A quantitative model of the language familiarity effect in infancy
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Abstract

Human listeners are better at telling apart speakers of
their native language than speakers of other languages,
a phenomenon known as the language familiarity effect.
The recent observation of such an effect in infants as
young as 4.5 months of age (Fecher & Johnson, in press)
has led to new difficulties for theories of the effect. On
the one hand, retaining classical accounts—which rely on
sophisticated knowledge of the native language (Goggin,
Thompson, Strube, & Simental, 1991)-requires an expla-
nation of how infants could acquire this knowledge so
early. On the other hand, letting go of these accounts
requires an explanation of how the effect could arise in
the absence of such knowledge. In this paper, we build
on algorithms from unsupervised machine learning and
zero-resource speech technology to propose, for the first
time, a feasible acquisition mechanism for the language
familiarity effect in infants. Our results show how, with-
out relying on sophisticated linguistic knowledge, infants
could develop a language familiarity effect through statis-
tical modeling at multiple time-scales of the acoustics of
the speech signal to which they are exposed.
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Introduction

Listeners are highly skilled at identifying who is talking on the
sole basis of their voice, and are better at doing so in their na-
tive language than in an unfamiliar language, a phenomenon
known as the language familiarity effect (Goggin et al., 1991).
This effect was initially thought to require language understand-
ing, a view that has been supported by a number of empirical
results. In particular, whereas moderate proficiency in a lan-
guage is sufficient to support the effect (Késter & Schiller,
1997), simple passive exposure to speech recordings in that
language (Perrachione & Wong, 2007) or native proficiency
with a typologically related language (Kdster & Schiller, 1997)
do not seem to help. The effect has also been shown not to be
driven by language-specific prosodic cues (Schiller, Koster, &
Duckworth, 1997). More recently, it has been proposed that
abstract phonological knowledge of the native language might
suffice to explain these observations, without requiring lan-
guage understanding (Johnson, Bruggeman, & Cutler, 2018).
Under both accounts, however, the effect relies on sophisti-
cated linguistic knowledge of the target language.

It has thus been surprising to find a similar language familiar-
ity effect in 7.5-month-old infants (Johnson, Westrek, Nazzi, &
Cutler, 2011; Fecher & Johnson, 2018) and even 4.5-month-old

infants (Fecher & Johnson, in press), whose language com-
prehension abilities and phonological knowledge are thought
to be very limited (Bergelson & Swingley, 2012; Gervain &
Mehler, 2010). In these speaker discrimination experiments,
infants were habituated to a small number of voices (n =1 or
3) producing utterances either in their native language (native
condition) or in a foreign language (non-native condition) and
then tested on their ability to detect a new voice producing an
utterance in the same language. They only showed evidence
of detecting the change in the native condition.

To account for this new discovery, one possibility is to as-
sume that the effect in infants relies on the same mechanism
as the one in adults. However, this would imply that infants
have more advanced knowledge of their native language than
previously believed at this age and would require explaining
how they are able to acquire this knowledge so early. Alterna-
tively, Fecher, Paquette-Smith, and Johnson (2019) proposed
that the effect found in infants might be a precursor of the effect
found in adults, which could emerge in the absence of sophis-
ticated linguistic knowledge. However, the question of what
learning mechanism could plausibly lead an infant to develop a
language familiarity effect on the basis of very limited linguistic
knowledge has not received a satisfactory answer so far.

In this paper, we build on techniques from unsupervised ma-
chine learning and speech technology to present a plausible
computational model of the language familiarity effect in in-
fants. We show that the effect can arise from modeling speech
acoustics in a given language (the model’s ‘native’ language)
at multiple time scales without supervision. This demonstrates
that it is feasible for infants to develop a language familiarity
effect without relying on sophisticated linguistic knowledge, giv-
ing credence to the view developed in Fecher et al. (2019) that
the language familiarity effect documented in infants might be
a less sophisticated precursor of the one studied in adults.

Approach

Our objective is to propose a learning mechanism that could
plausibly be at play in young infants, and test whether this
mechanism can account for infants’ behavior in experiments
that have documented the language familiarity effect. We
operationalize the question as follows: a learning algorithm—
representing the learning mechanism at play in infants—is first
trained on raw, untranscribed unsegmented speech recordings
in a ‘native language’'—representing language input plausi-
bly available to an infant. Through this procedure, we train
two ‘American English native’ and two ‘Japanese native’ mod-
els. Representations of test utterances from various speakers
in either language are then extracted from each model and



Table 1: Language, training and test set duration, speech register, and number of speakers in the training and test sets for each

corpus.
Corpus Language Train Test Register Train Speakers Test Speakers
WSJ American English  19h30 9h39 Read 95 47
GPJ Japanese 19h33 9h40 Read 95 47
BUC American English 9h13 9h01 Spontaneous 20 20
CSsJ Japanese 9h11 8h57 Spontaneous 20 19

used to compute a measure of speaker discriminability in each
language—which stands in for the laboratory assessment of
infant’s speaker discrimination abilities. If we find that speakers
are easier to discriminate in each model’s ‘native’ language,
this would mean that the learning algorithm is successful in
accounting for the language familiarity effect in infants.

To assess the robustness of the results and control for con-
founds, we perform model training and speaker discrimination
tests on corpora of two registers—either spontaneous or read
speech in each language. Testing on both a native and non-
native language of a different register allows us to check that
an effect is the result of the language the model is trained on,
rather than idiosyncratic properties of a particular corpus.

The learning mechanism we propose combines modeling
at the level of speech frames (25 ms-long windows of speech
signal sampled every 10 ms) with an utterance-level adaptation
mechanism, which learns a model of the utterance-to-utterance
variability in the parameters of the frame-level model. This is
motivated by theories of early language acquisition and insights
from speech technology. In particular, the proposed algorithm
has previously been used to model infants’ language discrimi-
nation abilities (Carbajal, Fer, & Dupoux, 2016) and appears
to be a good candidate to account for speaker-related effects,
since the representations it produces at the utterance-level
(so called i-vectors) are widely used—among other things—to
provide speaker information in the context of speech technol-
ogy applications (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,
2010). Furthermore, the frame-level part of the learning algo-
rithm has recently been shown to correctly predict language-
specific phonetic learning effects observed in infants (Schatz,
Feldman, Goldwater, Cao, & Dupoux, 2019). Taken together,
this makes the proposed mechanism a good candidate to ac-
count for the language familiarity effect in infants.

Methods
Speech recordings

To train and test our models, we use subsets from four cor-
pora of speech recordings, two in American English and two
in Japanese, with one corpus of read speech and one corpus
of spontaneous speech for each language (Table 1). Read
speech in American English is obtained from a corpus of read
news articles (Paul & Baker, 1992); spontaneous speech from
a corpus of casual conversations (Pitt, Johnson, Hume, Kies-
ling, & Raymond, 2005). Read speech in Japanese is obtained
from a corpus of read news articles (Schultz, 2002); sponta-

neous speech from a corpus of speakers recounting an event
from their life in front of a small audience (Maekawa, 2003).
The speech stream is split into separate utterances which are
fed to the learning algorithm individually. For each corpus we
have a separate training and test set with non-overlapping sets
of speakers.

Learning algorithm

To train a model, we start by extracting, for each utterance,
moderate-dimensional (d = 39) descriptors of the spectral
shape of 25 ms-long speech frames sampled every 10 ms
along the signal (MFC coefficients (Mermelstein, 1976)), which
can be interpreted in terms of auditory pre-processing (Schatz,
2016). The proposed learning mechanism then consists of
fitting a hierarchical probabilistic generative model to these
descriptors. Specifically, the spectral shape descriptors are
assumed to be generated by a mixture of K = 2048 (full
covariance) Gaussians. Unlike in a plain Gaussian mixture
model however, where the mean of each Gaussian is fixed,
our model’s Gaussian means are assumed to be generated
separately for each utterance. The mean vector for Gaus-
sian component k in utterance j is generated by adding an
utterance-independent mean vector y; to the product of an
utterance-independent 39 x 400 matrix T—which encodes
the directions in which the mean of the k-th Gaussian compo-
nent is susceptible to vary from one utterance to the next—and
a relatively low-dimensional (d = 400) i-vector w j/—which en-
codes characteristics that are specific to a particular utterance
and is shared across all Gaussian components, allowing for
correlations in the utterance-level displacements of their means.
It is these utterance-specific i-vectors that we will use as the
infant’s representation of an utterance when simulating speaker
discrimination tasks. The full generative model is represented
in Figure 1, where the depicted variables have the following
conditional distributions:

Zij ‘ Ty, T2, ..., Tk ~ Cat(ﬂ:l,nz,...,TCK)
my ‘ /Jk,T}(,Wj ~ 8,uk+Tij
Xi' ‘ Zij7(mkj)llg(:17(2k)kK:1 ~ N(mzijjvzzij)

where Cat(m;, Ty, ..k ) is the categorical distribution, 7 is the
probability of a point being generated from Gaussian k, &,
is the dirac delta function with unit probability mass at x and
A (u,X) is the multivariate normal distribution with mean p and
covariance X.

We train the model using expectation maximization
(Dempster, Laird, & Rubin, 1977) to find parameters that assign
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Figure 1: Graphical representation of the generative model.

a high likelihood to the training data. Parameters for a plain
diagonal-covariance Gaussian mixture are first fit and used as
a seed to train a plain full-covariance Gaussian mixture. The
parameters of the mixture are then frozen and the 7 vectors
characterising the utterance-level variability in the Gaussian
means are fit, also through expectation maximization. This
was implemented by adapting the sre08 recipe from the Kaldi
speech recognition toolkit (Povey et al., 2011).

Simulating a speaker discrimination task

We compare the ability of our models to discriminate between
speakers in their ‘native’ language and in a ‘foreign’ language
using the machine ABX paradigm (Schatz et al., 2013; Schatz,
2016), which has been used in the past to obtain predictions
from computational models and compare them with human
behavior (Schatz, Bach, & Dupoux, 2018; Schatz et al., 2019).
A detailed computational model of infants’ performance in
speaker discrimination tasks would be hard to constrain given
the limited amount of data available from infant experiments,
and is not likely to be necessary, because different discrimi-
nation paradigm are known to lead to correlated experimental
results (Macmillan & Douglas, 2005). The machine ABX task
has the advantage of being a simple, effectively parameter-
less, evaluation procedure, whose results can reasonably be
expected to be qualitatively similar to what would be obtained
with more detailed models.

We implement a discrimination task in which the model is
presented with two utterances from one speaker - A and X
- and a third utterance from a different speaker - B, and has
to determine whether X is closer to A or B on the basis of its
representations for these three utterances. As the model rep-
resentation for an utterance, we use the i-vector inferred by the
model for that utterance, which provides a fixed-dimensional
representation of its global acoustic characteristics. The model
‘answers’ that X is closer to A than to B if the Euclidean dis-
tance ||ia — ix||> between the model’s i-vector representations
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Figure 2: Machine ABX error rate in a speaker discrimination
task as a function of the relationship between training and test
set languages and registers. Orange corresponds to speaker
discrimination in the ‘native language’, blue to speaker dis-
crimination in a ‘foreign language’. Speakers are easier to
discriminate in the ‘native language’ conditions compared to
the “foreign language’ ones, irrespective of whether registers
match or not, which constitutes strong evidence for a language
familiarity effect. Effects of register mismatch appear small
overall. Error bars represent plus and minus one standard
error of the mean and were obtained through a minimum vari-
ance unbiased estimator taking into account the dependencies
due to the recurrence of a same speaker in multiple speaker
pairs (Lee, 1990). All pairwise comparisons were highly sig-
nificant after Bonferroni correction for multiple comparisons in
asymptotic z-tests on paired difference scores (p < 3 x 10711),
except for the one labeled NS (p = 0.53).

of A and X is lower than the Euclidean distance ||ip — ix||2
between the model’s i-vector representations of B and X. If X
is judged to be closer to B, the model makes an error, and we
define the ABX error rate as the probability of an error in this
task for two speakers selected at random among the test set’s
speakers and utterances A, B, X selected at random from the
test set utterances available for those speakers. An ABX error
rate of zero indicates perfect discrimination and 0.5 indicates
chance performance.

Results

Separate models were trained on the training set of each of
the four corpora. Each model was then tested with utterances
from the test set of each corpus, meaning that each model
was tested on both read and spontaneous speech in its native
language and a foreign language. We thus obtained a total
of 16 ABX error rates (4 models times 4 test sets), which
we binned into 4 conditions according to whether the training
and test sets’ language and register matched or not. The
models show a language familiarity effect, i.e. they are better at
discriminating speakers when tested in their ‘native’ language,
as evidenced by a lower rate of ABX discrimination errors in
conditions where the training language and test language are



the same (Figure 2). This is the case even when the training
and test register are different, showing the robustness of the
language familiarity effect found in these simulations.

Discussion

We proposed a learning mechanism for the language familiarity
effect in infants and demonstrated its feasibility. Our results
show that sophisticated phonological knowledge and language
understanding are not necessary prerequisites for a language
familiarity effect to emerge. Instead, we can capture the lan-
guage familiarity effect simply by modeling acoustic variability
in the signal at frame- and utterance-level time scales.

One outstanding question is why the language familiarity ef-
fect observed in adults seems to require sophisticated linguistic
knowledge, whereas we find that an effect can emerge directly
from modeling acoustics. Fecher et al. (2019) proposed that
this discrepancy might arise from the different experimental
tasks used in infants and adults. Whereas the effect in in-
fants has been shown in speaker discrimination tasks, speaker
identification tasks have typically been used with adults. Iden-
tification tasks tap into more sophisticated cognitive abilities,
which might explain why they lead to an effect that relies on ab-
stract linguistic knowledge. Follow-up work should investigate
whether adults exhibit a language familiarity effect that relies
on purely acoustic factors in discrimination paradigms.

Our approach consists of explicit simulation of learning oc-
curring in infants in ecological situations outside of the lab,
followed by probing of the learned models in ways that mir-
ror the experimental assessment of infants’ abilities in the lab.
One important benefit of this approach—compared to the more
typical approach consisting of fitting models directly to exper-
imental data from laboratory experiments—is that the exact
same model can be evaluated in multiple experimental tasks,
just like the same experimental participant can perform multiple
tests. Indeed, there is now evidence that the learning mech-
anism we propose can simultaneously account for language
familiarity, language discrimination (Carbajal et al., 2016) and
phonetic learning (Schatz et al., 2019) effects observed in
infants. We believe that focusing on modeling ecological cogni-
tive functions that can account for observed behavior in multiple
experimental settings is going to be instrumental in the quest
for a more unified understanding of intelligent behavior.
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