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Abstract: The use of machine learning (ML) techniques to model quantitative composition–property relationships in concrete has received
substantial attention in the past few years. This paper presents a novel hybrid ML model (RF-FFA) for prediction of compressive strength of
concrete by combining the random forests (RF) model with the firefly algorithm (FFA). The firefly algorithm is utilized to determine optimum
values of two hyper-parameters (i.e., number of trees and number of leaves per tree in the forest) of the RF model in relation to the nature and
volume of the dataset. The RF-FFA model was trained to develop correlations between input variables and output of two different categories
of datasets; such correlations were subsequently leveraged by the model to make predictions in previously untrained data domains. The first
category included two separate datasets featuring highly nonlinear and periodic relationship between input variables and output, as given by
trigonometric functions. The second category included two real-world datasets, composed of mixture design variables of concretes as inputs
and their age-dependent compressive strengths as outputs. The prediction performance of the hybrid RF-FFA model was benchmarked
against commonly used standalone ML models—support vector machine (SVM), multilayer perceptron artificial neural network
(MLP-ANN), M5Prime model tree algorithm (M5P), and RF. The metrics used for evaluation of prediction accuracy included five different
statistical parameters as well as a composite performance index (CPI). Results show that the hybrid RF-FFA model consistently outperforms
the standalone ML models in terms of prediction accuracy—regardless of the nature and volume of datasets. DOI: 10.1061/(ASCE)
MT.1943-5533.0002902. © 2019 American Society of Civil Engineers.
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Introduction

The idea of using data-driven methods—such as supervised ma-
chine learning (ML)—for prediction and optimization of materials’
performance forms the premise of the United States Materials
Genome Initiative (Jain et al. 2013). In pursuit of the idea, research-
ers from various scientific domains have compiled extensive data-
sets of materials and subsequently employed ML models to better
understand the underlying quantitative composition–performance
correlations (Carrasquilla and Melko 2017; Pilania et al. 2013;
Ward et al. 2016; Zdeborová 2017). Knowledge of such correla-
tions, for any given material, can be leveraged to mitigate the cost
and time involved in an Edisonian approach—involving rigorous
and iterative synthesis-testing/analyses cycles (Liu et al. 2017)—to

predict a material’s properties or to design a new material that meets
a desired set of performance criteria.

Concrete—the most produced and used material in the world—
has garnered the interest of several researchers working the area of
ML. The focus of various research articles (Akande et al. 2014;
Behnood et al. 2017; Chou et al. 2010, 2014; Duan et al. 2013;
Gupta et al. 2006; Kasperkiewicz et al. 1995; Nagwani and Deo
2014; Omran et al. 2016; Veloso de Melo and Banzhaf 2017;
Yeh 1998a, b; Yeh and Lien 2009; Young et al. 2019; Zarandi
et al. 2008) has been to employ ML models to predict concretes’
properties (e.g., compressive strength and rheological parameters)
using their mixture design variables [e.g., contents of cement,
water, mineral additive(s), and admixture(s)] and age as inputs.
Among concrete’s properties, compressive strength is deemed rel-
atively more important for quality control, and it is widely used as
the primary specification criterion for construction of structures.
Furthermore, compressive strength of concrete is very well corre-
lated with other mechanical properties (e.g., elastic modulus, flexu-
ral strength) and, therefore, can be used to qualitatively estimate
the overall mechanical stability and survivability of the structure
(Manning and Hope 1971; Oluokun et al. 1991). Because of these
reasons, most of the aforementioned studies have focused on pre-
dicting the compressive strength of concrete. The utilization of ML
models—as opposed to Edisonian approaches, or simple linear re-
gression models—is to overcome complexities pertaining to (1) the
staggeringly large compositional degrees of freedom in concrete
(i.e., mixture design variables, permutations and combinations
of which can vary within wide ranges and exert significant influ-
ence on properties) and (2) the inherent nonlinear relationships
between mixture design variables and properties of concrete. To
be more specific on the latter point, the properties of concrete
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are complex—highly nonlinear, and, often, non-monotonous—
functions of mixture design variables. For example, within the ce-
ment paste component of concrete, compressive strength decreases
with increasing water-to-cement ratio (w=c, mass basis); however,
this relationship exhibits nondifferentiability at the critical w=c of
0.42, below which the paste becomes water-deficient (Jennings
et al. 2015; Powers and Brownyard 1946). This relationship be-
tween the w=c and compressive strength is further convoluted when
a fraction of the cement is replaced with a reactive mineral additive
(e.g., fly ash and blast furnace slag) (Li and Zhao 2003; Poon et al.
2000). Therefore, sophisticated approaches, such as ML, are re-
quired to reveal the hidden, and complex, semiempirical rules that
govern the correlation between mixture design and properties of
concrete.

The majority of past studies, focused on prediction of compres-
sive strength of concrete, have used nonlinear regression based ML
models [i.e., artificial neural network (ANN) (Schalkoff 1997) or
support vector machine (SVM) (Hearst et al. 1998)]—presumably
because of nonlinear correlations between mixture design variables
and properties of concrete. Notable among these are studies con-
ducted by Akande et al. (2014), Chopra et al. (2016, 2018), Chou
et al. (2010, 2014), Duan et al. (2013), Omran et al. (2016), Yeh
(1998a, b), and Young et al. (2019). The studies have shown that
both ANN and SVM models, when trained using a sufficiently
large dataset, can predict compressive strength of concrete with rea-
sonable accuracy (i.e., coefficient of determination, R2 ≥ 0.90).
However, it has been reported that ANN and SVM models are
unreliable in making predictions in data domains that feature a
highly nonlinear, periodic functional relationship between one or
more input variables and the output (Cunningham et al. 2000;
Yao 1999; Zhang et al. 1998). This is because both ANN and SVN
models employ local search or optimization algorithms (e.g., back-
propagation algorithm used in ANN), which are faced with an in-
herent drawback of getting trapped in local minima—especially
when the functional relationship between input variables and out-
put is composed of multiple local minima (e.g., periodic trigono-
metric functions)—rather than converging to the global minima.
Because of this drawback, with every rerun of ANN or SVM during
the training period (i.e., when different subsets of the same dataset
are used to train the models) the convergence could occur at
different local minima, thus resulting in disparate prediction perfor-
mances (i.e., the ability to reliably predict outputs using previously
unseen input variables) during the testing (Cunningham et al. 2000;
Yao 1999; Zhang et al. 1998). This deficiency can be amended by
using algorithms based on genetic programing (Chopra et al. 2016;
Veloso de Melo and Banzhaf 2017). Alternatively, bootstrap aggre-
gation of outputs of several models developed from various subsets
of the training dataset—for example, by using bagging, voting, or
stacking approaches (Chou et al. 2014; Polikar 2006)—can also be
used. However, such techniques could slow down the rate of con-
vergence or, in the worst case, result in overfitting (Dietterich
2000). This issue of ANN and SVM models, pertaining to their
inferior performance on datasets featuring periodic input–output
relationship, is further examined in the “Results and Discussion”
section.

ANN and SVM models have another drawback—the objective
functions produced by them are difficult to interpret and, therefore,
difficult (albeit not impossible) to employ for optimization pur-
poses. This is because the functional relationship between input
variables and output is not yielded as a transparent mathematical
formula. To overcome this limitation, in some recent studies
(Behnood et al. 2017; Chou et al. 2014; Omran et al. 2016;
Veloso de Melo and Banzhaf 2017; Young et al. 2019) decision
trees–based ML models have been employed. Decision trees are

essentially rules-based models, wherein the training dataset is
classified into multiple independent subsets and subsequently proc-
essed using a collection of linear or nonlinear regression methods
to develop multiple (transparent) functional relationships between
input variables and output. Notable among these are application
of the M5Prime (M5P) (Quinlan 1992; Wang and Witten 1997;
Behnood et al. 2017; Deepa et al. 2010; Omran et al. 2016) and
random forests (RF) (Breiman 2001; Chopra et al. 2018; Young
et al. 2019) models. Deepa et al. (2010) and Behnood et al. (2017)
showed that prediction accuracy of the M5P model was superior
compared to the ANN model. Similarly, as per the R2 values re-
ported by Young et al. (2019), predictions of concrete compressive
strength using the RF model were more accurate (albeit not com-
prehensively) compared to those using ANN and SVM models.

To the best of the authors’ knowledge, the prediction perfor-
mances of M5P and RF models (i.e., in terms of predicting the
compressive strength of concrete) have not been compared.
Notwithstanding, the RF model is hypothesized to be superior com-
pared to the M5P model; this hypothesis will be corroborated in the
“Results and Discussion” section. The premise of this hypothesis
is that the M5P model assumes a multivariate linear relationship
between input variables and output in each subset of the training
data (Quinlan 1992; Wang and Witten 1997). More specifically, the
training dataset is split into multiple subsets until in each subset a
simple, linear input–output correlation can be established. Because
of this limitation—like in the ANN and SVM models—predictions
made by the M5P model in domains that feature highly nonlinear
and/or periodic relationships between input variables and output are
expected to be inaccurate. The RF model, on the other hand, does
not suffer from this limitation because of its ability to handle con-
tinuous and discrete variables over both monotonous and non-
monotonous domains (Breiman 2001). Notwithstanding, in the
RF model, it is important to fine-tune two hyper-parameters—that
is, the number of trees in the forest and the number of leaves per
tree—to ensure that input–output correlations are identified and
captured, and predictions are accurate. In the absence of an opti-
mization algorithm, the two hyper-parameters need to be adjusted
through trial and error [e.g., by using multifold cross-validation
(Schaffer 1993)], which can be time-consuming and difficult. In
a recent study (Ibrahim and Khatib 2017), it was shown that the
firefly algorithm (FFA)—a metaheuristic optimization algorithm
(Yang 2009)—can be used to determine optimum values of the
two aforementioned hyper-parameters in relation to the volume
and nature of the training dataset. The authors showed that by com-
bining RF with FFA predictions (of global solar radiation) were
rendered more accurate compared to those made by various stand-
alone and ensemble ML models. In another study (Chou and Pham
2015), FFA was used in conjunction with SVM to predict con-
cretes’ compressive strength. Although the combined [SVM +
FFA] model had better prediction performance than the standalone
SVM model, it is expected that inherent limitations of SVM—as
described previously—could have compromised the prediction per-
formance of the combined model. To the best of the authors’
knowledge, the combination of RF and FFA has never been used
to process concrete datasets. Given the superior prediction perfor-
mance of RF [compared to SVM as well as other ML models
(Young et al. 2019)], it is deemed important to examine whether
combining RF with FFA would result in further improvements
in accuracy of predictions of concretes’ compressive strength.

This study presents the first application of the hybrid RF-FFA
model—developed by combining the RF model with FFA—to pre-
dict compressive strength of concretes in relation to their mixture
design and age. The performance of the hybrid model is bench-
marked against commonly used standalone ML models (i.e., SVM,
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multilayer perceptron ANN, M5P, and RF). Six different statistical
parameters are used for comprehensive evaluation of the models’
prediction performance. Firstly, highly nonlinear, non-monotonous,
and periodic trigonometric functions are used to evaluate the per-
formance of the ML models. Focus is given to determine if the
hybrid model is able to reveal the complex relationship between
input variables and output of the trigonometric functions and, more
importantly, reliably predict the function outputs in blank (i.e., pre-
viously untrained) data domains. Secondly, the prediction perfor-
mance of the ML models is tested using two real-world concrete
datasets, composed of concretes’ mixture designs and their corre-
sponding age-dependent compressive strengths. Based on compar-
isons of prediction performances—of the hybrid RF-FFA model
vis-à-vis the standalone ML models—it is shown that the hybrid
ML model consistently outperforms the standalone ML models.

The paper is organized as follows. “Machine Learning Models”
describes the five ML models implemented in this study. “Data
Collection and Performance Evaluation of Machine Learning
Models” describes the datasets used for training and testing of the
ML models. A brief description of statistical parameters used for
evaluation of prediction performance of the models is also included.
“Results and Discussion” reports the results and comparison of
prediction performances of various ML models. “Conclusions”
presents a summary of the main findings of the study.

Machine Learning Models

This section provides a brief overview of the machine learning
(ML) models implemented in this study. In each of the following
subsections, one or more original references are provided that
describe the formulation and implementation of the ML model
in more detail.

Multilayer Perceptron Artificial Neural Network

An artificial neural network (ANN) consists of several computa-
tional elements (termed as neurons) arranged in layers, resembling
the network of neurons in the human brain responsible for process-
ing information in a hierarchical fashion (Schalkoff 1997). The
multilayer perceptron artificial neural network (MLP-ANN) is a
subclass of ANN with strong self-learning capabilities (Gardner
and Dorling 1998). The hierarchical structure of MLP-ANN is
composed of (1) one input layer, which contains a set of neurons
representing the input variables (e.g., concrete mixture design var-
iables); (2) one or more hierarchical hidden layers, which contain
computational neurons to process the information received from the
previous layer so that it can be refined and passed on to the next
layer; and (3) one output layer, which contains a computation
node to produce the final prediction (e.g., compressive strength
of concrete). Each neuron in any given hidden layer is function-
ally related—as shown in Eq. (1)—to all neurons in the previous
layer

Nj ¼
X

wjioi ð1Þ

yj ¼ fðNjÞ ¼
1

1þ ewji:Nj
ð2Þ

here, Nj = activation of the jth neuron; i = set of all neurons present
in the previous layer; wji = weight of connection between neurons j
and i; and oi = output of the neuron. Each neuron uses activation
functions (while using all neurons from the previous layer) to cal-
culate intermediate-output values, which are subsequently passed
on as input values to the next neuron layer. This process proceeds

throughout the network until reaching the final neuron layer that
produces the final output. In the MLP-ANN model, activation func-
tions are represented as sigmoidal or logistic-transfer functions
(Gardner and Dorling 1998)—as shown in Eq. (2), wherein yj ¼
fðNjÞ is the activation function of the jth neuron. During training
of the MLP-ANN model, a back-propagation algorithm (Goh 1995;
Mueller et al. 2016) is used to minimize deviation [i.e., root-mean
squared error (RMSE) or mean absolute error (MAE)] between
actual and predicted values (of the activation functions). This is
accomplished by iteratively adjusting and finally determining the
optimal connection weights (i.e., wji)—pertaining to each activa-
tion function—by using the gradient descent approach or the
Levenberg–Marquardt algorithm (Gardner and Dorling 1998; Moré
1978).

In the MLP-ANN model used in this study, the neural network
architecture is composed of five hidden layers, wherein each layer
is composed of (2mþ 1) neurons (Hegazy et al. 1994); m is the
number of input variables of the training dataset. The choice of five
hidden layers was made based on comparison of prediction perfor-
mances of the model—whilst varying the number of hidden layers
between unity and higher values—against experimental datasets
(i.e., datasets pertaining to concrete and those generated using
trigonometric functions) described in the “Data Collection” section.
For fine-tuning of the parameters (i.e., connection weights of each
of the activation functions), the Levenberg–Marquart algorithm, as
described in Moré (1978), was chosen because it resulted in supe-
rior prediction performance compared to the gradient descent ap-
proach. It is clarified that for determination of optimal parametric
values (i.e., number of hidden layers) and for selection of the
Levenberg–Marquart algorithm, a 10-fold cross-validation (CV)
method (Chou et al. 2014; Dietterich 2000; Schaffer 1993) was
used as the primary performance-assessment method. The same
method has also been used to optimize parameters and functions
of other ML models described subsequently in this section. In gen-
eral, a p-fold CV method (where p is the number of folds, for ex-
ample, 10 as used in this study) involves randomized stratification
of the original dataset into p folds such that each fold contains
100p=N% of the total number (i.e., N) of data-records of the origi-
nal dataset. It is also important to ensure each of the p folds en-
compasses an approximately similar proportion of predictor labels
as in the original dataset. Next, the model is trained using data-
records in p − 1 folds out of the p folds and tested against the last
fold. This process is repeated p − 1 times, in an iterative manner,
such that each of the p folds are used once for testing and p − 1
times for training the model. With each training-followed-by-
testing iteration, the CV error (usually expressed in the form of
root-mean squared error) is estimated, and on such basis the opti-
mum functions (e.g., for determination of functional forms of
neuron activation) are chosen and the parameters of the ML model
(e.g., number of hidden layers in MLP-ANN model) are progres-
sively fine-tuned. Ultimately, the optimum function(s) and values
of parameters of the MLmodel correspond to those that result in the
smallest overall value of CV error when accumulated over all ex-
perimental datasets.

Support Vector Machine

Support vector machine (SVM) is an ML methodology for approxi-
mating the nonlinear relationship between input variables and
output of a dataset by using an optimization approach—rather than
a regression approach—to minimize a cost (i.e., ε-insensitive loss)
function (Smola and Schölkopf 2004; Vapnik 2000). During
training, the SVM, firstly, maps the input dataset from a lower-
dimensional to a higher-dimensional feature space by using a

© ASCE 04019255-3 J. Mater. Civ. Eng.

 J. Mater. Civ. Eng., 2019, 31(11): 04019255 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
is

so
ur

i U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
on

 0
8/

19
/1

9.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



mapping procedure. Toward this, a nonlinear kernel function
[e.g., polynomial function, sigmoidal function, Gaussian radial ba-
sis kernel function, or hyperbolic tangent function (Clarke et al.
2005; Garg and Verma 2006)] is used to fit the input data into a
higher-dimensional feature space, wherein the data is distributed
in a more sparse form compared to the original one. Next, the
SVM attempts to determine a linear objective function fSVM (x, ω)
[see Eq. (3)]—such that its output has a maximum deviation of ε
with respect to the actual (measured) value in the training dataset

fSVMðx;ωÞ ¼
Xn
i¼1

ωiKiðxÞ þ b ð3Þ

In Eq. (3), Ki = set of n nonlinear kernel (i.e., mapping) func-
tions used for transforming the original input data (x) into higher-
dimensional feature space; b = a bias term; and ω represents the
weight vector consisting of n choice coefficients. In order to derive
the optimum objective function [fSVMðx;ωÞ]—and the associated
parameters (i.e., b and ω)—the task of regression is approached as
an optimization problem [Eq. (4)], within the constraints shown in
Eq. (5). The objective of the optimization effort is to determine the
global minimum of Eq. (4), such that for each input value (x),
the output of fSVM (x, ω) is within a Euclidian distance of ε from
the actual value (Fang et al. 2008)

minimize:
1

2
kω2k þ C

Xn
i¼1

ξi þ ξ�i ð4Þ

subject to

8><
>:

yi − fSVMðxi;ωÞ − b ≤ εþ ξi
fSVMðxi;ωÞ þ b − yi ≤ εþ ξ�i
ξi and ξ�i ≥ 0; and i ¼ 1; 2; 3 : : : n

ð5Þ

Kðx; yÞ ¼ eð−γkx−yk2Þ ð6Þ

In Eq. (4), the constant C is called the regularization term and
represents the degree of penalty of the sample with error exceeding
ε (i.e., when the prediction is farther than ε from the actual value).
The parameters, ξi and ξ�i , shown in Eq. (5) are positive slack var-
iables that represent the Euclidian distance of the predicted value
from the corresponding boundary values of the ε-tube (i.e., a tube
representing the actual training dataset, wherein each data-record is
bounded by the maximum allowable error of ε). Therefore, based
on the formulation described here, to derive the optimum objective
function, fSVM (x, ω) (and optimum values of the bias, b, and
choice coefficients, ω)—that reliably links input variables with
the output—the parameters that need to be optimized are ε, C,
and any parameter associated with the kernel function (e.g., the
parameter γ, which is associated with the Gaussian radial basis
kernel function, as shown in Eq. (6) (Clarke et al. 2005; Garg
and Verma 2006).

In the SVM model used in this study, three different kernel
functions (i.e., Gaussian radial basis kernel function, 3rd-to-5th or-
der polynomial functions, and sigmoidal function) were used.
Based on comparisons of prediction performances of the model—
ascertained using the 10-fold CV method (James et al. 2013;
Schaffer 1993)—on experimental datasets (described in the “Data
Collection” section), the Gaussian radial basis kernel function
was chosen. Within the kernel function [see Eq. (6)], the optimum
value of γ was determined (as per the CV method) as 0.10. The
optimum values of ε (representing the radius of the ε-tube) and
C (the regularization term) were determined as 1.5 MPa and 5.0,
respectively.

M5Prime Model Tree Algorithm

The M5Prime model tree algorithm—often abbreviated as the M5P
model—is a modification (Wang and Witten 1997) of the M5Rules
algorithm introduced by Quinlan (1992). The M5P model is, essen-
tially, a decision tree model that performs logical splits in the train-
ing dataset so that the input variables can be linked with the output
using multivariate linear functions. During training of the M5P
model, the input space is split in several subspaces, while ensuring
that data in each subspace share at least one common attribute
(e.g., similar range of one or more input variables). More specifi-
cally, the splitting of data is performed in a manner that data that are
alike—in terms of one or more of their attributes—are clustered and
contained within the same subspace. By repeating this procedure
iteratively, several subspaces, each consisting of harmonious data,
are obtained. Standard deviation is typically used as the criterion
for determining the specific attribute or attributes on the bases of
which optimal splitting of the dataset can be achieved. Such reduc-
tion in standard deviation allows determination, and subsequent
creation, of several nodes (i.e., data clusters) on the bases of attrib-
utes. By creating such nodes, the model enables the building of an
upside-down tree-like structure, wherein the root is at the top and
the leaves are at the bottom. Once the tree is built, a new data-record
propagates hierarchically from the root and down through the nodes
until it reaches a leaf. Each node consists of a mathematical logic,
which compares the new data-record with that of the split value and
helps the data-record propagate down through the nodes until it
reaches the appropriate leaf. In the M5P model, a linear regression
model is used as the aforementioned mathematical logic. The re-
gression model is developed in each of the subspaces, linking input
variables and output of the data-records contained within it. To en-
sure that the tree-structure is optimal, a pruning technique is used to
overcome the issue of overtraining—that is, when the chosen attrib-
ute, for any given subspace, is not the optimal one with the maxi-
mum expectation to reduce error (i.e., standard deviation, in this
study). Use of the pruning technique, however, can result in dis-
continuities between adjacent linear models. To mitigate this issue,
a smoothing operation is employed in the final step. Such iterative
pruning and smoothening operations ultimately unify all linear re-
gression models—across all the nodes between the root and leaf of
the tree—into a singular, continuous model.

The M5P model used in this study was implemented using the
Waikato Environment for Knowledge Analysis (WEKA) work-
bench toolbox (Frank et al. 2004; Holmes et al. 1994). The only
variable parameter in the M5P model is the minimum number of
splits in the dataset. This value was varied widely from unity to
higher values, and the prediction performance was measured—
using the 10-fold CV method—using experimental datasets (de-
scribed in the “Data Collection” section) for both training and
testing. Based on such evaluations, the optimum value of minimum
number of splits was selected as 4.

Random Forests

Random forests (RF) is a modified version of the bagging
(i.e., bootstrap aggregation) decision tree algorithm, which assim-
ilates the concepts of adaptive nearest neighbors and bagging to
achieve effective data-adaptive inference (Breiman 2001; Chen
and Ishwaran 2012). Like in conventional decision tree models,
the RF model utilizes a set (albeit large) number of independent
trees, and within those trees are encompassed subsets of the homog-
enized training data (Breiman 1996). The elementary unit of RF is a
binary tree constructed using the same foundational principle as
that used in the classification and regression tree (CART) model—
wherein binary splits partition the tree, in recursive fashion, into

© ASCE 04019255-4 J. Mater. Civ. Eng.

 J. Mater. Civ. Eng., 2019, 31(11): 04019255 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
is

so
ur

i U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
on

 0
8/

19
/1

9.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



near-homogeneous terminal nodes. When the binary split is done
optimally, the propagation of data from a parent node to its two
children nodes occurs in a way that ensures that homogeneity in
the data between the children nodes is improved compared to
the parent node. A typical RF model is composed of hundreds
or thousands of trees, wherein each tree is grown using a unique
bootstrap sample of the training data. Compared to the CART
model, the RF model is different in the sense that trees in the latter
model are grown nondeterministically using a two-stage randomi-
zation procedure. Here, the first stage of randomization involves
growing the tree using a randomly chosen bootstrap sample of
the original data. The second stage of randomization features at
the node level—wherein, as opposed to splitting the tree node using
all variables (as done in the CART model or the M5P model de-
scribed in the previous subsection), a random subset of variables
is selected and only those variables are used for ascertaining the
best split of the node. On account of the two-stage randomization,
the trees grown in the RF model are de-correlated and the ensemble
has low variance. Based on this description, construction of the RF
model can be summarized in the following steps:
• “nt” bootstrap samples are drawn randomly from the original

training dataset. At this point, the number of bootstrap samples
(i.e., nt) is equal to the number of trees. Based on prior studies
(Chen and Ishwaran 2012; Ibrahim and Khatib 2017; Svetnik
et al. 2003), the optimum value of nt is ≈66.66% of the overall
training dataset. The remaining ≈33.33% of the dataset are la-
belled as out-of-bag (OOB) data.

• From each of the nt bootstrap datasets, a tree is grown. Unlike
conventional decision tree models (e.g., the M5P and CART
models), each tree in the RF model is an unpruned regression
tree, wherein at each node, rather than choosing all variables of
the training dataset, a random sample ofmtry variables is chosen.
As the tree is grown, the number of leaves per tree (nLV ) is
held constant across the entire ensemble. Based on previous stu-
dies (Chen and Ishwaran 2012; Ibrahim and Khatib 2017), the
optimum value of nLV is between 3 and 10. In this study, the
optimum value—assessed by performing predictions on differ-
ent experimental datasets (described in the “Data Collection”
section)—was determined as 5.

• Next, each of the nt trees is utilized to predict a data point out-
side of the selected bootstrap space. Output of the prediction is
designated as out of bag (OOB) prediction (Breiman 1996).
These OOB predictions, for a given input vector (x), are desig-
nated as fRFðxÞ for each of the nt decision trees; all OOB pre-
dictions are subsequently aggregated and averaged to produce
the overall OOB prediction f̂ntRFðxÞ and OOB error rate [see
Eq. (7)]. Simply put, f̂ntRFðxÞ is the arithmetic mean of the pre-
dicted values collated from all of the nt trees. The OOB
predictions—especially the OOB error rate—provide a good
measure of influence of each variable on the output, which
can be quantitatively estimated as variable importance (VI), thus
eliminating the need for a test set or cross-validation (Schaffer
1993). The VI of a given variable is, essentially, a measure of
increment in OOB error rate when OOB prediction for a given
variable is permuted while all others are left unchanged (Svetnik
et al. 2003).

• Once the OBB predictions, OOB error rate, and VI are calcu-
lated, outliers in the training dataset are detected using cluster
analysis (e.g., K-means cluster analysis, density model, and
mean-shift clustering) (Sarstedt and Mooi 2014). In the study,
the K-means cluster analysis (Hartigan and Wong 1979) was
used to determine data-records that do and do not belong in clus-
ters. The data-records that do not belong in clusters are removed

and subsequently replaced in an iterative manner through the
training process.

• Lastly, in the testing phase, new input dataset—which is not part
of the training dataset—is used to perform predictions. For each
input data-record, the predicted value corresponds to the average
of predictions from all of the nt trees

f̂ntRFðxÞ ¼
1

nt

Xnt
j¼1

fRFj
ðxÞ ð7Þ

The RF model has a number of unique advantages. In the RF
model, a large number of trees are grown (as opposed to other de-
cision tree models)—on a one-node-at-a-time basis; as such, errors
resulting from generalization are minimized and, therefore, the
likelihood of overfitting the training data is negligible (Biau
et al. 2008). Minimization of generalization, enabled by the large
number of trees, entails that the RF model is able to proficiently
deal with complex interactions and correlations among variables
of the training dataset. By allowing each of nt trees to grow to
its maximum size (i.e., by allowing deep trees), without any prun-
ing, and selecting only the best splits among a random subset
at each node, the RF model is able to concurrently maintain
diversity among trees and prediction performance. The two-stage
randomization—as described previously—diminishes correlation
among unpruned trees, keeps the bias low, and reduces variance.
Lastly, the RF model is easy to implement because the number
of trees (nt) and the number of leave per tree (nLV ) are the only
two hyper-parameters that need to be optimized by the user. Both
of these hyper-parameters were optimized by the 10-fold CV
method (James et al. 2013; Schaffer 1993), whilst training and test-
ing the model using experimental datasets described in the Data
Collection section. Through such assessments, the optimum values
of nt and nLV for the standalone RF model were determined as 450
and 5, respectively.

Hybrid Random Forests: Firefly Algorithm Model

Firefly Algorithm
The FFA—originally conceived by Yang (2009)—is an optimiza-
tion algorithm (Lukasik and Żak 2009; Yang and He 2013) based
on idealized behavior of the flashing characteristics of fireflies. The
rules of idealized flashing characteristics are (1) each firefly is
attracted to all other fireflies; (2) the magnitude of attractiveness
between any two fireflies is proportional to the difference in bright-
ness between them; (3) the movement of a firefly is always toward a
firefly with greater brightness; and (4) the brightness of the firefly is
determined by the landscape [i.e., the objective function, fðxÞ, that
is to be optimized]. The brightness, I, of a firefly at a particular
location, x, can be chosen as IðxÞ, which is directly proportional
to the objective function, fðxÞ. The attractiveness, β, between a
pair of fireflies is a function of the distance, rij, between firefly
i and firefly j. Likewise, the brightness, Ii, of firefly i varies with
the distance ri from the source in a monotonic and exponential
manner [Eq. (8a)]

Ii ¼ I0e−γri ð8aÞ
where,

γ ¼ γ0
rmax

ð8bÞ

here, I0 = brightness at the source (typically set at 1.0); and γ =
light absorption coefficient (representing the potential of fireflies
to absorb light from the source). The value of γ can range from
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0 to 10 (Yang 2009). In this study, however, γ was calculated using
Eq. (8b), wherein γ0 ¼ 1.0, and rmax is the maximum of distances
between all pairs of fireflies (Lukasik and Żak 2009) in the land-
scape. The mathematical formulation of the magnitude of attrac-
tiveness (βij) between two fireflies (i and j), in relation to the
distance between them (rij), is given by Eq. (9):

βij ¼ β0e
−γrmij ð9Þ

where β0 = maximum attractiveness between a pair of fireflies
(i.e., at r ¼ 0); and m ¼ a positive coefficient (ranging between
2 and 4). The values of β0 can range from 0 to 1, wherein the upper
bound represents cooperative local search with the brightest firefly
dictating positions of most fireflies in the swarm. As the value of β0

digresses from 1, dominance of the brightest firefly decreases, thus
rendering the local search progressively more noncooperative. In
this study, a value of 0.80 was used for β0 and m was set at
2.0. The movement of a firefly i, as it is attracted to a brighter firefly
j, is determined by Eq. (10). Here, xi;old and xj are locations of the
fireflies i and j, respectively, and the last term is randomization
with the vector of random variables (εi) drawn from a Gaussian
distribution; xi;new is the new position of firefly i as its moves be-
cause of its attraction toward firefly j

xi;new ¼ xi;old þ β0e
−γrmij ðxj − xiÞ þ αεi ð10Þ

Based on the previously mentioned criteria and definitions, the
FFA can be used to minimize a continuous, constrained cost func-
tion fðxÞ. Firstly, it is assumed that there exists a swarm of m
fireflies—distributed randomly over the landscape. The fireflies
are tasked to find x�, wherein the value of the cost function
fðx�Þ—or, in other words, the overall brightness of the landscape—
is minimum. Next, the FFA is implemented in the following steps:
(1) all fireflies of the swarm are allowed to move, in a sequential
manner, such that each firefly moves toward another in the neigh-
borhood on the basis of its attractiveness toward the other firefly
(which is a function of difference in brightness and the distance
between the two fireflies); (2) once all fireflies have been allowed
to move to their new locations, based on the new configuration of
fireflies, the overall brightness of the landscape is updated, and as-
sessed if it is lower than the original one; and (3) Steps 1 and 2 are
repeated iteratively until convergence is reached, wherein the over-
all brightness of the landscape reaches the global minimum (i.e., the
value does not change by more than 10−6 units between three suc-
cessive iterations).

Hybrid Model
In the RF model—as described in the previous subsection
[i.e., Random Forests (RF)]—it is important to fine-tune the two
hyper-parameters—that is, the number of trees in the forest (nt)
and the number of leaves per tree (nLV )—to ensure that predictions
are accurate. Typically, the two parameters are adjusted through
trial and error or by cross-validation, which can be time-consuming
and difficult. In a recent study (Ibrahim and Khatib 2017), it was
shown that the firefly algorithm (FFA)—described in the section on
the firefly algorithm (FFA)—can be used to determine optimum
values of the two aforementioned hyper-parameters in relation to
the nature and volume of the dataset. The authors showed that
by combining RF with FFA, predictions were rendered more accu-
rate compared to those made by various standalone and hybrid ML
models—including the RF model.

In this study, the structure of the hybrid model has been drawn
from the work of Ibrahim and Khatib (2017). In Stage 1, the RF
model is implemented, wherein the values of nt and nLV are set at
450 and 5, respectively. In Stage 2, the FFA is implemented in the
following steps:

• An objective function, fðxÞ, is defined, which corresponds
to the total root-mean squared error (RMSE: described in the
“Evaluation of Prediction Performance of Machine Learning
Models” section) of predictions of the RF model with respect
to actual values of the training dataset used in Stage 1.

• The FFA is implemented—by following the steps detailed in the
firefly algorithm (FFA) section—to optimize the values of nt
and nLV such that the objective function [i.e., fðxÞ ¼ RMSE
of the RF model] continually decreases. Toward this, at the
end of every iteration of the FFA, the RF model is implemented
to update predictions based on new values of the two hyper-
parameters; based on the predictions, the RMSE is also updated
to be used in the next iteration.

• The values of nt and nLV , at which the objective function
reaches a global minimum (changes by less than 10−6 units be-
tween three successive iterations), are selected as the final, op-
timum values.
Lastly, in Stage 3, the RF model is implemented to make pre-

dictions against the test dataset using the FFA-determined optimum
values of the hyper-parameters.

Data Collection and Performance Evaluation of
Machine Learning Models

Data Collection

Experimental datasets, consolidated from published studies
(Chopra et al. 2014; Yeh 1998a, b), were used to train the ML mod-
els (described in the “Machine Learning Models” section) and to
assess their prediction performance in previously untrained data
domains.

The first dataset—subsequently referred to as Dataset 1—was
first published by Yeh (1998a, b), and subsequently used by several
researchers (Akande et al. 2014; Behnood et al. 2017; Chou et al.
2010, 2014; Chou and Pham 2015; Duan et al. 2013; Gupta et al.
2006; Kasperkiewicz et al. 1995; Nagwani and Deo 2014; Omran
et al. 2016; Veloso de Melo and Banzhaf 2017; Yeh and Lien 2009;
Young et al. 2019; Zarandi et al. 2008) for training, testing, and
validation of statistical and ML models. Dataset 1 consists of
1,030 data-records, featuring 278 unique concrete mixture designs
and their age-dependent compressive strengths. In the context of
ML, in each data record, there are eight input variables [contents
of cement (kg · m−3), blast furnace slag (kg · m−3), fly ash
(kg · m−3), superplasticizer (kg · m−3), water (kg · m−3), fine ag-
gregate (kg · m−3) and coarse aggregate (kg · m−3), and age (days)]
and one output—compressive strength (MPa). Statistical parame-
ters pertaining to Dataset 1 are summarized in Table 1.

The second dataset—subsequently referred to as Dataset 2—
was first published by Chopra et al. (2014) and utilized in several
later studies (Chopra et al. 2015, 2016, 2018). Dataset 2 consists of
76 data-records, featuring different concrete mixture designs and
their compressive strengths at 28 days. In the context of ML, in
each data record, there are five input variables [contents of cement
(kg · m−3), fly ash (kg · m−3), water (kg · m−3), fine aggregate
(kg · m−3) and coarse aggregate (kg · m−3)] and one output—
compressive strength (MPa) at 28 days. Statistical parameters per-
taining to Dataset 2 are summarized in Table 2.

Evaluation of Prediction Performance of Machine
Learning Models

For training, and assessment of the prediction performance of ML
models, the dataset (i.e., Dataset 1 or Dataset 2, as described in the
Data Collection section) was randomly partitioned into two sets:
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a training set and a testing set. Among the data-records, 75% of the
parent dataset were used for training of the ML models (i.e., for
fine-tuning and, ultimately, finalizing the optimum model param-
eters), and the remaining 25% were used for testing (i.e., for de-
termination of cumulative error between predicted and actual
values). Such a split of 75%–25% between the training and test
sets—or a ratio close to that—has been used in various past studies
(Chou et al. 2010, 2014; Young et al. 2019). Although the splitting
was done randomly, special care was taken to guarantee that the
training dataset was representative of the parent dataset. Toward
this, it was ensured that the training dataset was composed of input
attributes (i.e., concrete mixture design variables) with widespread
values encompassing the entire range between the two extrema.

For quantitative measure of prediction performance of the ML
models (against the test set), five different statistical parameters
were used. The parameters, essentially, estimate the cumulative er-
ror in predictions—of compressive strength of concretes in the test
dataset—with respect to the actual measurements. The statistical
parameters are the Pearson correlation coefficient (R), coefficient
of determination (R2), mean absolute percentage error (MAPE),
mean absolute error (MAE), and root-mean squared error (RMSE).
The mathematical formulations to estimate these errors are shown
in Eqs. (11)–(15); here, y 0 and y are predicted and actual values,
and n is the total number of data-records in the test dataset

R ¼ n
P

y:y 0 − ðP yÞðP y 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP y2Þ − ðP yÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP y 02Þ − ðP y 0Þ2

p ð11Þ

R2 ¼
"

n
P

y · y 0 − ðP yÞðP y 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP y2Þ − ðP yÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP y 02Þ − ðP y 0Þ2

p
#
2

ð12Þ

MAPE ¼ 100%

n

Xi¼n

i¼1

jy − y 0j
y

ð13Þ

MAE ¼ 1

n

Xi¼n

i¼1

jy − y 0j ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xi¼n

i¼1

jy − y 0j2
vuut ð15Þ

CPI ¼ 1

N

Xj¼N

j¼1

Pj − Pmin;j

Pmax;j − Pmin;j
ð16Þ

To obtain a comprehensive measure of prediction performance
of the ML models—and to compare them—the five statistical
parameters described in Eqs. (11)–(15) were unified into a
composite performance index [CPI, see Eq. (16)] (Chandwani
et al. 2015; Chou et al. 2014). In Eq. (16), N is the total number
of performance measures (= 5 because five statistical parameters
were used in this study), Pj is the value of the jth statistical param-
eter, and Pj;min and Pj;max are the minimum (i.e., worst) and maxi-
mum (i.e., best) values of the jth statistical parameter across the five
values generated by the same number of ML models. Based on the
formulation shown in Eq. (16), the values of CPI would range from
0 to 1, wherein 0 (or the lowest value) would represent the best ML
model and 1 (or the maximum value) would represent the worst
ML model in terms of overall prediction performance. In this study,
the different ML models were ranked—from worst to best in terms
of prediction performance—based on their CPI values.

Results and Discussion

Highly Nonlinear and Periodic Trigonometric Functions

In conventional regression-based machine learning (ML), the qual-
ity of an ML model is measured by its capability to learn from a
training set and apply the knowledge to forecast in previously un-
seen data domains from the same distribution. Simply put, the pre-
diction performance of an ML model boils down to its ability to
identify trends in the dataset and subsequently use such trends
for interpolation. When trained properly (e.g., by training with
an adequately large dataset and by avoiding overfitting), nonlinear
ML models are often able to perform interpolations with sufficient

Table 1. Summary of statistical parameters pertaining to each of the 9 attributes (8 input and 1 output) of Dataset 1. The dataset consists of 1,030 unique
data-records

Attribute Unit Minimum Maximum Mean Standard deviation

Cement kg · m−3 102.00 540.00 281.27 104.51
Blast furnace slag kg · m−3 0.0000 359.40 73.896 86.279
Fly ash kg · m−3 0.0000 200.10 54.188 63.997
Water kg · m−3 121.80 247.00 181.57 21.354
Superplasticizer kg · m−3 0.0000 32.200 6.2050 5.9740
Coarse aggregate kg · m−3 801.00 1,145.0 972.92 77.754
Fine aggregate kg · m−3 594.00 992.60 773.58 80.176
Age Days 1.0000 365.00 45.662 63.170
Compressive strength MPa 2.3300 82.600 35.818 16.706

Table 2. Summary of statistical parameters pertaining to each of the 6 attributes (5 input and 1 output) of Dataset 2. The dataset consists of 76 unique
data-records

Attribute Unit Minimum Maximum Mean Standard deviation

Cement kg · m−3 350.00 475.00 433.88 34.810
Fly ash kg · m−3 0.0000 71.250 24.030 32.641
Water kg · m−3 178.50 229.50 202.81 12.821
Coarse aggregate kg · m−3 798.00 1,253.8 1,050.9 134.52
Fine aggregate kg · m−3 175.95 641.75 524.31 69.378
28-day compressive strength MPa 31.660 54.490 44.374 5.2120
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accuracy. However, it has been reported that the interpolation ac-
curacy of many ML models (e.g., ANN and SVM) becomes unre-
liable in data domains that feature complex, highly nonlinear, and
periodic functional relationships between one or more input vari-
ables and the output (Cunningham et al. 2000; Martius and Lampert
2016; Yao 1999; Zhang et al. 1998). In the context of concrete, the
ability to interpolate in such highly nonlinear domains could be
the difference between reliable and unreliable predictions; this is
because the relationships between mixture design variables and
properties of concrete are also expected to be highly nonlinear
and non-monotonous.

To test the ability of ML models—described in the “Machine
Learning Models” section—to interpolate in highly nonlinear and
periodic data domains, datasets generated from trigonometric func-
tions shown in Eqs. (17) and (18) were used. Similar functions were
originally suggested byMartius and Lampert (2016) to test the abil-
ity of various ML models to interpolate (and extrapolate) within
periodic data domains. In Eq. (17), x is an input vector consisting
of x1, x2, x3, and x4 variables, and y1 ¼ F1ðxÞ is the output. For this
function, x1 ¼ x2 ¼ x3 ¼ 2x4. In Eq. (18), x is an input vector con-
sisting of the same x1, x2, x3, and x4 variables, and y2 ¼ F2ðxÞ is
the output. Here, x1 ¼ x2 ¼ x3 ¼ −5x4. Two separate datasets
were generated by varying x1 (and, on account of the aforemen-
tioned equality, x2, x3, and x4 as well) between −4.0 and 4.0,
and calculating F1ðxÞ and F2ðxÞ as functions of all four variables.
The increment in x1 was set at 0.01; as such, each of the two
datasets consisted of 800 data-records with four input variables
and a single output. Next, each dataset was split randomly into
a training set (75%, or 600 data-records) and a test set (25%, or
200 data-records), using the procedure described in the Data
Collection section. All five ML models implemented in this study
(i.e., MLP-ANN, SVM, M5P, RF, and RF-FFA) were then trained
using the training dataset; subsequently, their prediction perfor-
mances were assessed using the corresponding test dataset

y1 ¼ F1ðxÞ ¼
�
1

3
sinðπx1Þ

�
þ
�
x2 cos

�
2πx1 þ

π
4

��
þ ½x3� − ½x24�

ð17Þ

y2 ¼ F2ðxÞ ¼
1

3
½ð1þ x2Þðsinðπx1ÞÞ� þ ½x2x3x4� ð18Þ

Figs. 1 and 2 show predictions made by the five ML models
plotted against the actual values, calculated using Eq. (17) [i.e., for
F1ðxÞ] and Eq. (18) [i.e., for F2ðxÞ], respectively. Tables 3 and 4
summarize the statistical parameters (i.e., cumulative errors) per-
taining to predictions made by the ML models, and the composite
performance index [CPI, Eq. (16)] calculated using the five statis-
tical parameters.

As can be seen in Figs. 1 and 2, the MLP-ANN and SVM mod-
els are unable to capture the periodic nature of the dataset. As stated
previously in the Introduction, this is because both models employ
local search or optimization algorithms, which are faced with an
inherent drawback of getting trapped in local minima—especially
when the functional relationship between the input variables and
output is composed of multiple local minima [e.g., datasets gener-
ated using Eqs. (17) and (18)]—rather than converging to the global
minima. The poor prediction performance of MLP-ANN and SVM
models is also reflected in the values of statistical parameters listed
in Tables 1 and 2 [e.g., RMSE of 2.8552 and 1.5245 for MLP-
ANN and SVM models, respectively, when used for prediction
of F1ðxÞ and RMSE of 1.2602 and 0.9570 for MLP-ANN and
SVM models, respectively, when used for prediction of F2ðxÞ].
It is indeed possible to improve prediction performance of the
models by incorporating algorithms based on genetic programing

(Chopra et al. 2016; Veloso de Melo and Banzhaf 2017), or by
using ensemble techniques [e.g., bagging, voting, or stacking ap-
proaches (Chou et al. 2014; Polikar 2006)]. However, as stated
previously in the Introduction, such techniques could result in
slower convergence and/or overfitting.

The M5P model—which attempts to split data logically and
then apply linear regression models in each data-split—performed
better at predictions compared to MLP-ANN and SVM models
[i.e., CPI of 0.2212 of M5P vis-à-vis 1.0000 and 0.6334 of
MLP-ANN and SVM models, respectively, when used for predic-
tion of F1ðxÞ]. Although the M5P model captures the periodic
nature of the dataset because of the application of linear models
and limited size of the decision tree, the actual intensities of the
local minima and maxima are not well captured (Fig. 1). As such,
the RMSE of the model’s predictions are still high, that is, 0.7891
for F1ðxÞ and 0.1648 for F2ðxÞ.

The RF model outperformed all the aforementioned models
(i.e., MLP-ANN, SVM, and M5P) in terms of prediction accuracy.
This is expected because, in the RF model, a large number of trees
are grown [i.e., 450 trees, with 5 leaves per tree, as described in
the Random Forests (RF) section] without pruning or smoothening
(as opposed to the M5P model, wherein the number of trees is re-
stricted and pruning and smoothening are required). On account of
having a large number of the trees, splits in data are more logical,
and, therefore, errors resulting from generalization are minimized
and overfitting of the training data is mitigated (Biau et al. 2008;
Breiman 1996). Furthermore, because of the two-stage randomiza-
tion employed in the RF model—as described earlier and in
Biau et al. (2008)—correlation among unpruned trees is minimized
(diversity among trees is high), the bias is kept low, and variance is
significantly reduced. The prediction of the RF model further
improved when it was combined with the firefly algorithm (FFA).
As shown in Figs. 1 and 2, and Tables 3 and 4, the hybrid RF-FFA
model was not only able to capture the periodic nature of the dataset
but also able to reliably interpolate the local minima and maxima
(and the intermediate values) across the entire −4.0-to-4.0 range of
the input variable x1. This enhancement in prediction performance
of the hybrid model, with respect to the standalone RF model, can
be attributed to the FFA, which is able to optimize the two hyper-
parameters (i.e., number of trees and number of leaves per tree)
of the RF model based on the nature and volume of the dataset.
Based on overall prediction performance—as estimated using the
CPI, which takes in account all of the statistical parameters [see
Eq. (16)]—the ranking of the ML models is as follows: RF-FFA >
RF > M5P > SVM > MLP-ANN.

Compressive Strength of Concrete: Dataset 1

Based on results shown in the previous subsection, it was estab-
lished that the hybrid RF-FFA model outperformed the standalone
MLP-ANN, SVM, M5P, and RF models in terms of prediction
accuracy. The standalone RF model came as a close second.
Notwithstanding, these results pertain to user-created trigonometric
functions, wherein the relationship between input variables and
output could be far more complex than real-world datasets. There-
fore, to get a better understanding of prediction performance of the
ML models, a real-world dataset of concrete—that is, Dataset 1,
described in the Data Collection section—was used. Each data-
record in the dataset consists of eight input variables—representing
contents of cementitious materials and admixture, and age—and
one output (i.e., compressive strength). Predictions of compressive
strength of concretes from the test set of Dataset 1, as produced by
the ML models, are shown in Fig. 3; statistical errors pertaining to
predictions are summarized in Table 5.
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As shown in Fig. 3 and Table 5, all ML models presented in this
study were able to predict the age-dependent compressive strength
of concrete with reasonable accuracy. This is evidenced by the
relatively low and high values of RMSE (ranging between
4.0098 and 6.3300 MPa) and R2 (ranging between 0.8664 and
0.9448), respectively, of predictions made by the ML models. It
must be pointed out that the differences in statistical parameters
among the different ML models are not as significant as in the case
of Highly Nonlinear and Periodic Trigonometric Functions,
wherein datasets developed from periodic trigonometric functions
[Eqs. (17) and (18)] were used. This is hypothesized to be on ac-
count of the relatively simpler input–output relationship in the
concrete dataset compared to the ones dictated by trigonometric
functions. Several other studies—that have used the same dataset
(i.e., published originally in Yeh (1998a, b) and applied different
ML models for predictions—have reported RMSE and/or R2 val-
ues similar to those shown in Table 5. Selected examples of pre-
diction performance of various ML models (on Dataset 1) reported
in literature are provided in the following; a comprehensive review,
with additional examples, can be found in another study (Omran
et al. 2016).

In the study conducted by Young et al. (2019), linear regres-
sion, ANN, RF, boosted tree, and SVM models were used, and
the RMSE of predictions made by the models ranged between
4.4 and 5.0 MPa. In another study conducted by Veloso de
Melo and Banzhaf (2017), kaizen programming with simulated
annealing was used, and the RMSE was ≈6.8 MPa. In the study

by Chou et al. (2014), several standalone and ensemble ML models
were implemented to forecast compressive strengths of concretes
listed in Dataset 1. Among the standalone models, the RMSE
was between 5.59 and 10.11 MPa; and, among the ensemble mod-
els, the RMSE was between 5.51 and 38.41 MPa. In the study by
Behnood et al. (2017), the M5P model was used, and the RMSE of
predictions was reported as 6.178 MPa—a value close to the one
obtained by the M5P model used in this study (Table 5). Lastly, in a
study conducted by Chou and Pham (2015), the SVM algorithm
was combined with FFA, and applied to predict compressive
strength of concretes from Dataset 1. Based on the reported results,
the hybrid [SVM + FFA] model outperformed other standalone
(e.g., SVM) and ensemble models (e.g., ANN + SVM), and yielded
predictions with RMSE of 5.631 MPa.

Going back to Table 5, it is clear from all five statistical param-
eters that the RF and the hybrid RF-FFA models have superior pre-
diction performance compared to MLP, SVM, and M5P models.
Based on the values of CPI—the unified measure of prediction
performance—the ML models can be ranked as RF-FFA > RF >
SVM > M5P > MLP-ANN. This order is similar to the one that
emerged in the section on Highly Nonlinear and Periodic Trigono-
metric Functions, wherein periodic trigonometric functions were
used to generate datasets. Here again, the superiority of the RF
model—compared to MLP-ANN, SVM, and M5P models—is
attributed to the large number of unpruned trees that are grown
[i.e., 450 trees, with 5 leaves per tree, as described in the Random
Forests (RF) section]. Such depth in the model’s structure allows

(a) (b)

(d) (e)

(c)

Fig. 1. Predictions made by ML models: (a) MLP-ANN; (b) SVM; (c) M5P; (d) RF; and (e) RF-FFA compared against actual values of the trigono-
metric function, F1ðxÞ [Eq. (17)]. Both the actual values and predictions are plotted against x1, an input variable ranging from −4 to 4. Here,
x1 ¼ x2 ¼ x3 ¼ 2x4.

© ASCE 04019255-9 J. Mater. Civ. Eng.
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more logical splits in the data, which, in turn, results in develop-
ment of logical input–output correlations and mitigates overfitting
and generalization errors. Even further enhancement in prediction
performance was achieved when the RF model was combined with
FFA. This enhancement is attributed to the FFA’s ability to optimize
the number of trees and leaves per tree of the RF model—based on
intrinsic characteristics of the dataset, and all without any user
intervention.

On a closing note for this subsection, it is pointed out that the
RMSE of predictions produced by the RF-FFA model are lower
(i.e., RMSE ¼ 4.0098 MPa) than the values reported in all other
studies found in the authors’ literature review (Akande et al. 2014;
Behnood et al. 2017; Chou et al. 2010, 2014; Chou and Pham 2015;

Duan et al. 2013; Gupta et al. 2006; Kasperkiewicz et al. 1995;
Nagwani and Deo 2014; Omran et al. 2016; Veloso de Melo and
Banzhaf 2017; Yeh 1998a; Yeh and Lien 2009; Young et al. 2019;
Zarandi et al. 2008). Admittedly, the RMSE value alone cannot be
used to assert that the RF-FFA model is superior compared to
others. This is mainly because such comparison of prediction per-
formance of ML models, developed and implemented by different
users (in spite of utilization of the same database), is complex on
account of differences in (1) description of cumulative statistical
error (e.g., in some papers, R2—rather than RMSE—was used to
assess accuracy); (2) splitting of parent dataset into training and test
sets (e.g., in some papers, the parent dataset was split as per 80%
and 20% or 66.66% and 33.33% between the training and test

(a) (b)

(d) (e)

(c)

Fig. 2. Predictions made by ML models: (a) MLP-ANN; (b) SVM; (c) M5P; (d) RF; and (e) RF-FFA compared against actual values of the trigono-
metric function, F2ðxÞ (Eq. 18). Both the actual values and predictions are plotted against x1, an input variable ranging from −4 to 4. Here,
x1 ¼ x2 ¼ x3 ¼ −5x4.

Table 4. Prediction performance of ML models, measured on the basis of
the test set developed using Eq. (18). Five statistical parameters (i.e., R, R2,
MAE, MAPE, and RMSE) and the composite performance index (CPI) are
shown

ML model R R2 MAE MAPE RMSE CPI

MLP-ANN 0.8598 0.7392 1.0794 91.133 1.2602 0.9633
SVM 0.8450 0.7140 0.7201 60.797 0.9570 0.8175
M5P 0.9963 0.9926 0.1272 10.737 0.1648 0.0797
RF 0.9998 0.9996 0.0239 2.0158 0.0312 0.0104
RF-FFA 1.0000 1.0000 0.0063 0.5359 0.0107 0.0000

Table 3. Prediction performance of ML models, measured on the basis of
the test set developed using Eq. (17). Five statistical parameters (i.e., R, R2,
MAE, MAPE, and RMSE) and the composite performance index (CPI) are
shown

ML model R R2 MAE MAPE RMSE CPI

MLP-ANN 0.8425 0.7098 2.4633 102.87 2.8552 1.0000
SVM 0.8707 0.7581 1.2353 51.588 1.5245 0.6334
M5P 0.9718 0.9443 0.6113 25.530 0.7891 0.2212
RF 0.9995 0.9990 0.0753 3.1436 0.0977 0.0106
RF-FFA 0.9999 0.9998 0.0354 1.4790 0.0563 0.0000

© ASCE 04019255-10 J. Mater. Civ. Eng.
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sets—as opposed to 75% and 25%, as used in this study); (3) total
number of data-records used for training and testing of the ML
models (e.g., in some papers, all 1,030 data-records of Dataset 1
were used, whereas in some only a fraction of them were used);
and (4) methodology used for optimization of model parameters
(e.g., some papers used the cross-validation method to optimize
model parameters using the training dataset, whereas, in this study,
the FFA was used to optimize hyper-parameters of the RF model).
Notwithstanding, the low RMSE (i.e., 4.0098 MPa)—combined
with low values of MAE and MAPE and high values of R and R2

(Table 5)—produced by the hybrid RF-FFA model certainly sug-
gest that the model is a promising tool for prompt, reliable, and
accurate predictions of age-dependent compressive strength of con-
cretes using their mixture design variables as inputs. It is worth
mentioning that incorporation of FFA within the RF model does

not increase computational complexity and, therefore, does not in-
crease computational time compared to the standalone RF model in
a significant manner. In fact, compared to parameter optimization
conducted using the traditional multifold CV method, the FFA is
more efficient because it is more convenient (e.g., it eliminates
the need for trail-and-error or CV method based optimization of
parameters), requires less time for computations, and produces
more accurate predictions. Lastly, it should be pointed out that
Dataset 1 provides a singular, albeit important, corroboration of
superiority of RF-FFA over the standalone RF model as well as
other ML models. It is conceivable that utilization of a higher-
quality training database—for example, one with a large number
of data-records, or one wherein significant physical (e.g., particle
size distribution) and chemical (e.g., composition) characteristics
of concrete components (e.g., cement and fly ash) and experimental
process parameters (e.g., temperature and relative humidity of cur-
ing) are also described—will lead to even better prediction perfor-
mance of the RF-FFA model.

Compressive Strength of Concrete: Dataset 2

In the previous subsection, it was shown that the proposed hybrid
RF-FFA model produced predictions of concrete compressive
strength with RMSE of 4.0098 MPa—suggesting a reasonably
high degree of accuracy, especially in comparison to predictions
produced by ML models reported in the literature as well as other
ML models presented in this study (i.e., MLP-ANN, SVM, M5P,
and RF). The dataset used in the section Compressive Strength

(a) (b)

(d) (e)

(c)

Fig. 3. Predictions made by MLmodels: (a) MLP-ANN; (b) SVM; (c) M5P; (d) RF; and (e) RF-FFA compared against actual compressive strength of
concretes (drawn from Dataset 1). The dashed line represents the line of ideality and the solid lines represent a �10% bound.

Table 5. Prediction performance of ML models, measured on the basis of
the test set of Dataset 1. Five statistical parameters (i.e., R, R2, MAE,
MAPE, and RMSE) and the composite performance index (CPI) are shown

ML model R R2

MAE
(MPa)

MAPE
(%)

RMSE
(MPa) CPI

MLP-ANN 0.9308 0.8664 5.0421 36.143 6.3300 1.0000
SVM 0.9525 0.9073 3.5756 25.624 5.2234 0.4385
M5P 0.9502 0.9029 4.2369 30.367 5.3518 0.5884
RF 0.9654 0.9320 3.2674 23.443 4.5103 0.1999
RF-FFA 0.9720 0.9448 2.7301 19.571 4.0098 0.0000

© ASCE 04019255-11 J. Mater. Civ. Eng.
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of Concrete: Dataset 1 is composed of 1,030 data-records, pro-
viding the RF-FFA model an adequate number of data-records
(i.e., 0.75 × 1,030 ¼ 772) for developing logical input–output cor-
relations and, thus, making accurate predictions. It is, however, im-
portant to examine if the RF-FFA model is able to retain its superior
prediction performance when a much smaller dataset is used for
training (and testing). Such examination is deemed necessary be-
cause generating large datasets of concrete performance is very
time-consuming; thus, it is important to evaluate whether or not
the proposed RF-FFA model is applicable to smaller concrete data-
sets that are more abundant and easily found in literature. Toward
this, the prediction performance of the RF-FFA model was evalu-
ated using Dataset 2 (described in the “Data Collection” section)
and benchmarked against the performance of other ML models.
Readers are reminded that Dataset 2 consists of 76 data-records,
featuring different concrete mixture designs and their compressive
strengths at 28 days. The mixture design variables were used as
inputs; the 28-day compressive strength was used as an output.
Predictions of compressive strength of concretes from the test set
of Dataset 2, as produced by the ML models, are shown in Fig. 4;
statistical errors pertaining to the predictions are summarized in
Table 6.

Akin to the results shown in the section “Compressive Strength
of Concrete: Dataset 1,” all five ML models were able to predict the
age-dependent compressive strength of concretes from Dataset 2
with reasonable accuracy. The RMSE of predictions made by
the ML models range from 0.9213 to 2.6754 MPa, attesting to the

high degree of accuracy of predictions. These RMSE values are
lower than those reported in some prior studies (Chopra et al. 2014,
2016), albeit similar to those reported in a recent study (Chopra
et al. 2018)—wherein ANN, RF, and decision tree models were
used for making predictions. Upon comparing the overall predic-
tion performances, based on the values of CPI (Table 6), the fol-
lowing order emerges: RF-FFA ¼ FA > SVM > MLP-ANN >
M5P. This order, once again, suggests that prediction performance
of the RF-FFA model is superior compared to other ML models
presented in this study. Although the aforementioned order is
broadly similar to the one obtained from predictions of strength
of concretes from Dataset 1, there are a few small differences.
Firstly, in Dataset 2, the prediction performance of the M5P model
is the worst; this was not the case when Dataset 1 was used. It is
expected that the deterioration in performance of the M5P model is

(a) (b)

(d) (e)

(c)

Fig. 4. Predictions made by MLmodels: (a) MLP-ANN; (b) SVM; (c) M5P; (d) RF; and (e) RF-FFA compared against actual compressive strength of
concretes (drawn from Dataset 2). The dashed line represents the line of ideality and the solid lines represent a �10% bound.

Table 6. Prediction performance of ML models, measured on the basis of
the test set of Dataset 2. Five statistical parameters (i.e., R, R2, MAE,
MAPE, and RMSE) and the composite performance index (CPI) are shown

ML model R R2

MAE
(MPa)

MAPE
(%)

RMSE
(MPa) CPI

MLP-ANN 0.9201 0.8464 0.9163 27.352 1.8783 0.2857
SVM 0.9565 0.9149 1.0635 31.744 1.3841 0.1876
M5P 0.8003 0.6400 2.1480 64.127 2.6754 1.0000
RF 0.9778 0.9561 0.7718 23.041 0.92313 0.0000
RF-FFA 0.9778 0.9561 0.7718 23.041 0.92313 0.0000
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due to the much smaller volume of Dataset 2 (i.e., 76 data-records
as opposed the to 1,030 of Dataset 1)—thus resulting in inferior
quality of splits in the training dataset, and, consequently, poor in-
put–output linear correlations within each split. The poor prediction
performance of the M5P model indicates—as was also suggested
in a prior study (Chopra et al. 2018)—that, when the dataset vol-
ume is small, decision tree models with limited number of trees
(1) cannot ensure homogeneity in data clustered in each node,
(2) cannot maintain diversity among the different nodes, and, there-
fore, (3) are unable to make predictions in an accurate manner.
Secondly, it is also interesting to note in Table 6 that both the
RF and RF-FFA models have similar prediction performances.
The implication of this equivalency is that when the dataset is
small, the application of FFA—for optimization of the two hyper-
parameters (i.e., number of trees and number of leaves per tree in
the forest) of the RF model—is redundant and does not necessarily
elicit any substantial improvement in prediction performance.
However, when the dataset is large—for example, Dataset 1—the
application of FFA is beneficial in that it produces substantial
improvement in prediction performance of the RF model by opti-
mizing its two hyper-parameters in relation to the nature and vol-
ume of the dataset (Table 5).

Conclusions

This study developed and presented a novel hybrid machine learn-
ing (ML) model (RF-FFA) for prediction of compressive strength
of concrete, in relation to its mixture design and age, by combining
the random forests (RF) model with the firefly algorithm (FFA).
The firefly algorithm—a metaheuristic optimization technique—
was used to optimize the two hyper-parameters of the RF model
(i.e., the number of trees and the number of leaves per tree in
the forest) in relation to the volume and nature of the dataset, and
without any user intervention.

The RF-FFA model was trained to develop correlations between
input variables and output of two different categories of datasets;
such correlations were subsequently leveraged by the model to
make predictions. The first category included two separate datasets
featuring highly nonlinear and periodic relationships between input
variables and output as given by trigonometric functions. The
second category included two real-world datasets, composed of
mixture design variables and age of concretes as inputs and their
compressive strengths as outputs. The performance of the hybrid
RF-FFA model was benchmarked against commonly used stand-
alone ML models—support vector machine (SVM), multilayer per-
ceptron artificial neural network (MLP-ANN), M5Prime model
tree algorithm (M5P), and RF. The metrics used for evaluation
of prediction accuracy of the ML models included five different
statistical measures (i.e., R, R2, MAE, RMSE, and MAPE) as well
as a composite performance index (CPI).

The prediction performances of MLP-ANN and SVM models
were reasonable for concrete datasets; however, their inability to
identify and converge to global minima rendered their prediction
performances poor when datasets generated from trigonometric
functions were used. The prediction performance of the M5P
model, in general, was commensurable to, or slightly superior com-
pared to, those of MLP-ANN and SVM models. However, on ac-
count of limited size (or depth) of the decision tree and utilization
of multivariate linear regression models, prediction performance of
the M5P model was consistently inferior compared to those of RF
and RF-FFA models. The superiority of the RF model was attrib-
uted to the large number of unpruned trees, which, in turn, results in
development of logical input–output correlations and mitigates

overfitting and generalization errors. Even further enhancement
in prediction performance was achieved when the RF model
was combined with FFA (i.e., the RF-FFA model). This enhance-
ment in prediction performance was attributed to the FFA’s ability
to optimize the number of trees and leaves per tree of the RF model
based on the volume and nature of the dataset.

The high degree of prediction accuracy (i.e., RMSE of≈4.0 and
≈0.92 MPa for the large and small datasets, respectively) produced
by the hybrid RF-FFAmodel suggests that the model is a promising
tool for prompt and reliable prediction of composition-dependent
properties of concrete, provided that the training is accomplished
using adequate number of data-records. It is expected that utiliza-
tion of a higher-quality database—wherein the dataset volume
is large, and/or wherein influential physical (e.g., particle size
distribution) and chemical (e.g., composition) attributes of concrete
components (e.g., cement and fly ash) and curing conditions
(e.g., temperature and relative humidity of curing) are also
described—will further bolster the prediction performance of the
RF-FFA model.
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