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Measuring the corporate default risk is broadly important in eco-
nomics and finance. Quantitative methods have been developed to
predictively assess future corporate default probabilities. However, as
a more difficult yet crucial problem, evaluating the uncertainties as-
sociated with the default predictions remains little explored. In this
paper, we attempt to fill this blank by developing a procedure for
quantifying the level of associated uncertainties upon carefully disen-
tangling multiple contributing sources. Our framework effectively in-
corporates broad information from historical default data, corporates’
financial records, and macroeconomic conditions by a) characterizing
the default mechanism, and b) capturing the future dynamics of var-
ious features contributing to the default mechanism. Our procedure
overcomes the major challenges in this large scale statistical infer-
ence problem and makes it practically feasible by using parsimonious
models, innovative methods, and modern computational facilities. By
predicting the marketwide total number of defaults and assessing the
associated uncertainties, our method can also be applied for evalu-
ating the aggregated market credit risk level. Upon analyzing a US
market data set, we demonstrate that the level of uncertainties as-
sociated with default risk assessments is indeed substantial. More
informatively, we also find that the level of uncertainties associated
with the default risk predictions is correlated with the level of default
risks, indicating potential for new scopes in practical applications in-
cluding improving the accuracy of default risk assessments.

1. Introduction. Measuring the corporate default risk has long been
crucial in many business decisions. Examples include loan evaluation where
a bank analyzes the credit quality of a borrower over various future potential
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borrowing periods, internal control considerations where corporate manage-
ment needs to periodically and accurately assess the firms present financial
condition, investment screening where investors predict financial health of
investments under consideration and screen out undesirable investments,
and determining the credit ratings by rating agencies.

Also, recent introduction and expansion of credit derivative markets have
renewed interests in this topic. According to the survey by the International
Swaps and Derivatives Association (ISDA), the credit default swap (CDS)
market, the most popular type of credit derivatives, has exploded over the
past decade to about $30 trillion in 2010, up from $0.9 trillion in 2001.
The default probabilities underlie the pricing of such financial instrument,
and CDS reflects the market-based estimate of default probabilities. The
Basel II bank regulation has further pushed the topic to the center of the
banking regulation. In particular, based on the Basel II accord, banks and
bank regulators need to determine the appropriate level of regulatory and
economic capital to be held by a bank to be in line with the credit risk
represented by its loan portfolio, where borrower default probabilities play
an explicit role.

In the finance literature, there are two broad categories of approaches for
corporate default modeling – the structural and the reduced form modeling
approaches. The classical structural approach of [37] assumes that a firm de-
faults when its assets drop to a sufficiently low level relative to its liabilities.
A key implication is that a firm’s conditional default probability is com-
pletely determined by the only key variable, its distance to default, which
is closely related to the firm’s annual asset growth, accounting for its levels
of liabilities and volatilities; see, among others, the review of the structural
approaches in [1]. [12] argue that despite the impressive predictive power
of the [37]’s structural model, in light of its restrictive functional form, it
is better to use a reduced-form model, allowing more covariates entering
default predictions; see also [19] on the dependence of defaults with other
covariates. The first generation of the reduced-form models, e.g., those in
[6], [7] and [2], primarily rely on the multiple discriminant analysis (MDA),
classifying a firm into one of the possible categories based on the score and
rank computed from its individual characteristics. The second generation ap-
proaches, such as [38] and [48], propose to use the logistic regression analysis,
attempting to assess the conditional probability that a firm would go default
in the next period of time. Both the first and second generations may be
considered as static approaches, as they have been using single-period clas-
sification or probability models with the bankruptcy data but have ignored
their multiple-period feature. As pointed out by [42], static models would
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produce biased and inconsistent estimates of bankruptcy probabilities due
to their ignoring the dynamics over time, and may introduce an unnecessary
selection bias into the estimates. The current generation of the reduced form
models incorporates the dynamics over time by examining the duration of
the default events. [42] proposes a hazard function based duration modeling
with time-dependent predictors; see also [13], [12], [9], and [8] among others.
In particular, [13] demonstrate the superior predicting performance of [42]’s
model over the first (i.e., [2]) and second (i.e., [48]) generations of models.
The most recent development of the reduced form modeling approaches on
default predictions has an emphasis on the corporate defaults over multiple
periods; see, for example, [20] and [16].

While various quantitative procedures have been developed for predicting
corporate default probabilities, point predictions are serving as the domi-
nating measures in the current state of knowledge. A blank in the literature
is that the point predictions are equipped with no assessment of the asso-
ciated prediction uncertainties. A main reason behind is that the task is
too challenging due to the huge scale and high complexity of the problem.
Clearly, the historical corporate and macroeconomic time series data are of
high dimensionality and complexity. Meanwhile, all companies exposed to
future default risks would require assessments of their default risks and the
associated level of uncertainties. The level of complexity would substantially
increase further if one concerns the prediction with multiple future periods.
Fundamentally, there are multiple contributing sources to the uncertainties
including those from the default mechanism, the future dynamics of the
corporates and economic environment, and the model estimation errors; see
Section 2 for more details on the source of uncertainties.

Our investigation intends to develop a procedure obtaining prediction
intervals for quantifying the level of uncertainties associated with default
risk predictions, taking the three aforementioned sources of uncertainties
into account. Studies on the prediction intervals with duration modeling
have been documented in the literature in areas such as the reliability; see,
for example, [26] and reference therein. Nevertheless, existing methods do
not apply to the scenario of corporate default prediction due to the unique
challenging practical aspects of the problem; see Sections 2 and 3.

Given the complexity of the models in this scenario, explicit formulas
generally do not exist for constructing valid prediction intervals. Thus, our
framework resorts to resampling procedures built upon parametric stochas-
tic models. When the number of companies at default risk is at the order of
tens of thousand with history of tens of years, challenges are arising from 1)
complicated structure of covariates with large number of unknown parame-
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ters, 2) large scale of the data sets, and 3) complicated data structure. For
example, the data set in our analysis in Section 4 for the US market over the
period 1990 – 2009 contains more than 10,000 companies, and the number of
monthly observations exceeds 1,000,000. However, only few companies have
observations during the entire period because many companies either went
default or exited the market due to other reasons. Among all companies in
the data set, missing data are overwhelming and the time horizons for those
observations are highly heterogeneous among the companies. Our Section
3 provides detail on our framework developed for uncertainties assessments
with prediction intervals for both point predictions and total defaults predic-
tions, overcoming those challenges by using parsimonious models, innovative
and computationally efficient methods, and powerful computational facili-
ties.

The proposed framework in this study will contribute to the literature
from several important aspects. First and foremost, compared with the cur-
rent practice of default probability prediction which typically yields only
the point estimate, the introduction of default prediction intervals dramati-
cally improves our understanding and knowledge especially for model diag-
nosis and statistical inferences. Furthermore, a distinguished feature of our
measure is allowing for not only multiple sources of uncertainties but also
the asymmetric nature of default probability prediction intervals so that
the lower bound of default probability prediction would not go below zero
(which is obviously not sensible). Appropriately quantifying the associated
uncertainties is the key to valid statistical inference on the future default
probabilities. For example, to assess how well their model of default predic-
tion performs, [12] compare the fitted point estimate of probability of failure
(which is the average of such estimates from each company) with the actual
default rate in the market and conclude (p.2916) that their model some-
what overpredicts failures in 1974 to 1975, underpredicts for much of the
1980s, and then overpredicts in the early 1990s. Obviously, additional scope
of the problem may be provided if the prediction intervals are taken into
consideration. Also, the availability of uncertainty quantification for default
probability prediction would enable us to further conduct effective forecast-
ing evaluations, e.g., along the line of [14], where one would examine whether
the apparent improvement of forecast accuracy is statistically significant. In
our data analysis reported in Section 4, facilitated by the prediction inter-
vals, we are able to show that the out-of-sample aggregated predictions for
the total number of defaults work quite well for multiple years.

Moreover, the uncertainties of default probability prediction should be
crucial in improving our understanding of default risk pricing on financial
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markets, and may provide a new venue of exploring distress risk and/or
credit risk in asset pricing. For example, [15] document the puzzling neg-
ative relationship between stock returns and default risk as measured by
default probability. [23] report a puzzling finding on the US corporate bond
market that credit spreads are roughly twice as large as default losses and
do not respond to realized default rate. The missing uncertainties of default
probability predication could be important. As an illustration, we demon-
strate by our data analysis in Section 4 that the assessments of uncertainties
associated with predicted default probabilities for individual companies are
indeed highly informative. First of all, the level of uncertainties can be high,
especially for those companies with high predicted default probabilities. Sec-
ond, and more interestingly, we found that by incorporating the width of the
prediction interval in a logistic regression for the binary variable defined as
a company going default or not, significant interaction is found between the
width of the prediction interval and the point default probability prediction.
This shows that the level of uncertainties associated with the point default
probability prediction can be informative practically for solving problems.
Additionally, the uncertainties of default probability prediction should shed
light on many important issues in finance where default/credit risk plays a
central role. For example, [22] explore the systemic risk of the financial sector
defined as the conditional probability of failure of a sufficiently large propor-
tion of financial institutions. We show in our Section 4 that our procedure
is capable of equipping prediction intervals with aggregated predicted total
number of defaults, a feature that can benefit various studies of systemic
risks.

The rest of this paper is organized as follows. In Section 2, we disen-
tangle the sources of uncertainties contributing to the default predictions.
We present in Section 3 our framework for predictions and assessing their
associated levels of uncertainties for future default risks of individual com-
panies and the total number of future defaults on the market. Section 4
comprehensively analyzes a large-scale US market data by developing de-
fault probability predictions and quantitatively assessing their associated
level of uncertainties. A simulation study evaluating the accuracy of our
method is presented in Section 5. Section 6 concludes this paper and draws
the picture for future research. The Supplementary Material [46] contains
the detail of the EM algorithm in our method.

2. Sources of Uncertainties in Default Risk Predictions .

2.1. Stochastic Time-to-Event. We construct our procedure in a setting
for multiperiod corporate default risk prediction. For the default mecha-
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nism, we focus on the recent reduced form models for the durations of the
defaults and other competing risk events. Event duration modeling can be
broadly classified into the time-to-event data analyses, a subject that has
been intensively studied in areas such as reliability in engineering studies,
and survival analysis (see, for example, [36], and [28]). The key device for the
duration modeling is the event intensity function. In the survival or time-
to-event analysis, intensity function modeling plays a central role; see the
monograph [28] and reference therein. For corporate defaults in finance, pre-
dictions with the intensity function model also involve the stochastic nature
of the explanatory variables, and we refer to [17] as an overview.

Modeling the durations with intensity function treats the time when a
company defaults in future as a random variable. Meanwhile, to accommo-
date the fact that a company may exit the market before going default due
to events other than bankruptcy, e.g., being acquired by another company,
incorporating the competing risks are required in modeling the time-to-exit
of the companies. Generally speaking, suppose there are K types of credit
events competing with each other so that only one event that occurs the first
is observed. Let Tk be the time to the event of type k (k = 1, . . . ,K). We
denote the event intensity function by λk(t) (λk(t) ≥ 0, t ≥ 0) for the kth
type of event. The event intensity function connects to the survival function

Sk(t) = P (Tk > t) by Sk(t) = exp
{
−
∫ t
0 λk(u)du

}
; see, among others, [28]

for more detail on the intensity function.
Additional to observing that the intensity λk(t) is a function of time, it is

natural to expect that features including the financial healthiness, profitabil-
ity, growing perspective and etc. are affecting the future default occurrences.
Meanwhile, the macroeconomic conditions also have impact on future de-
faults. From the predictive perspective, the company specific features and
the macroeconomic conditions are also stochastic, a source that also con-
tributes to the uncertainties in the corporate default predictions. Therefore,
adequately incorporating the dynamic features is crucial in both predicting
the defaults and assessing the associated level of uncertainties.

We describe here how to incorporate the dynamic features as explanatory
covariate information in the intensity function. Modeling and estimating the
stochastic covariate will be discussed in Section 2.4. We denote by a ran-
dom vector xt = (x1t, . . . , xpt)

T indexed by time t containing generic covari-
ates of dimensionality p. The observed covariate process is then x(t1, t2) =
{xs : t1 < s ≤ t2} representing available covariate information from t1 to t2.
Subsequently, the intensity function for event type k (k = 1, . . . ,K) for a
company at time t with covariate xt is characterized by λk(t;xt). Such an
intensity function models the rate (i.e., probability per unit time) that event
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k will happen instantly after time t, conditioning on the covariate value. The
total events intensity (i.e., something happens) for a company at time t is
λ(t;xt) =

∑K
k=1 λk(t;xt) by noting that competing risk events are mutu-

ally exclusive. We also define the cumulative intensity function for the event
type k as Λk[t;x(0, t)] =

∫ t
0 λk(s;xs)ds, (k = 1, . . . ,K). Then the aggregated

cumulative intensity function is Λ[t;x(0, t)] =
∑K

k=1Λk[t;x(0, t)].

2.2. Parametric Intensity Function and Its Estimation . For practical
applications, parametric intensity functions λk(·) (k = 1, . . . ,K) are often
assumed for effectively analyzing time-to-event data with meaningful prac-
tical interpretations. In our work, we consider that the intensity function
of event type k at time t has the exponential additive form λk(t;xt) =
exp(βk0 + βk1x1t + · · ·+ βkpxpt). Treating xt as random, the framework is
referred to as doubly stochastic in [20] for corporate default predictions. The
parameter β = (β10, . . . , β1p, . . . , βK0, . . . , βKp)

T is unknown and needs to
be estimated from historical defaults data. Therefore, uncertainties associ-
ated with the parameter estimation contribute to the uncertainties in the
default predictions.

We now describe the maximum likelihood (ML) method for estimating
the parameter in the intensity function. For each company, the time-to-
event data are denoted by {ti, δi,xi(0, ti)} (i = 1, . . . , n), where n is the
number of companies. Here ti is the event time for company i if one of
the K events happens, and ti is the last observation time τ if no event
occurred during the data collection period. The event indicator for company
i is δi = (δ1i, . . . , δKi)

T, where δki = 1 and δli = 0, l 6= k if event k happens
to company i, and δli = 0, l = 1, . . . ,K, if no event happens until the last
observation time τ . Last, the observed covariate history from the time origin
to ti for company i is denoted as xi(0, ti) = {xi,s : 0 < s ≤ ti}, with xi,s

representing the covariates of company i at time s. In this investigation, we
consider K = 2 types of events hereinafter, i.e., a company defaults (k = 1)
or exits the market due to other events (k = 2).

We note that the cumulative distribution function (cdf) of the random
variable T for the time-to-event of a company, given its covariate history

x(0, t), is FT (t) = P (T ≤ t) = 1 − e−
∫
t

0

∑
2

k=1
λk(s;xs)ds = 1 − e−Λ[t;x(0,t)].

The marginal cdf of time to event type k, denoted as Tk, is FTk
(t) = 1 −

e−
∫
t

0
λk(s;xs)ds = 1−e−Λk [t;x(0,t)]. The probability density function (pdf) of Tk

is fTk
(t) = λk(t;xt)e

−Λk [t;x(0,t)]. To differentiate different types of observed
events, let ∆k, k = 1, 2 be the event indicators. That is, ∆1 = 1,∆2 = 0
if it is a default, ∆1 = 0,∆2 = 1 if it is an exist due to other reason, and
∆1 = ∆2 = 0 if no event occurred by the latest observation time (denoted
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by τ) in the data set. Due to two types of competing risks, the observed
time-to-event of a company is therefore T = min(T1, T2). The fraction of
failing probability due to the type k event is

Fk(t) =Pr(T ≤ t,∆k = 1) = Pr(Tk ≤ t, Tl > Tk; for all l 6= k)

=

∫ t

0
fTk

(tk)
∏

l 6=k

[1− FTl
(tk)] dtk =

∫ t

0
λk(s;xs)e

−Λ[s;x(0,s)]ds.

The joint likelihood of the event times or the last observation times ti’s of
the n given the covariate processes xi,ti at ti and covariate history xi(0, ti)
(i = 1, · · · , n) is then given by

LT (β|DATA) =
n∏

i=1

((
2∏

k=1

{
λk(ti;xi,ti)e

−Λ[ti;xi(0,ti)]
}δki

)

×
{
e−Λ[ti;xi(0,ti)]

}∏
2

k=1
(1−δki)

)
,(2.1)

where λk(t;xt) is proportional to the probability that a company has an
event of type k between time t and t+dt, where dt is an infinitesimal amount
of time, e−Λ[t;x(0,t)] gives the probability of observing a company survives to
time t. The parameters β are then estimated by maximizing the joint like-
lihood of the event times in (2.1). In practice, the covariate history xi(0, ti)
for company i is only discretely observable. Therefore, integration of the in-
tensity function of event type k (i.e.,

∫ ti
0 λk(s;xi,s)ds) can be approximated

by discretization.
We remark that the uncertainties associated with the parameter estima-

tion can be conventionally quantified using the standard errors by inverting
the observed Fisher information matrix. In the literature, this type of stan-
dard errors are typically reported as a measure of level of uncertainties.
However, considering only uncertainties in the parameter estimations is not
yet adequate for assessing the uncertainties associated with the multiperiod
corporate default predictions. The reason is that the parameter estimation
procedure is a static one conditioning on the covariate process so that it fails
to incorporate any future dynamics in the covariate process.

2.3. Covariate Process and Discrete-time Observations. The intensity
function, on one hand, by its definition is a function of continuous time. On
the other hand, those covariates used for modeling the intensity function can
only be observed at a grid of discrete time points. Thus, the survival func-
tion, which relates to the integration of the intensity function, is typically
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approximated by taking the intensity function to be piece-wise constant be-
tween two adjacent observation times. Such an approximation in fact relates
the intensity function modeling to multiperiod binary response variable re-
gression analysis with the logit or other link functions; see, for example, [42]
and [20]. Moreover, the one-period ahead default predictions using the logis-
tic regression type of approaches can also be viewed as a result of piece-wise
constant approximation of the intensity function; see, among others, the
studies of [24] and [9]. Clearly, the accuracy the approximation is worsen
with longer time interval between two observations, and so is the accuracy
of the prediction using the logistic regression type approaches. Therefore,
multiperiod corporate default predictions require a more accurate account
for the future dynamics; see [20] and [16].

In constructing our procedure, the dynamics of the covariates process
clearly play an important role in corporate default predictions. For example,
the multiperiod approach of [20] relies on a parsimonious high-dimensional
vector autoregressive time series model for the covariate process, and numer-
ical approximation for integrations with respect to the future dynamics is
needed for assessing the multiperiod future corporate default probabilities.
Our model in this investigation for the high-dimensional vector time series
incorporates an autoregressive component for capturing the predictive in-
formation in the conditional mean function. The autoregressive structure is
a benchmarking one and has broad applications in time series analysis; see
the overviews in the monographs [44], [21] and [45]. To exploit further the
systematic/structural dynamics among the the covariates, we further equip
the innovations of the vector time series with a dynamic factor model that
disentangles the contributions from a systematic factor component and an
idiosyncratic component.

In statistics and financial econometrics, the dynamic factor models are
advantageous for its parsimony and have demonstrated their promising pre-
dictive performance in broad areas; see the monograph [21] for an overview.
In the credit risk modeling literature, the dynamic factor models have been
demonstrated effective and have many successful applications. Among them,
for example, a dynamic factor model is applied in conjunction with the in-
tensity function modeling with parametric baseline hazard in [31] for credit
rating transitions, incorporating dynamic frailty accounting for the depen-
dence between defaults. [32] investigate the dynamic frailty-correlations be-
tween defaults in different segments and groups of firms, and demonstrate
the impact from the latent dynamic factors. Equipping the latent factors
with attractive practical interpretations such as those effects from the macro,
industrial, regional factors and etc., the dynamic models is capable of incor-
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porating multiple sources of contributions to assessing the default risks. [33]
consider the dynamic factors models incorporating multiple effects for the
default counts modeling for the 2008 credit crisis. More recently, [41] inves-
tigate global credit risk concerning multiple countries, and demonstrate the
impacts from the country and industry factors.

An appealing feature of the dynamic factor models is their convenience in
computations. For Gaussian models, the Kalman filter can be conveniently
applied, which is the case for our dynamic factor model. The Kalman filter
is also capable of handling missing data and mixed frequency data; see [11]
for a recent investigation on forecasting with mixed frequency data. When
additional non-Gaussian observations are incorporated with the dynamic
models, the importance sampling based techniques are demonstrated useful
for estimations. As examples, the defaults counts data are handled together
with other covariate in the dynamic factor models of [30], [32], and [41].

The main objective of our covariate process modeling concerns the dy-
namic for corporate defaults predictions at the individual firm level, with a
combination of the autoregressive and dynamic factor structures. Our ap-
proach integrates the covariate model with the dynamic intensity function
model outlined in Section 2.1, based on which we conduct the multiperiod
corporate default predictions. Here our attempt targets at the corporate
default prediction at the firm level, and it is different from predicting the
default counts as in existing studies, for example, [32], [33], and [41]. Com-
putationally, it is clearly a more demanding objective. Hence exploiting the
impacts and benefits from the latent dynamic factors is clearly desirable in
this scenario. Our approach with the modeling device for corporate default
predictions has a few new methodological features of their own interests.
First, the systematic contributions from the latent factors among the firms
are exploited in conjunction with the autoregressive structure in a dynamic
intensity function for capturing the dynamics in predicting corporate de-
faults. Second, the separated treatments of the covariate process and the
default mechanism allow feasibility and convenience for multiperiod predic-
tions for individual firms with the dynamic factor model – only computation-
ally more efficient Kalman filter is involved when handling high-dimensional
time series from thousands of firms.

2.4. Parametric Stochastic Covariate Process and Its Estimation. We
now describe the parametric model for the covariate process considered in
our framework. Specifically, we denote by Xt, t = 1, . . . , τ the observed co-
variate process including both firm-specific covariates for all the companies
and the macroeconomic covariates at time t. The firm-specific and macroe-
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conomic covariates, serving as effective reflection of the profitability as well
as leverage ratio of assets to debts of a company, and indicators for the
economic condition of the nation, are used to model the default risks. In-
spired by [20], we focus on to two firm-specific variables – the distance to
default (Di,t) and the trailing one-year stock log-return (Vi,t) for company i
at time t. Here, the distance to default [37] is a classical measure in corporate
credit risk analysis especially from a structural model point of view. Roughly
speaking, the distance to default is defined as the number of standard devi-
ations of annual asset growth by which the log asset level exceeds the firm’s
log liabilities. In the classical model of [37], a company’s conditional default
probability is completely determined by its distance to default. In our stud-
ies, we use the distance to default calculated by the method proposed in
[16]. For macroeconomic variables, we choose the trailing one-year return on
the S&P 500 index (St) and the three month Treasury bill rate (rt). Hence,
we have Xt = (DT

t ,V
T

t , rt, St)
T, t = 1, · · · , τ where Dt = (D1,t, . . . ,Dn,t)

T,
Vt = (V1,t, . . . , Vn,t)

T, and τ is the total number of time points. That is, Xt

is m× 1 vectors where m = 2n+2 and n is the number of firms. In the data
set for our studies, the observations are available monthly. To adjust for evi-
dent quarterly seasonal effect in the time series, we take a difference of order
3, and resulting in a new m-dimensional vector time series Xt = Xt+3 − Xt

(t = 1, . . . , τ ′), where τ ′ = τ − 3.
Modeling the dynamics of Xt is the most challenging task in default pre-

dictions and assessing the associated level of uncertainties, because of the
fact thatXt is of very high dimensionality. Take, for example, the US market,
the total number of companies has exceeded 10,000 since 1990. Moreover,
in an active market, new companies are almost continuously formed while
many existing ones exit the market for various reasons, resulting highly un-
balanced observations of the time series, i.e., the origin and end times of the
components in Xt are different with possible missing data for some periods
of time. Furthermore, the behaviors of components in Xt are expected to
inter-related with each other in some complicated ways. Thus jointly model-
ing the tremendously high-dimensional time series becomes daunting, while
further dedicated effort is also necessary for developing methods of param-
eter estimation and assessing the associated level of uncertainties.

We consider a highly parsimonious time series model for Xt with two key
components specifically for default predictions: a) a mean-reverting autore-
gressive structure in the conditional mean of Xt given prior observations,
and b) a dynamic factor model for the innovations to capture the correla-
tions among the components in Xt. We refer to [44] as an introduction for
modeling vector valued time series, and [39] and [34] for recent development
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of factor models for multivariate time series.
Specifically, the conditional mean model is a modified version of the one

considered in [20]:

Xt − µ = Θ(Xt−1 − µ) + εt, t = 2, . . . , τ ′.(2.2)

Model (2.2) is a vector auto-regression model mainly to capture the condi-
tional dependence with the mean reverting effects of all the covariates. The
coefficient matrix Θ is designed in a parsimonious way following [20] as

Θ =




κD 0 b 0
0 κV 0 0
0 0 κr 0
0 0 0 κS


 ,

where κD = κDIn, κV = κV In, b = b1n. In is an n × n identity matrix
and 1n is an n-dimensional vector taking value 1 for all of its elements.
Here we define the mean reverting vector as κ = (κD, κV , κr, κs, b)

T. The
first four elements κD, κV , κr, κs of κ capture the mean reverting effects
of the four selected covariate processes. The current distance to default is
modeled jointly by the mean reverting of the previous value, and the effect
of departure of Treasury bill rate rt−1 from its mean at the previous month
through the parameter b.

To further capture the serial and cross-sectional dependence between com-
ponents in X, we propose to apply the following dynamic factor model
(DFM) for the innovation vector εt:

εt = ΛFt + et,(2.3)

Ft = AFt−1 + ηt, t = 2, . . . , τ ′,(2.4)

where the latent factor Ft is a q × 1 vector following an auto-regression
process with order 1 (i.e.,VAR(1)). The principal component analysis (PCA)
is a convenient device for the factor model structure (2.3); see, for example,
[43]. The dynamic factor structure introduced by (2.4) has demonstrated
its merits in numerous credit risk modeling; see the discussions in 2.3. The
state space methods [21] are convenient for handling the model setting with
(2.3) and (2.4). Here, ηt’s are assumed to be independently and identically
distributed (iid) normal random vectors from N(0,Q), for some positive
definite matrix Q. Here Λ is a m × q matrix of factor loadings, and A is
a q × q matrix of autoregressive coefficients. The random vectors ηt and
et are independent normal random vectors. The covariance matrix of et is
assumed to be a diagonal matrix P. Here the factor model with loading Λ
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is high parsimonious by the fact that the number of common factor q is
usually very small, which drastically reduces the number of parameters in
the covariance matrix of εt. As in our data analysis, the number of factor
is chosen as q = 2 by using the method of [3]. Facilitated by the dynamic
factor model, the future dynamics of the covariate process can be effectively
incorporated in default predictions and uncertainties assessments.

We collectively denote by θx = {µ,Θ,Λ,A,P,Q} all parameters in the
covariate proces. We develop an expectation-maximization (EM) algorithm
for estimating parameters in dynamic factor model specified by (2.3) and
(2.4), whose detail is given in the Supplementary Material. Specifically, our
EM algorithm efficiently incorporates the hidden factor Ft in this tremen-
dously large scale problem with high-dimensional time series and highly un-
balanced observations. In our EM algorithm, both the E-step and M-step
can be conveniently executed for practical implementations. Most remark-
ably, the matrices inversions in our EM algorithm only involves those of size
q × q, making it most computationally efficient and feasible for this large
scale default prediction problems.

3. Predictions and Uncertainties Assessments.

3.1. Procedures for Future Default Predictions. In our study, predicting
the future corporate default probabilities given the available current infor-
mation is the key objective. For different levels of interests such as assessing
the overall level of credit risks, one may also need to predict the total number
of defaults for the overall market system and certain market sectors.

Let us begin with the method for individual corporate default predictions,
and then the method for aggregated default predictions.

With the intensity model and the covariate model described in Sections
2.2 and 2.4, the future default probability of company i within s time units
in future after the last observation time τ is,

ρi(s;θ) = E {Pr[τ < Ti ≤ τ + s,∆1 = 1|T > τ ]| Fτ}

= E

{[∫ τ+s

τ
λ1(t;xi,t) exp (−{Λ[t;xi(0, t)] − Λ[τ ;xi(0, τ)]}) dt

]∣∣∣∣Fτ

}
,

(3.1)

where θ = (θT

T ,θ
T

x)
T contains the parameters of the covariate model θx

and those of the time-to-event model θT . Here, the expectation is under-
stood as conditioning on the information up to time τ , denoted by Fτ , and
∆1 = 1 indicates that it is the default probability of interest so that the cor-
responding intensity function λ1(·) and the cumulative hazard function are



14 M. YUAN, C.Y. TANG, Y. HONG, AND J. YANG

involved in (3.1). We note that ρi(s;θ) is a sub-distribution function because
ρi(∞;θ) < 1 due to the existence of other type of competing events.

Because no simple analytical expression for the expectation in (3.1) is
available, we use a Monte Carlo simulation approach to evaluate ρi(s;θ).
The following algorithm is for computing ρ̂i(s; θ̂) with the estimate θ̂ from
the methods described in Sections 2.2 and 2.4.

Algorithm 1:

1. Simulate X∗(τ ′, τ ′ + s), the future differenced covariate processes, for
all the firm-specific and macroeconomic covariates from their distribu-
tion X(τ ′, τ ′ + s)|Xτ ′ as specified in Section 2.4.

2. By inverting the differencing operator, the simulated covariate pro-
cesses denoted by X

∗(0, τ +s) is re-constructed from the combined dif-
ferenced data X∗(0, τ ′ + s) = {X(0, τ ′),X∗(τ ′, τ ′ + s)}, where X(0, τ ′)
and X∗(τ ′, τ ′ + s) are respectively the historical and simulated future
data.

3. For each company i, numerically compute

ρ∗i (s; θ̂) =

∫ τ+s

τ
λ1(t;x

∗
i,t) exp (−{Λ [t;x∗

i (0, t)]− Λ [τ ;xi(0, τ)]}) dt.

4. Repeat steps 1-3 M times to obtain ρ∗mi (s; θ̂),m = 1, · · · ,M where
M is the pre-specified number of the simulation replications.

5. The prediction of ρi(s;θ) is obtained by ρ̂i(s; θ̂) = M−1
∑M

m=1 ρ
∗m
i (s; θ̂).

In the first step of Algorithm 1, to forecast the differenced covariate pro-
cess, we calculate the following for s = 1, 2, · · ·

ε̃τ ′+s = Λ̂F̂τ ′+s + êτ ′+s, and Xτ ′+s = µ̂+ Θ̂Xτ ′+s−1 + ε̃τ ′+s,

where F̂τ ′+s is forecasted from the fitted DFM for F̂t and êτ ′+s is drawn
from N(0, P̂).

As for the point prediction for the aggregated number of defaults in the
market coverage of interest, let Ns be the cumulative number of defaults at
s time units after the last observation time τ and RS(t) be the set collecting
companies of interests that are at risk of default at time t. It follows that
Ns =

∑
i∈RS(τ) Ii(s) and Ii(s) ∼ Bernoulli[ρi(s;θ)]. The point prediction for

Ns is N̂s =
∑

i∈RS(τ) ρ̂i(s; θ̂).
Though both the point predictions for ρi(s) and Ns are informative for

measuring future default risks, they do not reflect the uncertain nature of
the predictions that we have discussed earlier. In what follows, we describe
how to assess the uncertainties associated with the predictions.
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3.2. Assessing Uncertainties at the Aggregate Level. Prediction intervals
(PIs) are used to quantify uncertainty in prediction of future random quan-
tities. Let Ns be the cumulative number of events at a future point. A

100(1 − α)% PI for Ns is defined as Pr
(
Ns
˜

≤ Ns ≤ Ñs

)
= 1− α. To assess

the uncertainties associated with the predicted number of defaults, a natural

choice is to supply a PI denoted by
[
Ns
˜

, Ñs

]
. A naive (plug-in) PI for this

purpose is obtained by solving

FNs
(Ns
˜

; θ̂) =
α

2
, and FNs

(Ñs; θ̂) = 1− α

2
.(3.2)

Here FNs
(ns;θ), ns = 0, 1, · · · , n′ is the cdf of Ns where n′ is the number

of companies in the RS(τ), 1 − α is the desired coverage probability. Note
that Ns is a sum of non-identically distributed Bernoulli random variables.
An explicit form for FNs

(ns;θ) is

FNs
(ns;θ) =

1

n′ + 1

n′∑

l=0

{
1− exp[−iωl(ns + 1)]

1− exp(−iωl)

∏

i∈RS

[1− ρi(s;θ) + ρi(s;θ) exp(iωl)]

}
,

(3.3)

where i =
√
−1 and ω = 2π/(n′ + 1). The cdf in (3.3) is obtained from a

discrete Fourier transform of the characteristic function of Ns, which can
be viewed as a generalization of the binomial distribution for a collection of
firms with homogeneous default probability. We refer to [25] for more details
on the derivation and an efficient implementation for computing FNs

(ns;θ).
Alternatively, one can use some approximation methods such as the ordinary
normal approximation or normal approximation with second order correc-
tion (e.g., [47]).

The PI in (3.2) ignores the uncertainties in θ̂. Thus the coverage prob-
ability is generally smaller than the nominal 1 − α level. These PIs can
be calibrated to improve the coverage probability. We will use resampling
method by parametric bootstrap to do the calibration.

Using the predictive distribution in [35], a 100(1−α)% PI for Ns, denoted

by
[
Ns
˜

, Ñs

]
, is obtained by

Ns
˜

= vα/2 and Ñs = v1−α/2.(3.4)

Here vα is the α lower quantile of random variable N∗
s specified by distribu-

tion FNs
(·; θ̂) in which θ̂ is also treated as a random variable. In practice,
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vα can be computed by simulations. That is, vα is approximated by the
α sample quantile of N∗b

s , b = 1, · · · , B. Specifically, we obtain N∗b
s from

FNs
(ns; θ̂

∗b
) given θ̂

∗b
= (θ̂

∗bT

T , θ̂
∗bT

x )T, in which θ̂
∗b

T was simulated from

N(θ̂T ,Σθ̂T

) and θ̂
∗b

x was estimated from the simulated covariate processes.
The simulation procedure based on parametric bootstrap is as follows.

Algorithm 2:

1. Simulate the differenced covariate processes X∗(1, τ ′) from the model
(2.2), (2.3) and (2.4) with θ̂. For each company, the differenced ob-
servations at the first month are kept and we do not extrapolate any
period with no observations in the original data set.

2. Re-estimate parameters in the covariate model θ̂
∗

x based on the sim-
ulated processes through the EM algorithm in the Appendix.

3. Take a random sample of θ̂
∗

T from its asymptotic distribution N(θ̂T ,Σθ̂T

),

where θ̂T and Σ
θ̂T

are estimated from the observed data by the meth-
ods in Section 2.2.

4. With the simulated data X∗(1, τ ′) and the new parameter estimates

θ̂
∗
= (θ̂

∗T

T , θ̂
∗T

x )T, Algorithm 1 is implemented to predict the default

probabilities ρ∗i (s; θ̂
∗
), i = 1, · · · , n.

5. Take a random sample N∗
s from its distribution (3.3) with parameter

values θ̂
∗
.

6. Repeat steps 1 to 5 B times to obtain N∗b
s , b = 1, · · · , B.

7. The 100(1−α)% calibrated PI for Ns is
{
N

∗([(α/2)B])
s , N

∗([(1−α/2)B])
s

}
,

where N
∗(·)
s is the ordered version of N∗b

s and [ · ] is the round function.

The fundamental rationale of the above algorithm and the one in the
next section is to incorporate all sources of uncertainties as discussed earlier,
i.e., those from the stochastic default mechanism, the stochastic covariate
process, and the parameter estimation procedures.

3.3. Assessing Uncertainties for Corporate Default Probabilities. By ap-
plying the Algorithm 1, one may predict the multiperiod ahead default
probabilities for individual corporate for evaluating the future default risk.
Clearly, all sources of uncertainties are contributing in the point default
probability estimations. For example, the final point prediction is the av-
erage of a range of possible default probabilities, and the different level of
variations among those re-generated default probabilities are reflecting dif-
ferent levels of uncertainties associated with point default probability pre-
dictions. For reflecting the level of uncertainties associated with the default
probability predictions, we propose to construct calibrated prediction inter-
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vals based on historical data for companies that are at risk incorporating all
contributing sources of uncertainties.

The procedure for constructing the prediction interval is based on a large
scale parametric bootstrap, similar to the one for the aggregated defaults
prediction. Specifically, to incorporate the uncertainties in parameter esti-
mation, in each iteration of resampling, we first simulate the differenced
processes from the fitted covariate model and estimate parameters using the
simulated data. To incorporate uncertainties associated with the parame-
ter estimation of the time-to-event model, we re-generate model parame-
ters from the estimated joint asymptotic distributions. Finally, we simulate
multiperiod ahead values of the covariate process given the last observa-
tion in the historical data with the re-estimated parameter. Then, for each
replication of the resampling procedure and for each at risk company, one
multiperiod ahead default probability can be obtained. By repeating the
procedure a number of times, we obtain the distribution of the predicted
default probabilities and construct the prediction interval correspondingly.
More specifically, we have the following algorithm.

Algorithm 3:

1. Simulate the differenced covariate processes X∗(1, τ ′) from the model
(2.2), (2.3) and (2.4) with θ̂. For each company, the differenced ob-
servations at the first month are kept and we do not extrapolate any
period with no observations in the original data set.

2. Re-estimate parameters in the covariate model θ̂
∗

x based on the sim-
ulated processes through the EM algorithm in the Appendix.

3. Take a random sample of θ̂
∗

T from its asymptotic distribution N(θ̂T ,Σθ̂T

),

where θ̂T and Σ
θ̂T

are estimated from the observed data by the meth-
ods in Section 2.2.

4. With the simulated data X∗(1, τ ′) and the new ML estimates θ̂
∗
=

(θ̂
∗T

T , θ̂
∗T

x )T, Algorithm 1 is implemented to predict the default prob-

abilities ρ∗i (s; θ̂
∗
), i = 1, · · · , n.

5. Repeat steps 1 to 4 B times to obtain ρ∗bi (s), b = 1, · · · , B.
6. The 100(1−α)% PI of default probability for the ith company at s time

units after the last observation time τ is
{
ρ
∗([(α/2)B])
i (s), ρ

∗([(1−α/2)B])
i (s)

}
,

where ρ
∗(·)
i (s) is the ordered version of ρ∗bi (s) and [ · ] is the round func-

tion.

4. US Corporate Default Data Analysis.
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4.1. Data Overview. We now illustrate an application of our prediction
framework on a US Corporate data set containing observations from Jan-
uary 1990 to November 2009. The data set contains defaults and other credit
events information of the United States (US) public firms together with their
stock market data from the CRSP (i.e., The Center for Research in Security
Prices) database and accounting data from the Compustat database. The
entire data set has around 12,000 US companies and more than 1,000,000
firm-specific monthly observations. Handling the entire data set is difficult
given our limited resource, and it could take a very long time because we
need to perform reasonable number of replicated studies for validation and
assessment purposes. So we choose a subset of the data with three industrial
sectors – electronic product manufacturers, holding and investment offices,
and business services. These three industrial sectors contain 3,271 firms of
the US market and have experienced a majority number of defaults. Specif-
ically, among the 3,271 companies on the market from January 1990 up to
November 2009, 164 defaulted and 2,049 exited due to other reasons, leav-
ing 1,058 companies at risk at the end of November 2009. Time-to-event
information is available in the data set in terms of the occurrence time of an
event and its type which is used to determine if it is a default or an exit due
to other reasons. For the firm specific covariate, we consider the distance
to default (Dt) and the trailing one year stock return (Vt) of each company
following our discussion in Section 2.4. To incorporate macroeconomic con-
ditions, we consider monthly data of the trailing one-year S&P 500 return
(St) and the three-month Treasury bill rate (rt) as covariates as well.

4.2. Model Estimations. By applying the proportional hazard model in-
troduced in Section 2.2 using covariate described in Section 2.4, the default
and other exit intensity functions are modeled by λk(t;xt) = exp(βk0 +
βk1Dt + βk2Vt + βk3rt+ βk4St where k = 1, 2 are respectively corresponding
to defaults and other exits. We estimate parameters in the time-to-event
model by maximizing the log likelihood function as described in Section
2.2. Standard errors for the ML estimates are calculated by inverting the
observed information matrix. The point estimates and 95% confidence in-
tervals based on asymptotic normality are given in Table 1.

From Table 1, we see negative β̂11 but positive β̂21, indicating that lower
risk is associated with larger value of distance to default, but in that case
the firm is associated with higher chance of exit the market due to other
reasons. Negative β̂12 and β̂22 show that higher stock return implies lower
risk for both default and other forms of exits which may be due to that
the trailing one-year stock return is an important indicator for a company’s
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Table 1

ML estimates for parameters and their asymptotic standard errors based data over
January 1990 to December 2008.

Default Other Exits

Para. Est. SE
95% CI

Para. Est. SE
95% CI

Lower Upper Lower Upper

β10 -6.9126 0.2018 -7.3081 -6.5171 β20 -5.2646 0.0666 -5.3950 -5.1341
β11 -0.6803 0.0867 -0.8502 -0.5105 β21 0.0504 0.0084 0.0339 0.0669
β12 -1.1467 0.0646 -1.2734 -1.0200 β22 -0.3295 0.0401 -0.4081 -0.2509
β13 -0.3091 0.0542 -0.4153 -0.2028 β23 -0.0450 0.0160 -0.0763 -0.0137
β14 1.9431 0.3974 1.1642 2.7219 β24 -0.0839 0.1404 -0.3590 0.1913

profitability. As for the effect of macroeconomic variables, negative β̂13 and
β̂23 indicate that an increase in three-month Treasury bill rate manifests
lower risks for both default and other exits, demonstrating the impacts on
credit events from the overall economic condition of the environment. As
for the effect from the trailing one-year return of the S&P 500 index upon
controlling the level of other covariates, an increase in its value is associated
with higher default risk, but its impact on other exits is not statistically
significant. The negative impact might due to the correlations between the
individual stock returns and the S&P 500 index; see also the discussion in
[20].

To predict future dynamics of the covariates, we apply the dynamic factor
model specified by (2.2), (2.3), and (2.4) described in Section 2.4. To estimate
the parameters, we apply our EM algorithm discussed in Section 2.4 whose
detail is given in the Supplementary Material.

The mean reverting parameters in (2.2) are estimated as κ̂ = (0.63766, 0.63551,
0.89208, 0.63546,−0.00714)T with estimated standard errors (0.0031, 0.0049,
0.0343, 0.0333, 0.0176)T . The parameterA in the vector autoregressive model
(2.4) for the hidden factors Ft is estimated as

Â =

(
0.3734 0.2144
−0.0599 0.4803

)
,

whose entry wise estimated standard errors are 0.0955, 0.1368, 0.0364, 0.0598
for Â11, Â12, Â21, and Â22 where Âij is the ijth component of Â. The EM
algorithm also returns estimations of the loading matrix Λ and covariance
matrix P of et in (2.3) containing many components that are omitted here.

4.3. Total Defaults Predictions and Uncertainties. In what follows, when
we are conducting multiple-period predictions, only data up to the origin
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of predictions are used when applying our prediction framework. For each
prediction period, the actual observed defaults and covariate processes after
the origin of predictions were held out and only used for validation and
assessments afterward. For example, observed data from January 1990 to
December 2008 were used to predict the default risks one year ahead in
2009 and so forth.

We first consider four respective one-year periods during 2006–2009, and
for each period we conduct a one-year ahead prediction of the total number
of defaults. We apply Algorithm 2 in Section 3.2 to obtain the prediction
intervals for the total numbers. Fig 1 summarizes the results. Specifically
for each one-year period, Fig 1 shows the predicted cumulative number of
defaults and the associated 90% two-sided PI. In each panel of Fig 1, the solid
step plot with dots indicates the actual cumulative numbers of defaults by
month, and the solid straight line represents the predicted average number
of defaults.

From Fig 1, we find that the predictive assessments of the overall credit
risk levels are different between these four years by observing that, for exam-
ple, the total predicted number of defaults in 2006 is much smaller than that
of 2007. Such an observation well matches the situations that actually hap-
pened. Hence, for assessing the overall level of future credit risks, historical
data are informative, and it is an promising evidence for using quantitative
methods to incorporate historical data information for future predictions.
We also note that Fig 1 is reporting the cumulative number of predicted
defaults, and the widening trend of the PIs reflect an expected fact that
the level of uncertainties associated with predictions is increasing over time.
That is, one always needs to take more caution when applying predictions
over a longer term due to higher level of associated uncertainties.

Additionally, we also see that predictions with the same model are not
working equally well for all four one-year periods. For 2007 and 2008, the
mean predictions agrees well with the actual cumulative numbers of defaults,
showing that the model works very well for these periods of time. For 2006,
the actual number of defaults is above the mean prediction but still falls
between the mean prediction and the upper bounds of the PI (i.e., the 95%
percentile). Such an observation may indicate that the actual situation in
2006 was somewhat different from what happened before so that the model
used was not able to perfectly reflect the future situation. Nevertheless,
the approach still performs reasonably well by observing the fact that the
PI is narrow for 2006 and the actual number of defaults still fall with in
the PI. In 2009, the mean predictions well matches the actual cumulative
number of defaults in the first six months. However, as we can see from the
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figure, there is an abrupt change in the defaults occurrence by observing
that no default was recorded in the second half of 2009, a phenomenon that
may be due to the governmental interventions. Our data used for prediction
are only up to the beginning of 2009, thus predicting such an abruption
is hard for a quantitative method. Further investigation on modifying the
parametric modeling may be needed to incorporate sudden change of the
market conditions.

4.4. Individual Default Risk Predictions and Uncertainties. We now present
the performance of the point predictions and PIs for future default proba-
bilities of individual firms. We find from our studies that the level of un-
certainties associated with the point predictions, quantified by the width of
PIs, can be highly informative in analyzing and predicting default risks.

For the same four one-year periods (2006, 2007, 2008 and 2009) as in Sec-
tion 4.3, we assess each individual firm’s default risks with monthly point
predictions for its future default probabilities and the associated PIs us-
ing Algorithm 3 in Section 3.3. The results for some selected firms are
reported in Fig 2. We choose four companies that actually went default dur-
ing the periods of time. For comparisons, we also present side by side another
four companies from the same industrial sector but did not go default. By
presenting the results in the same scale, we clearly see striking differences
between the profiles of the default predictions. Specifically, those companies
who actually went default are predicted to have substantially higher proba-
bilities of going default. Additionally, the associated PIs are also much wider
than those companies who actually did not go default.

From the predictions for individual firms, it is promising to observe that
the predicted default probabilities for those companies who actually went de-
fault are among the highest, providing us a crucial device for differentiating
companies based on quantitative credit risk assessments. Emerge Interactive
Inc., defaulted in 2006, was a technology company providing food-safety,
individual-animal tracking and supply-management services. According to
the point default probability predictions at the end of 2006, Emerge Inter-
active Inc. has the highest default risk among all the five companies that
actually defaulted in 2006. Overall, its predicted default probability is ranked
the 8th out of all 1,352 companies at risk. Lehman Brothers Holdings Inc.,
defaulted in 2007, was the fourth largest investment bank in the US. The
predicted default probability of Lehman Brothers in 2007 is ranked the 141st
out of all 1287 companies at risks. Bankunited Financial Corp, defaulted in
2008, was a savings and loan association. Its predicted default probability
is the 4th out of all 1228 companies at risk. TierOne Corporation, defaulted
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(c) Defaults Predictions for 2008 Defaults Predictions for 2009

Fig 1: Cumulative number of defaults in the one-year periods and the asso-
ciated PI for all the units at risk.
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in 2009, was the holding company for TierOne Bank. Its predicted default
probability in 2009 is ranked the 9th out of all 1228 companies at risk.

Besides the level of default risks assessed by the point predictions, the
associated PIs are providing information from a new dimension. Visually, it
is clear to see that the PIs are wider for those actually defaulted companies.
Numerically, for example, the point prediction for the probability of Emerge
Interactive Inc going default in 2016 is 0.0347 and the associated 90% PI is
(0.0087, 0.1319). In contrast, the counterparts for Microsoft are 0.00002 and
(0, 0.00005), indicating striking differences between high risk and low risk
companies. As shown in the coming Section 4.6, we actually find that the
level of uncertainties measured by the length of the PIs can provide extra
information additional to the point predictions that can be potentially used
for improving the accuracy of default predictions.

4.5. Power Curves and Prediction Performances. We now evaluate the
out-of-sample default prediction performances for the four one-year periods.
For such a purpose, we plot the receiver operating characteristic (ROC)
curves in Fig 3, which are also referred to as power curves in the literature,
e.g., [20]. A power curve is constructed by plotting the cumulative fraction
of actual defaults versus the corresponding percentile the quantitative mea-
sure used to predictively rank all firms at risk. That is, a steeply increasing
curve is the evidence of good performance using the corresponding ranking
measure. Equivalently, larger area under the curve (AUC) means better pre-
dictive performance. Here, we consider two quantities – the predicted default
probabilities and the lengths of the associated PIs – for ranking all firms at
risk to differentiate the defaulted firms. Fig 3(a) and 3(b) respectively show
the power curves corresponding to these two quantities.

From Fig 3, we can see that both predictive quantities have reasonable
prediction performances, achieving AUCs near 0.9 out of the maximum 1.
This again demonstrates the promising applications of quantitative methods
for predicatively assess corporate default risks. The predicted point default
probability overall performs slightly better than the width of the PI. Since
the width of PI is not intended for predicting future defaults, such an ob-
servation itself is interesting and informative and further research on credit
risks and their evaluations are needed for understanding such a phenomenon.
Moreover, we find that the width of PI is complementary to the point pre-
diction of default probability; see Section 4.6.

4.6. Default Predictions and Associated Uncertainties. We see from Sec-
tion 4.5 that point default probability predictions and the width of the
associated PIs perform similarly effective for differentiating defaulted firms.



24 M. YUAN, C.Y. TANG, Y. HONG, AND J. YANG

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2005

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2005

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

(a) Emerge Interactive Inc (b) Microsoft Corp

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2006

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2006

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

(c) Lehman Brothers (d) City National Corp

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2007

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2007

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

(e) Bankunited Financial (f) Bank of America Corp

2 4 6 8 10

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2008

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

2 4 6 8 10

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Months after December 2008

De
fau

lt P
ro

ba
bil

ity

Prediction from real data
90% Prediction Interval

(g) TierOne Corp (h) Tellabs Inc

Fig 2: Predictions for individual default probabilities and the associated 90%
PI.
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Fig 3: Out of sample prediction power curves by the point prediction and
width of PI.

Then a natural question of interests is can the level of uncertainties measured
by the width of PIs provide extra information for enhancing the prediction
performance? As an attempt to explore the answer for that question, we
conduct a logistic regression with the default status as the response variable
and both the predicted default probability and the width of the associated
PIs as predictor. Summary of the model fitting is reported in Table 2.

As for the adequacy of the logistic regression model fitting, the deviance
of the model is 578.61, while the deviance for the null model is 400.79. A chi-
square test yields a p-value less than 0.001, showing that the model is highly
significant. For the overall goodness of fit, we also did the Hosmer-Lemeshow
test whose p-value is 0.5335, indicating that he the model provides a good
fit to the data. For comparison, we fit another logistic regression model
dropping the length of the prediction interval from the model. As a result,
the Hosmer-Lemshow test [27] of the reduced model has a p-value less than
0.001, a significant evidence that the reduced model without the PI length
is not adequate.

Table 2 confirms that both larger predicted default probability and wider
PI indicate higher default risk. However, given the point prediction and the
interaction between the two variables, the width of PI is no longer signifi-
cantly associated with the default risk. Most interestingly, however, a highly
significant interaction between the two predictors is detected by the logistic
regression, telling that using the PI width besides the point default pre-
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Table 2

Summary of the Logistic regression model.

Estimate Std. Error z value Pr(>|z|)

Intercept -6.1340 0.2898 -21.1691 < 0.0001
PI width 2.0742 3.3577 0.6177 0.5367
Point prediction 49.6683 6.9704 7.1256 < 0.0001
PI width × Point prediction -99.8712 14.4081 -6.9316 < 0.0001

dictions is statistically informative. Such an observation is quite reasonable
from the perspective that one could be more confident in predicting a com-
pany’s future default with smaller range of the prediction intervals. That is,
the width of PI has the potential of providing extra information for assess-
ing the corporate default risks, suggesting an interesting topic for further
investigations.

4.7. Model Diagnostics. For assessing the adequacy of the model fitting
to the data set, we conduct some model diagnostics. For assessing the effect
of the dynamic factor model specified by (2.3) and (2.4), we attempted a
fitting of a two-factor model but with no dynamic structure (2.4). As a
result, we found that the dynamic model improves the fitting in the sense of
reducing the mean residual sum of squares by 10%. To check the exponential
linear form of the intensity functions, we calculate the estimated values of
the specified linear functions and break down the range of the values into
ten intervals. Then we aggregate the companies according to ten intervals of
the values of the estimated linear functions, and then obtain the respective
total numbers of the companies. The empirical frequencies of the defaults
respectively on each interval are reported by bars in Fig 4(a), overlayed by
the values of the exponential linear functions. The shape of the red line in Fig
4(a) satisfactorily validates exponential linear form of the intensity function
for defaults. Similarly, we obtain Fig 4(b) and validates the exponential form
of the intensity function for other types of exits.

For checking the adequacy of the model for the covariate process, we con-
ducted some numerical and graphical model diagnostics for checking the
goodness of fit. We compute the fitted covariate values according to the
model and compare them with the actual observed values. In an ideal situa-
tion the fitted values and the observed values should display strong positive
correlations. Fig 5 shows the histograms of the correlations between the fit-
ted covariates and the observed values for the two firm specific covariate.
From Fig 5, we can see that a majority of the correlations are reasonably
high, indicating an overall good fit of the models. The average correlations
for the distance to default and the trailing returns are 0.57 and 0.52 respec-
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Fig 4: Empirical frequency of monthly defaults vs values of the estimated
linear combinations broken down into ten intervals. The red solid line is the
estimated exponential function.

tively. Given the large number of individual companies, some lack of fit is
inevitable, and some dedicated further adjustment for the models can also
be possible. The fitting of the covariate model for the two macro economic
variables is also reasonably good. The correlations between the fitted values
and the observed values are 0.56 and 0.82 respectively for the returns of the
Treasury bill and the SP 500 index. Overall, the model for the covariates
modeling is flexible and fit the data reasonably well considering that we use
one model for covariates of so many companies.

5. A Simulation Study. The simulation setting is constructed based
on the data set of the Section 4 on US corporate defaults from 1990 to
2009. Specifically, we first take a random sample of size n from the set of
the companies that are at risk as of the end of year 2008. We vary n ∈
{400, 600, 800, 1000} to assess the impact from the scale of the problem on
the accuracy of the framework. Intuitively with the same period of time, the
larger the n is, the more difficult it is to predict future defaults.

Upon selecting the n companies, we generate both the events of default
and other types of exist based on the parametric intensity models outlined
in Sections 2.3 and 4.2. To ensure reasonable numbers of events in the sim-
ulations and for simplicity, we set the same intensity functions for both
events of defaults and other exists, particularly, with the same parameters
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Fig 5: Correlations between the fitted covariates and observed covariates for
the two firm specific variables.

β = (−5.26, 0.1,−1.2,−0.045,−0.084)T . These values closely mimic those
estimated from the real data set as reported in Table 1.

We then estimate the parameters of the covariate model outlined in Sec-
tion 2.4 based on the n companies, and fixed the values of the parameters
throughout the simulations with size n. With the estimated parameters, we
simulate the monthly differenced values of the covariate from the same model
as outlined in Section 2.4. Then we generate the covariate process from the
simulated differenced values, with the first observations of the companies
taken from that of the random sample of size n. Then, with the simulated
covariate process, we generate both events of defaults and other exits with
the parametric intensity functions specified as described earlier.

Upon generating the simulated data set with both the covariate process
and the time-to-events, we apply our method to produce prediction intervals
of the cumulative number of defaults in each month of 2008. We also compare
the two types of prediction intervals – calibrated and uncalibrated ones – as
outlined in Section 3.2. The simulations for each sample size n are repeated
for 240 times. The results of the accuracy in terms of the percentage that the
prediction intervals cover the true cumulative default numbers are reported
in Fig 6.

From Fig 6, we have a few observations. First and foremost on the empir-
ical accuracy of the uncertainties assessment, we observe that the empirical
frequencies of the prediction coverages are close to the nominal levels for all
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multiple period predictions when n is smaller. When n is larger, the coverage
of the PI is also very accurate for the cumulative default counts within a
closer time horizon from the origin of predictions. Second, we see that the
coverages generally get worse for larger time horizon cumulative predictions.
Since we are examining the cumulative predictions, the main reason should
be the error aggregations in the cumulative counts predictions. That is, even
the coverages of the prediction intervals for the number of events at each
individual month are close to the nominal level, the performance of the PI
for cumulative counts will still be more off the target due to that all errors
are aggregating together. Given the same amount of information, this also
reflects the practical difficulty in obtaining accurate predictions for longer
time horizons. Third, the calibrated intervals perform substantially better
than the uncalibrated ones, indicating the merits of applying calibrated pro-
cedures for prediction intervals. Since the naive prediction intervals (without
calibration) only capture the intrinsic randomness in the random variables
and ignores the uncertainty from parameter estimations, they tend to be
narrow so that the coverage tends to be smaller than the nominal level. In
contrast, the advantage of calibration relies on the fact that it takes the
additional source of uncertainties into account. Hence the coverage of the
calibrated prediction intervals tend to be closer to the nominal level.

6. Discussions and Future Work. We consider the challenging prob-
lem of assessing uncertainties associated with corporate default predictions
by carefully disentangling and quantifying the contributing sources for the
point predictions. An application of our framework to a large-scale US Cor-
porate data set shows that our point predictions have good out-of-sample
performance, and is promising in quantifying the uncertainties in predic-
tions. Our framework also helps for a better understanding of the default
mechanism by providing an additional dimension of insights from assessing
the level of uncertainties associated with point predictions. With limited
access to a powerful modern computational facility (160 hours in parallel
on 80 CPUs), we accomplish the tasks for assessing the uncertainties as-
sociated with corporate default predictions, demonstrate the feasibility for
solving this long overdue important large scale practical problem with many
challenging practical features. Our study reveals high level of uncertain-
ties associated default predictions especially when conducting longer term
predictions. We believe that is mainly due to the nature of the prediction
problem involving unknown future dynamics of those factors affecting the
default mechanism. Hence more cautions are necessary when using quanti-
tative tools for mid- and long-term default predictions. We also note that
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Fig 6: Coverage probability of calibrated and uncalibrated PI from simula-
tion study.
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the rationale of the quantitative modeling is to predict future events based
on historical information. Thus for all model based quantitative predictions,
they should be interpreted as that if the market conditions are consistent
with the historical scenarios, then the predictions are valid. Otherwise, one
has to take serious cautions.

Further investigations for assessing the uncertainties associated with cor-
porate default risk predictions are clearly desirable. Our framework needs
parametric models for the default mechanism and the covariate processes.
Extending the scope of the framework and evaluating its robustness are
clearly important. For example, other methods dealing with the default
mechanism may be considered. Additional considerations on features such
as the cycling effect [29] and systemic risk [22] can also be investigated.
Interesting questions also include how to efficiently incorporate more vari-
ables, and how a violation of the parametric models may affect the accuracy
of the assessed level of uncertainties. There is another important consid-
eration on the correlations between defaults. Recent investigations reveal
the correlations and even clustering effect of the occurrences of corporate
defaults; see, among others, the frailty modeling approaches with random
effects in [18], the dynamic frailty modeling approaches of [31] and [32], and
the jump cumulative default intensity function approach of [40]. It will also
be interesting to explore the impact from the random and even clustering
effects in constructing the prediction intervals. We hope to conduct further
investigations on these problems in future. Both theoretical and practical
investigations are also needed for exploring the high-dimensional covariate
process for large number of companies with the global market data. Instead
of resorting to the simulation based approach we take, a potential direc-
tion for assessing uncertainties associated with default predictions could
be applying the Bayesian approaches that being capable of producing the
posterior distribution of the quantities of interests. How to develop parsi-
monious and effective Bayesian modeling, and how to design and implement
efficient practical computational framework are interesting and open chal-
lenging problems.
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SUPPLEMENTARY MATERIAL

Supplement Material: Supplement to “Disentangling and As-

sessing Uncertainties in Multiperiod Corporate Default Risk Pre-

dictions”

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). De-
tail of the EM algorithm.
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