1	Running head: Consumer adaptation versus enrichment
2	
3	
4	Consumer adaptation mediates top-down regulation across a productivity gradient
5	
6	
7	Michael F. Chislock ^{a,b} , Orlando Sarnelle ^c , Lauren M. Jernigan ^a , Vernon R. Anderson ^a ,
8	Ash Abebe ^d , and Alan E. Wilson ^{a*}
9	
10	^a School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University,
11	Auburn, Alabama, USA 36849, Phone: 334-246-1120, Fax: 334-844-9208
12	^b Department of Environmental Science and Ecology, The College at Brockport, State University
13	of New York, Brockport, NY 14420
14	^c Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
15	48824.
16	^d Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA.
17	*Corresponding author: wilson@auburn.edu, 334-246-1120 (phone)
18	
19	Author Contributions: MFC, OS, and AEW conceived and designed the experiments. MFC,
20	LMJ, VRA, and AEW performed the experiments. MFC, OS, AA, and AEW analyzed the data.
21	MFC, OS, AA, and AEW wrote the manuscript; other authors provided editorial advice.
22	
23	

Abstract

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Humans have artificially enhanced the productivity of terrestrial and aquatic ecosystems on a global scale by increasing nutrient loading. While the consequences of eutrophication are wellknown (e.g., harmful algal blooms, toxic cyanobacteria), most studies tend to examine short-term responses relative to the time scales of heritable adaptive change. Thus, the potential role of adaptation by organisms in stabilizing the response of ecological systems to such perturbations is largely unknown. We tested the hypothesis that adaptation by a generalist consumer (Daphnia pulicaria) to toxic prey (cyanobacteria) mediates the response of plankton communities to nutrient enrichment. Overall, the strength of Daphnia's top-down effect on primary producer biomass increased with productivity. However, these effects were contingent on prey traits (e.g., rare vs. common toxic cyanobacteria) and consumer genotype (i.e., tolerant vs sensitive to toxic cyanobacteria). Tolerant *Daphnia* strongly suppressed toxic cyanobacteria in nutrient-rich ponds, but sensitive Daphnia did not. In contrast, both tolerant and sensitive Daphnia genotypes had comparable effects on producer biomass when toxic cyanobacteria were absent. Our results demonstrate that organismal adaptation is critical for understanding and predicting ecosystemlevel consequences of anthropogenic environmental perturbations.

40

41

- Key Words: Eutrophication, nutrient enrichment, toxic cyanobacteria, microcystin,
- 42 management, harmful algal blooms (HABs), nitrogen, phosphorus, top-down, bottom-up,
- 43 consumer offense, evolution

44

Introduction

Humans have artificially enhanced the productivity of ecosystems (cultural eutrophication)
across the globe (Vitousek et al. 1997; Pimentel and Edwards 1982). Indeed, cultural
eutrophication is perhaps the most widespread of all human perturbations and has resulted in
large-scale effects on biodiversity, species composition, and ecosystem function (Carpenter et al.
1998; Hautier et al. 2015; Isbell et al. 2013; Vitousek et al. 1997b). Although the long-term
response of ecosystems to perturbations is likely to depend on the evolutionary adaptations of
resident organisms, most studies of these effects tend to measure short-term responses relative to
the time scales of heritable adaptive change. Consequently, we know little about how the
response of communities and ecosystems to environmental perturbations is mediated by
adaptation. Here we test the hypothesis that the long-term responses of ecosystems to
eutrophication (a major agent of global change) may depend not only on the presence of
particular consumer species but also on adaptations in response to past environmental changes
(for example, in response to lake acidification (Gray and Arnott 2009)).
The response of primary productivity to nutrient enrichment is affected by the interaction of
bottom-up (resource) and top-down (consumer) control of primary productivity. Strong control
of primary production and community structure by resources (e.g., nutrients) is well-documented
(Schindler 1974). In contrast, the importance of top-down control of natural ecosystems
(Hairston et al. 1960) is illustrated by the dramatic cascading effects of top consumers across a
wide variety of environments (Estes et al. 2011; Paine 1966), and the ecosystem regime shifts
resulting from global declines in top consumers (Daskalov et al. 2007; Young et al. 2015).
Moreover, consumers can sometimes dampen the positive response of primary producers to
nutrient inputs (Carpenter et al. 1985: Hairston et al. 1960). However, complex interactions

68 among resource availability, factors that deter herbivores (e.g., plant defenses), and herbivory are 69 all known to regulate primary production and the distribution of plant biomass (Leibold et al. 70 1997; Oksanen et al. 1981; Polis 1999). Furthermore, the potential role of organismal adaptations 71 in response to past environmental changes in mediating consumer versus resource control is 72 largely unknown (but see Frisch et al. 2017, Weider et al. 2018). 73 Recent research has highlighted a wide array of adaptations by species in response to global 74 changes (Carlsson et al. 2009; Lohbeck et al. 2012; Monchamp et al. 2017; Parmesan 2006; 75 Sarnelle and Wilson 2005; Urban et al. 2014), and shown that the ecological traits of many 76 species can be quite malleable over short time scales (Des Roches et al. 2017; Grant and Grant 77 2002; Hairston et al. 1999; Yousey al. 2018). Contemporary evolution can also have important 78 effects on species interactions, community and ecosystem dynamics, and the feedback between 79 ecology and evolution (Bassar et al. 2010; Pennisi 2012; Post et al. 2008; Walsh et al. 2012). 80 Several studies have provided evidence that consumer evolution can have ecosystem-level 81 consequences (Chislock et al. 2013; Urban 2013), even over short time scales (Harmon et al. 82 2009). Therefore, a fundamental question is whether intraspecific adaptive trait variation can in 83 turn modulate the response of ecosystems to global change. 84 Globally, eutrophication is the leading cause of impairment of freshwater and coastal marine 85 ecosystems (Smith and Schindler 2009). In freshwaters, nutrient-rich ecosystems are frequently 86 dominated by colonial and filamentous cyanobacteria (i.e., blue-green algae), the dominant taxa 87 causing harmful algal blooms, with many of these taxa producing toxic secondary metabolites 88 (Carmichael 1992). The general paradigm has been that cyanobacteria are largely resistant to 89 grazing by herbivorous zooplankton, thus preventing effective top-down control (Sommer et al. 90 1986). However, recent research has revealed that populations of the microcrustacean herbivore

Daphnia can adapt in response to toxic cyanobacteria in their environment (Hairston et al. 1999; Hairston et al. 2001; Pennisi 2012; Sarnelle and Wilson 2005). Most importantly, Daphnia can have dramatic effects on algal biomass and ecosystem productivity and function in lentic environments (Carpenter et al. 1985; Chislock et al. 2013; Leibold 1989). In this paper, we extend our earlier findings documenting strong trait-based effects of *Daphnia* on toxic cyanobacteria (Chislock et al. 2013) to focus on the relative effects of different Daphnia genotypes (i.e., tolerant or sensitive to toxic prey) on algal biomass across a nutrient enrichment gradient, mimicking earlier meta-analytic studies of the effects of food-web structure (Mazumder 1994; Sarnelle 1992). Our experiments were designed as a specific test of predator-prey theory as described in Sarnelle (1992). The difference in algal biomass in the presence versus absence of grazers such as Daphnia is expected to increase with system productivity when algae are edible, as Daphnia should reduce edible algae to similarly low levels regardless of nutrient enrichment. In contrast, the effect of *Daphnia* should be weaker when grazing-resistant algae are included in the model. In the previous meta-analysis (Sarnelle 1992), most *Daphnia* treatments were established indirectly via planktivorous fish manipulation. Here, we present the results from two sets of randomized field experiments conducted in the spring and fall in ten freshwater ponds that span a large productivity gradient induced by eutrophication (Table 1). Cyanobacteria tend to increase in dominance with nutrient enrichment (Downing et al. 2001) and during seasonal succession in eutrophic waterbodies (Sarnelle 2007). As expected, the prevalence of cyanobacteria varied both as a function of nutrient concentration

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Chislock et al. page 5

generally rare across all ponds, while cyanobacteria were common in the fall experiment,

and season across the ponds. During the spring experiment, grazing-resistant cyanobacteria were

particularly in the most nutrient-rich ponds (Table 1). The experiments were designed to explicitly address (i) the magnitude of *D. pulicaria*'s effect on algal biomass across a productivity (i.e., TP) gradient; (ii) if this effect depended on *D. pulicaria* adaptation to toxic cyanobacteria; and (iii) whether the magnitude of these effects varied seasonally as a function of cyanobacterial presence. We were also interested in comparing the relationship between *D. pulicaria* biomass and productivity for the contrasting *D. pulicaria* treatments, as a means of assessing food-web structure.

Methods

121

122 Daphnia pulicaria genotypes used in the experiments 123 Based on past work by our research group and others (e.g., Chislock et al. 2013; Hairston et al. 124 2001; Sarnelle and Wilson 2005), we expected that *Daphnia* genotypes isolated from nutrient-125 poor lakes with low chlorophyll a (and few cyanobacteria) would be inherently more sensitive to 126 toxic cyanobacteria than genotypes from nutrient-rich lakes with high chlorophyll a (and 127 moderate to high levels of cyanobacteria). We validated this assumption with laboratory 128 experiments measuring the sensitivity of *Daphnia* neonates to a diet of toxic cyanobacteria 129 (Hairston et al. 2001; Sarnelle and Wilson 2005). 130 Each of the eight D. pulicaria genotypes used in these experiments originated from a single 131 adult female or hatched ephippial egg collected from seven small (<0.3 km²) lakes of varying 132 productivity (Table 2). Two of the tolerant D. pulicaria clones used in experiments were from 133 the same lake (Duncan: clones 1 and 2). Each of the seven lakes was surveyed during the spring 134 (May-June) of 2009 and 2011 to measure total phosphorus (TP) in the mixed layer to estimate 135 potential productivity and again during the summer (August) of 2009 and 2011 to quantify algal 136 biomass (as chlorophyll a) and microcystin levels. Four of the lakes are oligotrophic (based on 137 TP) with few cyanobacteria, while three lakes are moderately to highly eutrophic with variable 138 cyanobacterial abundance during the summer (Table 2). 139 We subsequently assessed the sensitivity of these clones by comparing their somatic growth 140 rates when fed edible green algae (Ankistrodesmus) vs. potentially toxic cyanobacteria 141 (*Microcystis*). Juvenile growth rates of each genotype on diets consisting of 100% 142 Ankistrodesmus falcatus (a nutritious green algal) or 100% Microcystis aeruginosa (UTEX 2667; 143 toxic) were compared for each of the genotypes in a laboratory experiment using previously

published methods (Sarnelle and Wilson 2005). Briefly, somatic growth rates for neonates (<24 hours old) were assessed for each diet over three days. Instantaneous somatic growth was calculated as (ln W_f – ln W_i)/3, where W_i and W_f are initial and final (day 3) masses, respectively. We then calculated a relative index of growth inhibition by *Microcystis* for each clone as (g_a – g_m)/g_a, where g_a and g_m are the instantaneous somatic growth rates on *Ankistrodemus* and *Microcystis*, respectively. Larger values of this index indicate greater inhibition by *Microcystis* relative to *Ankistrodesmus* (values greater than 1 occur if animals gain weight when fed *Ankistrodesmus* but lose weight when fed *Microcystis*). T-tests were used to compare growth rates on both diets and relative growth inhibition of *D. pulicaria* genotypes collected from the two lake types.

All *Daphnia* genotypes were maintained for several generations in the laboratory before use in experiments. Prior to the mesocosm experiment, each *D. pulicaria* genotype was inoculated into a 20-L tank filled with water from a low-nutrient lake that was filtered through a 35-μm sieve to remove competing zooplankton and large phytoplankton. We added high densities of a nutritious green alga (*Ankistrodesmus*) to the tanks as a food source. These tank cultures were allowed to grow for 1 month to provide animals to stock into the mesocosms.

Mesocosm experiments

We conducted simultaneous six-week mesocosm experiments in five ponds that spanned a large total phosphorus gradient (49-167 μ g L⁻¹) at the E.W. Shell Fisheries Research Station at Auburn University, Alabama, during the spring (March-April). We then conducted a similar set of simultaneous mesocosm experiments in a similar set of five ponds (TP = 10-334 μ g L⁻¹) during the fall (October-November). For logistical reasons, we were unable to use the same

ponds in the fall experiment as in the spring experiment. All ponds are shallow and polymictic with surface areas ranging from 0.1 to 1 ha and maximum depths of 3 m (Boyd and Shelton 1984). Cyanobacteria are common in most ponds by late May and can account for up to 90% of total phytoplankton biomass by September in the most productive ponds (Chislock et al. 2013). Thus, grazing-resistant phytoplankton should be, and were, more common in the fall vs. spring. Experiments were conducted in mesocosms (160-L) which consisted of polyethylene barrels $(0.5 \text{ m diameter} \times 0.8 \text{ m deep})$ that were open to the atmosphere, closed at the bottom, and secured to a floating PVC frame anchored in each pond. Eight enclosures in each pond were filled by pumping water through a 100-µm mesh net to initially exclude resident Daphnia and planktivorous fish from treatments. We then stocked an equal mixture of either four sensitive or four tolerant D. pulicaria clones (Table 2) at very low densities (total density per enclosure: 0.1 animals L⁻¹) into each of three replicate mesocosms for treatments containing *Daphnia*. The remaining two enclosures within each pond served as 'no *Daphnia*' controls. We sampled all enclosures immediately prior to adding *Daphnia* and then weekly until the end of the experiments. Depth-integrated water samples for total phytoplankton biomass (as

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

We sampled all enclosures immediately prior to adding *Daphnia* and then weekly until the end of the experiments. Depth-integrated water samples for total phytoplankton biomass (as chlorophyll *a*), total phosphorus, phytoplankton species composition, and *Daphnia* biomass were collected with a tube sampler (inside diameter = 51 mm) for both experiments. Chlorophyll *a* concentrations were measured by extracting phytoplankton collected on Pall A/E filters in 90% ethanol for 24 h in the dark at 4°C followed by measurement with a fluorometer (Sartory and Grobbelaar 1984). Phytoplankton species composition was determined at the beginning and end of both experiments via the inverted microscope technique (Utermohl 1958) using water samples preserved in 1% Lugol's solution (Chislock et al. 2013; Chislock et al. 2014). Biovolume for dominant taxa was calculated using cell counts and estimates of cell volume based on

measurements of cell dimensions. We then converted biovolume (mm³ L-¹) to dry biomass (μg L⁻¹) assuming a specific gravity of 1 g cm⁻³ and a dry biomass: wet biomass ratio of 0.40 (Chislock et al. 2014). Microcystin concentrations in whole-water samples at the start of the experiment were quantified using enzyme-linked immunosorbent assay (ELISA) (An and Carmichael 1994). *Data analysis*

To standardize *Daphnia* effects on total phytoplankton biomass across all ponds, we calculated effect sizes for both experiments (algal response factor, ARF) (Sarnelle 1992). ARF was calculated by dividing the mean chlorophyll *a* concentration in the two controls by the chlorophyll *a* concentration for each of the six *Daphnia* enclosures, within each pond, for each of the final two weeks of the experiment when *Daphnia* populations had stabilized (Appendix A). We then calculated mean ARF for each enclosure over the final two weeks. Larger ARF values represent greater reductions in algae compared to the control treatments without grazers.

We were interested in the magnitude of *Daphnia* effects on phytoplankton biomass across a nutrient (TP) gradient. For our model, we had clustered data with two-level nesting (*Daphnia* genotype = level 1; pond = level 2). Therefore, we used a mixed modeling approach, which accounted for this nesting, to determine the effects of mean TP (average TP in each mesocosm over the final two weeks), *Daphnia* type (sensitive or tolerant), and their interaction on ARF, absolute chlorophyll *a*, and *Daphnia* biomass. We log-transformed TP and each of the three response variables to meet the assumptions of the model (normality and homogeneity of variance). We also initially included a quadratic term for TP to test for evidence of an asymptote in the TP-ARF relationship as evidence of increased grazing resistance of phytoplankton at higher TP (Sarnelle 1992), but this factor was not significant. We initially fit a full model with season of experiment as a factor and found that the effect of season of experiment was

statistically significant (P = 0.0042). For ease of interpretation and to simplify the analysis, we thus present separate models for the spring and fall experiments.

To simplify our data for visualization (i.e., Figure 1), we averaged values across replicates over the final two weeks of the experiment when Daphnia populations had stabilized and plotted these means ± 1 standard error. Power functions ($y = ax^b$) were then fit for each treatment, with x representing TP and y corresponding responses. Regression lines are shown when statistically significant (P < 0.05).

220 Results

221 Relative growth inhibition of Daphnia pulicaria genotypes used in the experiments 222 Somatic growth rates of *D. pulicaria* neonates fed a diet of the nutritious green alga *A*. 223 falcatus were similar for genotypes collected from high-nutrient lakes versus low-nutrient lakes 224 $(T_6 = -0.717, P = 0.500)$. In contrast, D. pulicaria genotypes from high-nutrient lakes had higher 225 juvenile somatic growth rates ($T_5 = 3.106$, P = 0.027) and showed less relative growth inhibition 226 $(T_5 = 3.117, P = 0.026)$ on the potentially toxic diet of M. aeruginosa, when compared to D. 227 pulicaria genotypes from low-nutrient lakes. Therefore, D. pulicaria genotypes from high-228 nutrient lakes were more tolerant of toxic *Microcystis* in the diet than genotypes from low-229 nutrient lakes. Two of the "tolerant" genotypes did have negative somatic growth rates on a 230 100% Microcystis diet. However, growth rates of these two genotypes on Microcystis were still 231 higher and relative growth inhibition lower than for all of the four "sensitive" genotypes. In 232 nature, phytopankton communities at high TP are generally dominated by toxic cyanobacteria 233 rather than being 100% toxic *Microcystis*, so our laboratory assessments are an extreme test of 234 tolerance. 235 Mesocosm experiments. Total phosphorus (TP) concentration across ponds ranged from 10 to 334 μg L⁻¹, with 236 237 cyanobacteria and associated cyanotoxins being rare in the spring (Table 2A) and prevalent in 238 the fall (Table 2B). In the spring experiments, the effect of *Daphnia* on algal biomass (ARF) 239 ranged from ~ 2.2 to 161, was a positive function of TP (Table 3A, P < 0.0001), and was 240 independent of *Daphnia* genotype (Figure 1A; Table 3A; P = 0.16). In the absence of *Daphnia*, 241 algal biomass measured as chlorophyll a increased linearly with TP (Table 3B; Figure 1B; P = 242 0.0065). In contrast, chlorophyll a was depressed to a flat line of similarly low concentrations

243 across the TP gradient in the presence of both sensitive and tolerant D. pulicaria (Table 3B; 244 Figure 1B). Both sensitive and tolerant *D. pulicaria* biomass similarly increased with TP until 245 reaching an asymptote at the highest TP concentrations (~100 ug/L) in the spring (Figure 1B; 246 Table 3B; Genotype P = 0.61; TP P = 0.05). 247 Daphnia effects on algal biomass also increased with TP in the fall (Figure 1A; Figure 1B; 248 Table 4A; P < 0.0001), but effects across the TP gradient were highly contingent on consumer 249 genotypes. Effects of the two Daphnia types were similar in magnitude at low TP (TP < 22 μg L⁻ 250 1) but tolerant D. pulicaria genotypes had up to a 10-fold larger effect than sensitive genotypes at 251 high TP (Table 4A; Genotype x TP interaction P = 0.0081). In the fall experiment, chlorophyll a 252 increased with TP in both the control and sensitive D. pulicaria treatments (Fig. 1E). In contrast, 253 tolerant D. pulicaria depressed chlorophyll a to similarly low levels across the TP gradient (Fig. 254 1E; Table 4B). Increasingly larger effects of tolerant D. pulicaria with increasing TP were 255 associated with higher biomass of tolerant D. pulicaria at high TP. In contrast, biomass of 256 sensitive D. pulicaria was similarly low across the TP gradient (Figure 1F; Table 4; Genotype x 257 TP interaction P = 0.0048). 258 At the conclusion of the experiment, *Microcystis* colony size was significantly larger in the 259 presence of tolerant D. pulicaria than in either of the other two treatments in four of the five 260 ponds (Table 5A). A similar pattern was also observed for mean Cylindrospermopsis filament 261 length in the two ponds where this taxon was present (Table 5B).

Discussion

The results of these two experiments clearly indicate that <i>Daphnia</i> adaptation, resulting from
prior natural selection for tolerance to cyanobacteria, can have a large effect on the abundance of
primary producers across a productivity gradient, and that the genotype effect interacts with
phytoplankton composition (comparing spring and fall results). For example, lower biomass of
sensitive D. pulicaria, and hence their inability to control phytoplankton biomass, in the fall was
likely a direct consequence of reduced neonate survival (and perhaps adult fecundity) in the
presence of grazing-resistant, toxic prey (Chislock et al. 2013). In ponds with extreme levels of
toxic cyanobacteria and the cyanobacterial toxin, microcystin, the effect of tolerant versus
sensitive D. pulicaria genotypes becomes as large as the effect of D. pulicaria presence/absence
(Chislock et al. 2013).
Daphnia effects on algal biomass in spring and fall were standardized, relative to no Daphnia
controls, by calculating algal response factors (ARF), with larger ARF values indicating greater
reductions in algae compared to no Daphnia controls. In general, overall Daphnia effects in the
fall (ARF: $0.5 - 22$) were nearly an order of magnitude lower than in the spring (2 – 166). There
are at least two potential non-mutually exclusive explanations for lower Daphnia effect sizes in
the fall. First, if at a given TP concentration, total phytoplankton biomass in the absence of
Daphnia is lower in the fall, this could account for smaller effects as Daphnia should reduce
phytoplankton biomass to similar levels (i.e., <i>Daphnia's</i> R*, Tilman 1982; Gliwicz 1990),
assuming that all phytoplankton are edible (Sarnelle 1992). However, phytoplankton biomass at
a given TP concentration in controls was comparable for the spring and fall (Figure 1B, E), thus
we found no support for this mechanism. Secondly, grazing-resistant taxa were more abundant in
the fall and some cyanobacterial filaments and colonies were too large to be effectively

consumed by *Daphnia*. While we found no effects of *D. pulicaria* genotype on the relative abundance of phytoplankton taxa, mean *Microcystis* colony size was significantly larger in the presence of tolerant *D. pulicaria* than in either of the other two treatments in four of the five ponds. A similar pattern was also observed for mean *Cylindrospermopsis* filament lengths. These data suggest that tolerant *D. pulicaria* can shift the colony size spectrum upward through selective grazing. Larger overall colony size as a result of grazing by tolerant *D. pulicaria* may have important long-term implications for trophic structure and ecosystem function in lakes as these size-resistant phytoplankton could lead to decreased zooplankton:phytoplankton biomass (Higgins et al. 2014; Birtel and Matthews 2016; Heathcote et al. 2016). Future studies examining subsequent cyanobacterial responses (e.g., increased size and growth rates) to increased grazing pressure by adapted zooplankton will likely be informative in exploring the longer term consequences of this potential arms race.

Previous studies have reached contrasting conclusions regarding the magnitude of consumer effects as productivity increases. Simple predator-prey models predict that the magnitude of consumer effects should increase with productivity, and these predictions have been supported by manipulative experiments in lakes (Sarnelle 1992). However, several other studies have suggested that consumer effects should be largest at low productivity, with weaker effects at higher productivities due to species turnover and changes in prey composition favoring resistant taxa (Chase et al. 2000; Hatton et al. 2015; Leibold et al. 1997). In both fall and spring experiments, the negative effects of *Daphnia* on algal prey increased across the productivity gradient (i.e., larger ARF at higher TP; Figure 1). However, *Daphnia* adaptation as well as algal prey composition influenced the magnitude of these effects. In the spring, when there were few cyanobacteria (Table 1), overall *Daphnia* effects (i.e., ARF at a given TP) were larger than in the

fall, when cyanobacteria were abundant. Therefore, our results also support the prediction that top-down control is a function of prey species composition, with weakened effects when grazing-resistant taxa were abundant. However, we also found that consumer effects within each season (i.e., spring and fall) increased with productivity even in the presence of grazing-resistant prey (i. e., colonial and filamentous cyanobacteria), with the magnitude of consumer effects during the fall being mediated by consumer adaptation to resistant prey. While the general importance of prey compositional shifts versus consumer adaptation in regulating top-down effects is subject to debate, our data suggest that both can have effects of similar magnitude.

The study of prey resistance to consumers has a rich history, and traditionally, much emphasis has been placed on understanding the role of prey adaptations that reduce consumption risk (i.e., prey defense) (Karban and Agrawal 2002; Rhoades 1985). Here, we demonstrate that the local adaptations by consumers to overcome these defenses (i.e., consumer offense) (Chislock et al. 2013; Hairston et al. 1999; Sarnelle and Wilson 2005) mediate the magnitude of top-down effects by that consumer across a nutrient gradient. Past studies of consumer offenses have emphasized the importance of specialist herbivores (Karban and Agrawal 2002; Rhoades 1985). Our work contrasts with this previous research as we studied a generalist consumer, which, in contrast to specialist consumers, can have ecosystem-level effects. Thus, adaptations by generalist consumers cannot be ignored in studies of food web interactions and may play an increasingly important role, particularly in disturbed ecosystems. Adaptive evolution by consumers may provide an important feedback mechanism mediating the net effects of large-scale environmental perturbations on community- and ecosystem-level processes (Hairston et al. 1999).

Acknowledgments

We thank Randall Goodman, Mark Peterman, and the staff of the Auburn University E.W
Shell Fisheries Research Center for logistical support. Steve Cason provided assistance in the
lab. Dennis DeVries, Sharon Hermann, Rusty Wright, Volker Rudolf, Bri Reed, Andy Turne
Alan Tessier, Doug Levey, Sam Scheiner, Jon Chase, Jason Hoverman, and Mike Vanni
provided helpful comments on the manuscript. This study was supported by an EPA STAR
Graduate Fellowship, NSF Grants DEB-0841864, DEB-0841944, and DBI-0965272, and the
Alabama Agricultural Experiment Station, and the Hatch program of the National Institute of
Food and Agriculture, U.S. Department of Agriculture.

References

342

- An, J.S., and W.W. Carmichael. 1994. Use of a colorimetric protein phosphatase inhibition assay
- and enzyme-linked-immunosorbent assay for the study of microcystins and nodularins.
- 345 Toxicon **32**: 1495-1507.
- Bassar, R.D., et al. 2010. Local adaptation in Trinidadian guppies alters ecosystem processes.
- Proceedings of the National Academy of Sciences of the United States of America 107: 3616-
- 348 3621.
- Birtel, J., and B. Matthews. 2016. Grazers structure the bacterial and algal diversity of aquatic
- metacommunities. Ecology 97: 3472-3484.
- Boyd, C.E., and J.L. Shelton. 1984. Observations on the hydrology and morphometry of ponds
- on the Auburn University Fisheries Research Unit. Alabama Agricultural Experiment
- 353 Station Bulletin 1-64.
- 354 Carlsson, N.O.L., O. Sarnelle, and D. Strayer. 2009. Native predators and exotic prey an
- acquired taste? Frontiers in Ecology and the Environment 7: 525-532.
- 356 Carmichael, W.W. 1992. Cyanobacteria secondary metabolites the cyanotoxins. Journal of
- 357 Applied Bacteriology **72**: 445-459.
- Carpenter, S.R., *et al.* 1985. Cascading trophic interactions and lake productivity. BioScience **35**:
- 359 634-639.
- Carpenter, S.R., et al. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.
- Ecological Applications 8: 559-568.
- 362 Chase, J.M., et al. 2000. The effects of productivity, herbivory, and plant species turnover in
- 363 grassland food webs. Ecology **81**: 2485-2497.
- 364 Chislock, M.F., et al. 2013. Large effects of consumer offense on ecosystem structure and

- 365 function. Ecology **94**: 2375-2380.
- 366 Chislock, M.F., K.L. Sharp, and A.E. Wilson. 2014. Cylindrospermopsis raciborskii dominates
- under very low and high nitrogen-to-phosphorus ratios. Water Research 49: 207-214.
- Daskalov, G.M., et al. 2007. Trophic cascades triggered by overfishing reveal possible
- mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences of
- 370 the United States of America **104**: 10518-10523.
- Des Roches, S., D.M. Post, N.E. Turley, J.K. Bailey, A.P. Hendry, M.T. Kinnison, J.A.
- 372 Schweitzer, and E.P. Palkovacs. 2018. The ecological importance of intraspecific variation.
- Nature Ecology & Evolution 2: 57-64.
- Downing, J.A., S. B. Watson, and E. McCauley. 2001. Predicting cyanobacteria dominance in
- lakes. Canadian Journal of Fisheries and Aquatic Sciences **58**: 1905-1908.
- Estes, J.A., et al. Trophic downgrading of planet Earth. 2011. Science **333**: 301-306.
- Frisch, D., P.K Morton, B.W. Culver, M.B. Edlund, P.D. Jeyasingh, and L.J. Weider. 2017.
- Paleogenetic records of *Daphnia pulicaria* in two North American lakes reveal the impact of
- cultural eutrophication. Global Change Biology **23**: 708-718.
- Gliwicz, Z. M. 1990. Food thresholds and body size in cladocerans. Nature **343**:638-640.
- 381 Grant, P.R., and B.R. Grant. 2002. Unpredictable evolution in a 30-year study of Darwin's
- 382 finches. Science **296**: 707-711.
- 383 Gray, D.K, and S.E. Arnott. 2009. Recovery of acid damaged zooplankton communities:
- measurements, extent, and limiting factors. Environmental Reviews 17: 81-99.
- Hairston, N.G., et al. 1999. Rapid evolution revealed by dormant eggs. Nature 401: 446.
- Hairston, N.G., et al. 2001. Natural selection for grazer resistance to toxic cyanobacteria:
- evolution of phenotypic plasticity? Evolution **55**: 2203-2214.

- Hairston, N.G., F.E. Smith, and L.B. Slobodkin. 1960. Community structure, population control,
- and competition. American Naturalist **94**: 421-425.
- 390 Harmon, L.J., et al. 2009. Evolutionary diversification in stickleback affects ecosystem
- 391 functioning. Nature **458**: 1167-1170.
- Hatton, I.A., et al. 2015. The predator-prey power law: biomass scaling across terrestrial and
- aguatic biomes. Science **349**: aac6284, DOI: 10.1126/science.aac6284.
- Hautier, Y., et al. 2015. Plant ecology. Anthropogenic environmental changes affect ecosystem
- stability via biodiversity. Science **348**: 336-340.
- Heathcote, A.J., C.T. Filstrup, D. Kendall, and J.A. Downing. 2016. Biomass pyramids in lake
- plankton: influence of cyanobacteria size and abundance. Inland Waters 6: 250-257.
- Higgins, S.N., B. Althouse, S.P. Devlin, Y. Vadeboncoeur, and M.J. Vander Zanden. 2014.
- Potential for large-bodied zooplankton and dreissenids to alter the productivity and
- autotrophic structure of lakes. Ecology **95**:2257-2267.
- Isbell, F., et al. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in
- Ecosystem productivity. Proceedings of the National Academy of Sciences of the United
- 403 States of America **110**: 11911-11916.
- Karban, R., and A.A. Agrawal. 2002. Herbivore offense. Annual Review of Ecology, Evolution,
- and Systematics **33**: 641-664.
- Leibold, M.A. 1989. Resource edibility and the effects of predators and productivity on the
- outcome of trophic interactions. American Naturalist **134**: 922-949.
- 408 Leibold, M.A., et al. 1997. Species turnover and the regulation of trophic structure. Annual
- Review of Ecology, Evolution, and Systematics 28: 467-494.
- 410 Lohbeck, K.T., U. Riebesell, and T.B.H. Reusch. 2012. Adaptive evolution of a key

- phytoplankton species to ocean acidification. Nature Geoscience 6: 346-351.
- Mazumder, A. 1994. Patterns of algal biomass in dominant odd- vs even-link lake ecosystems.
- 413 Ecology **75**: 1141-1149.
- Monchamp, M.-E., P. Spaak, I. Domaizon, N. Dubois, D. Bouffard, and D. Pomati. 2018.
- Homogenization of lake cyanobacterial communities over a century of climate change and
- eutrophication. Nature Ecology & Evolution 2: 317-324.
- Oksanen, L., et al. 1981. Exploitation ecosystems in gradients of primary productivity. American
- 418 Naturalist **118**: 240-261.
- Paine, R.T. Food web complexity and species diversity. 1966. American Naturalist 100: 65-75.
- 420 Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual
- Review of Ecology, Evolution, and Systematics **37**: 637-669.
- 422 Pennisi, E. 2012. The great guppy experiment. Science **24**: 904-908.
- Pimentel, D., and C. A. Edwards. 1982. Pesticides and ecosystems. BioScience 32: 595-600.
- Polis, G.A. 1999. Why are parts of the world green? Multiple factors control productivity and the
- distribution of biomass. Oikos **86**: 3-15.
- Post, D.M., et al. 2008. Intraspecific variation in a predator affects community structure and
- cascading trophic interactions. Ecology **89**: 2019-2032.
- Rhoades, D.F. 1985. Offensive-defensive interactions between herbivores and plants: their
- relevance in herbivore population dynamics and ecological theory. American Naturalist **125**:
- 430 205-238.
- Sarnelle, O. 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73:
- 432 551-560.
- Sarnelle, O. 2007. Initial conditions mediate the interaction between *Daphnia* and bloom-

- forming cyanobacteria. Limnology and Oceanography **52**: 2120-2127.
- Sarnelle, O., and A. E. Wilson. 2005. Local adaptation of *Daphnia pulicaria* to toxic
- 436 cyanobacteria. Limnology and Oceanography **50**: 1565-1570.
- Sartory, D.P., and J.U. Grobbelaar. 1984. Extraction of chlorophyll-a from fresh-water
- phytoplankton for spectrophotometric analysis. Hydrobiologia **114**: 177-187.
- Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: implications for lake
- 440 management. Science **184**: 897-899.
- Smith, V.H., and D.W. Schindler. 2009. Eutrophication science: where to do we go from here?
- Trends in Ecology and Evolution **24**: 201-207.
- Sommer, U., Z.M. Gliwicz, W. Lampert, and A. Duncan. 1986. The PEG-model of seasonal
- succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433-471.
- Tilman, D. 1982. Resource competition and community structure. Princeton University,
- 446 Princeton.
- 447 Urban, M.C. 2013. Evolution mediates the effects of apex predation on aquatic food webs.
- Proceedings of the Royal Society of London Series B **280**: 20130859.
- 449 Urban, M.C., J.L. Richardson, and N.A. Friedenfields. 2014. Plasticity and genetic adaptation
- mediate amphibian and reptile responses to climate change. Evolutionary Applications 7: 88-
- 451 103.
- 452 Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int.
- 453 Ver. theor. angew. Limnol. **9**: 1-38.
- Vitousek, P.M., et al. 1997a. Human domination of Earth's ecosystems. Science 277: 494-499.
- Vitousek, P.M., et al. 1997b. Human alteration of the global nitrogen cycle: sources and
- 456 consequences. Ecological Applications 7: 737-750.

457	Walsh, M.R., J.P. DeLong, T.C. Hanley, D.M. Post. 2012. A cascade of evolutionary change
458	alters consumer-resource dynamics and ecosystem function. Proceedings of the Royal
459	Society of London. Series B – Biological Sciences 279 : 3184-3192.
460	Weider, L.J., P. D. Jeyasingh, and D. Frisch. 2018. Evolutionary aspects of resurrection ecology
461	progress, scope, and applications – an overview. Evolutionary Applications 11: 3-10.
462	Young, H.S., et al. 2015. Context-dependent effects of large-wildlife declines on small mammal
463	communities in central Kenya. Ecological Applications 25: 348-360.
464	Yousey, A.M., P.R. Chowdhury, N. Biddinger, J.H. Shaw, P.D. Jeyasingh, and L.J. Weider.
465	2018. Resurrected 'ancient' Daphnia genotypes show reduced thermal stress tolerance
466	compared to modern descendants. Royal Society Open Science 5: 172193.
467	
468	
469	

470 Tables

Table 1. Enclosure nutrient concentrations (total phosphorus, TP), chlorophyll a, relative and absolute cyanobacterial abundance, and levels of the cyanotoxin, microcystin, for each of the five ponds at the beginning of the (A) spring and (B) fall experiments. Ponds are listed in rank order of increasing productivity

(A)

	TP	Chl a	Percent	Cyanobacterial dry	Microcystin
Pond	$(\mu g \ L^{-1})$	$(\mu g \ L^{-1})$	cyanobacteria	biomass (μg L ⁻¹)	$(\mu g \ L^{-1})$
S4	49	19	0	0	< 0.1
S29	50	16	0	0	< 0.1
Asheton	87	26	0	0	< 0.1
S12	114	47	0.2	22	< 0.1
S11	167	53	0	0	< 0.1

(B)

` /					
	TP	Chl a	Percent	Cyanobacterial dry	Microcystin
Pond	$(\mu g L^{-1})$	$(\mu g \ L^{-1})$	cyanobacteria	biomass ($\mu g L^{-1}$)	$(\mu g \ L^{-1})$
FP14	10	9	0	0	< 0.1
S22	59	33	65	1,187	0.6
F9	129	51	20	406	0.36
F20	169	78	11	127	0.38
S9	334	53	98	5480	1.43

Table 2. Information for source lakes for the eight genotypes of Daphnia pulicaria used in the experiments. All eight genotypes were isolated in 2009 from each of seven small glacial lakes (Bassett, Eagle, Lawrence, Sherman, MSU, Kent, and Duncan) in southern Michigan. Four of the lakes are oligotrophic (based on total phosphorus (TP) concentration), while three lakes are moderately to highly eutrophic. All lakes were surveyed in 2009 and 2011, and TP represents the mean total phosphorus concentration measured in the spring. Chlorophyll a and microcystin are mean values for the summer. D. pulicaria genotypes were confirmed to be sensitive or tolerant to toxic cyanobacteria by comparing juvenile growth when fed diets consisting of the nutritious green alga (i.e., Ankistrodesmus falcatus) vs. toxic cyanobacteria (Microcystis aeruginosa; UTEX 2667). Relative growth inhibition was calculated for each genotype following the methods of Samelle and Wilson (2005). Larger values of this index indicate greater inhibition by Microcystis relative to Ankistrodesmus (values greater than 1 occur if animals gain weight when fed Ankistrodesmus but lose weight when fed Microcystis)

				Growth Rate	
	TP	Chl a	Microcystin	Ank, Micro	Relative growth
Source Lake	(μg L ⁻¹)	(μg L ⁻¹)	(μg L ⁻¹)	(d^{-1})	inhibition
Sensitive genotypes:					
Bassett Lake	10	8	0.005	0.47, -0.24	1.51
Eagle	10	5	0.006	0.34, -0.14	1.40
Lawrence Lake	13	4	0.004	0.36, -0.11	1.30
Sherman Lake	8	5	0.010	0.41, all died	*N/A
Tolerant genotypes:					
MSU Lake 1	71	60	0.500	0.81, 0.07	0.92
Kent Lake	25	10	0.024	0.30, -0.06	1.20
Duncan Lake (clone 1)	62	37	0.016	0.35, -0.04	1.12
Duncan Lake (clone 2)				0.46, 0.11	0.75

^{*}Relative growth inhibition could not be calculated for the Sherman Lake genotype as all animals died when fed Microcystis

Table 3. Statistical results for the spring experiment for the mixed model examining the effects of $Daphnia\,pulicaria$ genotype, total phosphorus, and their interaction on (A) the algal response factor (ARF), which compares the magnitude of $Daphnia\,$ effects on phytoplankton biomass as chlorophyll a, (B) absolute chlorophyll a concentrations, and (C) $Daphnia\,$ biomass. Data were averaged over the final two weeks of the experiment when $D.\,$ pulicaria populations had stabilized. Models for (A) and (C) compared sensitive and tolerant $Daphnia\,$ treatments. The mixed model for (B) compared control, sensitive, and tolerant $Daphnia\,$ treatments

(A) ARF

Fixed effects	Estimate	SE	df	T	p-value
Genotype treatment	0.15	0.09	4	1.72	0.16
log (total phosphorus)	2.48	0.33	19	2.67	< 0.0001
Interaction	1.17	0.73	18	1.60	0.13

Random effects	σ	Percent of total variance
Pond	0.08	25
Genotype treatment in pond	1.06×10^{-5}	0
Residual	0.24	75

(B) Chlorophyll a

Fixed effects	Estimate	SE	df	T	p-value
Tolerant Daphnia treatment	1.15	1.00	8	1.15	0.28
Sensitive Daphnia treatment	3.10	0.85	8	3.63	0.0067
log (total phosphorus)	1.25	0.42	22	3.01	0.0065
Interaction (Tolerant)	-1.22	0.55	22	-2.22	0.037
Interaction (Sensitive)	-2.39	0.46	22	-5.17	<0.0001

Random effects	σ	Percent of total variance
Pond	0.16	37
Genotype treatment in pond	0.098	22
Residual	0.18	41

(C) Daphnia biomass

ate SE	₫f	T	p-value
0.05	4	-0.56	0.61
0.37	19	2.06	0.05
0.33	18	0.59	0.56
	0.05 0.37	0.05 4 0.37 19	0.05 4 -0.56 0.37 19 2.06

Random effects	σ	Percent of total variance
Pond	0.19	58
Genotype treatment in pond	4.81×10^{-7}	0
Residual	0.14	42

475

Table 4. Statistical results for the fall experiment for the mixed model examining the effects of Daphnia pulicaria genotype, total phosphorus, and their interaction on (A) the algal response factor (ARF), which compares the magnitude of Daphnia effects on phytoplankton biomass as chlorophyll a, (B) absolute chlorophyll a concentrations, and (C) Daphnia biomass. Data were averaged over the final two weeks of the experiment when D. pulicaria populations had stabilized. Models for (A) and (C) compared sensitive and tolerant Daphnia treatments. The mixed model for (B) compared control, sensitive, and tolerant Daphnia treatments

/ A 1	ADE
(A) A K F

Fixed effects	Estimate	SE	df	T	p-value
Genotype treatment	0.51	0.34	4	1.49	0.21
log (total phosphorus)	0.81	0.14	18	5.95	< 0.0001
Interaction	-0.52	0.17	18	-2.97	0.0081

Random effects	σ	Percent of total variance
Pond	0.07	22
Genotype treatment in pond	0.12	38
Residual	0.13	40

(B) Chlorophyll a

Fixed effects	Estimate	SE	df	T	p-value
Tolerant Daphnia treatment	0.62	0.27	8	2.28	0.05
Sensitive Daphnia treatment	-0.05	0.28	8	-0.18	0.86
log (total phosphorus)	0.40	0.12	22	3.32	0.0031
Interaction (Tolerant)	-0.74	0.14	22	-5.22	< 0.0001
Interaction (Sensitive)	-0.13	0.14	22	-0.94	0.36

Random effects	σ	Percent of total variance
Pond	0.20	48
Genotype treatment in pond	0.091	21
Residual	0.13	31

(C) Daphnia biomass

Fixed effects	Estimate	SE	₫f	T	p-value	
Genotype treatment	0.32	0.26	4	1.23	0.29	
log (total phosphorus)	0.74	0.17	18	4.41	0.0003	
Interaction	-0.43	0.13	18	-3.22	0.0048	

Random effects	σ	Percent of total variance
Pond	0.18	47
Genotype treatment in pond	0.04	11
Residual	0.16	42

477

Table 5. (A) Mean Microcystis colony size (mean equivalent spherical diameter $-ESD \pm 1$ standard error -SE) and (B) mean Cylindrospermopsis filament length (length ± 1 standard error -SE) at the end of the fall experiment. Cylindrospermopsis was absent in ponds FP14, F9, and F20. Ponds are listed in rank order of increasing total phosphorus

(A)

	Control ESD (µm)	Sensitive ESD (µm)	Tolerant ESD (μm)
Pond	mean ± 1 SE	mean ± 1 SE	mean ± 1 SE
FP14	109 ± 4	101 ± 6	109 ± 12
S22	66 ± 9	95 ± 11	119 ± 6
F9	76 ± 11	72 ± 3	114 ± 9
F20	64 ± 1	105 ± 7	118 ± 5
S9	36 ± 6	66 ± 3	82 ± 3

(B)

Pond	Control Length (μm) mean ± 1 SE	Sensitive Length (μm) mean ± 1 SE	Tolerant Length (μm) mean ± 1 SE
S22	72 ± 4	82 ± 8	106 ± 4
S9	85 ± 9	159 ± 13	170 ± 10

Figure Legends

481

Fig. 1 Relationship between total phosphorus (µg L⁻¹) and (A) the magnitude of *Daphnia* 482 483 pulicaria effects on phytoplankton biomass as chlorophyll a (i.e., algal response factor), (B) 484 absolute chlorophyll a concentrations (µg L⁻¹), and (C) Daphnia biomass (µg L⁻¹) for the spring 485 experiment when cyanobacteria were rare, and the fall experiment when cyanobacteria were 486 common (D, E, F). White symbols (B and D panels only) indicate no Daphnia controls, gray 487 symbols indicate D. pulicaria genotypes that are sensitive to toxic cyanobacteria, and black 488 symbols indicate D. pulicaria genotypes that are tolerant of toxic cyanobacteria. Data were 489 averaged across replicates over the final two weeks of the experiment when *Daphnia* populations 490 had stabilized, with points representing pond means ±1 standard error for each treatment. 491 Standard errors for TP of treatments are indicated in the horizontal direction for panels (A) and 492 (D) for simplicity. Power functions $(y = ax^b)$ were fit for each treatment, and regression lines are 493 shown when statistically significant (P < 0.05). Separate regression lines are shown for sensitive 494 and tolerant D. pulicaria in the spring (A, C) to facilitate comparison. However, there was no 495 statistically significant effect of *Daphnia* genotype or the interaction between total phosphorus 496 and genotype on the observed relationships in the spring experiment.

497 Regression equations for spring experiment:

498

```
499 ARF<sub>sensitive</sub> = 0.022 \times \text{TP}^{1.84}, R<sup>2</sup> = 0.89; ARF<sub>tolerant</sub> = 0.0016 \times \text{TP}^{2.33}, R<sup>2</sup> = 0.97
```

500 Chlorophyll_{control} = $0.013 \times TP^{1.79}$, $R^2 = 0.97$

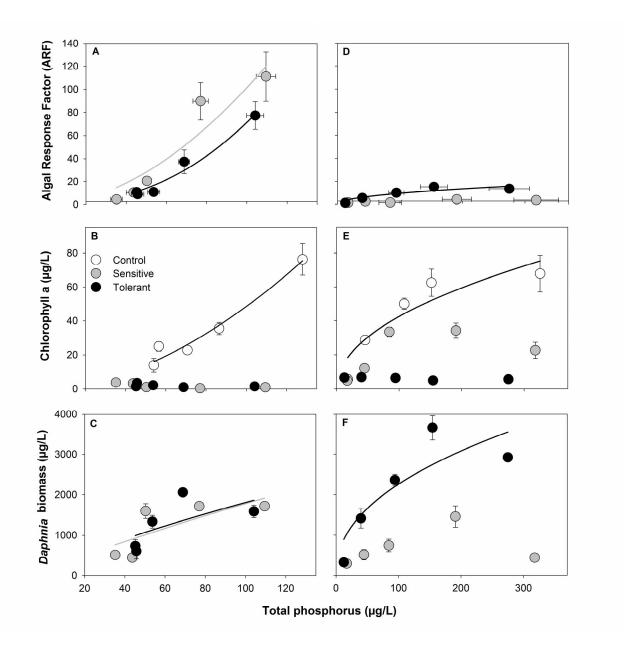
```
Daphnia<sub>sensitive</sub> = 40.83 \times TP^{0.82}, R^2 = 0.58; Daphnia<sub>tolerant</sub> = 55.63 \times TP^{0.76}, R^2 = 0.43
```

502

503 Regression equations for fall experiment:

```
504 ARF<sub>tolerant</sub> = 0.97 \times TP^{0.50}, R^2 = 0.83
```

$$Chlorophyll_{control} = 4.55 \times TP^{0.49}, R^2 = 0.86$$


506 Daphnia_{tolerant} = $289.1 \times TP^{0.44}$, $R^2 = 0.77$

507

508

Figure 1

510

511