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Abstract

Accelerated destructive degradation tests (ADDT) are widely used in industry to
evaluate materials’ long term properties. Even though there has been tremendous s-
tatistical research in nonparametric methods, the current industrial practice is still to
use application-specific parametric models to describe ADDT data. The challenge of
using a nonparametric approach comes from the need to retain the physical meaning
of degradation mechanisms and also perform extrapolation for predictions at the use
condition. Motivated by this challenge, we propose a semi-parametric model to de-
scribe ADDT data. We use monotonic B-splines to model the degradation path, which
not only provides flexible models with few assumptions, but also retains the physical
meaning of degradation mechanisms (e.g., the degradation path is monotonic). Para-
metric models, such as the Arrhenius model, are used for modeling the relationship
between the degradation and the accelerating variable, allowing for extrapolation to
the use conditions. We develop an efficient procedure to estimate model parameters.
We also use simulations to validate the developed procedures and demonstrate the
robustness of the semi-parametric model under model misspecification. Finally, the
proposed method is illustrated by multiple industrial applications. This paper has
online supplementary materials.

Key Words: Acceleration model; ADDT; Arrhenius model; Degradation model;

Long-term property evaluation; Polymeric materials.



1 Introduction

1.1 Motivation

It is important for manufacturers to understand the lifetime of their products in order to
ensure accurate marketing and determine areas for improvement. While lifetime testing
is the most common approach, for many materials it is more informative to observe the
degradation of some performance characteristics over time, such as the tensile strength of an
adhesive bond. The lifetime is determined by a “soft failure” when the characteristic crosses
a predetermined level. This form of testing is known as degradation testing.

Several varieties of degradation testing have been developed to accommodate unique cir-
cumstances. Due to the long service life of many new materials, degradation testing under
a normal use condition is often not feasible. By exposing the material to a more harsh en-
vironment, such as higher levels of temperature or humidity compared to the use condition,
degradation data can be collected more efficiently. Thus, an accelerating variable is often
used in degradation tests. In some applications, measurements of the degradation level are
destructive. That is, the units being tested are destroyed or the physical characteristics
changed in a significant manner. Because the test is destructive, only one measurement can
be taken from one unit. An example could be determining the strength of a material by
measuring the force needed to break it. This form of testing, combined with an accelerating
variable, is referred to as accelerated destructive degradation testing (ADDT). To differenti-
ate, another common form of degradation testing is repeated-measures degradation testing
(RMDT), in which the measurement is non-destructive and multiple measurements can be
taken from the same unit. Because of the nature of the testing, ADDT must be analyzed
differently from RMDT. The objectives of the inference are often different. For example,
the focus of the inference from ADDT data is primarily on the population behavior (e.g.,
population quantiles, mean time to failure), while for RMDT data the inference can be done
at individual unit level (e.g., the distribution of remaining life for a particular unit). The
focus of this paper, however, is on the modeling and analysis of ADDT data.

ADDT is commonly used in industrial practice, for example, to evaluate the long-term
properties for polymeric materials. In this paper, we use the Adhesive Bond B data (Escobar
et al. 2003), the Seal Strength data (Li and Doganaksoy 2014), and the Adhesive Formula-
tion K data for illustrations. The details of these examples are presented in Section 5. In the
literature, the analyses of those ADDT datasets involved assumed parametric models for the
degradation path over time and a parametric form for the accelerating-variable effect. The

predominance of parametric models is mainly due to the need for extrapolation in two as-



pects; extrapolation in time and extrapolation to the use condition. For example, an ADDT
may cover only a 30% reduction of the material’s original strength at an elevated tempera-
ture range (e.g., 60°C—80°C). But interest lies at 50% reduction of the original strength at a
use temperature (e.g., 30°C). Despite their usefulness in extrapolation, the major limitation
of parametric models is that each model is application specific. Thus, it is challenging for
an industrial standard, such as UL746B (2013), to recommend a generic method for ADDT
data analysis. Another limitation is on the consequence of model misspecification (i.e., the
assumed parametric model departs from the true model for the degradation path). A larger
mean squared error (MSE) for the parameter estimator could result if a parametric model
is misspecified.

On another side, there has been tremendous statistical research in nonparametric meth-
ods, although the current industrial practice is still to use application-specific parametric
models to describe ADDT data. In this paper, we aim to bridge this gap between the
statistical research and current industrial practice. Instead of a case-by-case parametric
modeling approach, we propose a general and flexible semi-parametric model to describe
ADDT data, which is new to the ADDT data analysis literature. The challenge of using a
nonparametric approach comes from the need to retain the physical meaning of degradation
mechanisms and from performing extrapolations for predictions at the use condition. To
overcome those challenges, the semi-parametric model consists of a nonparametric model for
the degradation path and a parametric form for the accelerating-variable effect. In order to
preserve the monotonic nature of many degradation paths, the nonparametric model portion
will be constructed based on monotonic spline methods. For the parametric model portion,
commonly used models, such as the Arrhenius relationship for temperature, will be used
for extrapolation. Parameter estimation and inference procedures will also be developed.
Through application demonstration and simulations, we show that the proposed semipara-
metric model is more flexible, applicable to a wide range of applications, and is more robust
to model misspecification. An R package “ADDT” (Hong et al. 2016) is also developed, and
the use of the R package is illustrated in Jin et al. (2017). The developed method can be
useful for industrial standards, such as UL746B (2013), due to its flexility and robustness,

and software readiness for ADDT data analysis.

1.2 Related Literature

The literature on accelerated degradation data modeling and analysis can be divided into
two areas: RMDT and ADDT. In their pioneering work, Lu and Meeker (1993) used RMDT

data to estimate a failure-time distribution via a mixed-effects models framework. Meeker,



Escobar, and Lu (1998) introduced nonlinear mixed-effects models for RMDT data, which
were derived from physical-failure mechanisms. An introductory level description of degra-
dation models can be found in Gorjian et al. (2010), and Meeker, Hong, and Escobar (2011).
Ye and Xie (2015) provided a comprehensive review of the state-of-art methods in modeling
RMDT data.

In the area of ADDT data modeling and analysis, Nelson (1990, Chapter 11) used ADDT
data to estimate performance degradation. Escobar et al. (2003) provided a parametric
model and method to analyze the ADDT data collected from an adhesive bond. Tsai et al.
(2013) considered the problem of designing an ADDT with a nonlinear model motivated by a
polymer dataset. Li and Doganaksoy (2014) used a parametric model to model ADDT data
collected from a temperature accelerated test to study the degradation of seal strength. In
all existing methods for analyzing ADDT data, the parametric method is the most popular.

Compared to parametric models of degradation data, spline methods tend to be more
flexible and require less assumptions regrading the model formulation. Because the degra-
dation path is often monotonic in nature, monotonic splines are suitable for modeling degra-
dation paths. Ramsay (1988) suggested using a basis of I-splines (integrated splines) for
semi-parametric modeling. He and Shi (1998) considered the use of B-splines with L; opti-
mization. Meyer (2008) extended the work in Ramsay (1988) by proposing cubic monotonic
splines. Leitenstorfer and Tutz (2007) considered the use of monotonic B-splines in gen-
eralized additive models. For other applications of monotonic B-splines, one can refer to
Kanungo, Gay, and Haralick (1995) and Fengler and Hin (2014). In addition, Eilers and
Marx (1996) proposed a class of P-splines. Bollaerts, Eilers, and Mechelen (2006), Hofner,
Miiller, and Hothorn (2011), and Hofner, Kneib, and Hothorn (2016) considered the estima-
tion of monotonic effects with P-splines. We used monotonic B-splines in this paper because
it provides a wider range of flexibility.

Related to RMDT models, Shiau and Lin (1999) used kernel methods to smooth the
average degradation path. The smoothing was done separately for data from each temper-
ature level. Their methods work out well for RMDT data but for ADDT data it is more
challenging because the number of time points for each temperature is small, making it hard
to smooth over the time horizon. In addition, their method can not guarantee monotonicity
of the underlying degradation path, which could be a problem in ADDT analysis when one
needs to extrapolate to the use condition. Zhou, Serban, and Gebraeel (2014) used a spline
method to model degradation paths for RMDT data, without considering accelerating vari-
ables. Ye et al. (2014) ) used a gamma process to model the degradation path with the
shape function estimated nonparametrically for RMDT data. Their method also does not

have constraints on the degradation paths (i.e., monotonicity) nor does it consider accel-



erating variables. Other recent developments of stochastic models for RMDT data include
Wang and Xu (2010), Ye and Chen (2014), and Peng (2016). However, stochastic models
are usually not used for ADDT data because there is only one measure for each test sample.
Hong et al. (2015), and Xu, Hong, and Jin (2016) used shape-restricted splines to model
the effects of time-varying covariates on the degradation process. There is little literature,

however, on the use of semi-parametric models in ADDT data modeling and analysis.

1.3 Overview

The rest of this paper is organized as follows. Section 2 introduces some general notation for
ADDT data. It also presents the construction of the semi-parametric model using monotonic
B-splines. In Section 3, we present a procedure for estimating the unknown parameters as
well as procedures for conducting inference on ADDT data based on the proposed model. We
conduct simulation studies in Section 4 to investigate the performance of the semi-parametric
method with consideration of model misspecification. In Section 5, we apply the model
to data from several published datasets and provide comparisons with other well-known

parametric models. Finally, Section 6 contains conclusions and areas for future research.

2 The Semi-parametric Model

2.1 General Setting

Let y;;r be the degradation measurement for the kth sample at level ¢ of the accelerat-
ing variable AF,; and the jth observation time point ¢;;, i = 1,...,n, 7 = 1,...,J;, and
k =1,...,n;, where n is the number of accelerating variable levels, J; is the number of
measuring time points for level 4, and n;; is the number of samples measured at ¢;;. Let
N=>", Z;};l n;; be the total number of measured samples. A general form of the degra-

dation model is
Yijk = D(tij, x:;0) + €ijk, (1)

where z; = h(AF;) is a function of the accelerating variable, @ is a vector of unknown
parameters in the degradation path, and g;5; is an error term that describes unit-to-unit
variability. For the purposes of illustration, we assume that the degradation path is monotone
decreasing with time. The model can easily be generalized to paths that are increasing
with time. We will also be considering temperature as the accelerating factor as it is the
most common form of acceleration encountered in ADDT. However, the model can easily

incorporate other types of acceleration, such as voltage.



For temperature-accelerated processes, the Arrhenius model is often used to describe
the relationship between the degradation and temperature. This model uses a transformed

temperature level, which is given as

11605
= h(AF;) = . 2
1= MAF) = s 97316 2)

Here, Temp, is in degrees Celsius, and the value 11605 is the reciprocal of the Boltzmann’s
constant (in units of eV). The value 273.16 in the denominator is used to convert to the

Kelvin temperature scale.

2.2 The Scale-Acceleration Model

We propose the following semi-parametric functional forms for the degradation model in (1).

D(tij, xi;0) = g ni(tiz; B); 7], (3)

3 t; = T 5w Si = Tmax — T, 4
D) = o ) o
gk ~ N(0,0%), and Corr(eyx,cijw) = p, k # k. (5)

Here, 8 = (v, 3,0, p)" is the vector containing all of the unknown parameters. The func-
tion g(-) is a monotone decreasing function with unknown parameter vector ~, and f is
an unknown parameter associated with the accelerating variable. The quantity zp.. =
—11605/[max; (Temp,) 4+ 273.16] is defined to be the transformed value of the highest level
of the accelerating variable (i.e., temperature).

The distribution of the error terms ¢;;; are specified in (5), which follow normal distri-
butions with standard deviation o and correlation p. In particular, we consider a compound
symmetric correlation structure for measurements taken on the same temperature and time
point. The parameter p represents the within-batch correlation. In an ADDT, a batch of
samples (e.g., five samples) is exposed to high temperature in the same test chamber for the
same period of time. Thus, correlations can be introduced, for example, due to inaccuracy
in controlling the testing temperature. Measurements at different temperature levels and
time points are assumed to be independent.

The model in (3) falls within the class of scale-acceleration models. For a specific stress
level i, D(t, x;; 0) is a decreasing function of time ¢, in which 3 controls the degradation rate
through time-scale factor exp (fs;) in (4). A smaller time-scale factor corresponds to a rapid
decrease in degradation. When the acceleration level is at its highest, syax = Tmax—Tmax = 0.

In this case, n;(t; ) = t implies that the degradation path no longer relies on 3, and
D(t, Timax; 0) = g(t; 7).
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Thus, the function g(-) can be interpreted as the baseline degradation path for the scale-
acceleration model in (3).

Let ypr be the lowest degradation level present in the observed data. Then the scale-
acceleration model and the monotonicity of ¢(-) will allow one to extrapolate the degradation
level to yas for any given acceleration level. Let Dy be the failure threshold. Then, if y5, <
Dy, one can use the semi-parametric model to obtain failure information at the use condition
through this extrapolation. This is particularly useful since, in general, measurements may
be available below Dy for only some of the highest levels of the accelerating variable. In fact,
some industrial standards require that tests be run until the degradation level drops below
Dy for several acceleration levels. However, extrapolation beyond y,, is not possible due to
the nonparametric construction of the g(-), which is the tradeoff for the model flexibility

from nonparametric methods.

2.3 Nonparametric Form for Baseline Degradation Path

We use nonparametric methods to estimate the baseline degradation path g(-). Specifically,
we use monotonic B-splines to model the baseline degradation path. This not only provides
flexible models, but also retains the physical meaning of degradation mechanisms (e.g., the
degradation path is monotone decreasing).

Consider a set of r interior knots d; < --- < d,., and two boundary points dy and d, 1.

The entire set of ordered knots are
d,q:‘“zdoﬁdl < Sdrgdrﬂz”‘:drﬂﬁlv

where the lower and upper boundary points are appended ¢ times and ¢ is the polynomial
degree. For notational simplicity, we rewrite the subscripts in the ordered knot sequences as
dy,- -+ ,dri2g+2. The total number of basis functions is p = r 4+ ¢ + 1, which is the length of
parameter . The [th B-spline basis function of degree ¢ evaluated at z can be recursively

obtained in the following formulas:

Bo(z) = 1(d; < 2z < dj11),

z—d d -z
Bu(z) = ————By14(2) + — =B, 111(2),

- divq — di -t divgr1 — dig
where [ = 1,--- | p, and 1(-) is an indicator function. The degradation model can then be
expressed as
P
vigk = Y _ uBalni(ty: B)] + €ijn. (6)

=1



where v,’s are the coefficients.

To ensure the degradation path is monotone decreasing, we require the first derivative
of D(t,x;;0) be negative. For B-spline basis functions, De Boor (2001) proved that the
derivative of D(t, x;; @) with respect to n;(t; B) is

dD(t,2i30) _ =y = 2-1) o
dn;(t; 8) lzz(q 1)dl+q+1 — 4 By_1.[ni(t; B)].

As B-spline basis functions are nonnegative, it follows that v, < 4,1 for all 2 <[ < p gives a
sufficient condition for a monotone decreasing degradation path. However, except for basis
functions with degree ¢ = 1,2, it is not a necessary condition. Fritsch and Carlson (1980)
derived the necessary conditions for cubic splines (¢ = 3), though for higher order splines

necessary conditions are as yet unclear.

3 Estimation and Inference

3.1 Parameter Estimation

I / _ / _ / / / / !/
Let yz] - (yijla"'vyijnij)y 8ij - (gijla"-agijnij)v Yy = <y117"‘7y1J17"'7yn17"'7ynjn>7

€= (s s€lys o vEnts €y ) s and ¥ = (71,...,7)". The degradation model in (6)
can be written as
y = Xpvy +e, (7)
where
Balm(ti; 8)] -+ Bgplm(ti; B)]
B[ (ti2; B)] Bgpm (ti2; B)]

X, - . ‘ |

Bai[n(tns,; B)] -+ Bop[na(tng.: B)]
and € ~ N (0,X). Here, ¥ = Diag(Z11,..., X1/, Bty -+, 2, ) and By = o?[(1 —
p) L, 4pdy,,], where I, is an n;; X n;; identity matrix and J,,; is an n;; X n;; matrix of
1’s. We can also rewrite 3 = 02 R, where R = Diag (Ryy,...,Ryy,,..., Ru1,..., R,y,) and
Rij = (1 —p) L, +pJn,.

We use likelihood-based methods to estimate the unknown parameters 8 = (v/, 3,0, p)’.
For now, we consider estimation of @ with a given number of knots and knot locations.
We will give a discussion on knots selection in Section 3.3. A particular challenge to the
estimation comes from the constraints on «, namely that v, < v,_1,2 <[ < p. We also note
that, for a given 3, Xz is known, in which case (7) becomes a linear model with a correlated
covariance structure. Thus, we proceed by first deriving estimates of (v/, 0, p)’ given 8 and

then use a profile likelihood approach to estimate f3.
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The estimates of v and (o, p)" are obtained using an iterative procedure. In particular,
at the mth iteration, given estimates (=Y, p(™=VY the value of 7™ is obtained by

minimizing

Qy) = (y = Xg7)' (§(m1)>_1 (y —X47)

subject to 3 < y-1,2 < 1 < p. (8)

Equation (8) is a quadratic object function with linear constraints. So it can be solved with
quadratic programming techniques such as the dual method in Goldfarb and Idnani (1983),
and the Hinge algorithm in Meyer (2013). In this paper, the Hinge algorithm is used.
With the estimate ™, one can then obtain (™, 5(™)" using restricted maximum
likelihood (REML) as long as ™ does not take values on the boundary of the linear
constraints. If the solution of (8) takes values on the boundary of the linear constraints, we
(m)

w | represent all

use approximate REML to update estimates of o and p. In particular, let &

of the unique values in 9™ and p, be the length of ﬁ;m) For each unique value /7\1'(,:?)7 let

(m) (m)

x; g, be the sum of the corresponding columns in Xz. Then we have X4 = Xg, 7, ",

where Xg, = (Z1,6u, -+ ®p, pu). The approximate REML log-likelihood is

S\ 1 - ~(m — ~(m
Lrpw(o, pl' )>:—§ {10g\2!+log!X’u2 Xl + (y — Xp7™)Y 2 (y — X7 >)}_
(9)

The covariance parameter estimates (™ p{™)" are those values that maximize (9). In

~(m)

particular, after some calculation it can be shown that ¢ has the following closed-form

expression

(m—1) 3

o _ [ = XAV R )Ny - XA
N — Pu

Thus, p™ can be obtained from a one dimensional optimization problem. That is,

5™ — argmax {— log |G )R] — log | (™)X, R X 5|

P
") 2y — XA™Y R (y — Xﬁ(m))} .

Upon convergence, the estimates of (3,7, p)’ are obtained for a given 3, denoted by (‘)\/%, 0s,
ps)'. The initial values (6%, p(?) can be easily obtained by fitting a non-constrained model.

The profile log-likelihood for  is given as

~ a1 —~
1 exp | — (¥ — Xp75)25 (¥ — Xp73)
V2| S5/ 2 '
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In practice, one can first estimate (v, o, p)’ for a specified range of values of 3, then compute
L(B,75,03,pp) as a function of 3. The estimate B is the value that maximizes this function.
The final estimates are denoted by 0= ', B\, a,p).

Here we provide some discussion on the estimation procedure. Regarding the convergence
of the algorithm, the likelihood function is the same as the likelihood function of a linear
mixed model with a given 8. The restrictions on = reduce the parameter space but that
does not change the shape of the likelihood function. The parameter S is related to the
acceleration rate, which can be determined by the data from different levels of temperature.
If the value of (8 is too large or too small, a smaller likelihood value will result. That is, a
certain finite value of § will maximize the likelihood value. Thus, the algorithm converges
well as long as there is enough information on the acceleration rate from the data, which
typically requires three levels for the temperature. To specify the initial range of 3, one
can fit polynomial curves (e.g., third order polynomial) separately to the data from each
temperature level. By comparing the time to reach a certain degradation level (e.g., 70% of
the original strength) at different temperature levels, one can obtain several rough estimates

of 5. The range of these estimates can be used to specify the initial range of 3.

3.2 Reliability Measures

Once the model parameters are estimated, other parameters related to reliability can then
be estimated. For example, the mean time to failure (MTTF), denoted by 1, is one of ways
to evaluate the reliability of a product/material. Based on the semi-parametric model, we
can derive an estimate fi; at a use condition z; and failure threshold Dy by solving

my

P
D(py, s 0) = Z%qu ( = ) = Dy.
=1 y)]

exXp [5 (xmax -

We can also derive the failure time distribution from the semi-parametric model. The
event that the failure time 7T is less than ¢ (i.e., T' < t) is equivalent to that the degradation
measurement at time ¢ is less than the failure threshold Dy (i.e., yx < Dy), for monotonic
decreasing degradation paths. Here y; is the degradation measurement at ¢. Hence, the

cumulative distribution function (cdf) of failure time, Fip(t), can be calculated as

t .
D; ~ 9 [yt 7]

Fr(t) = P(T <t) = P(y; < D) = @ i

020,

where ®(-) is the cdf of the standard normal distribution. The quantile function can then

be calculated as the inverse of the cdf. That is, the o quantile is ¢, = F»'(a). In the case
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of no closed-form expression, numerical methods can be used to find the quantile function
from the cdf.

3.3 Spline Knots Selection

The number of knots and knot locations are a key component to using B-splines to model
the degradation path. In addition, it is also necessary to determine the maximum degree of
the B-splines. For knot selection, we first fix the degree of the B-splines and then find the
optimum knot locations. Optimality is determined by a variation of the Akaike information
criterion:

(y - XA (y—X57)

xXp | — + 2 x edf, (10)

AIC = —2log 5

1
——e
V27| X |1/2

where edf is the effective degrees of freedom in 4 plus three for the parameters (3,0, p)’.
Wang, Meyer, and Opsomer (2013) and Meyer (2012) discussed constrained spline regression
for both independent and correlated error cases. In particular, they showed how to calculate
the effective degrees of freedom for a constrained fit through the use of a cone projection,
which is the trace of the projection matrix. Because we have p — 1 linear constraints,
the effective degrees of freedom in « has a value from 1 to p, where p corresponds to a
unconstrained fit. Letting ¢ denote the degree of the B-spline functions, the procedure for

knot selection is as follows:

1. Determine the optimal number of interior knots 7,y , which minimizes the AIC. The
default knot locations are equally-spaced sample quantiles. That is, if the number of

interior knots is r, the default knot locations are b/r,b=1,--- ,r — 1.

2. Delete each of the internal knots in sequence. The knot whose deletion leads to the
greatest reduction in AIC is removed. Repeat until no more existing knots can be

removed.

The whole procedure is to be repeated for different B-spline degrees until the optimal
knot sequence is determined. This knot selection procedure is similar to the procedure in
He and Shi (1998). The sample size for an ADDT is typically small and so a low degree of
spline (¢ < 4) and a small number of interior knots (1 < r < 5) are usually sufficient to

provide a good fit to the data.
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3.4 Statistical Inference

Inference based on the semi-parametric model in (7) can rely on either asymptotic theory
or a bootstrap procedure. Because the bootstrap method is straightforward and easy to
implement, we use a nonparametric bootstrap to calculate confidence intervals (CI) for the
parameters and pointwise CI for the degradation path. The error term in model (7) can be
written as
Eijk = Wij + Cyjk,

where u;; ~ N(0,02), €;x ~ N(0,02), Corr(ug, €;jx) = 0, 02 = po?, and 02 = (1—p)o?. That
is, the error term in model (7) can be written as the sum of a random effect term u;; and
an independent error term e;;,. To obtain the CI, one could resample from the estimated
random effect term u;; and the estimated independent error term e;j, separately. However,
Carpenter, Goldstein, and Rasbash (2003) showed that directly resampling from u;; and e,y
will cause bias. Therefore, we adjust u;; and €;;; prior to bootstrapping. That is,

" ~1/2 ~1/2
~2 ~ ~ ~ ~2 ~ o~
Zuii/ Z Ji] Oullij, and e = [Z eijk/nij] TeCiji-
ij i=1 k

The specific steps of the nonparametric bootstrap are described as follows:

~c __

) )

1. Sample uf](m with replacement from @f; and sample efj(km with replacement from ;.
(m)
ijk

c(m)
1]

c(m)

2. Compute y;" = x[,7 +uy;" + e -

3. Fit the semi-parametric model to the bootstrapped samples yi(;';), m=1,...,B.

Let 6 be a general notation for a parameter to be estimated. For a sequence of ordered
bootstrap estimates 5(1), e ,5(3), the quantile-based CI with confidence level 1 — « for 6 is
calculated by taking the lower and upper «/2 quantiles of the bootstrap estimates. That
is (5([30‘/ 2) plBa-a/ 2D), where [-] is the rounding function. A bias-corrected CI, proposed
by Efron and Tibshirani (1993), can be computed by taking the [B®(2z; + 24/2)]th and
[B®(22¢ + 21_a2)]th ordered values. That is (§IB®(Zact7a/2)) gUB®Cact21-02)))  Here, ¢
denotes the proportion of the bootstrap values that are less than é\, and ®(-) and z, are the

cdf and the o quantile of the standard normal distribution, respectively.

4 Simulation Study

The objective of the simulation study is to investigate the performance of the proposed

parameter estimation and inference procedures. We will examine the bias, standard devi-

12



ation (SD), and mean squared error (MSE) of estimators of the parameters and the base-
line degradation function. We also will investigate the coverage probability (CP) of the
bootstrap-based CI procedure in Section 3.4. An additional simulation study will be con-
ducted to investigate the performance of the proposed semi-parametric model under model

misspecification.

4.1 Performance of Parameter Estimators

Simulation Settings

We consider two different values for the temperature levels (i.e., n = {3,6}). To simplify the
setting, the measuring time points are set to be the same for all temperature levels. We con-
sider three different values for the number of measuring times, denoted by J,, = {5,10,15}.
Thus, we have six combinations of temperature levels and the number of measuring time
points in the simulation. The specific settings are summarized in Table 1. Ten samples
are tested at each combination of temperature level and measuring times. The data are

simulated from the following model:

p
Yijk = D(tij, i3 0) + ijr. = ZTquz[m(tij; B)] + €iji, (11)
1=1

where the degree of the B-splines is ¢ = 2, and number of interior knots is » = 3. The knot
locations are the sample quantiles. Figure 1 gives the spline basis functions and the baseline
degradation function for the scenario with n = 3 and J,, = 5. The true parameters in the

model are = 0.83,v = (1,0.9,0.8,0.7,0.6,0.6)’, and (o, p)’ = (0.019,0.2)".
For each scenario, 500 datasets are generated and the bias, SD, and MSE of the estimators
of parameters and baseline degradation curves are calculated. The quantile-based and bias-
corrected CI are computed based on B = 1,000 bootstrap samples and the CP is also

computed.

Simulation Results

Figure 2 shows the bias and MSE of parameter estimators. Figure 3 shows the pointwise
MSE curves of baseline degradation curves. We find that the MSE of the point estimators
and baseline degradation curve estimators decrease as either the number of temperature
levels or time points increases. Even when the number of temperature levels and time points
are both small, biases of § and ¢ are small, while the bias of p is large. When either the
number of temperature levels or time points is large, the estimates of 3,0 and p are all close

to the true values. We also observe some increasing/decreasing trends of the MSE plot in
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Table 1: Selected temperature levels and time points for the simulation studies.

Settings Number of Temp. Levels (n) | Temperature Levels (°C)
Temperature setting 1 3 50, 65, 80
Temperature setting 2 6 30, 40, 50, 60, 70, 80
Number of Time Points (J,) | Measuring Times (Days)
Time point setting 1 5 8, 25, 75, 130, 170
. . . 5, 10, 30, 50, 70, 90, 110,
Time point setting 2 10 130, 150, 170
10, 30, 40, 50, 60, 70, 80,
Time point setting 3 15 90, 100, 110, 120, 130,
140, 150, 170

Figure 3. The majority of the curves, however, fall within 2 x 1075 and 8 x 10~°, which is
quite a small range. The underlying reason for such fluctuation is that we no longer have an
adequate number of interior knots for those time periods near the end of experiment.
Figures 4 and 5 present the CP for quantile-based CI and bias-corrected CI of the param-
eters and baseline degradation curves. The performance of bias-corrected CI is similar for 3,
and better for o, p and the baseline degradation curve compared to quantile-based CI. For
the parameter estimators, the CP of bias-corrected CI of 3 is good when n or J, is small.
However, the CP of bias-corrected CI of (o, p)" are overall slightly less than the desired con-
fidence level. For the baseline degradation function, the CP of pointwise bias-corrected CI
are poor when n = 3 and J,, = 5. The performance of pointwise bias-corrected CI improves
as n and J, increases. Overall, the results show that the performance of the estimation and

inference procedures are good.

4.2 Performance under Model Misspecification

Simulation Settings

In this simulation study, the data are simulated according to a parametric model. Then, the
semi-parametric model is used to fit the simulated data. The temperature levels are set at
50°C, 65°C, 80°C and the measuring times are set at 192,600, 1800, 3120, and 4320 hours.
There are 10 samples measured at time 0 and 5 samples measured at all other time points.

The data are simulated from the model

Yije = Bo + Brexp(Boxi)tij + €iji, (12)
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Figure 1: Spline bases and baseline degradation path used in simulation study.

where Temp, is the ith temperature level, ¢;; is the jth measuring time point for temperature
level 4, and z; = —11605/(Temp, + 273.15). The true parameters are 3 = (5o, f1,02) =
(1,-3.5,0.3), and (o, p)’ = (0.02,0)". In practice, the true model may not be known exactly.
Thus, we also consider the case when a different parametric model from the true one is

used to fit the data. The incorrect parametric model, adapted from Vaca-Trigo and Meeker
(2009), is given by
Qo

tij
1+ [exp(ﬁoiﬁlxi)

Yijk = ]7 + €ijks (13)

with parameters (ag, B, £1,7)" in the mean structure. We fit the true model (12), the
incorrect parametric model (13), and the semi-parametric model (3) to the simulated data.
Figure 6 shows one case of the simulated data and the fitted degradation paths. The semi-

parametric model can follow the path of the true model closely.

Simulation Results

To assess the fit of the proposed semi-parametric model, we compare the fitted degradation

path to the true degradation path using the integrated mean squared error (IMSE) of the
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baseline degradation function estimator, which is defined as
tm 9
IMSE = [ B{(g(t) - gltiy)} e
0

tm tm
= [ B ) - gl d+ [ Var () dt = Bias’ + 1V,
0 0

where t,, is the maximum time under the maximum level of the accelerating variable. As
there is no closed-form expressions for IMSE, integrated squared bias (IBias?) and integrat-
ed variance (IVar), we report the empirical results. Table 2 presents these results, which
indicate that the performance of the proposed semi-parametric model is good. The largest
contribution to the root IMSE comes from the variance component. Thus, it is not sur-
prising that the incorrect parametric model (13) performs the worst in capturing the true
degradation path.

For each simulated dataset, the MTTF at 30°C (the normal use condition specified in
the simulation setting) is calculated based on the true parametric model (12), the incorrect
parametric model (13), and the semi-parametric model. The mean, bias, standard derivation
(SD), and root MSE of the MTTF for each of the different models based on 600 datasets
are summarized in Table 3. The results indicate that the estimate of MTTF from the semi-

parametric model is close to the true value, but with larger variance when compared to other
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based and bias-corrected methods, respectively.

Table 2: Empirical IBias, root IVar (RIVar), and root IMSE (RIMSE) for the true model

(12), the incorrect model (13), and the semi-parametric model.

Models IBias RIVar RIMSE

True Model 0.0003 0.0043 0.0043
Incorrect Model 0.0267 0.0060 0.0274
Semi-parametric Model 0.0003 0.0091  0.0091

models, which is due to the larger number of parameters that need to be estimated. The
estimated MTTF from the incorrect parametric model (13) has the largest bias, leading to a

larger RMSE. The results indicate the proposed semi-parametric model performs quite well.

5 Applications

To help motivate the use of the proposed semi-parametric model, we selected three published
datasets from well-known examples of ADDT. The data for each example are summarized

below.
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Figure 6: Plot of a simulated dataset and fitted degradation paths based on the true and

incorrect parametric models, and the semi-parametric model.

Table 3: Empirical mean, bias, SD, and root MSE (RMSE) of the MTTF estimators based

on the true model (12), the incorrect model (13), and the semi-parametric model.

Models Mean Bias SD RMSE
True Model 82.60 0.01 2.99 2.99
Incorrect Model 85.82 3.20 3.75 4.93

Semi-parametric Model 82.77 0.16 4.22 4.22
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Figure 7: Fitted degradation paths of the Adhesive Bond B data.

5.1 ADDT Datasets and Parametric Models
The Adhesive Bond B Data

Escobar et al. (2003) discussed an experiment that measured the strength of an adhesive
bond (Adhesive Bond B) over time. FEight units were measured at the beginning of the
experiment under normal temperature to serve as the baseline strength. The remaining
measurements were taken at selected weeks (2, 4, 6, 12, and 16) for three accelerated tem-
perature levels (50°C, 60°C, and 70°C). A scatter plot of the Adhesive Bond B dataset is
presented in Figure 7(a). The degradation model used by Escobar et al. (2003) is

Yije = Bo + B1exp(Beri)Tij + Eijik, (14)

where y;;; is the strength of Adhesive Bond B in log Newtons, 7;; = /t;;, z; = —11605/
(Temp; + 273.15) is the Arrhenius-transformed temperature, and €5, ~ N(0,0?%). The esti-
mates are B, = 4.4713, B, = —8.6384 x 108, B, = 0.6364 and & = 0.1609.

The Seal Strength Data

Li and Doganaksoy (2014) considered a dataset from an ADDT test of seal strength. At the

start of the experiment, a batch of 10 seal samples were measured at the use temperature
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Figure 8: Fitted degradation paths of the Seal Strength data.

level of 100°C. A batch of 10 seal samples were then tested at selected weeks (5, 10, 15, 20,
and 25) for four temperature levels (200°C, 250°C, 300°C, and 350°C). A scatter plot of the
Seal Strength data is shown in Figure 8(a). Though one would expect the seal strength to
decrease under higher temperature, some batches of seal samples yielded higher strengths in
later weeks compared with the initial measurements. This suggests a large batch-to-batch
variability which must be incorporated into the model. Thus, Li and Doganaksoy (2014)

considered the following nonlinear mixed model:
Yije = Bo — Brexp(Bami)tij + 5 + Eijis (15)

where y;;;. is the log,, strength of seal sample, and z; = —11605/(Temp, + 273.15). The
random variable 8;; ~ N(0,07) represents batch-to-batch variability, ;;x ~ N(0,0?), and
0i; and €;5 are independent. The estimates are Bo = 1.4856, 31 = 47.2166, 32 = 0.3420,
o = 0.1603, and &5 = 0.0793.

The Adhesive Formulation K Data

A new adhesive, Formulation K, was developed and tested at 40°C, 50°C, and 60°C. The
strength of 10 units were measured at the beginning of the experiment and a specified number

of samples were tested at 3, 6, 12, 18, and 24 weeks. Figure 9(a) is a scatter plot of the data.
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Figure 9: Fitted degradation paths of the Adhesive Formulation K data.

The parametric model used to describe the data is

Yijie = 10g(90) + Bo(1 — exp {—p1 exp [Ba(z;i — x2)] ti;}) + Eujis (16)

where y;;; is the strength of Adhesive Formulation K in log Newtons, 7;; = /%i;, ; =
—11605/(Temp; + 273.15), x5 = —11605/(50 + 273.15), and &, ~ N(0,0?). The estimates
are By = —0.9978, B, = 0.4091, B, = 0.8371, and & = 0.0501.

5.2 Comparisons of Parametric and Semi-parametric Models

In this section, we also applied the developed method to each of the datasets. We applied the
knot selection technique in Section 3.3 for each application. We also tested the significance
of p = 0 which informs the selection of the appropriate model. The parameter estimates and
their associated quantile-based CI are presented in Tables 4.

In order to assess the fit of the semi-parametric model and compare it with the corre-
sponding parametric model chosen by the respective applications, we investigate the AIC
values as defined in Section 3.3. In the calculation of AIC, the log-likelihood is the marginal
log-likelihood for the parametric models. Table 5 contains the log-likelihood values, edf,
and AIC for each model and dataset. For all three datasets, the semi-parametric model-
s possessed a lower AIC as compared to the parametric models. This indicates that the

semiparametric model can provide a better description for the ADDT data.
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Table 4: Parameter estimates and corresponding 95% quantile-based CI for the semi-

parametric models for the three applications.

Quantile-based CI

Applications Parameter | Estimate 95% Tower 95% upper
) 15} 1.3422 1.1071 1.6165
Adhesive Bond B o 01537 01265  0.1787
15} 0.3235 0.2451 0.5194
Seal Strength o 0.1610 0.1192 0.1904
p 0.7573 0.5465 0.8307
. ) 15} 1.8221 1.6575 2.3658
Adhesive Formulation K o 0.0484 0.0419 0.0544

Table 5: Log likelihood and AIC values of parametric and semi-parametric models for the
ADDT data from the three applications.

Applicati Parametric Models Semi-parametric Models
pprcations Loglik df  AIC Loglik edf  AIC
Adhesive Bond B 34966 4 —61.933 | 38.726 5 = —67.441
Seal Strength 194.990 5 —379.981 | 199.745 6  —387.490
Adhesive Formulation K | 158.950 4 —309.901 | 163.989 8 —311.979

We also compared the MTTF estimation using parametric and semi-parametric models
for the three applications. Table 6 shows the estimated MTTF and the associated 95%
quantile-based CI at normal use conditions. For illustrations, the failure threshold is set to
be 70% and the time is in weeks. For the Adhesive Bond B and Adhesive Formulation K
data, the MTTF from the two models are close to each other. For the Seal Strength data,
there are some discrepancies in the MTTF from the two models. The 95% CI are in general

wide for all cases, which is due to extrapolation.

5.3 Model Assumption Checking

We conducted several graphical checks on the model assumptions for the three applications.
To check the fitting of the mean structures, the fitted degradation paths for the parametric
and semi-parametric models are presented in Figures 7, 8, and 9. All three figures show that
the semi-parametric models provide a good fit to the mean structure of the data. We can
see that the proposed model is flexible in fitting ADDT data from different applications.
For each application, we also examined the Q-Q plot of standardized residuals and the

pattern of standardized residuals versus fitted values. The Q-Q plot can reveal if the normal-
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Table 6: Estimated MTTF and the associated 95% quantile-based CI at normal use condi-
tion, based on parametric and semi-parametric models for the three applications. The failure
threshold is set to be 70% and the time is in weeks (In the table, “est.” means “estimate”,

“low.” means “lower”, and “upp.” means “upper”).

Normal Use Parametric Semi-parametric

Applications Condition et 95% CI st 95% CI
low. upp. low. upp.
Adhesive Bond B 30°C 270 136 554 305 145 721
Seal Strength 100°C 222 98 674 126 65 956
Adhesive Formulation K 30°C 68 55 88 8 65 131

ity assumption holds well. The residuals can show if the constant variance assumption holds
and if the mean structure (the semiparametric component for the mean function) describes
the data well. Supplementary Figures 1 to 3 show the residual analyses for the Adhesive
Bond B data, Seal Strength data, and Adhesive Formulation K data, respectively. Overall
the plots show that the model assumptions hold well for these three applications.

5.4 Illustration of Quantile Function Estimation

For each application, the quantile functions and corresponding CI can be calculated. For
illustrations, we use the Adhesive Bond B data as an example. Figure 10 shows the quantiles,
to, and the 95% pointwise quantile-based bootstrap CI for four temperature levels for a range
of o values. The dotted lines are the pointwise CI. Since the proposed method can allow
users to set the particular failure threshold, in this illustration, we used the 40% failure
threshold for the Adhesive Bond B data. The temperature for use condition is set to be
30°C. Note that the estimated quantile functions for different temperature levels in Figure
10 are parallel to each other (the y-axis is on log scale). This is because the a quantile for
temperature level x; is the a quantile at the baseline degradation level multiplied by the

factor exp(fx;).

6 Concluding Remarks and Areas for Future Work

In this paper, we describe a new semi-parametric degradation model for ADDT data based
on monotonic B-splines. We develop estimation and inference procedures for the proposed
model as well as methods for selecting knot locations for the B-splines. Our simulation

results indicate that the proposed estimation procedures for the proposed semi-parametric
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Figure 10: Estimates and CI of quantile functions at different temperature levels for Adhesive
Bond B data.

model perform well. Compared to parametric models, the semi-parametric approach is more
flexible, can be applied to a wide range of applications, and may be best suited as a generic
method for ADDT data analysis for industrial standards. In addition, the semi-parametric
model is more robust to model misspecification than a parametric model approach. The
proposed method is implemented in an R package named “ADDT” (Hong et al. 2016). Jin
et al. (2017) provide illustrations on the use of the R package.

In the proposed method, we did not use equally spaced interior knots. The number and
location of interior knots were determined using the AIC criterion. Due to the monotonicity
constraints, the model fitting results are less sensitive to the number and locations of knots.
This behavior is also observed in, for example, Meyer (2008), and Hong et al. (2015). The
simulation study and applications demonstrated that the model chosen by AIC can provide
an adequate fit to the data.

One possible application of the proposed semi-parametric model could be for test plan-
ning. A test plan based on this model would be general enough for application to a variety
of materials and also allow for testing of different models. The proposed model can serve a
starting ground from which to test models against the data gathered rather than having to
assume a given model prior to data collection. This would certainly serve as an interesting

topic for future research.
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The models considered here were solely scale-acceleration models. However, for certain
types of products, a model with both scale and shape acceleration may describe the degra-
dation path more appropriately. In this case, the scale-acceleration model may not be able
to fit the data well resulting in poor predictions. Tsai et al. (2013) considered a parametric
model with both scale and shape acceleration in test planning. Estimation and inference
procedures for the semi-parametric model would certainly be more complex with the intro-
duction of a shape-acceleration parameter. It would be of great interest to pursue this in
future research.

Although the focus of this paper is on ADDT data, whether the proposed ADDT method
can be used for RMDT is an interesting question for future research. For RMDT data, due
to within unit correlations, one or more random effects are often used and this can introduce
another layer of difficulty in the parameter estimation, which needs to be overcome in the

future research.

Supplementary Material

The following supplementary materials are available online.

Additional results: Additional results on residual analyses (pdf file).
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