
Performance Optimization of Reactive Molecular Dynamics
Simulations With Dynamic Charge Distribution Models on

Distributed Memory Platforms

Kurt A. O’Hearn∗

ohearnku@msu.edu
Michigan State University
East Lansing, Michigan

Abdullah Alperen∗

alperena@msu.edu
Michigan State University
East Lansing, Michigan

Hasan Metin Aktulga
hma@msu.edu

Michigan State University
East Lansing, Michigan

ABSTRACT

Reactive molecular dynamics (MD) simulations are important for
high-fidelity simulations of large systems with chemical reactions.
Iterative linear solvers used to dynamically determine atom polar-
izations in reactive MDmodels and redundancies related to bond or-
der calculations constitute significant bottlenecks in terms of time-
to-solution and the overall scalability of reactive force fields. The
objective of this work is to address these bottlenecks. To accomplish
this goal, several optimizations are explored including acceleration
of the charge model solver through an effective preconditioning
technique and a numerical method with reduced communication
overheads, as well as initialization and data structure changes for
bond order calculations. Detailed scalability analysis of these opti-
mizations and their overall impact is presented. A single-allreduce
pipelined non-blocking conjugate gradient (PIPECG) solver cou-
pled with a sparse approximate inverse (SAI) based preconditioner
has been observed to yield significant speedups over the baseline
standard CG solver with Jacobi preconditioner. These results are sig-
nificant as they can facilitate scalable simulations of large reactive
systems, and presented techniques can be used in other polarizable
MD models.

CCS CONCEPTS

· Theory of computation → Massively parallel algorithms;
· Computing methodologies → Molecular simulation; Mas-

sively parallel and high-performance simulations; · Mathe-

matics of computing→ Solvers.

KEYWORDS

reactive molecular dynamics, iterative sparse solvers, distributed
preconditioners, communication hiding techniques

ACM Reference Format:

Kurt A. O’Hearn, Abdullah Alperen, and Hasan Metin Aktulga. 2019. Per-
formance Optimization of Reactive Molecular Dynamics Simulations With

∗Authors contributed equally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’19, June 26ś28, 2019, Phoenix AZ

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN isbnisbn. . . $xx.yy
https://doi.org/doidoidoi

Dynamic Charge Distribution Models on Distributed Memory Platforms. In
ICS ’19: ACM International Conference on Supercomputing, June 26ś28, 2019,

Phoenix AZ. ACM, New York, NY, USA, 10 pages. https://doi.org/doidoidoi

1 INTRODUCTION

Molecular dynamics (MD) simulations play increasingly important
roles in diverse fields, ranging from biophysics to chemistry to
materials science. Classical MD techniques rely on static bonds and
fixed partial charges associated with atoms, limiting their appli-
cability to non-reactive systems. To study phenomena involving
chemical reactions, quantum mechanical (QM) methods have typ-
ically been the method of choice. QM simulations must account
for electronic degrees of freedom present in the system. As such,
they are typically limited to sub-nanometer length and picosecond
time scales. However, long-time reactive simulations are critical for
several scientific problems such as catalysis, battery interfaces, bio-
logical simulations involving water, and emerging areas like surface
oxidation and chemical vapor deposition (CVD) growth. Progress
on these fronts is limited because long continuous time simulations
of large-scale systems are very difficult, if not impossible, to per-
form using purely quantum mechanical (QM) or hybrid quantum
mechanical/molecular dynamics (QM/MD) simulations. The Reac-
tive Force Field (ReaxFF) method [20], a bond order potential that
bridges quantum-scale and classical MD approaches by explicitly
modeling bond activity and redistribution of charges, is in principle
ideally suited for this purpose. However, the computationally com-
plex force field formulation hinders ReaxFF’s scalability to large
number of processing cores. In this paper, we present algorithmic
and numerical techniques to address scaling bottlenecks and enable
high performance ReaxFF simulations at scale.

ReaxFF is a relatively recent model (developed in early 2000s [20])
and is similar to the classical MD model in the sense that it mod-
els atomic nuclei together with their electrons as a point particle.
Unlike classical MD models, ReaxFF mimics bond formation and
breakage observed in QMmethods by replacing the static harmonic
bond models with the bond order concept, which is a quantity indi-
cating bond strength between a pair of atoms based on the types of
the atoms and the distance between them. Consequently, ReaxFF
can overcome many of the limitations inherent to conventional
MD. While the bond order concept dates back to 1980s and has
been exploited in other force fields before (such as COMB [17] and
AIREBO [18]), the distinguishing aspect of ReaxFF is the flexibility
and transferability of its force field that allows ReaxFF to be applied
to diverse systems of interest [6, 14, 16, 19].

150

ICS ’19, June 26–28, 2019, Phoenix AZ Kurt A. O’Hearn, Abdullah Alperen, and Hasan Metin Aktulga

Consequently, PuReMD creates four interaction lists by scanning
through the Verlet list, updating the atomic pair distances found
therein and checking them against various cutoffs involved. As
expected, the process of creating the interaction lists is memory-
bound in terms of performance because calculations associated
with creation of these lists are trivial. However, the bonds list is
an exception here as it requires expensive bond order calculations
between pairs of atoms that are within the prescribed rbond cutoff.
The memory-bound nature of this kernel and expensive bond order
calculations make this routine (which we denote shortly by init)
one of the expensive parts in PuReMD.

Bonded Interactions. Since bonds are dynamic in bond order for-
malism, 3-body and 4-body interactions (which involve three and
four atoms, respectively, as their names indicate) also need to be
discovered on-the-fly. Accurately modeling chemical reactions and
avoiding discontinuities on the potential energy surface in the pres-
ence of dynamic bonds requires almost all bonded interactions (such
as bond energy, 3-body valence angle energy, and 4-body torsion
energy) to have significantly more complex mathematical formula-
tions than those found in classical MD models [16, 19]. In addition,
in a reactive environment, atoms often do not achieve their opti-
mal coordination numbers; to compensate for this, ReaxFF requires
additional modeling abstractions such as lone pair, over/under-
coordination, and 3-body and 4-body conjugation potentials, which
introduce significant computational cost to evaluation of bonded
interactions. Consequently, bonded interaction calculation costs
which are insignificant in classical MD models constitute a signifi-
cant part of the total execution time in ReaxFF.

Charge Distribution. An important requirement for correctly mod-
eling reactions is the charge distribution procedure, which tries
to approximate the partial charges on atoms using suitable mod-
els such as the Electronegativity Equilibration Method (EEM) [12]
and the Charge Equilibration Method (QEq), [15]. While the chem-
ical intuition behind these two methods is quite different, they
produce identical-looking charge distributions in practice. Since
QEq produces a symmetric positive definite Hamiltonian which
is easier to solve using distributed memory solvers, PuReMD uses
the QEq method. In QEq, charges are determined by minimizing
the electrostatic energy Eele. Let R = (r1, r2, . . . , rn) denote the
atomic positions in a system with n atoms, where ri ∈ R3. Atomic
charges q = (q1,q2, . . . ,qn), qi ∈ R, are thus defined by solving
the following optimization problem:

argmin
q

Eele (q) =
∑

i

χiqi +
1

2

∑

i, j

Hi jqiqj

subject to qnet =
∑

i

qi

where Hi j = δi j · Ji +
(
1 − δi j

)
· Fi j

Fi j =




1
3
√
r 3i j+γ

−3
i j

, ri j ≤ rnonb

0, otherwise.

(1)

In Eq. (1), χi and Ji denote the atomic electronegativity and idem-
potential; δi j denotes the Kronecker delta operator; ri j =

����rj − ri
����
2

signifies the distance between the atomic pair i and j; and γi j =√
γi · γj denotes a pairwise tuned parameter for elements i and j

for avoiding unbounded electrostatic energy at short distances. Ap-
plying the method of Lagrange multipliers to Eq. (1), the sets of
linear equations below are obtained [2, 13]:

n∑

i=1

Hkisi = −χk , k = 1, . . . ,n

n∑

i=1

Hki ti = −1, k = 1, . . . ,n.

(2)

The dimension of the linear systems in Eq. (2) is equal to the num-
ber of atoms in the simulation (and can be on the order of several
millions to billions). Due to the computational expense of includ-
ing long-range interactions during charge distribution, QEq uses
a truncated electrostatic kernel and therefore H is a sparse ma-
trix. Consequently, these systems must be solved approximately
using iterative methods [2]. Using solutions to Eq. (2), partial atomic
charges qi can be determined:

qi = si −
∑n
j=1 sj∑n
j=1 tj

· ti .

Nonbonded Interactions. Nonbonded interactions include van der
Waals and Coulomb forces, which have functional forms of the
Morse and electrostatic potentials, respectively. As these interac-
tions are pairwise interactions, they can be calculated directly by
going over the Verlet list. When advantageous performance-wise,
non-bonded interactions can be approximated with very high accu-
racy using cubic spline interpolations over lookup tables.

3 METHODS

Charge distribution is essentially a precursor to Coulomb interac-
tions. However, the iterative method used therein is significantly
more expensive than the Coulomb interaction itself. Even worse,
this iterative method requires a large number of communication
operations (both local & global). We note that with the exception
of position updates and force exchanges needed as part of par-
allelization, among all kernels described above, only the charge
distribution solver requires communications. Again, among all ker-
nels, only initialization of bonded interactions list incurs redundant
calculations which may hamper scalability in large simulations. In
this section, we present algorithms and numerical techniques to
alleviate these inefficiencies.

3.1 Reduction of Global Communication
Overheads in QEq Solvers

Baseline Preconditioned CG. Previous versions of PuReMD used the
conjugate gradient (CG) algorithm for solving for the charges in the
QEq procedure [1]. CG is a member of the Krylov subspacemethods;
these methods seek a solution x to the sparse system Ax = b, with
A being symmetric positive definite, which falls within the Krylov
subspace κ (A,b) =

{
b,Ab,A2b, . . .

}
. Each iteration of CG increases

the dimension of the subspace, and the procedure terminates when
an acceptable solution is found. In the case of CG, storing all the
vectors which define κ is not necessary due to orthogonality and
A-orthogonality of the conjugate vectors. Computing additional
conjugate vectors with the prescribed A-orthogonality obviously
requires sparse matrix vector multiplications (SpMVs), which in

152

Performance Optimization of Reactive Molecular Dynamics Simulations With Dynamic Charge Distribution Models on Distributed

Memory Platforms ICS ’19, June 26–28, 2019, Phoenix AZ

the parallel context of PuReMD entails two local communications
over the 3D process torus ś a forward communication to distribute
the input vectors and a backward communication to accumulate
partial results into the output vector (note that in PuReMD the
Hamiltonian is stored as a half matrix to leverage symmetries). Also,
the orthonormalizations require calculation of inner products and
vector norms. In a parallel setting, these operations entail two all-

reduce operations which are quite expensive global communications
in large scale runs.

In PuReMD, the standard CG solver is improved by: i) produc-
ing good initial guesses, ii) solving both systems in Eq. (2) through
simultaneous iteration, and iii) utilizing a Jacobi (diagonal) precondi-
tioner. The initial guesses in PuReMD are based on the observation
that atomic positions (and hence charges) change only slightly from
timestep to timestep; as such PuReMD uses cubic and quadratic
extrapolations to solutions of Eq. (2) from previous timesteps. The
Jacobi preconditioning idea stems from the fact that the Hamilton-
ian H carries a heavy diagonal. Both techniques are inexpensive,
yet quite effective; together they substantially improve the conver-
gence rate of CG for QEq, but as we demonstrate in Section 4, this
basic solver still requires tens of iterations per timestep, hampering
the overall scalability.

Preconditioned Pipelined CG. The scalability of Krylov subspace
methods like CG is hampered by global communications during
the calculation of inner products and vector norms. To combat this
scalabilty issue, the pipelined CG (PIPECG) algorithm [8] aims to
achieve lower communication latency by reducing the number of
these communications to only one non-blocking global reduction
per iteration. PIPECG essentially rearranges the algebraic formu-
lation of CG in order to achieve this goal of one communication
per step. As a trade-off for this, PIPECG ends up performing more
computation (dense vector-dense vectors operations) per step and
also exhibits slightly worse convergence properties than CG (i.e.,
stagnation at tolerances beginning at around 10−11). Algorithm 1
highlights the advantages and disadvantages of PIPECG by show-
ing that the single global communication (lines 20 and 21) can
be overlapped with the preconditioner application and SpMV on
subsequent lines, effectively hiding some of the communication la-
tency ś specifically, an MPI_IAllreduce call can be started at these
lines and waited on until the completion of the SpMV. Additionally,
the increased number of vector operations are shown in lines 17
through 19. Because of these advantages, we implement PIPECG
and analyze its impact on performance in the following section.

3.2 Acceleration of QEq through
preconditioning

Despite reducing global communication overheads, the PIPECG
solver for QEq that is described above still has excessive compu-
tation and communication costs compared to the rest of the oper-
ations that must be performed in a simulation step. Therefore, to
accelerate the convergence of the PIPECG algorithm, we present
a novel distributed memory preconditioning scheme based on the
sparse approximate inverse (SAI) technique.

3.2.1 SAI Preconditioning. Given a linear system Hx = b, sparse
approximate inverse (SAI) preconditioning aims to find a matrix M

Algorithm 1 Preconditioned Pipelined Conjugate Gradient

1: function PIPECG(H , x0, b,M , τ ,miters)
2: u ← Hx0 ▷ SpMV
3: r ← b − u
4: u ←Mr ▷ Apply Prec.
5: w ← Hu ▷ SpMV
6: δ ←wTu, γnew← rTu

7: κ ←
√
uTu, bnorm←

√
bTb ▷ 1 Global Redux

8: m←Mw ▷ Apply Prec.
9: n← Hm ▷ SpMV
10: x ← x0, i ← 0
11: while κ

bnorm
≥ τ And i ≤ miters do

12: if i > 0 then
13: β ← γnew

γold
, α ← γnew

δ−β/α ·γnew
14: else

15: β ← 0, α ← γnew
δ

16: end if

17: z← n + βz, q←m + βq, p← u + βp

18: d ←w + βd , x ← x + αp, u ← u − αq
19: w ←w − αz, r ← r − αd
20: γold← γnew, δ ←wTu

21: γnew← rTu, κ ←
√
uTu ▷ 1 Global Redux

22: m←Mw ▷ Apply Prec.
23: n← Hm ▷ SpMV
24: i ← i + 1
25: end while

26: return x

27: end function

that serves as a good approximation to H−1 by selectively comput-
ing the entries ofH−1. UsingM as a preconditioner (the transformed
system is MHx = Mb in case of left preconditioning and HMu = b

where x = Mu in case of right preconditioning), ideally the pre-
conditioned system is expected to converge faster than the original
linear system. To satisfy that, the cost of computing and apply-
ing the preconditioner should be marginal as construction of M is
non-trivial and SAI preconditioning introduces one extra SpMV per
solver iteration. Considering that the cost of SAI preconditioner
construction and application are directly proportional to the num-
ber of non-zeros in M, M should be chosen to be even sparser than
the linear system itself H (note that H−1 is actually a dense matrix).

For the QEq problem, we choose the Frobenius norm minimiza-
tion variant of left SAI preconditioning [4], which tries to find anM

such that | |I −MH| |F is minimized where | |.| |F denotes the Frobe-
nius norm of a matrix. In PuReMD, H is stored in the compressed
sparse row (CSR) format, which actually makes constructingM as
a right preconditioner more straightforward and affordable. Note
that since H is symmetric, the left SAI preconditioner can then
easily be inferred because left and right preconditioners of SAI are
transposes of each other [5]. Let ej be the j-th column of the n × n
identity matrix and let mj be the j-th column of M. Then we have

min
M∈Rn×n

| |I − HM| |2F =

∑n
j=1minmj∈Rn×1

����ej − Hmj

����2
2 .

Finding mj for each
����ej − Hmj

����2
2 corresponds to solving a set of

independent least squares problems, and as such M can be con-
structed column by column through a series of QR decompositions.

153

ICS ’19, June 26–28, 2019, Phoenix AZ Kurt A. O’Hearn, Abdullah Alperen, and Hasan Metin Aktulga

These decompositions are performed using optimized LAPACK
libraries (e.g., the Intel Math Kernel Library). Note that solving
each least squares problem can be quite expensive considering the
dimensions of H. Leveraging the fact thatM will be much sparser
than H, we reduce the computational costs of the least squares
problems significantly by building dense vectors m̂j and êj , and

dense matrix Ĥj . This densification process essentially amounts to
eliminating rows and columns that are entirely composed of zeros,
as those rows and columns do not contribute to Hmj (see Sect. 2.1
of [5] for further details).

While the densification step significantly reduces the computa-
tion cost of M, it alone is not sufficient to make our SAI precon-
ditioner useful in practice. The key insight that makes SAI useful

for ReaxFF in practice is the same as the one we use for solver initial

guesses: because an atomic system evolves slowly, the preconditioner

M computed at a certain timestep can be reused effectively for several

subsequent steps. In fact, as we demonstrate in Section 4, the SAI
preconditioner can be useful for hundreds of steps. As such in the
accelerated QEq solver, we reconstruct M only occasionally and
amortize the SAI preconditioner computation costs over several
steps.

Determining the sparsity pattern of M, however, remains a chal-
lenge. The inverse of a sparse matrix is generally a dense matrix;
for the inverses of our QEq matrices (H−1), we have observed that
the magnitude of many entries is small. While it is desirable to
select a sparsity pattern that captures the positions of the numeri-
cally large entries of H−1, these positions cannot be known a priori.
Several works have suggested approaches for choosing a sparsity
pattern [10], but these are neither sparser than H nor practical to
compute in our case. During experiments with several molecular
systems, we observed a strong correlation between the positions of
the numerically large entries of H and H−1. Therefore, we hypoth-
esized that positions of numerically large entries in H are a good
candidate for the sparsity pattern of M. Subsequent experiments
confirmed that including only τ percent of the numerically large
entries of H indeed yields promising results. We remark, however,
that finding the ideal τ value is non-trivial. On one hand, larger τ
values (15%-20%) substantially improve the CG convergence but
computation and application ofM becomes expensive. On the other
hand, smaller τ values make computation and application of M
more affordable at the expense of smaller improvements in solver
convergence. The longevity ofM (discussed in the previous para-
graph), the number of processes used, and the parallel efficiency
are certainly other important considerations.

We observe that in general τ being 10% to 15% (depending on
the molecular system) leads to decent improvements in total QEq
solve time. While we empirically determine the ideal value of τ
for experiments presented in this paper, note that MD simulations
typically last for millions to billions of steps. As such, an auto-

tuning mechanism that empirically determines the ideal τ value and

preconditioner reconstruction frequency on-the-fly for a given atomic

system and architecture, while performing the MD simulation itself,

is certainly feasible and is planned as future work.

3.2.2 Parallelization of the SAI Preconditioner. After describing
how we łengineer" a custom SAI preconditioner that is practical for
dynamic charge models, we next detail its parallelization.While this

topic is arguably well documented in the literature, our contribution
here is the development of an SAI implementation that leverages
problem-specific characteristics of ReaxFF for high efficiency and
scalability, so that the resulting solver can perform significantly
better than PuReMD’s existing QEq solver that already delivers
decent results with its simple Jacobi preconditioning scheme.

Our discussion focuses on parallel construction of the SAI pre-
conditioner M as this step is highly non-trivial; application of M,
which needs to be performed at each iteration of PIPECG, is trivial
as it simply requires a parallel SpMV. Construction ofM includes
two main subtasks: i) pattern selection, and ii) setup and solution of
the least squares problems. As both subtasks are intimately tied to
the structure of the Hamiltonian H, we begin with its description.

Structure of the Hamiltonian. In the Hamiltonian H, a matrix en-
try (i, j) represents the charge affinity relation between atoms i
and j. While the original charge solver in PuReMD adopts a half
matrix for reducing storage and SpMV computation costs, in the
SAI preconditioned solver we store the full H matrix in distributed
memory (hence redundantly storing the symmetric entries twice),
as this simplifies the setup of the least squares problems (subtask
2). With the full storage scheme, the H matrix is effectively 1D
block partitioned because each process knows all neighbors (i.e., all
non-zeros in a row) of its local atoms (i.e., all rows it owns).

Locally each process stores its submatrix in a structure that fa-
cilitates the construction ofM, as well as parallel SpMVs (needed
in CG/PIPECG). As depicted in Fig. 2, lower indices are reserved
for local atoms. In PuReMD, local communications between neigh-
boring processes follows a three-stage communication scheme that
respects the 3D torus topology: first, atom information is exchanged
in −x and +x directions; then in −y and +y directions, and finally
in −z and +z directions [1]. Atoms received after each stage are
indexed contiguously in the atom list as well as the local Hamil-
tonian, and messages to be transmitted in the subsequent step are
augmented with the received atom information as necessary. This
communication scheme yields the indexing and organization shown
in Fig. 2.

local

local -x +x -y +y -z +z

0
1
2

n-1

...

...

...

...

..

. ..
. ..

. ..
. ..

. ..
. ..

.

R0 R1 R2 R3 R4 R5 R6
Figure 2: Structure of the local charge matrix where region

R0 corresponds to the interactions between local atoms, R1
corresponds to the interactions between local atoms and the

atoms imported from −x direction, etc.

SAI Preconditioner Setup. Given p processes and the filtering pa-
rameter τ , for each process local HamiltoniansHs

loc
, with 1 ≤ s ≤ p,

the top τ percent numerically largest non-zeros of H are selected
for the sparsity pattern of M. This problem can equivalently be
stated as finding the k-th largest non-zero, namely α , in the union
of all local Hamiltonians such that when entries less than α are

154

Performance Optimization of Reactive Molecular Dynamics Simulations With Dynamic Charge Distribution Models on Distributed

Memory Platforms ICS ’19, June 26–28, 2019, Phoenix AZ

filtered out, only τ percentile of the non-zeros remain. However,
trying to find the exact α does not lend itself to an efficient parallel
algorithm, but trying to be exact is not required as τ is an empir-
ically determined threshold. As such, we approximate τ using a
sampling-based technique as shown in Algorithm 2 (see line 2).
Sampled numbers from each process are collected at the root (line
5), and these numbers are processed using a Quickselect algorithm
to efficiently find α (line 7). After broadcasting α , each process can
obtain their local sparsity patterns Hs

sp by filtering out entries in
their local Hs

loc
matrices (line 10).

Algorithm 2 SAI Pattern Setup

1: function SetupSAI(H , p, τ)
2: Plocal ← Sample(H , samplerate)
3: s ← Reduce(length of Plocal)
4: if rank = root then

5: Pдlobal ← Gather(Plocal)

6: k ←
⌊
s ·τ
100

⌋

7: α ← Quickselect(Pдlobal , k)
8: end if

9: Bcast(α) ▷ broadcast the threshold value
10: Hsp ← FilterMatrix(H , α)
11: return Hsp

12: end function

SAI Preconditioner Computation. As described in Section 3.2.1, con-
structing the SAI preconditioner entails solving n least squares
problems where n is the total number of atoms. These problems are
independent and thus can be solved in parallel by performing QR
decompositions. However, the precursor to the QR decompositions
is building the least squares problems which we explain through the
example in Fig. 3. After determining α , the least squares problem
for atom i on process s is built based on the sparsity pattern of
the i-th column of Hs

sp. In this example, we form the least squares
problem for atom 0, and suppose that the non-zeros in column 0
of Hs

sp are in rows 0 and 3 (non-zeros in rows 4 and 7 are below
α and are dropped). Consequently, columns 0 and 3 of H are in-
cluded, but the real challenge lies in finding the subset of rows of
H that are to be included in the densified least squares problem
Ĥi . Those rows are the union of j’s such that at least one of the
selected columns of Ĥi has a non-zero element at index j . Referring
to the example in Fig. 3, the rows incorporated into the densified
matrix will be {0, 3, 4, 7} ∪ {3, 5} = {0, 3, 4, 5, 7}, which are the
rows with non-zero entries found in columns 0 and 3, respectively.
This process is straight-forward if all atoms were to be local, but
when there is a non-local atom j in the sparsity pattern of the i-
th column of Hs

sp, all neighbors of j are needed; this information
must be imported from another process. Fortunately, when local
Hamiltonians are stored as full matrices, all neighbors of atom j

can be obtained from the process that owns atom j . We describe the
SAI preconditioner setup operation in Algorithm 3. To efficiently
import all the neighbors of a non-local atom, a modified version of
three-stage messaging is employed in the CompSAI function. All
local atoms save the number of their neighbors, which is equal to
the number of non-zero entries in the corresponding row of the
local matrix, to a list (line 2-3). Then, every process distributes their
list using staged communication (line 8) so that each atom can get

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

X

X

X X

X

X

X

X

X

- X

X

X X

X

X

X

X

X

X

-

0
1
2
3
4
5
6
7

0 0 1 2 3 4 6 75 0

0
1
2
3
4
5
6
7

0 0 3

0
0
3

0
3
4
5
7

0 3

X

X

0
0
3

0

Figure 3: The global view of the process of constructing ê0,

Ĥ0, and m̂0 for an example QEq matrix H ∈ R8×8 and m0

through column selection (blue) and row eliminations (red).

In the above matrices, empty spaces and x’s denote zero and

non-zero entries, respectively.

to learn how many non-zero entries have to be imported for each
of its non-local neighbors (line 10-14). Next, the processes allocate
space for those non-zero entries (line 15) and pack the non-zero
entries for the local atoms that are needed by other processors (line
16-20). Then, again using the same communication scheme, each
processor sends its packed entries (line 21). Finally, processors start
constructing dense matrices and solving QR decompositions for
each of their local atoms (line 22-25).

3.3 Optimization at the Ghost Regions

In ReaxFF, the precursor to bonded interactions is the calculation
of the uncorrected bond orders (BOp), which is performed within
the rbond radii of each atom during initialization of interaction
lists. Once the bond order list is initialized, all bonded interaction
functions are calculated without any redundancies. For instance, a
bond at the boundary between two processes is calculated by the
owner of the atomwith the smaller global id, or a 3-body interaction
shared between 3 processes is calculated by the owner of the middle
atom. In PuReMD, a process initializes all bonds that fall within its
boundaries including the ghost regions to be prepared to handle all
kinds of bonded interactions that it may end up being responsible
for. Note that in the strong scaling regime, the redundant computa-
tions associated with doing so can be significant. For instance, when
the dimensions of the subdomain of a process is equal to rnonb , the
three dimensional import region (which must have a thickness of
rnonb at least in each direction) would have a volume of roughly
26 times the volume of the process’s local subdomain. However,
inspecting how bonded interactions are shared between processes
in PuReMD reveals that one must only extend up to 3 hops into the
ghost from any local atom (as expected, this happens for 4-body
bonded interactions) where a hop is defined to be a bond order with
strength above a certain threshold. This suggests that there can be
a significant number of redundant bond order calculations in the
ghost region.

155

ICS ’19, June 26–28, 2019, Phoenix AZ Kurt A. O’Hearn, Abdullah Alperen, and Hasan Metin Aktulga

Algorithm 3 SAI Computation

1: function CompSAI(H , Hsp , n, N)
2: for i ← 0 to n − 1 do
3: row_nnz(i) ← H (i).end − H (i).start
4: end for

5: for i ← n to N − 1 do
6: row_nnz(i) ← 0

7: end for

8: Dist(row_nnz)
9: nnzr ecv ← 0

10: for i ← n to N − 1 do
11: if row_nnz(i) , 0 then ▷ non-local atom i is needed

by a processor
12: nnzr ecv ← nnzr ecv + row_nnz(i)
13: end if

14: end for

15: AllocateSpace(rowsr ecv ,nnzr ecv)
16: for i ← 0 to n − 1 do
17: if atom i is needed by a neighbor then

18: rowssend .append(H (i) ▷ non-zero entries in rowi

is packed
19: end if

20: end for

21: Dist(rowssend)
22: for i ← 0 to n − 1 do
23: êi , Ĥi ,m̂i←Build_Dense_Matrix(H ,Hsp , rowsr ecv , i)
24: Hsai (i) ← QR(êi , Ĥi ,m̂i)
25: end for

26: return Hsai

27: end function

To avoid redundant BOp calculations in an effort to improve the
strong scaling performance, i) we adopted a BFS-style branching
with multiple sources, and ii) we implemented a scheme to auto-
matically tighten the rbond cutoff for a given input system. In our
first optimization, i.e., the BFS-style branching scheme, all local
atoms are initially added to a queue with a hop distance of 0. Then,
an atom is popped from the queue at each BFS step and its neigh-
bors within a hop distance are inserted into the queue. The method
stops when all the atoms with less than 4 hop distance are inserted
into the queue. Notice that this approach can be used only when
full neighbor list format is employed; otherwise, we would have
to calculate the hop distances of atoms in the underlying graph of
a digraph, which is identical to turning a half neighbor list into a
full one. Moreover, we take advantage of symmetry to optimize the
computations even further as full neighbor list is the only viable
option. To realize this, we ensured that the interaction between
atom i and atom j is computed by the atom that is popped from the
queue first.

Our second optimization, i.e., automatic tightening of rbond ,
relies on the observation that, given two atom types ti and tj , BOp
is a monotonically decreasing function of the distance between
atoms. However, rbond is usually conservatively given as 4Å (or
even 5Å) as part of simulation parameters. Instead of relying on this
parameter, we scan all possible atom type pairs at several distances
to precisely determine the distance after which the BOp value for

all type pairs present in the given system are guaranteed to fall
below bond order acceptance threshold.

4 NUMERICAL RESULTS

4.1 Benchmarking Systems and Hardware

Results from numerical experiments presented in the following
subsections were obtained on Cori at the National Energy Research
Scientific Computing Center (NERSC). Each Haswell node in this
Cray XC40 system has 32 cores, on two sixteen-core Intel Xeon
E5-2698v3 Haswell 2.3 GHz processors, and has 128 GB DDR4
2133 MHz ECC memory. Each core possesses a 64 KB L1 cache
(32 KB instruction, 32 KB data), a 256 KB L2 cache, and the capability
of running one or two user threads (i.e., hyperthreading). All cores
on a single processor share a 40 MB L3 cache. At the time of the
experiments, Cori ran the SuSE Linux Enterprise Server version 12.3
for x86_64 architectures, linux kernel version 4.4.162-94.72-default,
and glibc version 2.22-62.16.2.

The preconditioned solvers detailed in the above sections were
implemented in the PuReMD ReaxFF software [1, 2]. The software
was built using the Intel Compiler Collection version 18.0.1 with
the -O3 -march=native flags and the Cray MPICH library version
7.7.3. For relevant experiments, we restricted our simulations to
one process per core (no hyperthreading was utilized).

For benchmarking purposes, two molecular systems from ap-
plication scenarios of reactive and polarizable force fields were se-
lected. These systems, which were comprised of bulk water (H2O)
and amorphous silica (SiO2), range in size from thousands to mil-
lions of atoms depending on the experiment.

To quantify the impact of optimizations presented in Section 3,
we created four different versions of the PuReMD code: i) origi-
nal PuReMD code as published on its website [9] (i.e., CG+Jacobi
[Half]), ii) PuReMD code modified to work with full neighbor lists
and full Hamiltonians (i.e., CG+Jacobi [Full], aims to quantify the
impact of the switch to full list and matrices), iii) PuReMD with SAI
preconditioning and ghost region optimizations (i.e., CG+SAI(0.15)
that denotes a τ value of 15%), and our final version which includes
all presented optimizations (i.e., PIPECG+SAI(0.15)).

4.2 Impact of Charge Solver Improvements

SAI Longevity. We start by examining for how long an SAI precon-
ditioner can be effective, as the longevity of the preconditioner
is crucial for determining how much preconditioner computation
costs can be amortized, as well as for estimating the average number
of solver iterations. As shown in Fig. 4, the SAI preconditioners can
be effective for tens to hundreds of steps, especially for the silica
system which is a solid material where atoms cannot move freely
like they do in water. SAI preconditioner loses its effectiveness after
some point, and the necessity of preconditioner reconstruction can
be seen clearly. Overall, silica system requires fewer iterations for
convergence than the water system at the same tolerances, and
the gap becomes more apparent as the convergence tolerance is
decreased to 10

−10.
Based on results shown in Fig. 4 and further empirical tests (not

shown), we set the SAI reconstruction rates to 250 steps for evalua-
tions performed in this paper. All simulations have been executed

156

	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Reduction of Global Communication Overheads in QEq Solvers
	3.2 Acceleration of QEq through preconditioning
	3.3 Optimization at the Ghost Regions

	4 Numerical Results
	4.1 Benchmarking Systems and Hardware
	4.2 Impact of Charge Solver Improvements
	4.3 Impact of Ghost Region Optimizations
	4.4 Overall Simulation Performance

	5 Conclusions
	References

