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Abstract

Human listeners are better at telling apart speakers of

their native language than speakers of other languages,

a phenomenon known as the language familiarity effect.

The recent observation of such an effect in infants as

young as 4.5 months of age (Fecher & Johnson, in press)

has led to new difficulties for theories of the effect. On

the one hand, retaining classical accounts—which rely on

sophisticated knowledge of the native language (Goggin,

Thompson, Strube, & Simental, 1991)–requires an expla-

nation of how infants could acquire this knowledge so

early. On the other hand, letting go of these accounts

requires an explanation of how the effect could arise in

the absence of such knowledge. In this paper, we build

on algorithms from unsupervised machine learning and

zero-resource speech technology to propose, for the first

time, a feasible acquisition mechanism for the language

familiarity effect in infants. Our results show how, with-

out relying on sophisticated linguistic knowledge, infants

could develop a language familiarity effect through statis-

tical modeling at multiple time-scales of the acoustics of

the speech signal to which they are exposed.
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Introduction

Listeners are highly skilled at identifying who is talking on the

sole basis of their voice, and are better at doing so in their na-

tive language than in an unfamiliar language, a phenomenon

known as the language familiarity effect (Goggin et al., 1991).

This effect was initially thought to require language understand-

ing, a view that has been supported by a number of empirical

results. In particular, whereas moderate proficiency in a lan-

guage is sufficient to support the effect (Köster & Schiller,

1997), simple passive exposure to speech recordings in that

language (Perrachione & Wong, 2007) or native proficiency

with a typologically related language (Köster & Schiller, 1997)

do not seem to help. The effect has also been shown not to be

driven by language-specific prosodic cues (Schiller, Koster, &

Duckworth, 1997). More recently, it has been proposed that

abstract phonological knowledge of the native language might

suffice to explain these observations, without requiring lan-

guage understanding (Johnson, Bruggeman, & Cutler, 2018).

Under both accounts, however, the effect relies on sophisti-

cated linguistic knowledge of the target language.

It has thus been surprising to find a similar language familiar-

ity effect in 7.5-month-old infants (Johnson, Westrek, Nazzi, &

Cutler, 2011; Fecher & Johnson, 2018) and even 4.5-month-old

infants (Fecher & Johnson, in press), whose language com-

prehension abilities and phonological knowledge are thought

to be very limited (Bergelson & Swingley, 2012; Gervain &

Mehler, 2010). In these speaker discrimination experiments,

infants were habituated to a small number of voices (n = 1 or

3) producing utterances either in their native language (native

condition) or in a foreign language (non-native condition) and

then tested on their ability to detect a new voice producing an

utterance in the same language. They only showed evidence

of detecting the change in the native condition.

To account for this new discovery, one possibility is to as-

sume that the effect in infants relies on the same mechanism

as the one in adults. However, this would imply that infants

have more advanced knowledge of their native language than

previously believed at this age and would require explaining

how they are able to acquire this knowledge so early. Alterna-

tively, Fecher, Paquette-Smith, and Johnson (2019) proposed

that the effect found in infants might be a precursor of the effect

found in adults, which could emerge in the absence of sophis-

ticated linguistic knowledge. However, the question of what

learning mechanism could plausibly lead an infant to develop a

language familiarity effect on the basis of very limited linguistic

knowledge has not received a satisfactory answer so far.

In this paper, we build on techniques from unsupervised ma-

chine learning and speech technology to present a plausible

computational model of the language familiarity effect in in-

fants. We show that the effect can arise from modeling speech

acoustics in a given language (the model’s ‘native’ language)

at multiple time scales without supervision. This demonstrates

that it is feasible for infants to develop a language familiarity

effect without relying on sophisticated linguistic knowledge, giv-

ing credence to the view developed in Fecher et al. (2019) that

the language familiarity effect documented in infants might be

a less sophisticated precursor of the one studied in adults.

Approach

Our objective is to propose a learning mechanism that could

plausibly be at play in young infants, and test whether this

mechanism can account for infants’ behavior in experiments

that have documented the language familiarity effect. We

operationalize the question as follows: a learning algorithm—

representing the learning mechanism at play in infants—is first

trained on raw, untranscribed unsegmented speech recordings

in a ‘native language’—representing language input plausi-

bly available to an infant. Through this procedure, we train

two ‘American English native’ and two ‘Japanese native’ mod-

els. Representations of test utterances from various speakers

in either language are then extracted from each model and



Table 1: Language, training and test set duration, speech register, and number of speakers in the training and test sets for each

corpus.

Corpus Language Train Test Register Train Speakers Test Speakers

WSJ American English 19h30 9h39 Read 95 47

GPJ Japanese 19h33 9h40 Read 95 47

BUC American English 9h13 9h01 Spontaneous 20 20

CSJ Japanese 9h11 8h57 Spontaneous 20 19

used to compute a measure of speaker discriminability in each

language—which stands in for the laboratory assessment of

infant’s speaker discrimination abilities. If we find that speakers

are easier to discriminate in each model’s ‘native’ language,

this would mean that the learning algorithm is successful in

accounting for the language familiarity effect in infants.

To assess the robustness of the results and control for con-

founds, we perform model training and speaker discrimination

tests on corpora of two registers—either spontaneous or read

speech in each language. Testing on both a native and non-

native language of a different register allows us to check that

an effect is the result of the language the model is trained on,

rather than idiosyncratic properties of a particular corpus.

The learning mechanism we propose combines modeling

at the level of speech frames (25 ms-long windows of speech

signal sampled every 10 ms) with an utterance-level adaptation

mechanism, which learns a model of the utterance-to-utterance

variability in the parameters of the frame-level model. This is

motivated by theories of early language acquisition and insights

from speech technology. In particular, the proposed algorithm

has previously been used to model infants’ language discrimi-

nation abilities (Carbajal, Fer, & Dupoux, 2016) and appears

to be a good candidate to account for speaker-related effects,

since the representations it produces at the utterance-level

(so called i-vectors) are widely used—among other things—to

provide speaker information in the context of speech technol-

ogy applications (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,

2010). Furthermore, the frame-level part of the learning algo-

rithm has recently been shown to correctly predict language-

specific phonetic learning effects observed in infants (Schatz,

Feldman, Goldwater, Cao, & Dupoux, 2019). Taken together,

this makes the proposed mechanism a good candidate to ac-

count for the language familiarity effect in infants.

Methods

Speech recordings

To train and test our models, we use subsets from four cor-

pora of speech recordings, two in American English and two

in Japanese, with one corpus of read speech and one corpus

of spontaneous speech for each language (Table 1). Read

speech in American English is obtained from a corpus of read

news articles (Paul & Baker, 1992); spontaneous speech from

a corpus of casual conversations (Pitt, Johnson, Hume, Kies-

ling, & Raymond, 2005). Read speech in Japanese is obtained

from a corpus of read news articles (Schultz, 2002); sponta-

neous speech from a corpus of speakers recounting an event

from their life in front of a small audience (Maekawa, 2003).

The speech stream is split into separate utterances which are

fed to the learning algorithm individually. For each corpus we

have a separate training and test set with non-overlapping sets

of speakers.

Learning algorithm

To train a model, we start by extracting, for each utterance,

moderate-dimensional (d = 39) descriptors of the spectral

shape of 25 ms-long speech frames sampled every 10 ms

along the signal (MFC coefficients (Mermelstein, 1976)), which

can be interpreted in terms of auditory pre-processing (Schatz,

2016). The proposed learning mechanism then consists of

fitting a hierarchical probabilistic generative model to these

descriptors. Specifically, the spectral shape descriptors are

assumed to be generated by a mixture of K = 2048 (full

covariance) Gaussians. Unlike in a plain Gaussian mixture

model however, where the mean of each Gaussian is fixed,

our model’s Gaussian means are assumed to be generated

separately for each utterance. The mean vector for Gaus-

sian component k in utterance j is generated by adding an

utterance-independent mean vector µk to the product of an

utterance-independent 39× 400 matrix Tk—which encodes

the directions in which the mean of the k-th Gaussian compo-

nent is susceptible to vary from one utterance to the next—and

a relatively low-dimensional (d = 400) i-vector w j—which en-

codes characteristics that are specific to a particular utterance

and is shared across all Gaussian components, allowing for

correlations in the utterance-level displacements of their means.

It is these utterance-specific i-vectors that we will use as the

infant’s representation of an utterance when simulating speaker

discrimination tasks. The full generative model is represented

in Figure 1, where the depicted variables have the following

conditional distributions:

zi j | π1,π2, ...,πK ∼ Cat(π1,π2, ...,πK)
mk j | µk,Tk,w j ∼ δµk+Tkw j

Xi j | zi j,(mk j)
K
k=1

,(Σk)
K
k=1

∼ N (mzi j j,Σzi j
)

where Cat(π1,π2, ..πK) is the categorical distribution, πk is the

probability of a point being generated from Gaussian k, δx

is the dirac delta function with unit probability mass at x and

N (µ,Σ) is the multivariate normal distribution with mean µ and

covariance Σ.

We train the model using expectation maximization

(Dempster, Laird, & Rubin, 1977) to find parameters that assign
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Figure 1: Graphical representation of the generative model.

a high likelihood to the training data. Parameters for a plain

diagonal-covariance Gaussian mixture are first fit and used as

a seed to train a plain full-covariance Gaussian mixture. The

parameters of the mixture are then frozen and the Tk vectors

characterising the utterance-level variability in the Gaussian

means are fit, also through expectation maximization. This

was implemented by adapting the sre08 recipe from the Kaldi

speech recognition toolkit (Povey et al., 2011).

Simulating a speaker discrimination task

We compare the ability of our models to discriminate between

speakers in their ‘native’ language and in a ‘foreign’ language

using the machine ABX paradigm (Schatz et al., 2013; Schatz,

2016), which has been used in the past to obtain predictions

from computational models and compare them with human

behavior (Schatz, Bach, & Dupoux, 2018; Schatz et al., 2019).

A detailed computational model of infants’ performance in

speaker discrimination tasks would be hard to constrain given

the limited amount of data available from infant experiments,

and is not likely to be necessary, because different discrimi-

nation paradigm are known to lead to correlated experimental

results (Macmillan & Douglas, 2005). The machine ABX task

has the advantage of being a simple, effectively parameter-

less, evaluation procedure, whose results can reasonably be

expected to be qualitatively similar to what would be obtained

with more detailed models.

We implement a discrimination task in which the model is

presented with two utterances from one speaker - A and X

- and a third utterance from a different speaker - B, and has

to determine whether X is closer to A or B on the basis of its

representations for these three utterances. As the model rep-

resentation for an utterance, we use the i-vector inferred by the

model for that utterance, which provides a fixed-dimensional

representation of its global acoustic characteristics. The model

‘answers’ that X is closer to A than to B if the Euclidean dis-

tance ||iA − iX ||2 between the model’s i-vector representations
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Figure 2: Machine ABX error rate in a speaker discrimination

task as a function of the relationship between training and test

set languages and registers. Orange corresponds to speaker

discrimination in the ‘native language’, blue to speaker dis-

crimination in a ‘foreign language’. Speakers are easier to

discriminate in the ‘native language’ conditions compared to

the ‘foreign language’ ones, irrespective of whether registers

match or not, which constitutes strong evidence for a language

familiarity effect. Effects of register mismatch appear small

overall. Error bars represent plus and minus one standard

error of the mean and were obtained through a minimum vari-

ance unbiased estimator taking into account the dependencies

due to the recurrence of a same speaker in multiple speaker

pairs (Lee, 1990). All pairwise comparisons were highly sig-

nificant after Bonferroni correction for multiple comparisons in

asymptotic z-tests on paired difference scores (p < 3×10
−11),

except for the one labeled NS (p = 0.53).

of A and X is lower than the Euclidean distance ||iB − iX ||2
between the model’s i-vector representations of B and X . If X

is judged to be closer to B, the model makes an error, and we

define the ABX error rate as the probability of an error in this

task for two speakers selected at random among the test set’s

speakers and utterances A, B, X selected at random from the

test set utterances available for those speakers. An ABX error

rate of zero indicates perfect discrimination and 0.5 indicates

chance performance.

Results

Separate models were trained on the training set of each of

the four corpora. Each model was then tested with utterances

from the test set of each corpus, meaning that each model

was tested on both read and spontaneous speech in its native

language and a foreign language. We thus obtained a total

of 16 ABX error rates (4 models times 4 test sets), which

we binned into 4 conditions according to whether the training

and test sets’ language and register matched or not. The

models show a language familiarity effect, i.e. they are better at

discriminating speakers when tested in their ‘native’ language,

as evidenced by a lower rate of ABX discrimination errors in

conditions where the training language and test language are



the same (Figure 2). This is the case even when the training

and test register are different, showing the robustness of the

language familiarity effect found in these simulations.

Discussion

We proposed a learning mechanism for the language familiarity

effect in infants and demonstrated its feasibility. Our results

show that sophisticated phonological knowledge and language

understanding are not necessary prerequisites for a language

familiarity effect to emerge. Instead, we can capture the lan-

guage familiarity effect simply by modeling acoustic variability

in the signal at frame- and utterance-level time scales.

One outstanding question is why the language familiarity ef-

fect observed in adults seems to require sophisticated linguistic

knowledge, whereas we find that an effect can emerge directly

from modeling acoustics. Fecher et al. (2019) proposed that

this discrepancy might arise from the different experimental

tasks used in infants and adults. Whereas the effect in in-

fants has been shown in speaker discrimination tasks, speaker

identification tasks have typically been used with adults. Iden-

tification tasks tap into more sophisticated cognitive abilities,

which might explain why they lead to an effect that relies on ab-

stract linguistic knowledge. Follow-up work should investigate

whether adults exhibit a language familiarity effect that relies

on purely acoustic factors in discrimination paradigms.

Our approach consists of explicit simulation of learning oc-

curring in infants in ecological situations outside of the lab,

followed by probing of the learned models in ways that mir-

ror the experimental assessment of infants’ abilities in the lab.

One important benefit of this approach—compared to the more

typical approach consisting of fitting models directly to exper-

imental data from laboratory experiments—is that the exact

same model can be evaluated in multiple experimental tasks,

just like the same experimental participant can perform multiple

tests. Indeed, there is now evidence that the learning mech-

anism we propose can simultaneously account for language

familiarity, language discrimination (Carbajal et al., 2016) and

phonetic learning (Schatz et al., 2019) effects observed in

infants. We believe that focusing on modeling ecological cogni-

tive functions that can account for observed behavior in multiple

experimental settings is going to be instrumental in the quest

for a more unified understanding of intelligent behavior.
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