as cheeks and noses are more indicative of an individual’s ther-
moregulatory process. Thus, if these regions are detected, a larger
weight can be assigned to this frame in the comfort assessment.

Second, the proposed camera network is tested in a simplified multi-
occupancy environment with two subjects. Several challenges may arise
from a larger space with more subjects, such as occlusions, increased
viewing distance, and occupant registration. Thus, the scalability po-
tential of the proposed method requires further investigation.

Third, this study aims to address the fundamental questions related
to the proposed non-intrusive camera network, such as its components,
camera registration, and feature extraction, as well as demonstrate the
correlations between facial skin temperature and subjects’ thermal
comfort feedback. Thus, future work can focus on developing personal
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comfort models using machine learning methods and the weighted skin
temperature data from different camera nodes to continuously predict
each subject’s thermal comfort state.

Fourth, despite the low-cost thermal camera can achieve an accep-
table accuracy as suggested by Li et al. [31], proper calibration of the
thermal camera with a contact thermometer may improve the pre-
dictive power of personal comfort models.

6. Conclusions

This study introduced the main characteristics of the non-intrusive
detection of thermal comfort and proposed a low-cost networked
camera system to non-intrusively measure occupants’ facial skin tem-
perature for real-time thermal comfort assessment in multi-occupancy
environments. Each camera node in the network fuses the RGB-D and
thermal images collected from a Kinect and a low-cost thermal camera.
The experimental results from 16 subjects suggest that the variations in
low temperature facial regions are more significant than high tem-
perature regions under heat stress, as well as moderate to strong posi-
tive correlations between the skin temperature collected by the camera
network and wearables (ranged from 0.45 to 0.92). Moreover, subjects’
facial skin temperature has observed statistically significant increases
when the room temperature changes from 23 °C to 27 °C. Results of
ANOVA support our assumption that facial skin temperature can serve
as an indicator of one’s thermal comfort state. Finally, subjects have
expressed positive evaluation regarding the usefulness, privacy issues,
and the non-intrusiveness of the proposed approach.

This pilot study has the potential to transition the current human
physiological sensing from an intrusive and wearable device-based
approach to a truly non-intrusive and scalable approach such that skin
temperature can be automatically measured without any constraints on
occupants’ activities or participation. The proposed camera network
can be incorporated into the building HVAC systems for energy control
and thermal comfort management. For example, a real-time inter-
pretation of thermal comfort allows the HVAC systems to dynamically
adjust its setpoint and air flow and also select the optimum settings to
maximize the overall comfort. If the indoor environment is equipped
with personal heating/cooling devices or HVAC zoning systems, per-
sonalized conditioning can be delivered to the corresponding location if
conflicts of thermal preference exist in the shared space. The proposed
approach is particularly promising in multi-occupancy environments,
such as offices, conference rooms, rest lounges as personal and wear-
able devices may not be available for everyone. Knowledge gained from
this study can also be applied to other critical built environments, in-
cluding the transportation systems, health facilities, and extreme
working environments where occupants’ thermal comfort and sa-
tisfaction are much needed. Future work by the authors will deploy a
functional prototype in a testbed and connect it with a smart thermostat
to investigate if comfort can be improved while enhancing the build-
ing’s energy performance.
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