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Abstract

Accelerated destructive degradation tests (ADDT) are widely used in industry to

evaluate materials’ long term properties. Even though there has been tremendous s-

tatistical research in nonparametric methods, the current industrial practice is still to

use application-specific parametric models to describe ADDT data. The challenge of

using a nonparametric approach comes from the need to retain the physical meaning

of degradation mechanisms and also perform extrapolation for predictions at the use

condition. Motivated by this challenge, we propose a semi-parametric model to de-

scribe ADDT data. We use monotonic B-splines to model the degradation path, which

not only provides flexible models with few assumptions, but also retains the physical

meaning of degradation mechanisms (e.g., the degradation path is monotonic). Para-

metric models, such as the Arrhenius model, are used for modeling the relationship

between the degradation and the accelerating variable, allowing for extrapolation to

the use conditions. We develop an efficient procedure to estimate model parameters.

We also use simulations to validate the developed procedures and demonstrate the

robustness of the semi-parametric model under model misspecification. Finally, the

proposed method is illustrated by multiple industrial applications. This paper has

online supplementary materials.

Key Words: Acceleration model; ADDT; Arrhenius model; Degradation model;

Long-term property evaluation; Polymeric materials.
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1 Introduction

1.1 Motivation

It is important for manufacturers to understand the lifetime of their products in order to

ensure accurate marketing and determine areas for improvement. While lifetime testing

is the most common approach, for many materials it is more informative to observe the

degradation of some performance characteristics over time, such as the tensile strength of an

adhesive bond. The lifetime is determined by a “soft failure” when the characteristic crosses

a predetermined level. This form of testing is known as degradation testing.

Several varieties of degradation testing have been developed to accommodate unique cir-

cumstances. Due to the long service life of many new materials, degradation testing under

a normal use condition is often not feasible. By exposing the material to a more harsh en-

vironment, such as higher levels of temperature or humidity compared to the use condition,

degradation data can be collected more efficiently. Thus, an accelerating variable is often

used in degradation tests. In some applications, measurements of the degradation level are

destructive. That is, the units being tested are destroyed or the physical characteristics

changed in a significant manner. Because the test is destructive, only one measurement can

be taken from one unit. An example could be determining the strength of a material by

measuring the force needed to break it. This form of testing, combined with an accelerating

variable, is referred to as accelerated destructive degradation testing (ADDT). To differenti-

ate, another common form of degradation testing is repeated-measures degradation testing

(RMDT), in which the measurement is non-destructive and multiple measurements can be

taken from the same unit. Because of the nature of the testing, ADDT must be analyzed

differently from RMDT. The objectives of the inference are often different. For example,

the focus of the inference from ADDT data is primarily on the population behavior (e.g.,

population quantiles, mean time to failure), while for RMDT data the inference can be done

at individual unit level (e.g., the distribution of remaining life for a particular unit). The

focus of this paper, however, is on the modeling and analysis of ADDT data.

ADDT is commonly used in industrial practice, for example, to evaluate the long-term

properties for polymeric materials. In this paper, we use the Adhesive Bond B data (Escobar

et al. 2003), the Seal Strength data (Li and Doganaksoy 2014), and the Adhesive Formula-

tion K data for illustrations. The details of these examples are presented in Section 5. In the

literature, the analyses of those ADDT datasets involved assumed parametric models for the

degradation path over time and a parametric form for the accelerating-variable effect. The

predominance of parametric models is mainly due to the need for extrapolation in two as-
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pects; extrapolation in time and extrapolation to the use condition. For example, an ADDT

may cover only a 30% reduction of the material’s original strength at an elevated tempera-

ture range (e.g., 60◦C−80◦C). But interest lies at 50% reduction of the original strength at a

use temperature (e.g., 30◦C). Despite their usefulness in extrapolation, the major limitation

of parametric models is that each model is application specific. Thus, it is challenging for

an industrial standard, such as UL746B (2013), to recommend a generic method for ADDT

data analysis. Another limitation is on the consequence of model misspecification (i.e., the

assumed parametric model departs from the true model for the degradation path). A larger

mean squared error (MSE) for the parameter estimator could result if a parametric model

is misspecified.

On another side, there has been tremendous statistical research in nonparametric meth-

ods, although the current industrial practice is still to use application-specific parametric

models to describe ADDT data. In this paper, we aim to bridge this gap between the

statistical research and current industrial practice. Instead of a case-by-case parametric

modeling approach, we propose a general and flexible semi-parametric model to describe

ADDT data, which is new to the ADDT data analysis literature. The challenge of using a

nonparametric approach comes from the need to retain the physical meaning of degradation

mechanisms and from performing extrapolations for predictions at the use condition. To

overcome those challenges, the semi-parametric model consists of a nonparametric model for

the degradation path and a parametric form for the accelerating-variable effect. In order to

preserve the monotonic nature of many degradation paths, the nonparametric model portion

will be constructed based on monotonic spline methods. For the parametric model portion,

commonly used models, such as the Arrhenius relationship for temperature, will be used

for extrapolation. Parameter estimation and inference procedures will also be developed.

Through application demonstration and simulations, we show that the proposed semipara-

metric model is more flexible, applicable to a wide range of applications, and is more robust

to model misspecification. An R package “ADDT” (Hong et al. 2016) is also developed, and

the use of the R package is illustrated in Jin et al. (2017). The developed method can be

useful for industrial standards, such as UL746B (2013), due to its flexility and robustness,

and software readiness for ADDT data analysis.

1.2 Related Literature

The literature on accelerated degradation data modeling and analysis can be divided into

two areas: RMDT and ADDT. In their pioneering work, Lu and Meeker (1993) used RMDT

data to estimate a failure-time distribution via a mixed-effects models framework. Meeker,
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Escobar, and Lu (1998) introduced nonlinear mixed-effects models for RMDT data, which

were derived from physical-failure mechanisms. An introductory level description of degra-

dation models can be found in Gorjian et al. (2010), and Meeker, Hong, and Escobar (2011).

Ye and Xie (2015) provided a comprehensive review of the state-of-art methods in modeling

RMDT data.

In the area of ADDT data modeling and analysis, Nelson (1990, Chapter 11) used ADDT

data to estimate performance degradation. Escobar et al. (2003) provided a parametric

model and method to analyze the ADDT data collected from an adhesive bond. Tsai et al.

(2013) considered the problem of designing an ADDT with a nonlinear model motivated by a

polymer dataset. Li and Doganaksoy (2014) used a parametric model to model ADDT data

collected from a temperature accelerated test to study the degradation of seal strength. In

all existing methods for analyzing ADDT data, the parametric method is the most popular.

Compared to parametric models of degradation data, spline methods tend to be more

flexible and require less assumptions regrading the model formulation. Because the degra-

dation path is often monotonic in nature, monotonic splines are suitable for modeling degra-

dation paths. Ramsay (1988) suggested using a basis of I-splines (integrated splines) for

semi-parametric modeling. He and Shi (1998) considered the use of B-splines with L1 opti-

mization. Meyer (2008) extended the work in Ramsay (1988) by proposing cubic monotonic

splines. Leitenstorfer and Tutz (2007) considered the use of monotonic B-splines in gen-

eralized additive models. For other applications of monotonic B-splines, one can refer to

Kanungo, Gay, and Haralick (1995) and Fengler and Hin (2014). In addition, Eilers and

Marx (1996) proposed a class of P-splines. Bollaerts, Eilers, and Mechelen (2006), Hofner,

Müller, and Hothorn (2011), and Hofner, Kneib, and Hothorn (2016) considered the estima-

tion of monotonic effects with P-splines. We used monotonic B-splines in this paper because

it provides a wider range of flexibility.

Related to RMDT models, Shiau and Lin (1999) used kernel methods to smooth the

average degradation path. The smoothing was done separately for data from each temper-

ature level. Their methods work out well for RMDT data but for ADDT data it is more

challenging because the number of time points for each temperature is small, making it hard

to smooth over the time horizon. In addition, their method can not guarantee monotonicity

of the underlying degradation path, which could be a problem in ADDT analysis when one

needs to extrapolate to the use condition. Zhou, Serban, and Gebraeel (2014) used a spline

method to model degradation paths for RMDT data, without considering accelerating vari-

ables. Ye et al. (2014) ) used a gamma process to model the degradation path with the

shape function estimated nonparametrically for RMDT data. Their method also does not

have constraints on the degradation paths (i.e., monotonicity) nor does it consider accel-
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erating variables. Other recent developments of stochastic models for RMDT data include

Wang and Xu (2010), Ye and Chen (2014), and Peng (2016). However, stochastic models

are usually not used for ADDT data because there is only one measure for each test sample.

Hong et al. (2015), and Xu, Hong, and Jin (2016) used shape-restricted splines to model

the effects of time-varying covariates on the degradation process. There is little literature,

however, on the use of semi-parametric models in ADDT data modeling and analysis.

1.3 Overview

The rest of this paper is organized as follows. Section 2 introduces some general notation for

ADDT data. It also presents the construction of the semi-parametric model using monotonic

B-splines. In Section 3, we present a procedure for estimating the unknown parameters as

well as procedures for conducting inference on ADDT data based on the proposed model. We

conduct simulation studies in Section 4 to investigate the performance of the semi-parametric

method with consideration of model misspecification. In Section 5, we apply the model

to data from several published datasets and provide comparisons with other well-known

parametric models. Finally, Section 6 contains conclusions and areas for future research.

2 The Semi-parametric Model

2.1 General Setting

Let yijk be the degradation measurement for the kth sample at level i of the accelerat-

ing variable AF i and the jth observation time point tij, i = 1, . . . , n, j = 1, . . . , Ji, and

k = 1, . . . , nij, where n is the number of accelerating variable levels, Ji is the number of

measuring time points for level i, and nij is the number of samples measured at tij. Let

N =
∑n

i=1

∑Ji
j=1 nij be the total number of measured samples. A general form of the degra-

dation model is

yijk = D(tij, xi;θ) + εijk, (1)

where xi = h(AF i) is a function of the accelerating variable, θ is a vector of unknown

parameters in the degradation path, and εijk is an error term that describes unit-to-unit

variability. For the purposes of illustration, we assume that the degradation path is monotone

decreasing with time. The model can easily be generalized to paths that are increasing

with time. We will also be considering temperature as the accelerating factor as it is the

most common form of acceleration encountered in ADDT. However, the model can easily

incorporate other types of acceleration, such as voltage.
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For temperature-accelerated processes, the Arrhenius model is often used to describe

the relationship between the degradation and temperature. This model uses a transformed

temperature level, which is given as

xi = h(AF i) =
−11605

Tempi + 273.16
. (2)

Here, Tempi is in degrees Celsius, and the value 11605 is the reciprocal of the Boltzmann’s

constant (in units of eV). The value 273.16 in the denominator is used to convert to the

Kelvin temperature scale.

2.2 The Scale-Acceleration Model

We propose the following semi-parametric functional forms for the degradation model in (1).

D(tij, xi;θ) = g [ηi(tij; β);γ] , (3)

ηi(t; β) =
t

exp (βsi)
, si = xmax − xi, (4)

εijk ∼ N(0, σ2), and Corr(εijk, εijk′) = ρ, k 6= k′. (5)

Here, θ = (γ ′, β, σ, ρ)′ is the vector containing all of the unknown parameters. The func-

tion g(·) is a monotone decreasing function with unknown parameter vector γ, and β is

an unknown parameter associated with the accelerating variable. The quantity xmax =

−11605/[maxi (Tempi) + 273.16] is defined to be the transformed value of the highest level

of the accelerating variable (i.e., temperature).

The distribution of the error terms εijk are specified in (5), which follow normal distri-

butions with standard deviation σ and correlation ρ. In particular, we consider a compound

symmetric correlation structure for measurements taken on the same temperature and time

point. The parameter ρ represents the within-batch correlation. In an ADDT, a batch of

samples (e.g., five samples) is exposed to high temperature in the same test chamber for the

same period of time. Thus, correlations can be introduced, for example, due to inaccuracy

in controlling the testing temperature. Measurements at different temperature levels and

time points are assumed to be independent.

The model in (3) falls within the class of scale-acceleration models. For a specific stress

level i, D(t, xi;θ) is a decreasing function of time t, in which β controls the degradation rate

through time-scale factor exp (βsi) in (4). A smaller time-scale factor corresponds to a rapid

decrease in degradation. When the acceleration level is at its highest, smax = xmax−xmax = 0.

In this case, ηi(t; β) = t implies that the degradation path no longer relies on β, and

D(t, xmax;θ) = g(t;γ).
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Thus, the function g(·) can be interpreted as the baseline degradation path for the scale-

acceleration model in (3).

Let yM be the lowest degradation level present in the observed data. Then the scale-

acceleration model and the monotonicity of g(·) will allow one to extrapolate the degradation

level to yM for any given acceleration level. Let Df be the failure threshold. Then, if yM <

Df , one can use the semi-parametric model to obtain failure information at the use condition

through this extrapolation. This is particularly useful since, in general, measurements may

be available below Df for only some of the highest levels of the accelerating variable. In fact,

some industrial standards require that tests be run until the degradation level drops below

Df for several acceleration levels. However, extrapolation beyond yM is not possible due to

the nonparametric construction of the g(·), which is the tradeoff for the model flexibility

from nonparametric methods.

2.3 Nonparametric Form for Baseline Degradation Path

We use nonparametric methods to estimate the baseline degradation path g(·). Specifically,

we use monotonic B-splines to model the baseline degradation path. This not only provides

flexible models, but also retains the physical meaning of degradation mechanisms (e.g., the

degradation path is monotone decreasing).

Consider a set of r interior knots d1 ≤ · · · ≤ dr, and two boundary points d0 and dr+1.

The entire set of ordered knots are

d−q = · · · = d0 ≤ d1 ≤ · · · ≤ dr ≤ dr+1 = · · · = dr+q+1,

where the lower and upper boundary points are appended q times and q is the polynomial

degree. For notational simplicity, we rewrite the subscripts in the ordered knot sequences as

d1, · · · , dr+2q+2. The total number of basis functions is p = r + q + 1, which is the length of

parameter γ. The lth B-spline basis function of degree q evaluated at z can be recursively

obtained in the following formulas:

B0l(z) = 1(dl ≤ z < dl+1),

Bql(z) =
z − dl
dl+q − dl

Bq−1,l(z) +
dl+q+1 − z
dl+q+1 − dl+1

Bq−1,l+1(z),

where l = 1, · · · , p, and 1(·) is an indicator function. The degradation model can then be

expressed as

yijk =

p∑
l=1

γlBql[ηi(tij; β)] + εijk, (6)
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where γl’s are the coefficients.

To ensure the degradation path is monotone decreasing, we require the first derivative

of D(t, xi;θ) be negative. For B-spline basis functions, De Boor (2001) proved that the

derivative of D(t, xi;θ) with respect to ηi(t; β) is

dD(t, xi;θ)

dηi(t; β)
=

p∑
l=2

(q − 1)
(γl − γl−1)

dl+q+1 − dl
Bq−1,l[ηi(t; β)].

As B-spline basis functions are nonnegative, it follows that γl 6 γl−1 for all 2 ≤ l ≤ p gives a

sufficient condition for a monotone decreasing degradation path. However, except for basis

functions with degree q = 1, 2, it is not a necessary condition. Fritsch and Carlson (1980)

derived the necessary conditions for cubic splines (q = 3), though for higher order splines

necessary conditions are as yet unclear.

3 Estimation and Inference

3.1 Parameter Estimation

Let yij = (yij1, . . . , yijnij)
′, εij = (εij1, . . . , εijnij)

′, y = (y′11, . . . , y
′
1J1
, . . . , y′n1, . . . , y

′
nJn

)′,

ε = (ε′11, . . . , ε
′
1J1
, . . . , ε′n1, . . . , ε

′
nJn

)′, and γ = (γ1, . . . , γp)
′. The degradation model in (6)

can be written as

y = Xβγ + ε, (7)

where

Xβ =


Bq1[η1(t11; β)] · · · Bqp[η1(t11; β)]
Bq1[η1(t12; β)] · · · Bqp[η1(t12; β)]

...
. . .

...
Bq1[ηn(tnJn ; β)] · · · Bqp[ηn(tnJn ; β)]

 ,
and ε ∼ N (0,Σ). Here, Σ = Diag (Σ11, . . . ,Σ1J1 , . . . ,Σn1, . . . ,ΣnJn) and Σij = σ2[(1 −
ρ)Inij+ρJnij ], where Inij is an nij × nij identity matrix and Jnij is an nij × nij matrix of

1’s. We can also rewrite Σ = σ2R, where R = Diag (R11, . . . ,R1J1 , . . . ,Rn1, . . . ,RnJn) and

Rij = (1− ρ)Inij+ρJnij .

We use likelihood-based methods to estimate the unknown parameters θ = (γ ′, β, σ, ρ)′.

For now, we consider estimation of θ with a given number of knots and knot locations.

We will give a discussion on knots selection in Section 3.3. A particular challenge to the

estimation comes from the constraints on γ, namely that γl ≤ γl−1, 2 ≤ l ≤ p. We also note

that, for a given β, Xβ is known, in which case (7) becomes a linear model with a correlated

covariance structure. Thus, we proceed by first deriving estimates of (γ ′, σ, ρ)′ given β and

then use a profile likelihood approach to estimate β.
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The estimates of γ and (σ, ρ)′ are obtained using an iterative procedure. In particular,

at the mth iteration, given estimates (σ̂(m−1), ρ̂(m−1))′, the value of γ̂(m) is obtained by

minimizing

Q(γ) = (y −Xβγ)′
(
Σ̂

(m−1)
)−1

(y −Xβγ)

subject to γl 6 γl−1, 2 ≤ l ≤ p. (8)

Equation (8) is a quadratic object function with linear constraints. So it can be solved with

quadratic programming techniques such as the dual method in Goldfarb and Idnani (1983),

and the Hinge algorithm in Meyer (2013). In this paper, the Hinge algorithm is used.

With the estimate γ̂(m), one can then obtain (σ̂(m), ρ̂(m))′ using restricted maximum

likelihood (REML) as long as γ̂(m) does not take values on the boundary of the linear

constraints. If the solution of (8) takes values on the boundary of the linear constraints, we

use approximate REML to update estimates of σ and ρ. In particular, let γ̂(m)
u represent all

of the unique values in γ̂(m) and pu be the length of γ̂(m)
u . For each unique value γ̂

(m)
i,u , let

xi,βu be the sum of the corresponding columns in Xβ. Then we have Xβγ̂
(m) = Xβuγ̂

(m)
u ,

where Xβu = (x1,βu, · · · ,xpu,βu). The approximate REML log-likelihood is

LREML(σ, ρ|γ̂(m)) = −1

2

{
log |Σ|+ log |X′βuΣ−1Xβu|+ (y −Xβγ̂

(m))′Σ−1(y −Xβγ̂
(m))

}
.

(9)

The covariance parameter estimates (σ̂(m), ρ̂(m))′ are those values that maximize (9). In

particular, after some calculation it can be shown that σ̂
(m)

has the following closed-form

expression

σ̂
(m)

=

[
(y −Xβγ̂

(m))′(R̂
(m−1)

)−1(y −Xβγ̂
(m))

N − pu

] 1
2

.

Thus, ρ̂(m) can be obtained from a one dimensional optimization problem. That is,

ρ̂(m) = argmax
ρ

{
− log |(σ̂(m)

)2R| − log |(σ̂(m)

)−2X′βuR
−1Xβu|

−(σ̂
(m)

)−2(y −Xβγ̂
(m))′R−1(y −Xβγ̂

(m))
}
.

Upon convergence, the estimates of (γ̂ ′, σ̂, ρ̂)′ are obtained for a given β, denoted by (γ̂ ′β, σ̂β,

ρ̂β)′. The initial values (σ̂(0), ρ̂(0))′ can be easily obtained by fitting a non-constrained model.

The profile log-likelihood for β is given as

L(β, γ̂β, σ̂β, ρ̂β) = log

{
1

√
2π|Σ̂β|1/2

exp

[
−

(y −Xβγ̂β)Σ̂
−1

β (y −Xβγ̂β)

2

]}
.
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In practice, one can first estimate (γ ′, σ, ρ)′ for a specified range of values of β, then compute

L(β, γ̂β, σ̂β, ρ̂β) as a function of β. The estimate β̂ is the value that maximizes this function.

The final estimates are denoted by θ̂ = (γ̂ ′, β̂, σ̂, ρ̂)′.

Here we provide some discussion on the estimation procedure. Regarding the convergence

of the algorithm, the likelihood function is the same as the likelihood function of a linear

mixed model with a given β. The restrictions on γ reduce the parameter space but that

does not change the shape of the likelihood function. The parameter β is related to the

acceleration rate, which can be determined by the data from different levels of temperature.

If the value of β is too large or too small, a smaller likelihood value will result. That is, a

certain finite value of β will maximize the likelihood value. Thus, the algorithm converges

well as long as there is enough information on the acceleration rate from the data, which

typically requires three levels for the temperature. To specify the initial range of β, one

can fit polynomial curves (e.g., third order polynomial) separately to the data from each

temperature level. By comparing the time to reach a certain degradation level (e.g., 70% of

the original strength) at different temperature levels, one can obtain several rough estimates

of β. The range of these estimates can be used to specify the initial range of β.

3.2 Reliability Measures

Once the model parameters are estimated, other parameters related to reliability can then

be estimated. For example, the mean time to failure (MTTF), denoted by µf , is one of ways

to evaluate the reliability of a product/material. Based on the semi-parametric model, we

can derive an estimate µ̂f at a use condition xf and failure threshold Df by solving

D(µ̂f , xf ; θ̂) =

p∑
l=1

γ̂lBql

(
m̂f

exp[β̂(xmax − xf )]

)
= Df .

We can also derive the failure time distribution from the semi-parametric model. The

event that the failure time T is less than t (i.e., T ≤ t) is equivalent to that the degradation

measurement at time t is less than the failure threshold Df (i.e., yt ≤ Df ), for monotonic

decreasing degradation paths. Here yt is the degradation measurement at t. Hence, the

cumulative distribution function (cdf) of failure time, FT (t), can be calculated as

FT (t) = P (T ≤ t) = P (yt ≤ Df ) = Φ

Df − g
[

t
exp (βs)

;γ
]

σ

 , t > 0,

where Φ(·) is the cdf of the standard normal distribution. The quantile function can then

be calculated as the inverse of the cdf. That is, the α quantile is tα = F−1
T (α). In the case
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of no closed-form expression, numerical methods can be used to find the quantile function

from the cdf.

3.3 Spline Knots Selection

The number of knots and knot locations are a key component to using B-splines to model

the degradation path. In addition, it is also necessary to determine the maximum degree of

the B-splines. For knot selection, we first fix the degree of the B-splines and then find the

optimum knot locations. Optimality is determined by a variation of the Akaike information

criterion:

AIC = −2 log

 1
√

2π|Σ̂|1/2
exp

−(y −Xβ̂γ̂)Σ̂
−1

(y −Xβ̂γ̂)

2

+ 2× edf, (10)

where edf is the effective degrees of freedom in γ plus three for the parameters (β, σ, ρ)′.

Wang, Meyer, and Opsomer (2013) and Meyer (2012) discussed constrained spline regression

for both independent and correlated error cases. In particular, they showed how to calculate

the effective degrees of freedom for a constrained fit through the use of a cone projection,

which is the trace of the projection matrix. Because we have p − 1 linear constraints,

the effective degrees of freedom in γ has a value from 1 to p, where p corresponds to a

unconstrained fit. Letting q denote the degree of the B-spline functions, the procedure for

knot selection is as follows:

1. Determine the optimal number of interior knots ropt,q which minimizes the AIC. The

default knot locations are equally-spaced sample quantiles. That is, if the number of

interior knots is r, the default knot locations are b/r, b = 1, · · · , r − 1.

2. Delete each of the internal knots in sequence. The knot whose deletion leads to the

greatest reduction in AIC is removed. Repeat until no more existing knots can be

removed.

The whole procedure is to be repeated for different B-spline degrees until the optimal

knot sequence is determined. This knot selection procedure is similar to the procedure in

He and Shi (1998). The sample size for an ADDT is typically small and so a low degree of

spline (q 6 4) and a small number of interior knots (1 6 r 6 5) are usually sufficient to

provide a good fit to the data.
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3.4 Statistical Inference

Inference based on the semi-parametric model in (7) can rely on either asymptotic theory

or a bootstrap procedure. Because the bootstrap method is straightforward and easy to

implement, we use a nonparametric bootstrap to calculate confidence intervals (CI) for the

parameters and pointwise CI for the degradation path. The error term in model (7) can be

written as

εijk = uij + eijk,

where uij ∼ N(0, σ2
u), eijk ∼ N(0, σ2

e), Corr(uij, eijk) = 0, σ2
u = ρσ2, and σ2

e = (1−ρ)σ2. That

is, the error term in model (7) can be written as the sum of a random effect term uij and

an independent error term eijk. To obtain the CI, one could resample from the estimated

random effect term ûij and the estimated independent error term êijk separately. However,

Carpenter, Goldstein, and Rasbash (2003) showed that directly resampling from ûij and êijk

will cause bias. Therefore, we adjust ûij and êijk prior to bootstrapping. That is,

ûcij =

[∑
ij

û2
ij/

n∑
i=1

Ji

]−1/2

σ̂uûij, and êcijk =

[∑
k

ê2
ijk/nij

]−1/2

σ̂eêijk.

The specific steps of the nonparametric bootstrap are described as follows:

1. Sample u
c(m)
ij with replacement from ûcij and sample e

c(m)
ijk with replacement from êcijk.

2. Compute y
(m)
ijk = x′ijγ̂ + u

c(m)
ij + e

c(m)
ijk .

3. Fit the semi-parametric model to the bootstrapped samples y
(m)
ijk , m = 1, . . . , B.

Let θ be a general notation for a parameter to be estimated. For a sequence of ordered

bootstrap estimates θ̂(1), . . . , θ̂(B), the quantile-based CI with confidence level 1− α for θ is

calculated by taking the lower and upper α/2 quantiles of the bootstrap estimates. That

is (θ̂([Bα/2]) , θ̂([B(1−α/2)])), where [ · ] is the rounding function. A bias-corrected CI, proposed

by Efron and Tibshirani (1993), can be computed by taking the [BΦ(2zζ + zα/2)]th and

[BΦ(2zζ + z1−α/2)]th ordered values. That is (θ̂([BΦ(2zζ+zα/2)]) , θ̂([BΦ(2zζ+z1−α/2)])). Here, ζ

denotes the proportion of the bootstrap values that are less than θ̂, and Φ(·) and zα are the

cdf and the α quantile of the standard normal distribution, respectively.

4 Simulation Study

The objective of the simulation study is to investigate the performance of the proposed

parameter estimation and inference procedures. We will examine the bias, standard devi-
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ation (SD), and mean squared error (MSE) of estimators of the parameters and the base-

line degradation function. We also will investigate the coverage probability (CP) of the

bootstrap-based CI procedure in Section 3.4. An additional simulation study will be con-

ducted to investigate the performance of the proposed semi-parametric model under model

misspecification.

4.1 Performance of Parameter Estimators

Simulation Settings

We consider two different values for the temperature levels (i.e., n = {3, 6}). To simplify the

setting, the measuring time points are set to be the same for all temperature levels. We con-

sider three different values for the number of measuring times, denoted by Jn = {5, 10, 15}.
Thus, we have six combinations of temperature levels and the number of measuring time

points in the simulation. The specific settings are summarized in Table 1. Ten samples

are tested at each combination of temperature level and measuring times. The data are

simulated from the following model:

yijk = D(tij, xi;θ) + εijk =

p∑
l=1

rlBql[ηi(tij; β)] + εijk, (11)

where the degree of the B-splines is q = 2, and number of interior knots is r = 3. The knot

locations are the sample quantiles. Figure 1 gives the spline basis functions and the baseline

degradation function for the scenario with n = 3 and Jn = 5. The true parameters in the

model are β = 0.83,γ = (1, 0.9, 0.8, 0.7, 0.6, 0.6)′, and (σ, ρ)′ = (0.019, 0.2)′.

For each scenario, 500 datasets are generated and the bias, SD, and MSE of the estimators

of parameters and baseline degradation curves are calculated. The quantile-based and bias-

corrected CI are computed based on B = 1, 000 bootstrap samples and the CP is also

computed.

Simulation Results

Figure 2 shows the bias and MSE of parameter estimators. Figure 3 shows the pointwise

MSE curves of baseline degradation curves. We find that the MSE of the point estimators

and baseline degradation curve estimators decrease as either the number of temperature

levels or time points increases. Even when the number of temperature levels and time points

are both small, biases of β and σ are small, while the bias of ρ is large. When either the

number of temperature levels or time points is large, the estimates of β, σ and ρ are all close

to the true values. We also observe some increasing/decreasing trends of the MSE plot in

13



Table 1: Selected temperature levels and time points for the simulation studies.

Settings Number of Temp. Levels (n) Temperature Levels (◦C)
Temperature setting 1 3 50, 65, 80
Temperature setting 2 6 30, 40, 50, 60, 70, 80

Number of Time Points (Jn) Measuring Times (Days)
Time point setting 1 5 8, 25, 75, 130, 170

Time point setting 2 10
5, 10, 30, 50, 70, 90, 110,
130, 150, 170

Time point setting 3 15

10, 30, 40, 50, 60, 70, 80,
90, 100, 110, 120, 130,
140, 150, 170

Figure 3. The majority of the curves, however, fall within 2 × 10−5 and 8 × 10−5, which is

quite a small range. The underlying reason for such fluctuation is that we no longer have an

adequate number of interior knots for those time periods near the end of experiment.

Figures 4 and 5 present the CP for quantile-based CI and bias-corrected CI of the param-

eters and baseline degradation curves. The performance of bias-corrected CI is similar for β,

and better for σ, ρ and the baseline degradation curve compared to quantile-based CI. For

the parameter estimators, the CP of bias-corrected CI of β is good when n or Jn is small.

However, the CP of bias-corrected CI of (σ, ρ)′ are overall slightly less than the desired con-

fidence level. For the baseline degradation function, the CP of pointwise bias-corrected CI

are poor when n = 3 and Jn = 5. The performance of pointwise bias-corrected CI improves

as n and Jn increases. Overall, the results show that the performance of the estimation and

inference procedures are good.

4.2 Performance under Model Misspecification

Simulation Settings

In this simulation study, the data are simulated according to a parametric model. Then, the

semi-parametric model is used to fit the simulated data. The temperature levels are set at

50◦C, 65◦C, 80◦C and the measuring times are set at 192, 600, 1800, 3120, and 4320 hours.

There are 10 samples measured at time 0 and 5 samples measured at all other time points.

The data are simulated from the model

yijk = β0 + β1 exp(β2xi)tij + εijk, (12)
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Figure 1: Spline bases and baseline degradation path used in simulation study.

where Tempi is the ith temperature level, tij is the jth measuring time point for temperature

level i, and xi = −11605/(Tempi + 273.15). The true parameters are β = (β0, β1, β2)′ =

(1,−3.5, 0.3)′, and (σ, ρ)′ = (0.02, 0)′. In practice, the true model may not be known exactly.

Thus, we also consider the case when a different parametric model from the true one is

used to fit the data. The incorrect parametric model, adapted from Vaca-Trigo and Meeker

(2009), is given by

yijk =
α0

1 +
[

tij
exp(β0+β1xi)

]γ + εijk, (13)

with parameters (α0, β0, β1, γ)′ in the mean structure. We fit the true model (12), the

incorrect parametric model (13), and the semi-parametric model (3) to the simulated data.

Figure 6 shows one case of the simulated data and the fitted degradation paths. The semi-

parametric model can follow the path of the true model closely.

Simulation Results

To assess the fit of the proposed semi-parametric model, we compare the fitted degradation

path to the true degradation path using the integrated mean squared error (IMSE) of the
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Figure2:EmpiricalbiasandMSEofparameterestimatorsfor(β,σ,ρ).
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Figure 3: Empirical pointwise MSE for the estimator of the baseline degradation path.

baseline degradation function estimator, which is defined as

IMSE =

∫ tm

0

E
{

[ĝ(t;γ)− g(t;γ)]2
}
dt

=

∫ tm

0

{E [ĝ(t;γ)]− g(t;γ)}2 dt+

∫ tm

0

Var [ĝ(t;γ)] dt = IBias2 + IVar,

where tm is the maximum time under the maximum level of the accelerating variable. As

there is no closed-form expressions for IMSE, integrated squared bias (IBias2) and integrat-

ed variance (IVar), we report the empirical results. Table 2 presents these results, which

indicate that the performance of the proposed semi-parametric model is good. The largest

contribution to the root IMSE comes from the variance component. Thus, it is not sur-

prising that the incorrect parametric model (13) performs the worst in capturing the true

degradation path.

For each simulated dataset, the MTTF at 30◦C (the normal use condition specified in

the simulation setting) is calculated based on the true parametric model (12), the incorrect

parametric model (13), and the semi-parametric model. The mean, bias, standard derivation

(SD), and root MSE of the MTTF for each of the different models based on 600 datasets

are summarized in Table 3. The results indicate that the estimate of MTTF from the semi-

parametric model is close to the true value, but with larger variance when compared to other
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Figure4:CPoftheCIproceduresforparameters(β,σ,ρ),usingquantile-basedandbias-

correctedmethods,respectively.
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Figure 5: Pointwise CP of the CI procedure for baseline degradation path, using quantile-

based and bias-corrected methods, respectively.

Table 2: Empirical IBias, root IVar (RIVar), and root IMSE (RIMSE) for the true model

(12), the incorrect model (13), and the semi-parametric model.

Models IBias RIVar RIMSE
True Model 0.0003 0.0043 0.0043

Incorrect Model 0.0267 0.0060 0.0274
Semi-parametric Model 0.0003 0.0091 0.0091

models, which is due to the larger number of parameters that need to be estimated. The

estimated MTTF from the incorrect parametric model (13) has the largest bias, leading to a

larger RMSE. The results indicate the proposed semi-parametric model performs quite well.

5 Applications

To help motivate the use of the proposed semi-parametric model, we selected three published

datasets from well-known examples of ADDT. The data for each example are summarized

below.
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Figure6:Plotofasimulateddatasetandfitteddegradationpathsbasedonthetrueand

incorrectparametricmodels,andthesemi-parametricmodel.

Table3:Empiricalmean,bias,SD,androotMSE(RMSE)oftheMTTFestimatorsbased

onthetruemodel(12),theincorrectmodel(13),andthesemi-parametricmodel.

Models Mean Bias SD RMSE
TrueModel 82.60 0.01 2.99 2.99
IncorrectModel 85.82 3.20 3.75 4.93

Semi-parametricModel 82.77 0.16 4.22 4.22
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Figure7:FitteddegradationpathsoftheAdhesiveBondBdata.

5.1 ADDTDatasetsandParametric Models

TheAdhesiveBondBData

Escobaretal.(2003)discussedanexperimentthatmeasuredthestrengthofanadhesive

bond(AdhesiveBondB)overtime. Eightunitsweremeasuredatthebeginningofthe

experimentundernormaltemperaturetoserveasthebaselinestrength. Theremaining

measurementsweretakenatselectedweeks(2,4,6,12,and16)forthreeacceleratedtem-

peraturelevels(50◦C,60◦C,and70◦C). AscatterplotoftheAdhesiveBondBdatasetis

presentedinFigure7(a).ThedegradationmodelusedbyEscobaretal.(2003)is

yijk=β0+β1exp(β2xi)τij+εijk, (14)

whereyijkisthestrengthofAdhesiveBondBinlogNewtons,τij=
√
tij,xi=−11605/

(Tempi+273.15)istheArrhenius-transformedtemperature,andεijk∼N(0,σ
2).Theesti-

matesareβ0=4.4713,β1=−8.6384×10
8,β2=0.6364andσ=0.1609.

TheSealStrengthData

LiandDoganaksoy(2014)consideredadatasetfromanADDTtestofsealstrength.Atthe

startoftheexperiment,abatchof10sealsamplesweremeasuredattheusetemperature
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Figure8:FitteddegradationpathsoftheSealStrengthdata.

levelof100◦C.Abatchof10sealsampleswerethentestedatselectedweeks(5,10,15,20,

and25)forfourtemperaturelevels(200◦C,250◦C,300◦C,and350◦C).Ascatterplotofthe

SealStrengthdataisshowninFigure8(a).Thoughonewouldexpectthesealstrengthto

decreaseunderhighertemperature,somebatchesofsealsamplesyieldedhigherstrengthsin

laterweekscomparedwiththeinitialmeasurements.Thissuggestsalargebatch-to-batch

variabilitywhichmustbeincorporatedintothemodel. Thus,LiandDoganaksoy(2014)

consideredthefollowingnonlinearmixedmodel:

yijk=β0−β1exp(β2xi)tij+δij+εijk, (15)

whereyijkisthelog10strengthofsealsample,andxi=−11605/(Tempi+273.15). The

randomvariableδij∼N(0,σ
2
δ)representsbatch-to-batchvariability,εijk∼N(0,σ

2),and

δijandεijkareindependent. Theestimatesareβ0=1.4856,β1=47.2166,β2=0.3420,

σ=0.1603,andσδ=0.0793.

TheAdhesiveFormulationKData

Anewadhesive,FormulationK,wasdevelopedandtestedat40◦C,50◦C,and60◦C.The

strengthof10unitsweremeasuredatthebeginningoftheexperimentandaspecifiednumber

ofsamplesweretestedat3,6,12,18,and24weeks.Figure9(a)isascatterplotofthedata.
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Figure9:FitteddegradationpathsoftheAdhesiveFormulationKdata.

Theparametricmodelusedtodescribethedatais

yijk=log(90)+β0(1−exp{−β1exp[β2(xi−x2)]tij})+εijk, (16)

whereyijkisthestrengthofAdhesiveFormulationKinlogNewtons,τij=
√
tij,xi=

−11605/(Tempi+273.15),x2=−11605/(50+273.15),andεijk∼N(0,σ
2).Theestimates

areβ0=−0.9978,β1=0.4091,β2=0.8371,andσ=0.0501.

5.2 ComparisonsofParametricandSemi-parametric Models

Inthissection,wealsoappliedthedevelopedmethodtoeachofthedatasets. Weappliedthe

knotselectiontechniqueinSection3.3foreachapplication. Wealsotestedthesignificance

ofρ=0whichinformstheselectionoftheappropriatemodel.Theparameterestimatesand

theirassociatedquantile-basedCIarepresentedinTables4.

Inordertoassessthefitofthesemi-parametricmodelandcompareitwiththecorre-

spondingparametricmodelchosenbytherespectiveapplications,weinvestigatetheAIC

valuesasdefinedinSection3.3.InthecalculationofAIC,thelog-likelihoodisthemarginal

log-likelihoodfortheparametricmodels. Table5containsthelog-likelihoodvalues,edf,

andAICforeachmodelanddataset. Forallthreedatasets,thesemi-parametricmodel-

spossessedalowerAICascomparedtotheparametricmodels. Thisindicatesthatthe

semiparametricmodelcanprovideabetterdescriptionfortheADDTdata.

23



Table 4: Parameter estimates and corresponding 95% quantile-based CI for the semi-

parametric models for the three applications.

Applications Parameter Estimate
Quantile-based CI

95% lower 95% upper

Adhesive Bond B
β 1.3422 1.1071 1.6165
σ 0.1537 0.1265 0.1787

Seal Strength

β 0.3235 0.2451 0.5194
σ 0.1610 0.1192 0.1904
ρ 0.7573 0.5465 0.8307

Adhesive Formulation K
β 1.8221 1.6575 2.3658
σ 0.0484 0.0419 0.0544

Table 5: Log likelihood and AIC values of parametric and semi-parametric models for the

ADDT data from the three applications.

Applications
Parametric Models Semi-parametric Models

Loglik df AIC Loglik edf AIC
Adhesive Bond B 34.966 4 −61.933 38.726 5 −67.441

Seal Strength 194.990 5 −379.981 199.745 6 −387.490
Adhesive Formulation K 158.950 4 −309.901 163.989 8 −311.979

We also compared the MTTF estimation using parametric and semi-parametric models

for the three applications. Table 6 shows the estimated MTTF and the associated 95%

quantile-based CI at normal use conditions. For illustrations, the failure threshold is set to

be 70% and the time is in weeks. For the Adhesive Bond B and Adhesive Formulation K

data, the MTTF from the two models are close to each other. For the Seal Strength data,

there are some discrepancies in the MTTF from the two models. The 95% CI are in general

wide for all cases, which is due to extrapolation.

5.3 Model Assumption Checking

We conducted several graphical checks on the model assumptions for the three applications.

To check the fitting of the mean structures, the fitted degradation paths for the parametric

and semi-parametric models are presented in Figures 7, 8, and 9. All three figures show that

the semi-parametric models provide a good fit to the mean structure of the data. We can

see that the proposed model is flexible in fitting ADDT data from different applications.

For each application, we also examined the Q-Q plot of standardized residuals and the

pattern of standardized residuals versus fitted values. The Q-Q plot can reveal if the normal-
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Table 6: Estimated MTTF and the associated 95% quantile-based CI at normal use condi-

tion, based on parametric and semi-parametric models for the three applications. The failure

threshold is set to be 70% and the time is in weeks (In the table, “est.” means “estimate”,

“low.” means “lower”, and “upp.” means “upper”).

Applications
Normal Use
Condition

Parametric Semi-parametric

est.
95% CI

est.
95% CI

low. upp. low. upp.
Adhesive Bond B 30◦C 270 136 554 305 145 721

Seal Strength 100◦C 222 98 674 126 65 956
Adhesive Formulation K 30◦C 68 55 88 85 65 131

ity assumption holds well. The residuals can show if the constant variance assumption holds

and if the mean structure (the semiparametric component for the mean function) describes

the data well. Supplementary Figures 1 to 3 show the residual analyses for the Adhesive

Bond B data, Seal Strength data, and Adhesive Formulation K data, respectively. Overall

the plots show that the model assumptions hold well for these three applications.

5.4 Illustration of Quantile Function Estimation

For each application, the quantile functions and corresponding CI can be calculated. For

illustrations, we use the Adhesive Bond B data as an example. Figure 10 shows the quantiles,

tα, and the 95% pointwise quantile-based bootstrap CI for four temperature levels for a range

of α values. The dotted lines are the pointwise CI. Since the proposed method can allow

users to set the particular failure threshold, in this illustration, we used the 40% failure

threshold for the Adhesive Bond B data. The temperature for use condition is set to be

30◦C. Note that the estimated quantile functions for different temperature levels in Figure

10 are parallel to each other (the y-axis is on log scale). This is because the α quantile for

temperature level xi is the α quantile at the baseline degradation level multiplied by the

factor exp(βxi).

6 Concluding Remarks and Areas for Future Work

In this paper, we describe a new semi-parametric degradation model for ADDT data based

on monotonic B-splines. We develop estimation and inference procedures for the proposed

model as well as methods for selecting knot locations for the B-splines. Our simulation

results indicate that the proposed estimation procedures for the proposed semi-parametric
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α

Figure 10: Estimates and CI of quantile functions at different temperature levels for Adhesive

Bond B data.

model perform well. Compared to parametric models, the semi-parametric approach is more

flexible, can be applied to a wide range of applications, and may be best suited as a generic

method for ADDT data analysis for industrial standards. In addition, the semi-parametric

model is more robust to model misspecification than a parametric model approach. The

proposed method is implemented in an R package named “ADDT” (Hong et al. 2016). Jin

et al. (2017) provide illustrations on the use of the R package.

In the proposed method, we did not use equally spaced interior knots. The number and

location of interior knots were determined using the AIC criterion. Due to the monotonicity

constraints, the model fitting results are less sensitive to the number and locations of knots.

This behavior is also observed in, for example, Meyer (2008), and Hong et al. (2015). The

simulation study and applications demonstrated that the model chosen by AIC can provide

an adequate fit to the data.

One possible application of the proposed semi-parametric model could be for test plan-

ning. A test plan based on this model would be general enough for application to a variety

of materials and also allow for testing of different models. The proposed model can serve a

starting ground from which to test models against the data gathered rather than having to

assume a given model prior to data collection. This would certainly serve as an interesting

topic for future research.
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The models considered here were solely scale-acceleration models. However, for certain

types of products, a model with both scale and shape acceleration may describe the degra-

dation path more appropriately. In this case, the scale-acceleration model may not be able

to fit the data well resulting in poor predictions. Tsai et al. (2013) considered a parametric

model with both scale and shape acceleration in test planning. Estimation and inference

procedures for the semi-parametric model would certainly be more complex with the intro-

duction of a shape-acceleration parameter. It would be of great interest to pursue this in

future research.

Although the focus of this paper is on ADDT data, whether the proposed ADDT method

can be used for RMDT is an interesting question for future research. For RMDT data, due

to within unit correlations, one or more random effects are often used and this can introduce

another layer of difficulty in the parameter estimation, which needs to be overcome in the

future research.

Supplementary Material

The following supplementary materials are available online.

Additional results: Additional results on residual analyses (pdf file).
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