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Abstract

1. The association between increased lineage diversification rates and the evolu-

tion of latex and resin canals is widely cited as a paradigmatic example of Ehrlich
and Raven'’s ‘escape-and-radiate’ hypothesis of co-evolution. However, it has been
over a quarter-century since the original study, and updates to phylogenetic com-
parative methods, plant molecular systematics, and phenotypic data warrant a

reassessment of this classic finding.

. We gathered data on latex and resin canals across 345 families and 986 genera of

vascular plants and conducted a multi-scale test of the association between these
traits and lineage diversification rates. At a broad scale (across clades), we used
sister-clade comparisons to test whether 28 canal-bearing clades had higher net
diversification rates than their canal-lacking sister clades. At a finer scale (within
clades), we used ancestral state reconstructions and phylogenetic models of lin-
eage diversification rates to examine the relationship between trait evolution
and the timing of diversification rate shifts in two better-characterized clades -

Araceae and Papaveraceae.

. At both scales of our analyses we found poor support for the predicted relation-

ship between diversification and the evolution of latex and resin canals. Follow-up
analyses clarified that the qualitative change between our results and those of the
Farrell et al.’s classic study is not the result of different phylogenetic comparative
methods. Instead, the differences are attributable to updates to plant systematic

hypotheses and new data on laticifers and resin canal presence/absence.

. Synthesis. Our updated study reveals that there is no longer strong evidence for

latex or resin canals as general, consistently replicable drivers of species diversity
across plants. However, we cannot rule out a relationship in all groups. We there-
fore argue that theoretical and empirical work aimed at understanding ecological
factors that condition ‘escape-and-radiate’ dynamics will allow for more nuanced

tests of the hypothesis in the future.
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1 | INTRODUCTION

In their landmark paper, Ehrlich and Raven (1964) changed the field
of evolutionary ecology by proposing a novel hypothesis of co-evo-
lution. Now termed ‘escape-and-radiate’ coevolution (Thompson,
1989), the hypothesis aims to explain plant diversity by invoking
a co-evolutionary tango between herbivores and plant defenses.
Specifically, they posited that the innovation of novel defenses al-
lows plants to ‘escape’ constraints of herbivory and ‘radiate’ (or per-
sist under reduced extinction rates) in newly opened niche space.
Ehrlich and Raven's ideas remain prominent in current eco-evolu-
tionary thinking, and many studies have tested various associations
between plant defensive traits and increased lineage diversification
(diversification = speciation - extinction) (reviewed in Janz, 2011;
Suchan & Alvarez, 2015). Despite an extensive literature on the
topic, evidence for ‘escape-and-radiate’ dynamics remains mixed,
and there remains a paucity of data testing these ideas for the
majority of defensive traits (Futuyma & Agrawal, 2009; Suchan &
Alvarez, 2015). Here, we revisit one of the most iconic examples of
escape-and-radiate dynamics: the association between lineage di-
versification and the evolution of latex and resin canals, which store
and release sticky exudates that defend plants against herbivores
(Farrell, Dussourd, & Mitter, 1991).

Both latex and resin are potent plant defenses that represent
model traits for studying the evolution and ecology of plant-her-
bivore interactions (Agrawal & Konno, 2009). Although they differ
in their anatomy (latex is stored in elongated cells called laticifers,
whereas resin is stored within intercellular spaces called canals or
ducts) and chemistry (latex is rich in proteins, alkaloids and sugars,
whereas resin is rich in terpenoids or phenolics), both latex and
resin are stored in pressurized cellular structures that play active
roles in defense (Agrawal & Konno, 2009; Konno, 2011; Prado &
Demarco, 2018; Ramos, Demarco, Costa Souza, & Freitas, 2019).
Notably, pressurization allows latex and resin to be released when
chewing herbivores damage the leaves, acting as an inducible de-
fense via toxicity and by physically gumming-up herbivore mouth-
parts. Thus, despite anatomical and chemical differences, the
functional similarity of laticifers and resin canals in pressurizing
and exuding latex and resin, respectively, has led several authors
to argue that these traits should be considered as a single defen-
sive syndrome (Dussourd & Denno, 1991; Farrell et al., 1991).
There is a rich body of work linking these traits to reduced her-
bivory across plants (reviewed in Konno, 2011; Phillips & Croteau,
1999), and documenting the evolution of behaviour or physical
‘counter-defenses’ in herbivores (adaptations that allow herbi-
vores to circumvent the latex and resin defenses, such as trenching
and notching behaviours that depressurize canals before feeding
(Dussourd & Denno, 1991). Together, this body of work suggests
a strong role for latex and resin canals as key innovations in the
escape-and-radiate process.

Latex and resin canals are also ideal candidates for conducting

tests of the ‘escape-and-radiate’ hypothesis because each shows

high levels of evolutionary convergence across plant lineages
(Agrawal & Konno, 2009; Langenheim, 2003). Latex and resin canals
have originated at least 40 independent times (Farrell et al., 1991),
and latex occurs in about 10% of flowering plant species (Agrawal
& Konno, 2009) while resin occurs in roughly 53% of plant orders
(Langenheim, 2003). Farrell et al. (1991) took advantage of the highly
convergent histories of laticifers and resin canals across vascular
plants to test for patterns consistent with trait-associated shifts in
lineage diversification rates. Farrell et al. (1991) compared 16 pairs of
sister-clades that differed in the presence or absence of laticifers/ca-
nals, performing a sign test to evaluate whether there was evidence
for enhanced species richness in clades with laticifers/ducts relative
to sister clades without laticifers/ducts. By controlling for clade age
using sisters, their design allowed for the comparison of net diversifi-
cation rates across many independent evolutionary events, offering
an intuitive and replicated test of the escape-and-radiate hypothesis.
Their results were striking: 13 of the 16 comparisons revealed higher
species richness when canals were present, supporting the predic-
tion that the origins of plant defensive traits are associated with
higher diversification rates in plants. This study was one of the first
to show strong support for Ehrlich and Raven's ideas, and remains a
prominently cited empirical example (e.g. Agrawal & Konno, 2009;
Coyne & Orr, 2004; Magallon & Sanderson, 2001; Schluter, 2000).

While Farrell et als (1991) paper was an instant classic, major
progress over the last three decades in the fields of plant molecular
systematics, phylogenetic comparative methods and trait phenotyp-
ing warrants a reassessment of the role of latex and resin canals in
plant diversification. Farrell et al. (1991) themselves stressed that
their results were subject to future research, especially in regard
to plant systematics (e.g. ‘Plant phylogeny is the subject of intense
current research, and all of the phylogeny estimates we accept
should be regarded as possibly erroneous.’). Indeed, since Farrell et
al's (1991) study, plant systematics has undergone major changes.
Several notable milestones include the rise of molecular systemat-
ics, major updates to deep phylogenetic hypotheses, the develop-
ment of ‘big tree’ methods and the formation of the Angiosperm
Phylogeny Group (currently Angiosperm Phylogeny Group IV, 2016).
While Farrell et al. (1991) argued that ‘...taxonomic error should be
random with respect to the escalation-diversification hypothesis,
making a significant effect harder to detect..., several of the origi-
nal sister comparisons in the paper have changed dramatically under
modern systematic analysis (see: Appendix S1; compare Tables S3
and S4). Thus, a re-assessment of the relationship between the latex,
resin canals and plant diversification is now due.

Along with changes in molecular systematics, the last 30 years
have also seen the development of novel phylogenetic compar-
ative methods for evaluating links between trait evolution and
shifts in diversification rates. New approaches for sister compari-
sons (Kafer & Mousset, 2014; Paradis, 2012) plus methods for ex-
plicitly modelling diversification rates (reviewed in Morlon, 2014;
O'Meara & Beaulieu, 2016) offer benefits over the original sign

test approach used by Farrell et al. (1991). For example, modern
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sister comparison methods, such as diversity contrast tests, now
consider the numerical values of species richness across clades
(opposed to the qualitative sign of the difference only - as in sign
tests) (Barraclough, Harvey, & Nee, 1995, 1996; Sargent, 2004;
Wiegmann, Mitter, & Farrell, 1993). Modern sister-clade compari-
son methods also use maximum likelihood to estimate null hypoth-
eses (McConway & Sims, 2004; Paradis, 2012) and to account for
stem length biases (Kafer & Mousset, 2014). Given a well-resolved
phylogeny, a collection of likelihood-based methods is also avail-
able to explicitly model lineage diversification through time (e.g.
Alfaro et al., 2009; Pennell et al., 2014; Rabosky, 2014) sometimes
simultaneously modelling trait evolution (e.g. Beaulieu & O'Meara,
2016; Maddison, Midford, & Otto, 2007). While these clade-based
models come with their own set of assumptions, they provide a
more robust framework to test for strong associations between
the timing of trait evolution and shifts in diversification rates.
Ultimately, modern methods can account for several limitations
to the original sign tests and create opportunities to apply a set of
complementary methods in tandem to evaluate patterns of diver-
sification across multiple scales.

Here, we ask whether updated systematic, phylogenetic and phe-
notypic data crystallizes, complicates, or challenges the relationship
between lineage diversification and the evolution of latex and resin
canals. We test for macroevolutionary patterns consistent with the
predictions from Ehrlich and Raven (1964) at multiple phylogenetic
scales. First, we use expanded and updated sister clade comparisons
to broadly test whether clades with canals are generally more spe-
ciose than clades without canals. Second, zooming in on two groups
with more phylogenetic resolution and sufficient phenotypic sam-
pling - the poppies (Papaveraceae) and the aroids (Araceae) - we use
ancestral state reconstructions and phylogenetic models of lineage
diversification rates to examine whether independent origins of latex
and resin canals correspond to positive shifts in diversification rates.
This integrative approach allows for a replicated, multi-scale test of
the hypothesis that trait evolution is repeatedly associated with in-
creased net diversification rates, while avoiding the drawbacks of
studies that rely on any single scale or approach (see: Maddison &
FitzJohn, 2014; Rabosky & Goldberg, 2015). Together, this study
represents a modern test of the macroevolutionary consequences
of latex and resin canals - evolutionarily convergent and ecologically
important defensive traits in vascular plants.

2 | MATERIALS AND METHODS

To test for associations between latex, resin and lineage diversifica-
tion rates, we (a) compiled an updated list of taxa reported with latex
or resin canals in the literature, (b) conducted modern sister com-
parisons (across a broad set of clades) and (c) reconstructed histori-
cal patterns of diversification rates and trait evolution in two focal
families from the sister comparisons that had higher data resolution.
General methods for each approach are detailed below, with specific
details available in the Supporting Information.

2.1 | Trait database

To improve accuracy from the original Farrell et al. (1991) sister com-
parisons and to expand our dataset to more broadly test the ‘escape-
and-radiate’ hypothesis, we compiled current published information
about the phenotypic distribution of species with and without latex
and/or resin canals. First, we surveyed previously published datasets
on the presence and absence of latex and resin canals, including those
used by Farrell et al. (1991) (see Table S3), plus 76 additional sources.
We focused on comprehensive datasets rather than single-species
accounts. Because these traits (especially latex) are taxonomically
informative for many plant groups, we scrubbed several taxonomic
sources: (a) the Angiosperm Phylogeny Group website (http://www.
mobot.org/MOBOT/research/APweb/,
October 2018), (b) a number of floristic and taxonomic treatments
(Condit, Pérez, & Daguerre, 2010; Dicht & Liithy, 2006; Evert, 2006;
Haston & Condit, 2011; Kubitzki & Kadereit, 2004; Lewinsohn, 1991;
Mabberley, 2017; Singh, 2016; Tomlinson, 2016; Willis, 1973), and (c) a
compendium of plant resins (Langenheim, 2003). After data collection,

accessed May through

we updated the list of taxa to represent current nomenclature using
the r package taxize (Chamberlain & Szdcs, 2013), cross-referencing
between the Taxonomic Name Resolution Service (TNRS) reference
database and the National Center for Biotechnology Information
(NCBI) taxonomy browser. For any taxon that disagreed across these
two databases, and for any hits that had a score less than 100%, we
manually checked Tropicos (Garden, 2003) for nomenclature. Finally,
duplicate taxa were concatenated into a single datum, with more re-

cent data supplanting older data.

2.2 | Sister clade comparisons: a broad
test of the relationship between latex, resin
canals and diversification rates

We used sister comparisons to perform a broad-scale test of the
relationship between plant diversification and latex and resin ca-
nals. We combined our phenotypic database with recent literature
on plant systematics and richness estimates (Table S4) to identify
independent and up-to-date sister comparisons between sister-
lineages with and without latex and/or resin. Sister comparisons
were restricted to cases where: (a) monophyly was supported for
each clade, (b) there was evidence for an independent origin of
the latex and/or resin canals within the focal clade, and (c) there
was a well-supported sister clade that entirely (or almost entirely)
lacked the focal traits. Under these criteria we aimed to include
as many comparisons as possible - including the 16 original com-
parisons (Table S3) performed by Farrell et al. (1991) as feasible.
Due to shifts in taxonomy, two of the original comparisons could
not be included (see Celastrales in Appendix S1, and compare
Tables S3 and S4). Rather than having our analyses dependent on
a single richness value per clade, we collected a range of minimum
and maximum richness estimates, collected from the Angiosperm
Phylogeny Group Website (http://www.mobot.org/mobot/resea
rch/apweb/, accessed September through October 2018), The Plant
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List database (http://www.theplantlist.org/, accessed September
through October 2018), and primary literature (Table S4).

To test whether clades with the latex and resin canals were more
speciose on average than clades without these traits, we applied
difference-based contrast tests (e.g. Paradis, 2012; Sargent, 2004).
Our data were non-normally distributed, so we used a nonparametric
Wilcoxon signed-rank test. We performed a one-sided, paired test to
evaluate the hypothesis that richness is higher, on average, in canal-
bearing clades relative to canal-lacking sister clades. This analysis was
conducted once for our maximum richness estimates for each clade,
and then repeated in an independent test using the minimum richness
estimates. We performed each difference-based contrast test using
the wilcox.test function in the r package stats (R Core Team, 2017),
and cross-validated these results with the diversity.contrast.test func-
tion in the r package ape (Paradis, Claude, & Strimmer, 2004). Note
that in order for sister comparisons with similar richness values to be
included in these analyses, it was necessary to add a small amount of
random noise using the jitter function in base r (R Core Team, 2017).

To make this study directly comparable to Farrell et al. (1991),
we also applied the above methods to the original richness dataset
of Farrell et al. (1991) (Table S3). This allowed us to evaluate whether
any differences between our results and the results of Farrell et al.
(1991) were due to updates made to statistical methods, pheno-
typic/phylogenetic datasets, or both. Because Farrell et al. (1991)
occasionally reported a range of values for some clades, we analysed
both their maximum and their minimum richness estimates in two

separate contrast tests, performed as above.

2.3 | Models of lineage diversification rates:
Zooming in on patterns of trait evolution and lineage
diversification rate shifts

Although sister comparisons offer a powerful tool for replicated
tests across a broad swath of clades, they do not evaluate whether
the timing of diversification rate shifts in a phylogeny are associated
with the evolution of a trait of interest. To evaluate more nuanced
relationships between lineage diversification and the timing of trait
evolution, we used MEDUSA analyses and ancestral state recon-
struction in two plant families: poppies (Papaveraceae) and aroids
(Araceae). Both groups showed patterns consistent with escape-and-
radiate evolution in the sister comparisons - that is, greater species
richness in canal-bearing clades (Table S4) - providing good candidate
groups to test for linked evaluate the putative relationship between
diversification and trait evolution. Defensive traits are also well doc-
umented for both of these groups: laticifers across Papaveraceae
(Hoot, Wefferling, & Wulff, 2015) and laticifers and resin canals
across Araceae (Cusimano et al., 2011; French, 1987, 1988).

We reconstructed relative time ultrametric maximum clade
credibility phylogenies of each group using BEAST (Bouckaert
et al., 2014). For details on phylogenetic reconstruction see the
Supplemental Methods. We analysed lineage diversification rates of
each clade using the r package MEDUSA (Alfaro et al., 2009; Brown,
FitzJohn, Alfaro, & Harmon, 2018). To visualize the rate shifts, net

diversification rates and richness data on each family tree (Araceae
or Papaveraceae), we plotted the bootstrapped results of MEDUSA
diversification analyses onto the respective maximum clade cred-
ibility tree using the plotMultiMedusa function from the MEDUSA
package (Alfaro et al., 2009; Brown et al., 2018). To examine whether
shifts in lineage diversification were associated with the evolution
of latex/resin, we conducted ancestral state reconstructions and
plotted evolutionary gains and losses of latex/resin. Because we are
uncertain about the link between these traits and diversification, we
reconstructed trait evolution using both state-dependent diversifi-
cation models and diversification-free models. Specifically, we used
the asr function in the r package diversitree (FitzJohn, 2012) to recon-
struct marginal likelihoods of ancestral states for discrete characters
under a model of evolution (biSSE) that accounts for diversification,
and the rayDISC and corHMM functions in the r package corHMM
(Beaulieu, Oliver, & Beaulieu, 2017) to reconstruct ancestral states
under a diversification-free model (canonical Markov model) (Lewis,
2001). Due to constraints of our dataset, we were not able to reli-
ably make inferences using hiSSE or fiSSE analyses (see Supporting
Information Methods). Finally, to summarize diversification rates
over time and with respect to each character state, we adopted
the approach of Nakov, Beaulieu, and Alverson (2018): we binned
the phylogeny into time-intervals of 0.001 units, resampled the pa-
rameter estimates at each interval and then plotted the values by
character state. Note that diversification rates are sensitive to the
maximum tree depth and are inflated due to the relative time cali-
bration in BEAST (Supporting Information Methods); however, this
should not affect conclusions drawn within the clade.

3 | RESULTS

3.1 | Trait database

In total, we gathered data on the presence and absence of latex and
resin canals across over 345 families and 986 genera of vascular
plants (Table S1 is archived in the Dryad Digital Repository https://
doi.org/10.5061/dryad.2mn0j54). Compared to previous databases
(Lewinsohn, 1991; Metcalfe & Chalk, 1983), this expanded database
increases the number of sampled groups by hundreds of additional
genera and nearly 20 additional families. Plotting the data onto a
phylogeny for vascular plants (Figure 1) illustrates wide sampling ef-
fort across the plant tree of life. However, there are several notable
gaps in available information on the presence/absence of latex/resin
canals across plant families, suggesting clades where research is lack-
ing (e.g. several families in the orders Poales, Santalales, Asparagales

and Brassicales; for more, see Table S2 and Appendix S1).

3.2 | Sister clade comparisons: A broad test of the
relationship between latex, resin canals and
diversification rates

In total, we identified and analysed 28 independent sister com-
parisons that fit our criteria (Table S4), nearly doubling the original
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@ Latex/resin absent
O Latex/resin present
@ Latex/resin unknown

9’%
G,

FIGURE 1 Family-level phylogeny (Zanne et al., 2014) showing
the presence (yellow) or absence (blue) of latex or resin canals
across plants. Branches in red indicate clades where the occurrence
is unknown. Names denote plant orders for which missing data are
particularly common (silhouettes are utilized from phylopic.org).
Note that this figure does not indicate if traits are synapomorphic,
but rather where data are available or lacking. A version of this
figure with latex and resin canals depicted as independent traits
can be found in the Supporting Information

sample size of Farrell et al. (1991) (n = 16, Table S3). Detailed infor-
mation on each sister comparison, as well as notes on clades that
did not fit all of the criteria but offer promise for future study, are
detailed in Appendix S1. A Wilcoxon signed-rank test on our 28 sis-
ter comparisons suggested that latex/resin-bearing clades are not
more species-rich than sister groups without these traits; this was
true whether analysing minimum (V = 250, Ax = 1,132 + 4,655 spe-
cies, n = 28, one-tailed p = 0.147; Table S4) or maximum (V = 245,
Ax = 1,519 + 6,303 species, n = 28, one-tailed p = 0.132; Table 54)
richness estimates.

Repeating our analysis on the original richness data from Farrell
et al. (1991) (Table S3, indices 1-16) revealed that the differences
between our results and the results of Farrell et al. are a conse-
quence of additional trait data and updated systematics, not a con-
sequence of updated analysis methods. Using the original dataset
of Farrell et al. (1991), 13 of the 16 original comparisons under pre-
vious taxonomy had higher richness (sign test: 13/16, p = 0.0106;
Table S3). When we apply modern contrast tests to the same data-
set, we find an even stronger relationship, whether computed with
Farrell's minimum richness values (V = 120, Ax = 1,980 + 5,512 spe-
cies, n = 16, one-tailed p = 0.003; Table S3) or maximum (V = 119,
Ax = 1,799 + 5,467 species, n = 16, one-tailed p = 0.003; Table S3),
suggesting that our results are not due to methodological differ-
ences between studies. A box plot summarizing the results for (a)
the original data in Farrell et al. (1991) and (b) our extended dataset,

can be seen in Figure 2.
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FIGURE 2 A box plot showing the distribution of species
richness values across clades with latex/resin canals and their sister
clades without canals from (a) Farrell et al. (1991) (Table S3) and

(b) our updated and extended dataset (Table S4). In panel b, purple
shows Araceae, while red denotes Papaveraceae, both of which

we investigate in additional analyses. Note that the y-axes contain
breaks, which have different upper values

3.3 | Models of lineage diversification rates:
Zooming in on patterns of trait evolution and lineage
diversification rate shifts

For diversification analyses performed using MEDUSA, we pre-
sent the results separately for each of the two focal families: first
Papaveraceae and then Araceae. Note that in the sister comparisons,
both Araceae and Papaveraceae met the predicted pattern of greater
species diversity in canal-bearing clades (Table S4). Diversification
rate shifts are discussed with respect to particular nodes, numbered
based on the output of MEDUSA. This was done with the intent
of allowing readers to lookup specific statistics in the Supporting
Information. Lastly, ancestral state reconstructions for latex and/or
resin inferred from diversitree did not differ qualitatively from recon-
structions under a diversification-free Markov model - the character
histories were the same across models. All reconstructions can be
found in Figures S1-S4.

3.3.1 | Papaveraceae: the origin of laticifers is
associated with a shift in diversification rates

Pairing marginal ancestral character reconstructions with MEDUSA
models revealed that latex originated once in poppies (Papaveraceae),
and that this origin coincided with a positive shift in the net lineage
diversification rate (consistent with escape-and-radiate coevolution).
Marginal ancestral state reconstructions revealed that laticifers origi-

nated once in Papaveraceae and were never lost subsequently (Figure
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FIGURE 3 Theresults of MEDUSA (a)

diversification analyses in Papaveraceae.

The results from 1,000 random samples of

the posterior distribution are summarized

on (a) the maximum clade credibility

tree, showing the inferred shifts in

mean diversification rates (r) and the

origins of laticifers. (b) The estimated net

diversification rates (r) through relative

time for lineages with and without
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Papaver somniferum (Papaveraceae), near @

Chihuahua, Mexico (photo credit: Anurag - J’
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Agrawal) originate

Mean r

Shift
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S1). We found no data suggesting resin canals in Papaveraceae.
Pairing these analyses with MEDUSA revealed that laticifers origi-
nated early on in the group, and that this origin is associated with an
increase in diversification rates and followed by a subsequent but un-
associated diversification event nested within the laticiferous group
(Figure 3a). The initial shift (node.id = 2; mean shift = 20.37 + 19.24;
Figure 3a; Table S5) represented a threefold rate increase in diversifi-
cation, and occurred concurrently (on the same branch) with the evo-
lutionary origin of laticifers, early on within the lineage, enveloping all
extant poppy genera except for the non-laticiferous Pteridophyllum.
The second and larger increase is nested deeper in Papaveraceae
(node id = 1; mean shift = 176.33 + 21.10; Figure 3a; Table S5). This
more recent shift subtends most of the subfamily Fumarioideae, in-
cluding the notably species-rich genera Corydalis (586 species) and
Fumaria (57 species); however, the shift is not associated with any
evolutionary gains or losses of laticifers (Figure 3a). Lastly, sampling
the parameters through time for each phenotypic state reveals that
net diversification rates are always higher in the laticiferous lineages,

relative to the non-laticiferous lineage (Pteridophyllum) (Figure 3b).

3.3.2 | Araceae: the evolution of latex and
resin canals does not correspond with shifts in
diversification rates

While our analyses uncover an eventful history of diversification
and trait evolution within Araceae, with laticifers evolving twice and

resin canals evolving once within the family, there was no obvious

(b)= Laticifers present

100 == Laticifers absent

Net diversification ()
@
3

0.07 0.06 005 0.04 0.03 0.02 001 .00

Relative time

(c)

association between any of the three evolutionary origins of latex or
resin and positive shifts in net diversification rates (Figure 4a). In total,
MEDUSA estimated six rate shifts, four of which were negative (i.e.
diversification slowing down; Figure 4a). Early on in the lineage, before
latex or resin had evolved in the family (Figures S2-S4), diversification
increased (node id = 2; mean shift = 105.86 + 31.33; Figure 4a; Table
Sé). Following this initial increase in diversification, there were four
subsequent decreases in diversification rates and one large increase in
diversification that was 50 times the magnitude of the original increase
(node id = 1; mean shift = 5,312.28 + 3,443.52; Figure 4a; Table S6).
Only one of the six total shifts corresponded to an evolutionary change
in the focal traits: a gain of laticifers was associated with a 27% reduc-
tion in diversification rates (node id = 5; mean shift = -121.55 + 101.70;
Figure 4a; Table S6), the opposite of the prediction from escape-and-
radiate coevolution. Similarly, following the origin of resin canals, a sub-
sequent reduction in diversification rates was observed (node id = 6;
mean shift = =119.60 + 39.07; Figure 4a; Table Sé). Lastly, sampling the
rates through time for each phenotypic state illustrates that, despite
no association between the timing of trait origination and diversifica-
tion shifts, overall net diversification rates are still consistently higher

when laticifers and/or resin canals are present in Araceae (Figure 4b).

4 | DISCUSSION

Testing for evidence of ‘escape-and-radiate’ coevolution has been

a major goal in evolutionary ecology ever since Ehrlich and Raven
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FIGURE 4 The results of MEDUSA
diversification analyses in Araceae. The
results from 1,000 random samples of
the posterior distribution are summarized
on (a) the maximum clade credibility

tree, showing the inferred shifts in mean
diversification rates (r) and the origins

of resin canals and laticifers. (b) The
estimated net diversification rates (r)
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published their 1964 hypothesis (Futuyma & Agrawal, 2009). In
this study, we revisit a classic test of this hypothesis, Farrell et
al’s (1991) paper investigating whether the evolution of latex and
resin canals spur lineage diversification in plants. We draw on an
additional 28 years of systematic, phylogenetic and phenotypic
resources to conduct a multi-scale revaluation of this question
(Farrell et al., 1991). We found poor support for the relationship
between the evolution of latex and resin canals and enhanced di-
versification rates across scales. At a broad scale, sister clade com-
parisons did not support the prediction of greater species richness
in canal-bearing clades. At a finer scale, zooming-in on two clades
(that were supported in the sister-clade analyses) using diversifi-
cation rate analyses revealed that origins of canals were discon-
nected from the timing of diversification rate increases: while
rates were higher overall when canals are present, of the four
origins examined only one was associated with an increase in di-
versification rates. While our study does not rule out a conditional
role of latex and resin in driving diversification in some groups,
our findings do suggest that the evolution of latex and/or resin
canals should not be invoked as a general, consistently replicable
explanation for patterns of species diversity across plants. Below
we (a) discuss the complementary findings of our sister-clade and
clade-specific analyses, (b) consider the potential for latex and
resin canals to be conditional drivers of diversification in plants,
and (c) acknowledge important caveats of our study and highlight
ways forward for future research.

through time for lineages with laticifers
and/or resin canals and lineages without.
(c) Latex exuding from a trenched leaf

of Colocasia gigantea (Araceae), in Ba Be
National Park, Vietnam (photo credit:
Chris Darling)

0.04

4.1 | The complementary results of sister-
clade and clade-specific diversification analyses in
evaluating the latex/resin canal hypothesis

The power of diversification rate studies (both statistically and
theoretically) is increasingly predicated on evolutionary replica-
tion (Donoghue & Sanderson, 2015; Maddison & FitzJohn, 2014).
In this worldview, our ability to confidently assign a trait a causal
role in driving increased diversification requires statistically signifi-
cant replication. On the other hand, detailed studies within clades
are required to link the timing of trait evolution with diversification
dynamics, and detailed single (non-replicated) occurrences of a trait
associating with high diversification rates have been cited as evi-
dence for a role in driving patterns of diversity in several prominent
examples (e.g. the evolution of flowers, mammary glands; Wagner
& Lynch, 2010). Thus, while sister comparisons offer a broad view
of diversification across plants, in-depth studies of diversification
in focal clades are essential to understand the relationship (or lack
thereof) between trait evolution and diversification. We contend a
multi-scale approach marries the best of both worlds by allowing for
more nuanced tests of relationships between traits and diversifica-
tion, while not losing evolutionary replication as additional groups
become well-resolved.

In our study, detailed modelling in two sister clades revealed
a complex relationship between traits and the timing of diversi-
fication. In Araceae, we found a general disconnect between trait
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evolution and the tempo of diversification. However, Araceae did
show higher diversification rates in laticiferous and canal-bearing
clades, suggesting that an underlying relationship should not be
ruled out entirely. Indeed, it may be unrealistic to expect ‘key in-
novation’ traits to associate instantaneously (on the same branch
of a phylogeny) with increased diversification rates in all cases due
to the many confounding factors possible at the macroevolutionary
scale (Rabosky, 2017; Vamosi, Magallon, Mayrose, Otto, & Sauquet,
2018). In Papaveraceae, we found a clear concordance between the
origin of latex and a positive shift in diversification, consistent with
the a priori hypothesis. However, a closer look at the biology of this
clade uncovers additional traits that arise at that same node as latex
(e.g. calcium oxalate seed crystals) that could be associated with
the diversification shift early on in the lineage. This suggests that
there is as much evidence for latex as a ‘synnovation’ (Donoghue
& Sanderson, 2015) as for a ‘key innovation’ in this group. These
analyses demonstrate that closer examination of tractable clades
from sister comparisons are a fruitful approach for uncovering nu-
anced effects of latex and resin canals on diversification. Pairing sis-
ter clade analyses with additional in-depth clade-based analyses as
more data become available will be a particularly fruitful approach

in future studies.

4.2 | Isthere evidence for a conditional role of
latex and resin in spurring plant diversification?

While we did not find a strong replicable relationship between
latex and lineage diversification across plants, we cannot rule out
a context-dependent relationship between diversification and the
evolution of latex and resin canals. Our study thus joins a grow-
ing body of work suggesting that more theoretical and empirical
work is needed to clarify how consistently and under what con-
ditions hypothesized traits are expected to spur diversification,
in coevolutionary (Yoder & Nuismer, 2010) and ‘key innovation’
frameworks (Rabosky, 2017). Because of their high level of evolu-
tionary convergence across plants and their clear role in defense,
latex and resin are a promising model trait to examine this topic in
future studies.

Several other plant traits are hypothesized to conditionally spur
diversification rates in plants, and these traits could be included in
future analyses. For example, dioeciousness (Sabath et al., 2016)
and mutualisms (Weber & Agrawal, 2014) are all hypothesized to
impact lineage diversification in certain conditions. More directly,
both the amount and chemical content of latex and resin vary con-
siderably across species that have been investigated (Konno, 2011;
Langenheim, 2003), and have been shown to impact the traits de-
fensive efficacy (Agrawal, Lajeunesse, & Fishbein, 2008). As such,
one might predict that latex/resin with particularly toxic secondary
metabolites, high secondary metabolite diversity, or high secondary
metabolite abundance would have larger impacts on a plants’ ability
to ‘escape’ herbivory, and consequently, impact the relationship be-
tween these traits and diversification. Similarly, variation in the evo-
lutionary responses of herbivores, such as trenching behaviour and

host switching, could condition diversification under escape-and-
radiate dynamics. Interestingly, seven of the sister-clade lineages
in this study have canal-cutting herbivores reported (D. Dussourd,
pers. comm.), and in all seven cases the lineage with canals has
higher diversity than their sister group.

Extrinsic factors may also drive conditionality in the relationship
between latex/resin canals and diversification. For example, varia-
tion in rates of diversification or trait evolution between temperate
and tropical clades (e.g. Mittelbach et al., 2007; but see: Schluter &
Pennell, 2017) could obfuscate patterns in our data if sister clades
consistently differ in their regional associations. Previous work by
Lewinsohn (1991) found that latex is more common and more abun-
dant in tropical plant species and herbivory pressures have been
shown to be higher in the tropics (Baskett & Schemske, 2018; Coley
& Barone, 1996). A cursory post-hoc examination of the clades in
this analysis, in which we evaluated whether sister clade status is
confounded with tropicality, did not reveal a detectible signal of
strong latitudinal differences across clades (Figure S5). However, a
detailed analysis of diversification rates, latitude and trait evolution
is necessary to fully disentangle this issue. In addition to latitude,
other external factors hypothesized to impact plant diversification
include ploidy, shifts in floral form and outcrossing (summarized in
Table S3, Vamosi et al., 2018). Ultimately, when evaluating patterns
of diversification at such a large scale (across many independent ori-
gins of a trait), there is high potential for shifts in these traits to occur
in at least some of the groups examined, potentially overshadowing
the role of latex/resin in particular clades.

Finally, in studies that examine a large number of origins, ac-
counting for clade age could prove informative. A high number of sis-
ter clade comparisons in our study were relatively young and species
poor (Figure 2), which may confound our ability to detect diversifi-
cation rate shifts. This is particularly true in light of recent evidence
suggesting that diversification rates may be time-dependent across
the tree of life (Henao-Diaz, Harmon, Sugawara, & Pennell, 2018).
Ultimately, it may be that variation in the relationship between
latex, resin and diversification rates across clades is unlikely to be
explained by a single factor, or even handful of factors, and instead
a myriad of clade-specific factors may shape diversification patterns

across plants (Donoghue & Sanderson, 2015).

4.3 | Caveats of our approach and ways forward

Our study presents an updated test of whether latex and resin ca-
nals are broadly associated with increased diversification in plants.
However, like that of Farrell et al. (1991), this study includes several
major caveats that should be taken into consideration.

First, just as systematic relationships have changed in the
28 years, the relationships in this study may also change with fu-
ture data and methodological advances. While this is a caveat of any
phylogenetic study, it warrants particular mention in light of the dif-
ferences between the 1991 paper and the current study. That being
said, we have confidence in our data, as we only included sister com-

parisons with currently well-supported phylogenetic relationships.
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However, to aid future work in this area, we discuss any uncertainty
in the systematic relationships of our current sister comparisons, and
identify clades we omitted, in Appendix S1.

Second, similar to phylogenetic hypotheses, updated trait data
on the distribution of laticifers and ducts also have the potential
to change future results. We attempted to take a conservative ap-
proach to aid in this issue, only making sister comparisons when the
available trait data met certain criteria (i.e. laticifers and/or resin
canals were known ancestral synapomorphies or derived states).
However, for many potential sister-clades this was not possible due
to insufficient trait or phylogenetic data (detailed in Appendix S1).
While these instances were not analysed in this study, their inclusion
in future analyses (with additional data) could alter conclusions. In
a similar vein, if canal-bearing clades have higher persistence (over
macroevolutionary time) than their canal-lacking sister clades, then
it is possible that the extinction of lineages without canals could bias
our results. If the ‘true’ sister clade has gone extinct, then the sis-
ter comparisons will be conducted on the next closest-related clade.
A similar bias may exist if laticiferous or resinous clades go extinct
and thus are not available to test. While these biases cannot be ac-
counted for in most sister comparisons, they could be an issue, par-
ticularly for deep trait origins (like most origins of latex and resin
canals), or for lineages that have low (or negative) diversification
rates.

Third, diversification rate analysis methodology is changing rapidly,
and more sophisticated analyses of trait-dependent diversification ap-
plied to clade-specific studies could illuminate our understanding of
this question. We were unable to apply state-dependent diversification
models (e.g. hiSSE, Beaulieu & O'Meara, 2016) to our analyses due to a
lack of phylogenetic resolution and power (see Supporting Information
Methods), and while our MEDUSA analyses offer an agnostic char-
acterization of diversification patterns in these clades, diversification
analyses with hiSSE (Beaulieu & O'Meara, 2016) and fiSSE (Rabosky &
Goldberg, 2017) will more directly test the state-dependent hypothe-
sis that diversification is dependent on latex and resin canals, as well
as disentangle the effects of focal traits from the hidden effects of
unmeasured drivers of diversification. These and other sophisticated
methods will become increasingly accessible to researchers as more
species-level phylogenies and trait data become available for clades
representing independent origins of canals.

Fourth, our study (like Farrell et al., 1991) treats laticifers and
ducts as a single, discrete character state and assumes that all lat-
icifers and resin ducts play an equivocal role in defense. While we
have evidence of defensive functions for laticifers and/or resin canals
inmany of the groups studied (Konno et al., 2004 [Caricaceae]; Konno
et al.,, 2006 [Moraceae]; Dussourd & Eisner, 1987 [Apocynaceae];
Dussourd, 1993, 1995 [Asteraceae, Campanulaceae]; Kniep, 1905
[Euphorbiaceae]; Harris, 1960; Lewinsohn, Gijzen, Savage, &
Croteau, 1991; Phillips & Croteau, 1999 [conifers]; Nawrot, 2017
[Papaveraceae]), not all occurrences of laticifers or resin canals have
been tested for defensive roles. Given the variation in form (e.g.
ideoblasts, sacs, canals, trichomes) and function (e.g. defense, pol-
linator attraction, etc.) of secretory structures containing latex and

resins, binning laticifers and resin canals into binary states may over-
simplify the nature of these traits. Given that anatomical data are
limited for the structure of laticifers and resin canals across clades
(Farrell et al., 1991), and that the role of defense has not been tested
in most occurrences of laticifers (Castelblanque et al., 2017), broader
categorization is currently intractable in most clades. Furthermore,
additional categories would increase the number of parameters in
diversification models, further increasing the demand for more trait
data. Because we were retesting a historically impactful study, and
for the reasons outlined in Farrell et al. (1991) and Dussourd and
Denno (1991), we make the assumption that latex and resin canals
are a single defensive syndrome. Currently there is no enough data
to test resin canals independently, but a cursory analysis consider-
ing latex separately reveals that relationship between latex and di-
versification is even weaker than when both traits are considered
together (V = 230, Ax = 1,552 + 6,421 species, n = 27, one-tailed
p = 0.1653). However, future studies that are able to analyze these
traits independently and incorporate trait variation within latex and
resin canals will illuminate whether these traits show similar or dif-

ferent patterns in relation to diversification dynamics across plants.

5 | CONCLUSIONS

Here, we revisited a classic test of Ehrlich and Raven escape-and-ra-
diate dynamics: an association between the evolution of defense ex-
udates (latex and resin canals) and diversification rates across plants.
Both at the broad scale (using updated sister-clade approaches
across 28 clades) and at the narrower scale (modelling diversifica-
tion rates and trait evolution in two clades that vary in latex/resin
presence and absence), we find that the updated tests muddle the
previously reported relationship between latex/resin evolution and
diversification. Post-hoc analyses revealed that the change in results
is due to updates to plant systematics over the last 28 years (not
methodological advances in the statistical analyses or the addition
of new data). The conclusions of this study, as those of the original
study, are provisional and could change with updated phylogenies
and trait data. We suggest that, while both theoretical and empirical
work grounded in understanding conditionality in ‘escape-and-radi-
ate’ dynamics may allow for more nuanced tests of the hypothesis in
the future, there is currently not strong evidence for latex or resin
as general, consistently replicable drivers of species diversity across

plants.
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