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Abstract

Simulation of flow and transport in petroleum reservoirs involves solving coupled systems of advection-
diffusion-reaction equations with nonlinear flux functions, diffusion coefficients, and reactions/wells. It
is important to develop numerical schemes that can approximate all three processes at once, and to high
order, so that the physics can be well resolved. In this paper, we propose an approach based on high
order, finite volume, implicit, Weighted Essentially NonOscillatory (iWENO) schemes. The resulting
schemes are locally mass conservative and, being implicit, suited to systems of advection-diffusion-
reaction equations. Moreover, our approach gives unconditionally L-stable schemes for smooth
solutions to the linear advection-diffusion-reaction equation in the sense of a von Neumann stability
analysis. To illustrate our approach, we develop a third order iIWENO scheme for the saturation equation
of two-phase flow in porous media in two space dimensions. The keys to high order accuracy are to use
WENO reconstruction in space (which handles shocks and steep fronts) combined with a two-stage
Radau-ITA Runge-Kutta time integrator. The saturation is approximated by its averages over the mesh
elements at the current time level and at two future time levels; therefore, the scheme uses two
unknowns per grid block per variable, independent of the spatial dimension. This makes the scheme
fairly computationally efficient, both because reconstructions make use of local information that can fit
in cache memory, and because the global system has about as small a number of degrees of freedom as
possible. The scheme is relatively simple to implement, high order accurate, maintains local mass
conservation, applies to general computational meshes, and appears to be robust. Preliminary
computational tests show the potential of the scheme to handle advection-diffusion-reaction processes
on meshes of quadrilateral gridblocks, and to do so to high order accuracy using relatively long time
steps. The new scheme can be viewed as a generalization of standard cell-centered finite volume (or
finite difference) methods. It achieves high order in both space and time, and it incorporates WENO
slope limiting.



Introduction

Standard finite volume methods used widely in reservoir simulators are accurate to relatively low order.
They may achieve second order results on uniform computational grids, but they will generally revert to
first order on general grids. In some applications, one would like more resolution of the underlying
physics, and so higher order numerical methods may be preferred. In particular, one might want
improved capturing of shocks or steep fronts.

Many approaches have been proposed to increase the order of approximation. These include the
mixed finite element methods (e.g., Durlovsky & Chien 1993; Hoteit & Firoozabadi 2008; Zidane &
Firoozabadi 2018), mimetic methods (e.g., Alpak 2007; Guevara-Jordan & Jhonnanthan 2007; Alpak
2010; Nilsen et al. 2012), and discontinuous Galerkin methods (Riviere et al. 2011; Wang et al. 2015;
Lee & Wheeler 2017; Zidane & Firoozabadi 2018). These methods require many degrees of freedom to
achieve higher order approximation, and the degrees of freedom are internal to the grid block.

Other approaches use one degree of freedom per grid block, such as the multipoint flux methods
(e.g., Chen et al. 2007; Parramore et al. 2013; Souza et al. 2018; Wheeler et al. 2012), which have been
developed for subsurface simulation. They achieve higher order approximation through reconstruction
of fluxes using neighboring degrees of freedom. An alternative but similar approach was developed for
fluid dynamics applications involving hyperbolic conservation laws, namely, the Weighted Essentially
NonOscillatory (WENO) schemes (Harten et al. 1987; Liu et al. 1994; Jiang & Shu 1996). These have
seen limited application to reservoir simulation (see, e.g., Mallison et al. 2003). The advantage of
schemes that use a single degree of freedom per grid block is that they maximize the grid resolution.
This is important in resolving heterogeneities in the rock properties, especially, the permeability and
porosity. Rather than using multiple degrees of freedom within each grid block, which would reduce the
resolution of the heterogeneities, multipoint flux and WENO methods use a finer grid but achieve high
order through reconstruction of the solution.

Properly posed finite volume schemes will be locally mass conservative. Unfortunately, it is not
possible to define high order methods that preserve the maximum principle, i.e., that produce saturations
between 0 and 1 (or, more precisely, greater than or equal to the residual values). It is not even possible
to define low order methods that preserve the maximum principle on general unstructured computational
meshes. Some slope limiting procedure is required to limit the oscillation. WENO methods have a
slope limiting procedure based on reduction to lower order methods, which generally satisfy the
maximum principle better (at the expense of adding numerical diffusion into the solution). They are not
strictly nonoscillatory, but they are essentially nonoscillatory.

In this paper, we explore the potential of WENO schemes for petroleum reservoir simulation. As a
prototype, we develop an implicit WENO (iWENO) scheme for the saturation equation of two-phase
flow in porous media in two space dimensions with a single rock type. The pressure equaton will be
solved using a mixed finite element method. The saturation equation is a degenerate parabolic equation,
meaning that the capillary diffusion term vanishes at the residual saturations. Even though advection
dominates diffusion, so the equation is nearly hyperbolic, the diffusive term requires the use of implicit
time stepping. We will use the two-stage, third order, implicit Radau-IIA Runge-Kutta method. This
method is L-stable, meaning it is well suited to stiff problems involving diffusion. It leads to
unconditionally stable schemes in the sense of a von Neumann stability analysis (Peaceman 1977).

We exploit some recent developments in WENO technology. Traditional WENO reconstructs the
cell averages of the saturation into low order polynomials of some fixed degree on several stencils. It
combines these by automatically weighting away from stencils that cross shocks or steep fronts in the
saturation. Special weights need to be used so that the approximation is higher order when there are no
shocks. To define these weights requires rectangular computational grids, and sometimes even uniform
grids. The WENO reconstructions of Adaptive Order (WENO-AO) (Levy et al. 1999; Arbogast et al.
2018) do not require special weights. Instead of combining only low order polynomials, a polynomial of



higher degree is included directly. One consequence of this approach is that it frees one from
rectangular computational meshes. We will describe procedures for meshes of quadrilaterals.

We will also exploit some recent developments in mixed method technology for the pressure
equation. The lowest order mixed finite element method is equivalent to a cell-centered finite difference
method on rectangular grids (Russell & Wheeler 1983). However, on quadrilateral grids, the method
loses accuracy. This was rectified recently by the introduction of new finite element spaces on
quadrilaterals (Arbogast & Correa 2016; Arbogast & Tao 2019).

Extension of our approach to three space dimensions, three phase systems, and to higher than third
order should be straightforward. Extension to the pressure equation and multiple rock types may require
more research.

Mathematical Formulation for Two-Phase Flow

The equations describing two-phase flow in a petroleum reservoir are well known (see, e.g., Peaceman
1977; Lake 1989; Chen et al. 2006). For simplicity of exposition, we will take constant densities,
vanishing residual saturations, constant porosity, and a single rock type. In that case, we can formulate
the two-phase flow problem as a simple elliptic pressure equation and a parabolic, but nearly hyperbolic,
saturation equation. The way this is done is by defining the global pressure (Chavent and Jaffré 1986;
Arbogast 1992), which is a pressure intermediate between the two phase pressures. It can be defined by

p=pn+ fslw Ml S) PE(S) / MS) AS, - oo (1)

where A,(Sw) is the relative mobility. Then, A(Sw)Vp = Au(Sw)Vpn + Au(Sw)Vpw, and the pressure
equation is posed for the total velocity u as

u=-K K(Sw)[Vp — p(Sw)g], ....................................................... (2)
Vet = G(Su), oo 3)
where g(Sw) = gw(Sw) + g(Sw) 1s the total well source term and A(S,)p(Sw) = Aw(Sw)pw + Aa(Sw)pn.

The saturation equation is the mass conservation equation of one of the phases. If we choose the
wetting fluid, this equation is

& =S+ V-LAlS — Y(Sg = DSVSI = GulSu)s <o (&)

where fu(Sw) = Awl(Sw) / AM(Sw), Y(Sw) = K (pn— pw) Aw(Sw) An(Sw) / MSw), and D(Sw) = =K pc'(Sw) Mw(Sw)
An(Sw) / M(Sw).

A Mixed Finite Element Method for the Pressure Equation

The global pressure equation (2)-(3) allows us to solve for the global pressure p and total velocity u
independently of the saturation equation (4), assuming S is given. One can solve (2)-(3) in a number of
ways; we chose to use a mixed finite element method.

We introduce a computational mesh of quadrilaterals over the reservoir domain. For this mesh, we
can define the recently introduced AC mixed finite element spaces (Arbogast & Correa 2016; see also
Arbogast & Tao 2018; Arbogast & Tao 2019). For a scalar test function w and a vector test function v in
the AC space, we take the dot product of (2) with v and the product of (3) with w and integrate over the
domain. After applying the Divergence Theorem, we obtain, for time level n,

[ (KMSENY 'wvdxdy = [[ [p" Vo +p(S)gvldxdy, ..o, (5)

[ Viurwdxdy = [[ qSRYwdxdy. ... (6)

Given Sy, we solve these equations for #” and p” in the same AC space. Since the purpose of this paper
is to describe the iWENO framework for solving the saturation equation, we omit the details of
implementation and refer the reader to the aforementioned references.



For consistency, we should use the AC space of index 2 (AC»), so that we achieve third order.
However, the pressure is smoother than the saturation, so perhaps one might choose to take a lower
index space. We do so in the numerical results that we present later in the paper.

An Implicit WENO Method for the Saturation Equation

To discretize the saturation equation (4), we will use the same computational mesh. This is not strictly
necessary, as any mesh of polytopes would suffice. However, by using the same mesh, we avoid the
problem of projecting the solution of (2)-(3) onto the saturation mesh, and projecting S, onto the
pressure mesh. Let £ be a generic mesh cell or element, and let |[E| denote its area. Let £ have L facets,
denoted OE;, [ =1, ..., L, with |0E)| being its length. Finally, let # denote the maximum of the diameters
of the mesh elements, and assume that the mesh is quasi-uniform, so |E| = O(h?).

The average of S, over E at time ¢ is denoted

Se(t) = f f Swe ) dx dy. (7)

We integrate (4) over the element £ and apply the Divergence Theorem to obtain
d s 1
05 Se ks [op VelSom = 1(S)g = DSHVSIvi ds (5) = = [f, au(S) dxdy, ... @®)

where v; is the outward unit normal to the /-th facet of the boundary of E.

We approximate each boundary integral using a 2-point Gauss quadrature rule with points (x;x,y1k)
and weights |0E/| o, k=1,2. To simplify the notation, we define F(Sw) = fu(Sw)u — y(Sw)g, which is the
hyperbolic flux, and then on facet OF, the first two terms in the boundary integral of (8) become

] faE [ Sw)ue = 1(Sw) gl-vi dS(xy)—lE| Jog, F(Sw)vids (x.y)

d
|| Lflll Y21 ok By SEYGuadin) ¥ OUB), oo oo e 9)

|E|

|E|

where F) is the numerical flux function for F-v;, We use the Lax-Friedrichs flux, which is given by
F(Sy, SE) = [(F(SW) F ESH)VI=8(SE = Si)l (10)

where 0 is an upper bound for the absolute value of the eigenvalues of the Jacobian of F in the direction
of v;, and S, and S}, are reconstructed values of S, inside the element and in the neighboring element at
the quadrature point, respectively (we will explain how to get these values in the next section). The third
term in the boundary integral of (8), i.e., the diffusive capillary flux, can be approximated on 0E; by

IE] faE D(Sw)VSwvi ds (x,y) = |<|95|z| Y21 o1k Dy(Syy, SH ki) Sy (xXieyir) + O, oo (11)

wherein a reconstructed value S, ; of VS,-v; at the quadrature points is used (we will explain how to get
these values in the next section). We again use a Lax-Friedrichs flux D, for D, but now the parameter &
is the maximum of |D'(S)VS-v/|. The integration of the source term ¢.(Sw) over E is evaluated to third
order by tensor product 2-point Gauss quadrature (applied through mapping points from a reference
square) That is, for the four quadrature points (xx,yx) and weights |E| ok, k=1,2,3,4,

f f gw(Sw) dx dy =Y r_1 ok @u(Swxiyi)) + Oh®), © oo (12)

where S,, at the quadrature points must be reconstructed as described in the next section.
Combining (8)-(12), we must solve in time the equation

|E|

d = 1 = _ = _
g SE= =1 X1 IOEIo[Fi(Sy, SH)xik k) + Di(Syyy Sob)Xtkyik) Sy 1 (xikik)]

O Ok GulSW X)) - v v e (13)



One could solve this equation to lower order using backward Euler or Crank-Nicolson time
discretization. However, for consistency, we choose to solve in time to third order.

One would like to use a Strong Stability Preserving (SSP) Runge-Kutta method for the time evolution
(Gottlieb et al. 2001; Gottlieb 2005; Ketcheson et al. 2009). However, there are no unconditionally
stable SSP methods of higher order, and the time step restriction is comparable to the CFL condition of
explicit methods. This makes them unsuitable for two-phase flow.

An A-stable Runge-Kutta method is stable for the test equation y’= ay, where a < 0. That is, y
O(Af)y", and |Q(Ar)|<1. However, when the differential equation is stiff, it is possible that Az is relatively
large for the stiff components. An L-stable Runge-Kutta method is A-stable and satisfies Altigqoo |Q(AY) | =

0; that is, the stiff components contribute little (as they should) when the time step is large. Since (13)
has stiff components, especially from the capillary diffusion term, we use an L-stable Runge-Kutta
method. We remark that backward Euler is L-stable, but Crank-Nicolson is only A-stable.

Perhaps the simplest third order L-stable Runge-Kutta method is

n+l _

the Radau-IIA method (Hairer & Wanner 1996; Hairer et al. 2006). 13| sz -2
The Butcher Tableau for this two stage method is given in Table 1. 1 | 4 /4
We illustrate the method for the differential equation du/dt = f(u). 34 14

Given the solution " at time #*, one solves implicitly for the solution  Table 1: Butcher Tableau for Radau-liA.
w13 and u"*! at times 7% = " + A¢/3 and "' = " + At by solving the two equations

WV = SR ) = e L (14)
W= S B, ) ] (15)

cn+1/3

The application of Radau-IIA time stepping to (13) results in finding approximations S, at time

713 and S*1 at time ! satisfying the two equations
0S5 =4S - oSy Ses 0B oued
[FZ(SVT$+1/3,_, S‘:l/+1/3,+) (Xl,k,yl,k) + D\l(s‘;l}+1/3,—’ Sn+1/3 +) Sn+1/ (xl,k,yl,k)]

— (RS, S5 Gaknn) + Dy, ST SE iyl
4 o[5S B 00) = GulSEF LRI « v e (16)
OSFH! = §SF — 1= They Ther 10 wuid
[ﬁl(sn+1/3,— Sn+1/3,+) (xlk,ylk) +ﬁl(5n+1/3'_ Sn+1/3,+) Sn+1/3(xl,k,yl,k)]
RS ST Garnd) + DSy, S SEF a1}
+ %Zizl ok [3gw(Spy 3 0600)) + @S OAIN ] e e e e (17)

These equations must be solved implicitly, using, e.g., Newton’s method. The saturation S, must be

evaluated at specific quadrature points (at the two time levels). WENO3 reconstruction is used to relate

gn+1/3 cn+1
and Sg

At

these values to the primary unknowns S, on E and its neighboring grid elements.

WENO-AO Reconstructions
We now describe the WENO-AO reconstructions needed to complete the iIWENO3 scheme (16)-(17).

WENO-AO(3,2) Reconstruction in One Dimension.
We describe our basic WENO-AQO(3,2) reconstruction in one space dimension (Levy et al. 1999;
Arbogast et al. 2018) before discussing two dimensions. Partition space into a grid of points ... < x.1 <Xxo



<x1<..., and define the element interval /; = [x;, x;+1] and its length A; = x;+1 — x;. The average of S(x) on
I; is denoted S;. We reconstruct S(x) for some x € I; from the element averages.

First, we define three polynomials approximating S(x). Let P(x) be a linear polynomial defined to
the left of I; by requiring its averages to match those of S on the stencil {/i.1, I;}, i.e., Pri.; = Si.; and Py,
= S:. Let Pg(x) be a linear polynomial defined to the right of I; by requiring Pg; = S; and Pg ;11 = Si+1 for
the stencil {/; I;+1}. Finally, let Po(x) be a quadratic polynomial defined on the full stencil {/i.1, I;, li+1}
by requiring Po;.1 = Si.1, Po; = Si, and Po;+1 = Si+1. Provided that S is smooth on the big stencil, Py is a
third order approximation to S(x), while the other two polynomials are second order.

We select arbitrary positive weights oz, or, and oo = 1 — (o + ar) (say, 0.25, 0.25, and 0.5) to
combine the three polynomials. We modify the weights nonlinearly according to the smoothness of the
polynomials on the element /;, which are measured using the standard smoothness indicator (Jiang &
Shu 1996). For polynomial P(x), it is given by

_q1 . dk
or=Yi_, f,i h3k-1 (= PO . oo (18)
Define
~ ay ~ ay _
ay = (et O'Pk)Z’ ay _—aL‘l‘ao‘FaR’ k L,O,R, ........................................ (19)

where € = 1E-6 is usually taken (but see Arandiga et al. 2011 and Arbogast et al. 2018 for a discussion
of this parameter). We combine the three polynomials to define our reconstruction R(x) as

S(x) = R(x) = Z_Z[PO(X) —ap P (x) — agPr(x)] + @ PL(x) + GrPr(x). ..o (20)

If S is smooth on the stencil of three elements, the smoothness indicators are very small and so S ~ Py is
a third order approximation. If S is not smooth to the left, 5, and o become O(1), and so S =~ P is
second order, and if S is not smooth to the right, S =~ Py is second order. Notice that WENO-AO used
arbitrary weights, reconstructed any point in the interval /;, and did not require a uniform grid.

WENO-AO(3,2) Reconstruction in Two Dimensions.

WENO reconstructions on unstructured meshes in two dimensions are available (see, e.g., Hu & Shu
1999; Titarev et al. 2010). However, we choose to develop a reconstruction tailored to logically
rectangular meshes of quadrilaterals. That is, the mesh is a distortion of a rectangular mesh, and so the
index space may be taken to be rectangular. Given an element Ej, let (x;, y;) be its centroid. For

numerical stability, one should let # = \/m and work in the local variables (x - x;)/h and (y - y;)/h, but
for simplicity of exposition we will continue with the variables x and y.

As shown in Figure 1, consider four small 2x2 stencils

SE = {Eij, Ei1), Eij1, E1j1}, SW = {Eij, Ei1j, Eij1, Ei1ja},

NE = {Ei, Eir1j, Eijr1, Eiv1+41}, NW = {E;j, Eivj, Eij+1, Eii1j+1},
and the big 3x3 stencil CC of their union. We construct a bilinear polynomial Px, k= SE, SW, NE, NW,

by matching the averages of the polynomial over each element in its stencil to the corresponding
saturation averages, i.e., so that B, , agrees with SEU'P"I for the appropriate p,q in the stencil (at

whatever time level we need the reconstruction). We also construct the biquadratic polynomial Pcc
similarly for the stencil CC.



Fig. 1. Left: Stencils used for WENO-AO(3,2) reconstructions on Ej. Right: Stencils used for
WENO-AO(4,3) reconstructions needed on E;E;.; for the capillary diffusion term.

For a time dependent problem with a fixed computational mesh, a good way to implement the
procedure above is to first define the base polynomials (Arandiga et al. 2011), for which the saturation
data is all zeros, except for a single one. Given a small or big stencil £, let ﬁk,p,q(x,y) be defined such that

—

|Eplql| Epiqr

5 _ (L p=pr,9=4,
Py p,q(x,y) dx dy = { 0, otherwise, 1T (21)

which can be precomputed once the mesh is given. The stencil polynomial is then
PUxY) = Tp.q SEpg Prpa(X))- (22)

This technique greatly simplifies the definition of polynomials and smoothness indicators, as well as the
computation of the Jacobian needed in Newton’s method.

For any point in the central element, i.e., for (x,)) € Ej;, the WENO-AQO(3,2) reconstruction is
R(x,p) = Z—zz [Pec(xy) = S kPRI Xk GrePrD)s « v o e oo e e (23)

where the sum is over the values of & representing the small (2x2) stencils and the linear weights o are
arbitrary positive numbers summing up to 1 (we take 1/8 for the four small stencils and 1/2 for the big
one). The nonlinear weights @, and d&cc are defined analogously to (19), once the smoothness indicator
is defined. We define it (Hu & Shu 1999) for the polynomial P on degree N by

_ VN k k-1
GP_z:k=1 Zl=0 |El]| fEij

and simplify it using pairs of the base polynomials by computing

dl dk—l
Edyk—l

POOWPAXAY, + oo (24)

PG N f ol al ak-l al ak-l
Oppq = 2k=1 Y=o |Eij] fEij ol Py pq(x.) o Peprgey)dedy ..., (25)
and setting
_ S prq!
op= qu Zp,q, Squ SEplqlo-P,PQ' ................................................... (26)

We use (23) for all reconstructions of S, at a point of the grid element £;;. On the boundary, we have S,
and S, comes from the reconstruction on the neighboring element.

WENO-AO(4,3) Reconstruction in Two Dimensions for the capillary diffusion.

The reconstruction of the normal derivatives S, ,(x,y) on facet 0E; = Ej NEi+1; (or Ej NEjj+1) is
formed by differentiation of the reconstruction polynomial, which must then be one power higher order
accurate. For stability, it must also be defined in a symmetric way. We use a WENO-AO(4,3)
procedure analogous to the WENO-AQO(3,2) procedure described above. As depicted in Fig. 1 for 0E; =
Eij nEi+1, the big stencil, CC, has 4x5 grid elements and its associated tensor product polynomial Pcc is



third order in x and fourth order in y. The four small stencils are 3x3 and lie in the corners of the big
stencil, and their associated tensor product polynomials are biquadratic. The reconstruction is

R,(xy) = Z—EE [VPcc(x,p) Vi — S ik VPHY) V] + B @ VPHEY) Vi oo (27)

for a point (x,y) € OE;, where the sum is over the values of k representing the small (3x3) stencils.

Properties of the iWENO3 Scheme

The iWENO3 scheme is a generalization of standard cell-centered finite volume (or finite difference)
methods. It is locally mass conservative by design. It is formally third order accurate in both space and
time, although one might choose to implement it with less temporal accuracy when most of the error is
spatial. The scheme reverts to second order accuracy in space near shocks and steep fronts. It is not
nonoscillatory, but essentially so due to the WENO slope limiting mechanism.

The scheme can be shown to be stable in terms of a von Neumann stability analysis. One must apply
the analysis to the linearized version of the saturation equation (4), and assume that the saturation is
smooth. The latter assumption means that the reconstructions will be given by the big stencil
polynomials. Moreover, one must assume a uniform computational grid. The analysis shows that each
Fourier mode is L-stable (see Arbogast et al. 2018 technical report).

The saturation is approximated by its averages over the mesh elements, and so the scheme maximizes
the grid resolution. It requires solving for unknown average saturations at two future time levels per
grid block. For systems of M unknowns, we would need only two unknowns per grid block per variable,
independent of the spatial dimension. The scheme is not particularly difficult to implement and it is
fairly computationally efficient, both because reconstructions use local information that can fit in cache
memory, and because the global system has about as small a number of degrees of freedom as possible.

Numerical Results for Simple Test Problems
In this section, we give results for our iIWENO3 scheme in one and two space dimensions for three
simple test problems. We show the accuracy and robustness of the scheme. Newton’s method is used to
solve the IWENO3 scheme for the differential equation of the test problem, and we use the sparse direct
matrix solver in the Eigen library (Gaél, Benoit, et al. 2010).

For conciseness of expressing the differential equations, we will use the convention that a subscript
consisting of a variable (¢, x, or y) will denote partial differentiation.

Example 1: Buckley-Leverett Equation.
The first example uses the scalar equation u; + ( f (u))x = 0 with the nonconvex Buckley-Leverett
flux function

uZ

f(U) = m .............................................................. (28)
The initial condition
1—20x, for0<x <0.05,
uy(x) =140.5, for 0.25 < x < 0.4, ..o (29)

0, otherwise,

leads to an interaction of shocks and rarefactions, i.e., two pulses merge over time. We use m = 80 grid
elements. The results are shown in Fig. 2. The scheme handles the merging of the two pulses quite well
and reproduces the solution to adequate accuracy.



t = 0.1, shock and rarefaction t=0.2, pulses collide t = 0.4, the two pulses merge t = 0.5, fully merged

Fig. 2: Buckley-Leverett equation. The blue solid line is the reference solution. The red squares are iWENO3 results on nonuniform
meshes using m = 80 and At = h. The orange squares are backward Euler results.

We also compare results using a backward Euler time stepping procedure combined with a second
order (i.e., linear approximation) iWENO2 scheme. The low order method shows much greater
numerical diffusion. It also reduces to a single pulse much earlier than the true and iWENO3 solutions.

Example 2: Burgers’ Equation with Diffusion.
We now consider Burgers’ equation with linear diffusion,

Up + (U2/2) ) = Dlyy = 0. (30)

Exact solutions can be found using the Hopf-Cole transformation, and we take the exact solution

-2Dm cos(mx)exp(-Dr %t)

u(x' t) = 2+sin(mx)exp(—Dm 2t)

We show results for D = 0.1 and D =0.01 in Table 2 on nonuniform grids using Az = 10.54. We see the
expected third order convergence rates, in both the L' and L” norms. It should be noted that the CFL
number for this problem is 1, so 10.5 is a considerable improvement over explicit methods.

D=01 D =0.01
m L' error order L~ error order L" error order L~ error order
80 3.74E-05 - 3.13E-05 - 9.42E-06 @ --—-—-- 1.69E-05 -
160 5.01E-06 2.90 4.23E-06 2.89 1.18E-06 3.00 2.06E-06 3.03
320 6.36E-07 2.98 5.40E-07 2.97 1.47E-07 3.01 2.49E-07 3.05
640 8.10E-08 2.97 6.90E-08 2.97 1.84E-08 3.00 3.14E-08 2.99
1280 1.02E-08 2.99 8.66E-09 2.99 2.30E-09 3.00 3.91E-09 3.00

Table 2: Burgers’ equation with exact solution (31). Errors and convergence order at final time t =2 on nonuniform meshes.

We now take the step function

, x < 0.5,
u(x,0) = {Z S (32)

as initial condition. The exact solution is

b—a 1—erf(%at)
u(x,t) =a+ — , h(y) =——50 . (33)
1+h(y,t) exp(E(y—ct)) 1—erf(— m)

where y = x — 1/2 and ¢ = (a + b)/2. We show the results in Fig. 3 witha =1, b = 0.1, and D = 0.01.
The iWENO3 scheme approximates the steep front very well.
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Fig. 3: Burgers’ equation with initial condition (32). The blue solid line is the exact solution. The red open squares are our iWENO3
scheme with At = 4h on a nonuniform grid using m = 80 grid elements.
Example 3: Rigid Body Rotation.

We consider rotation of a square patch on the unit square [0, 1]>. The equation is
u, — (v - 1/2)u)x + ((x - 1/2)u)y = 0.
We show the results in Fig. 4 after a rotation by angle n/4 and /2 using At = 4zh. The scheme appears
to give good results on an unstructured mesh, which is generated from an 160 x 160 uniform rectangular

mesh with edge length 4 by randomly perturbing the interior points within £25% of A, except the outer
layer. The outer layer of elements is not perturbed, so as to facilitate the WENO reconstructions, which

require a layer of ghost elements.

Fig. 4: Rigid body rotation using At = 41h at t = /4 (left two figures) and /2 (right two figures).

Numerical Results for Two-Phase Flow

In this section, we give results for our iWENO3 scheme applied to two-phase flow in a porous medium.
We use the deal.ii package (Bangerth et al. 2015) to solve the mixed finite element method (5)-(6) for
the pressure equation (using AC spaces). We use deal.ii’s sparse direct solvers to solve the saturation
equation (16)-(17), implementing no flow boundary conditions by reflection into boundary ghost cells.
We take g = (0, 9.8m/s?), ¢ = 0.3, p, = 1g/cm?, p, = 0.7g/cm?, 1, = 0.5¢p, and pu, = 2.5¢cp on mxm
unstructured meshes of quadrilaterals on the unit square reservoir domain 0 < x < 320m and 0 < y <
320m oriented vertically (i.e., y = z). We test using m = 16 and 50 grid elements in each direction, with

the initial condition S, = 0. The absolute permeabilities average about 66 mD and 40 mD, respectively,
and they are shown in log scale in Fig. 5.

Fig. 5: Logy of absolute permeability (m?) for m = 16 (left) and m = 50 (right).
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The Brooks and Corey model (Brooks & Corey 1964) gives the capillary pressure

-1/2
De(Su) = PeSir (35)
where p. is the entry pressure. The relative permeabilities are
ko (Su) = STV den(8,) = (L= 8,02 (1=SE M) (36)

We take p. = 3psi and A = 2.

The wells are modeled by the well terms ¢w(Sw) and ¢.(Sw). An injection well injects no nonwetting
fluid, so ¢g.» = 0, and wetting fluid at a rate of ¢,, = 1/day over the grid block for which it is active, so it
injects a volume of about (320/m)*/¢ m*/day (the grid blocks are not square, so this is only approximate).
Production wells produce total fluid at the same total rate ¢ = —1/day, and set guw(Sw) = (Aw(Sw) / A(Sw))q.

All test examples run until the final time ¢ = 600 days with an increasing At, starting with Az = 0.5
days until # = 10 days, then A¢ =1 day until # = 50 days, Az = 2 days until # = 150 days, At =5 days until
¢t =200 days, and At = 10 days until = 600 days.

Our results at different times are shown in Figs. 6-10. We show in Fig. 6 the case with m = 16 and an
injector in the top left and producer in the bottom right. We see a clean saturation profile. The top set of
results use ACo mixed spaces for the pressure equation, which give only first order accurate velocities.
The bottom row shows results using AC; mixed spaces, which are second order accurate. Some
differences can be detected between the two tests, suggesting that it is important to compute the velocity

to higher than first order.
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|\I|Hg‘

=7 50e-01

5.00e-01

i att
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wn
=

1.00e+00
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5.00e-01

m”l

2.50e-01

0.00e+00

Fig.6: Saturation for m = 16 at t= 5, 50, 450 days. AC, (top), AC, (bottom).

In Fig. 7, we show that the scheme undershoots (black elements) a little at early time. In fact, a small
wave is created near the steep front that propagates toward the production well. The minimal saturation
is only about -3.1E-4 on the 16x16 mesh, so the scheme is essentially nonoscillatory. This level of
undershooting was about the same for our other tests. We did not detect saturation overshooting the
value one in any of these tests. The selection of the parameter € in (19), which we took as 1E-6, is
critical to these results, because € controls the identification of small oscillations that need to be damped.
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Fig.7: Saturation for m =16 at t= 1, 10, 15 days. Black shows negative values.

We see similar results for the bigger example using m = 50 in Fig. 8. Again, some differences can be
detected between using ACo and ACy, and overall a clean saturation profile is observed.

1.00e+00
7.50e-01

5.00e-01
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TR

Fig. 8: Saturation for m = 50 at t = 200, 350, 600 days. AC, (top), AC4 (bottom).

For Figs. 9 and 10, there are injection wells at the four corners cells, and four producer wells at each

of the four center cells, mimicking a five-spot pattern (even though the reservoir is vertical). For these
tests, we use ACi spaces for the pressure equation. Very clean results are obtained.

Fig. 9: Saturation for m = 16 at t = 4, 10, 90 days using AC;.
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Fig.10: Saturation for m = 50 at ¢t = 50, 110, 600 days using AC;.

Conclusions and Future Research

The iWENO methodology provides a generalization of standard low-order finite volume schemes.
Schemes can be defined to any order of accuracy on unstructured meshes in two or three space
dimensions, with only a few unknowns per grid block per variable. An L-stable time integrator, such as
Radau-IIA, is needed to make sure that iWENO is unconditionally stable when applied to the linear
problem having a smooth solution. Advection, (capillary) diffusion, and wells can be approximated
accurately by the scheme.

New AC mixed finite element spaces provide accurate velocities on quadrilateral meshes. It may be
important to use more than first order accurate ACy for high order approximation of the saturation.

WENO-AO reconstruction is highly advantageous over standard WENO reconstruction, since it gives
a reconstruction that can be evaluated at any point and uses arbitrary positive weights. The WENO-AO
reconstructions based on tensor product polynomials simplify the construction of the stencil polynomials
and smoothness indicators, which can be defined in terms of base polynomials.

Future research directions include using the WENO framework to solve the pressure equation and
systems of three phases such as compositional and black oil systems. More research is needed to extend
the schemes to treat complex wells and multiple rock types, and to improve the satisfaction of the
maximum principle.

Nomenclature

D.D = diffusive flux and its Lax-Friedrichs flux, D = —K p." Aw An/ A
ds = differential of length
E = computational mesh grid element (or cell, or block)

F,F = hyperbolic flux and the Lax-Friedrichs flux for F-v, F=f,u —yg

fw = fractional flow of wetting fluid, fi, = 4,/ 4
g = gravity vector
h = mesh spacing (maximal element diameter)
K = absolute rock permeability
L = number of facets of the boundary of £ (here taken as 4)
P = polynomial approximation used in the WENO reconstructions
p = global pressure
pe = capillary pressure

Pe, A = Brooks-Corey parameters

Pn,pw = phase pressures

qngqw = wells
R = WENO reconstruction

S,S" = WENO reconstructed saturation values, defined from within and outside the mesh element
Sy = wetting fluid saturation
Sk = average wetting fluid saturation over mesh element E
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u = total velocity
o, @ = linear and nonlinear WENO weights
y= gravity term, y = K (pn — pw) Aw An / A0
At = time step duration
0 = parameter in Lax-Friedrichs flux
OE; = I-th facet of the boundary of element £
&= small parameter in nonlinear WENO weighting
A = total mobility, L = 4, + 4w
An, Aw = phase mobilities (relative permeability divided by viscosity)
L, 1by = phase viscosities
v = outer unit normal vector
p = density term, p = (Aw pw + An pn) / A
P, Pw = phase densities
o= smoothness indicator
@ = quadrature weight
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