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Abstract—This paper proposes a new scalable model for
coordination of multiple quadcopter systems by treating
collective motion as continuum deformation over a mov-
ing frame. The quadcopters are considered as particles in
a 2-D deformable body evolving in a 3-D motion space. The
2-D continuum reference frame (CRF) can arbitrarily trans-
late and rotate in a 3-D motion space for maneuverability.
Furthermore, a quadcopter team can significantly deform
over the CRF presenting risk of interagent collisions. The
formulation is therefore proven in this paper to guarantee in-
teragent collision avoidance and quadcopter containment.
Quadcopter team deformation is guided by NL ≥ 3 leader
quadcopters initially placed at the vertices of a convex poly-
gon denoted as a leading convex polygon. The CRF is then
assigned based on independent leader quadcopters’ 3-D
positions defined by a homogeneous deformation, which,
in turn, dictates follower motions. A local communication
protocol is defined for the followers to acquire the desired
continuum deformation. By formal characterization of the
leading convex polygon deformation, both interagent col-
lision avoidance and quadcopter containment are guaran-
teed in a large-scale continuum deformation coordination.
A quadcopter teamwith 40 agents is simulated to illustrate a
large-scale collective descent defined by continuum defor-
mation coordination over a reference frame moving in the
longitudinal plane.

Index Terms—Continuum deformation, local communica-
tion, multiquadcopter system, nonlinear control.

I. INTRODUCTION

MULTIAGENT SYSTEM (MAS) cooperative control
has received considerable attention over the past two

decades. Cooperation in an MAS allows the system to be re-
silient and robust in the face of disaster zone uncertainties train-
ing to understand and use.MAScooperation can increase robust-
ness to failure [1] and reduce total mission cost [2]. Numerous
applications such as surveillance [3], traffic management [4],
formation flight [5], and connected vehicle control [6], [7] have
been proposed. This paper derives a continuum deformation
formulation for a multiquadcopter system over a moving (trans-
lating and rotating) frame in a 3-D motion space. Mathematical
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guarantees are derived to achieve and maintain a prescribed
continuum deformation with 3-D collision avoidance.

A. Background

Virtual structure [8], [9]; consensus [10]–[16]; containment
control [17]–[19]; and continuum deformation [20]–[22] offer
distributed control forMAS.The virtual structure is a centralized
approach for the multiagent coordination, while the other listed
approaches are decentralized. In a virtual structure, each agent’s
desired position can be expressed by the vector sum of two posi-
tion vectors: 1) a center point (CP) position vector, for example,
the MAS center of mass, and 2) a relative displacement vector
with respect to the CP [8]. If the agents’ relative distances from
the CP remain constant, the MAS is treated as a rigid body [23].
A flexible virtual structure formation control is also studied in
[24]. Virtual structure formation control is achieved with outer-
loop and inner-loop trajectory tracking modules. The outer-loop
controller is responsible for the CP (reference) desired trajec-
tory tracking. The inner-loop controller of each individual agent
regulates relative distance from the CP.
Consensus is the most commonly applied decentralized co-

operative control technique with applications including motion
control [11], [12]; smart grid and power systems [13], [25];
medical applications [14]; and distributed sensing [15], [16]. A
leaderless consensus control approach is applied for agent co-
ordination in [26] and [27]. Multiagent consensus guided by a
single leader is studied in [28] and [29]. In addition, an adaptive
leader–follower consensus coordination, defined by a switch-
ing communication, is proposed and validated in simulation
in [30].
Containment control [31] is a leader–follower method in

which collective motion is guided by multiple leaders, and
follower agents acquire the desired positions, defined by the
containment protocol, through local communication with in-
neighbor agents. MAS containment control can be modeled by
single and double integrator dynamics as in [31] and [32]. Con-
tainment control of higher-order MAS in which follower agents
are modeled by linear dynamics is presented in [33] and [34].
Wang et al. [32], [35] studied the finite time containment control
of second-order MAS, while MASs with switching communi-
cation topologies are studied in [36].
The authors have proposed a novel continuum deformation

approach for the collective motion of MAS [20], [21]. In me-
chanics, a continuum (or deformable body) is a continuous do-
main in a 3-D space containing an infinite number of particles
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with infinitesimal size [37].A continuumdeformation is a home-
omorphic mapping between initial and current configurations of
the continuum. Using continuum deformation, global coordina-
tion in a 3-D motion space is achieved over a class of nonsingu-
lar deformation mappings called homoeneous transformations
or homogeneous deformations. Under a homogeneous defor-
mation, agents are treated as particles of an n-D (n = 1, 2, 3)
deformable body and can be classified as leaders and followers.
A homogeneous transformation can be uniquely defined based
on positions of n + 1 leaders placed at the vertices of an n-D
polytope at any time. For example, a 2-D homogeneous trans-
formation is defined by three leaders forming a triangle. A 3-D
homogeneous transformation can also be defined by four leaders
at the vertices of a tetrahedron. Follower agents, located inside
the convex hull defined by the leaders, acquire a global homoge-
neous transformation with only local interagent communication
[20], [22]; potentially no interagent communication [20]; or by
sensing other agents [20]. In addition, Zhao et al. [38] showed
how an n-dimensional homogeneous transformation can be ac-
quired through local communication defined by a weighted and
undirected graph having a symmetric Laplacian matrix. In [38],
communication weights are not restricted to be non-negative.
Like the virtual structure, a continuum deformation specifies

a deformable body enclosing all agents, for example, the leading
polytope defined by n + 1 leaders in Rn can be considered a
deformable virtual structure. Therefore, interagent distances can
significantly change in an agent coordination task similar to the
virtual structure. A continuum deformation can be acquired by
followers in real time, which can considerably reduce compu-
tational overhead in an agent-coordination scenario. Consensus
and containment control are also decentralized approaches of-
fering real-time coordination at low computational costs similar
to continuum deformation.
Interagent and obstacle collision avoidance are two major

challenges in multiagent coordination. By constructing appro-
priate distributed potential functions [39], both consensus and
containment control offer interagent collision avoidance. MAS
containment is another key issue. It has been proven that fol-
lowers of MAS evolving under containment control eventually
converge inside a convex hull defined by the leaders [40]. How-
ever, followers may leave the containment region prescribed by
the leaders during evolution, which can result in interagent col-
lision and collision with obstacles in the environment [21]. By
applying continuum deformation, the authors have proven both
transient containment and interagent collision avoidance during
MAS evolution [20], [41].
MAS rigidity is the other key issue. When an MAS applies

consensus for motion-control applications, interagent distances
asymptotically converge to constant values. This can result
in rigidity of the desired formation. Therefore, collective
MAS motion may be difficult to analyze when MAS passage
through a narrow channel is required. By applying continuum
deformation, theMAS can deform as needed because interagent
distances are allowed to change.
In summary, continuum deformation and containment co-

operative control approaches have the following features in
common: 1) they are both leader–follower methods; 2) lead-

ers evolve independently in both continuum deformation and
containment control approaches; and 3) followers acquire de-
sired global coordination through local communication. Contin-
uum deformation extends available containment control theory
through formal support for and characterization of nontrivial
deformation of the convex hull defined by leaders. Because in-
teragent distances can significantly change and the convex hull
can deform and rotate in a continuum deformation, interagent
collision avoidance must be guaranteed. The continuum de-
formation coordination approach provides interagent collision-
avoidance guarantee conditions by 1) assigning a lower-bound
for deformation and 2) defining communication weights as fixed
distance ratios at initial time t0 . In addition, a multiple quad-
copter continuum deformation allows navigation in constrained
environments such as a narrow channel.

B. Objectives and Outline

This paper advances our previous contributions in continuum
deformation of single/double integrator MAS over a station-
ary frame to achieve continuum deformation of a multiquad-
copter system over a moving (translating and rotating) reference
frame. Each quadcopter applies an input–output (IO) feedback
linearization controller to asymptotically track the desired tra-
jectory given by a continuum deformation. Compared to the
available literature and the authors’ previous work, this paper
offers the following contributions.

1) Continuum deformation over a moving frame allows sig-
nificant rotation of the convex hull defined by leader
quadcopters in a 3-D motion space. Therefore, maneu-
verability of a quadcopter team is improved.

2) We provide guarantee conditions on interagent collision
avoidance and agent containment when the convex hull
defined by leaders significantly deforms and rotates. To
this end, we assign a lower bound on eigenvalues of the
continuum deformation Jacobian matrix given: 1) initial
agent displacement; 2) agent body size; and 3) an upper
bound on the quadcopter position control error. By defin-
ing a convex prism containing the quadcopters at all times
t, collision avoidance with obstacles in the workspace can
be guaranteed.

3) We relax the previous constraint on the number of lead-
ers (three) guiding a 2-D continuum deformation coordi-
nation. We show that NL ≥ 3 primary and secondary
leaders can guide quadcopter team collective motion.
Continuum deformation coordination is defined by three
primary leaders. Continuum deformation coordination
can be acquired by followers and secondary leaders in
real time through local communication.

This paper is organized as follows. Preliminary notions on
graph theory, position notations, a background on the MAS
continuum deformation, and further motivation for continuum
deformation coordination are presented in Section II. A problem
statement in Section III is followed by specification of contin-
uum deformation over a moving frame in a 3-D workspace (see
Section IV). Quadcopter team collectivemotion, defined by con-
tinuum deformation over a moving frame, is mathematically
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formulated in Section V. Section VI provides guarantees on
interagent collision avoidance and quadcopter containment in
large-scale continuum deformation coordination. Simulation re-
sults presented in Section VII are followed by concluding re-
marks in Section VIII.

II. PRELIMINARIES

A. Notions on Graph Theory

Let G = G(V,E,W) be a directed graph defining interagent
communication for a multiquadcopter system with node set V,
edge setE, and weight matrixW = [Wij ]. The quadcopter team
consists of N vehicles moving in a 3-D motion space. Nodes
of the graph are defined by the set V = {1, 2, . . . , N}. Quad-
copters are categorized as leaders and followers. Leader index
numbers are defined by the set VL = {1, . . . , NL}. This paper
assumes that NL ≥ 3 leaders form a convex polygon in a 3-D
motion space, for example, a convex polygon defined by lead-
ers is called the leading polygon. Follower index numbers are
defined by the set VF = V \VL = {NL + 1, . . . , N}. Edges
of graph G are defined by E ⊂ V×V. If quadcopter i ∈ VF

updates its position based on the position of vehicle j ∈ V, then
(j, i) ∈ E. The set Ni = {j|i ∈ VF ∧ (j, i) ∈ E} is called the
in-neighbor set of follower i.
Matrix W ∈ RN ×N specifies quadcopter communication

weights. Let wi,j denote the communication weight of quad-
copter i ∈ VF with quadcopter j ∈ V. Then, W is defined by

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

wi,j i ∈ VF , j ∈ Ni

−1 j = i

0 else

. (1)

Weight matrix W can be partitioned as

W =

[
−I 0

Ω L

]

(2)

where I ∈ RNL ×NL is the identitymatrix and0 ∈ RNL ×(N −NL )

is the zero-entry matrix, Ω ∈ R(N −NL )×NL is the follower–
leader communication matrix (or FL communication matrix),
and L ∈ R(N −NL )×(N −NL ) is the follower-follower communi-
cation matrix (or FF communication matrix).

B. Position Terminology

Throughout this paper, position is expressed with respect to
an inertial or ground coordinate system. Orthogonal bases of
the ground coordinate frame are denoted as êx , êy , and êz . The
actual position of a quadcopter i ∈ V is expressed with respect
to the ground frame by

ri = xi êx + yi êy + zi êz . (3)

The initial position of quadcopter i ∈ V is denoted by

ri,0 = xi,0 êx + yi,0 êy + zi,0 êz = xi(t0)êx

+ yi(t0)êy + zi(t0)êz (4)

Fig. 1. (a) Initial formation of an MAS in the xy plane. Agents 1, 2,
and 3 are leaders and the remaining agents are followers. (b) Typical
communication graph used by followers to acquire a collective motion
through local communication. (c) x components of follower agents 7 and
8 versus time.

where t0 is the initial time. Each quadcopter i in the MAS is
positioned with respect to a global desired position, denoted as
ri,H T , as defined by a homogeneous transformation

i ∈ V, ri,H T = Q(t, t0)ri,0 + d(t, t0) (5)

whereQ = [Qij ] ∈ R3×3 is the Jacobian matrix and d = [di ] ∈
R3×1 is the rigid body displacement vector.
Quadcopter i’s local desired position is denoted by

rd,i =

{
ri,H T i ∈ VL

wi,jrj i ∈ VF , j ∈ Ni

. (6)

Note that wi,j is positive and
∑

j∈Ni
wi,j = 1. This paper as-

sumes that the actual, local desired, and global desired positions
of all agents are the same at initial time t0 : ri,0 = ri,H T (t0) =
rd,i(t0)(∀i ∈ V).

C. Why Continuum Deformation?

For continuum deformation, communication weights of an
individual follower are consistent with agents’ initial positions.
While this property of a homogeneous transformationmay seem
limiting, it is actually beneficial for safety in a large-scale team.
This statement is supported by the example in Fig. 1. The MAS
with initial formation shown in Fig. 1(a) is directed to move
collectively from left to right. Using containment control, the
MAS is guided by leaders 1, 2, and 3 moving on straight paths
with the same constant velocity. Followers use the graph shown
in Fig. 1(b) to acquire the desired collectivemotion through local
communication. Assuming single integrator followers, follower
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i updates its position by

ṙi =
∑

j∈Ni

gwi,j (rj − ri)

where g = 2 and follower communication weights are as
follows: w4,1 = w4,7 = w5,2 = w5,8 = 0.5, w6,3 = 2

3 , w6,7 =
w6,8 = 1

6 , w7,4 = w8,5 = 0.57, w7,6 = w8,6 = 0.29, w7,8 =
w8,7 = 0.14.
Fig. 1(c) shows the x components of followers 7 and 8 ver-

sus time. Because leaders move horizontally, the y component
of every agent is time-invariant so followers 7 and 8 collide at
t = 0.37 s. This implies MAS collective motion practically ter-
minates at t = 0.37 although it can be theoretically continued if
containment control requirements are satisfied.
The problem illustrated above occurs because followers’

communication weights are not consistent with agents’ posi-
tions at initial time t0 = 0 s. This paper directly addresses this
issue by defining agent coordination as a continuum deforma-
tion acquired via local communication. Because continuum de-
formation is a nonsingular mapping, no two particles occupy
the same position during transformation. Therefore, interagent
collision avoidance can be guaranteed. Because interagent dis-
tances can be significantly expanded or contracted, the MAS
can also maneuver in obstacle environments including traversal
through narrow channels. In a continuum deformation coordi-
nation, follower communication weights are required to be con-
sistent with agents’ initial positions. This requirement will not
be restricting so long as the following conditions are satisfied.

1) Every follower arbitrarily communicates with three in-
neighbor agents forming an enclosing triangle.

2) Interagent communication is defined by a directed graph
containing a spanning tree.

3) 2-D continuum deformation coordination is guided by
NL ≥ 3 leaders.

Therefore, consistency of communication weights with
agents’ initial positions does not necessarily limit applicabil-
ity and scalability of a continuum deformation coordination.

Remark 1: In [22], it is shown that continuum deformation
coordination can be acquired by followers through local commu-
nication if each follower is allowed to communicate with three
or more in-neighbor agents. However, communication weights
are not unique when each follower communicates with more
than three in-neighbor agents in 2-D continuum deformation
coordination. In this paper, we assume that each follower com-
municates with three in-neighbor agents only for the sake of
uniqueness of the communication weights.

III. PROBLEM STATEMENT

This paper studies continuum deformation of a quadcopter
team in 3-D motion space. The quadcopter team consists of
NL leader quadcopters and N − NL followers. Leaders move
independently and their reference trajectories are defined by a
homogeneous transformation as given in (5). Followers com-
municate with local in-neighbor agents to acquire continuum
deformation coordination in a decentralized fashion. An ex-

Fig. 2. Example directed communication topology in a quadcopter
team consisting of NL = 6 leaders and 34 followers. Primary leaders,
secondary leaders, and followers are shown by green, blue, and black
nodes, respectively. Unidirectional and bidirectional communications are
distinguished by red one-sided arrows and green double-sided arrows,
respectively.

Fig. 3. 2-D continuum deformation in a 3-D motion space. êx , êy , and
êz are the ground coordinate system bases. Reference frame orthogo-
nal bases are denoted as ê1 (t), ê2 (t), and ê3 (t). The CRF can freely
translate and rotate in a 3-D motion space, allowing the quadcopter team
to deform inside the CRF.

ample quadcopter team communication topology is shown in
Fig. 2. The paper improves quadcopter team maneuverability
by formulating collective motion as a continuum deformation
over a moving frame. This is achieved by treating members of
a quadcopter team as particles of a moving deformable body
or continuum. It is desired that the continuum frame has an ar-
bitrary translation and rotation in 3-D motion space, while the
quadcopter team can significantly deform inside the continuum
frame. A schematic of a 2-D continuum deformation in a 3-D
motion space is shown in Fig. 3. Continuum deformation over a
moving frame is defined by 1) rigid body rotation and translation
and 2) quadcopter team deformation relative to the frame.
The main objective of this paper is to guarantee quadcopter

containment and interagent collision avoidance in a large-scale
continuum deformation. To ensure quadcopter containment,
this paper defines a convex prism containing all quadcopters at
all times t. It will be proven that follower quadcopters that are
inside the containment prism at initial time t0 will remain inside
the containment prism at any time t > t0 . Therefore, obstacle
collision avoidance is guaranteed if the boundary surfaces of
the containment prism do not hit obstacles in the motion space.
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Because interagent distances can significantly change in a
continuum deformation, interagent collision avoidance must
be guaranteed. To ensure interagent collision avoidance, we
need to obtain the Jacobian matrix Q(t) ∈ R3×3 and the rigid
body displacement d(t) ∈ R3×1 given leader trajectories r1(t),
r2(t), and r3(t) for any time t. This paper addresses the chal-
lenging problem of identifying Q and d when the quadcopter
team deforms over a moving frame. The constraints ensuring
interagent collision avoidance are obtained in Section VI.

IV. QUADCOPTER TEAM CONTINUUM DEFORMATION

OVER A MOVING FRAME

Suppose a quadcopter team is tasked with following a col-
lective motion profile guided by NL ≥ 3 leaders. Leaders 1,
2, and 3 uniquely define an MAS continuum reference frame
(CRF) and are called primary leaders. Remaining leaders (lead-
ers 4,. . ., NL ) are called secondary leaders. All leaders’ global
desired positions can be defined per (5); however, elements of
Q and d are defined based on the primary leaders’ trajectories.

A. CRF Definition and Evolution

TheMAS CRF is defined by a triangle with vertices occupied
by leaders 1, 2, and 3. This CRF can arbitrarily deform and
rotate while primary leaders’ positions satisfy the following
rank condition:

∀t ≥ t0 , Rank
[
r2,H T − r1,H T r3,H T − r1,H T

]
= 2.

(7)
This rank condition ensures that the CRF forms a 2-D convex
hull at any time t. Given the global desired positions of primary
leaders 1, 2, 3, the CRF bases are defined by

ê1 =
r2,H T − r1,H T

‖r2,H T − r1,H T ‖ , ê2 =
r3,H T − rB1 ,H T

‖r3,H T − rB1 ,H T ‖ ,

ê3 = ê1 × ê2 .

The unit vectors ê1 , ê2 , ê3 are mutually orthogonal. Note
that r3,H T − rB1 ,H T is perpendicular to r2,H T − r1,H T , where
rB1 ,H T is located on the line passing through r1,H T and r2,H T

as shown in Fig. 4. Therefore

rB1 ,H T = r1,H T + ρ1 (r2,H T − r1,H T ) (8a)

ρ1 =
(r2,H T − r1,H T ) · (r3,H T − r1,H T )
(r2,H T − r1,H T ) · (r2,H T − r1,H T )

. (8b)

1) Continuum Deformation With a Virtual Leader: It is
assumed that there is no deformation along the ê3 axis at any
time t ≥ t0 . Without loss of generality, the position of virtual
leader N + 1, given by

∀t ≥ t0 , rN +1,H T (t) = r1,H T (t) + Ξê3(t) (9)

is along positive ê3 and Ξ > 0 is an arbitrary number. Then,
leaders 1, 2, 3, and N + 1 form a tetrahedron at any t ≥ t0 , and

Rank
([
r2,H T − r1,H T r3,H T − r1,H T rN +1,H T − r1,H T

])

= 3. (10)

Fig. 4. Graphical representation of the MAS CRF, ground coordinate
unit basis vector (êx , êy , êz ); leader global desired positions r1 ,H T ,
r2 ,H T , r3 ,H T ; and the CRF unit basis vector (ê1 , ê2 , ê3 ), and rB 1 ,H T .

We define

t ≥ t0 , P (t) =

⎡

⎢
⎢
⎢
⎣

x1 (t) y1 (t) z1 (t)
x2 (t) y2 (t) z2 (t)
x3 (t) y3 (t) z3 (t)

xN +1 (t) yN +1 (t) zN +1 (t)

⎤

⎥
⎥
⎥
⎦

.

The elements ofQ and d can then be uniquely related to r1,H T ,
r2,H T , r3,H T , and rN +1,H T by

[
vec
(
QT (t)

)

d (t)

]

=
[
I3 ⊗ P (t0) I3 ⊗ 14

]−1vec (P (t)) .

(11)
I3 ∈ R3×3 is an identity matrix and 14 ∈ R4×1 is a one vector.

α-parameters: r̃i,H T = ri,H T − r1,H T denotes the
relative global desired position of leader i (i = 1, 2, 3) ex-
pressed with respect to the CRF. The relative global desired
position r̃i,H T = (xi,H T − x1,H T )êx + (yi,H T − y1,H T )êy +
(zi,H T − z1,H T )êz can be expressed as r̃i,H T = γi ê1(t) +
βi ê2(t) (i = 1, 2, 3), where γi and βi can be uniquely related to
xi,H T , yi,H T , and zi,H T by

[
ê1 ê2 ê3

]

⎡

⎣

γi

βi

0

⎤

⎦ =

⎡

⎢
⎣

xi,H T − x1,H T

yi,H T − y1,H T

zi,H T − z1,H T

⎤

⎥
⎦. (12)

For 2-D homogeneous transformation in 3-D motion space,
quadcopter’s ri,H T (t) (i ∈ VF ) desired position is given by

i ∈ VF , ri,H T (t) = αi,1r1,H T + αi,2r2,H T + αi,3r3,H T

(13)
where αi,k is unique and obtained from solving the following
three linear algebraic equations:

⎡

⎢
⎣

γ1(t0) γ2(t0) γ3(t0)
β1(t0) β2(t0) β3(t0)

1 1 1

⎤

⎥
⎦

⎡

⎢
⎣

αi,1

αi,2

αi,3

⎤

⎥
⎦ =

⎡

⎢
⎣

γi,H T (t0)
βi,H T (t0)

1

⎤

⎥
⎦. (14)
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B. Continuum Deformation Acquisition

Without loss of generality, this paper assumes that the desired
trajectory of leader quadcopter i, between initial position ri,0
and target destination ri,g , is given by

i= 1, 2, 3, t ∈ [t0 , t0 + Ttotal ], rd,i = (ri,g − ri,0) si + ri,0
(15)

where si(t) =
∑5

l=0 ζi,l t
5−l (i = 1, 2, 3), subject to si(t0) = 0,

si(t0 + Ttotal) = 1, ṡi(t0) = ṡi(t0 + Ttotal) = 0, and s̈i(t0) =
s̈i(t0 + Ttotal) = 0. Coefficients ζi,0 through ζi,5 are the solu-
tion of the following set of linear algebraic equations:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T 5
total T 4

total T 3
total T 2

total Ttotal 1

0 0 0 0 0 1

5T 4
total 4T 3

total 3T 2
total 2Ttotal 1 0

0 0 0 0 1 0

20T 3
total 12T 2

total 6Ttotal 2 0 0

0 0 0 2 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ0,i

ζ1,i

ζ2,i

ζ3,i

ζ4,i

ζ5,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)

Followers acquire a desired homogeneous transformation
through local communication. We assume that quadcopter
i ∈ VF updates its position based on the positions of three in-
neighbor quadcopters i1 , i2 , i3 (Ni = {i1 , i2 , i3}, ∀i ∈ VF ),
where followers’ in-neighbor agents are specified by a directed
graph. Fig. 2 shows a sample graph used for a 2-D local com-
munication continuum deformation. It is assumed that the quad-
copters’ initial positions satisfy the following rank condition at
t = t0 :
[
ri2 ,H T (t0) − ri1 ,H T (t0) ri3 ,H T (t0) − ri1 ,H T (t0)

]
= 2.
(17)

Communication weights are obtained from
⎡

⎢
⎣

γi1 (t0) γi2 (t0) γi3 (t0)
βi1 (t0) βi2 (t0) βi3 (t0)

1 1 1

⎤

⎥
⎦

⎡

⎢
⎣

wi,i1

wi,i2

wi,i3

⎤

⎥
⎦ =

⎡

⎢
⎣

γi(t0)
βi(t0)

1

⎤

⎥
⎦. (18)

Note that wi,i1 + wi,i2 + wi,i3 = 1 (∀i ∈ VF ).
Remark 2: It is beneficial to ensure that follower commu-

nication weights are all positive. This can enhance the follower
convergence rate to desired positions defined by a homogeneous
transformation. When communication weights are all positive,
then 1) each follower i ∈ VF will be located inside the commu-
nication triangle i defined by in-neighbor agents i1 , i2 , and i3 ,
and 2) followers are all inside the leading polygon. Therefore,
follower i is closer to the centroid of communication triangle i
and MAS evolution stability can be improved. Mathematically
speaking, the magnitude of the closest eigenvalue of matrix L
from the imaginary axis is increased; therefore, the convergence

rate is increased. Notice that the closest eigenvalue of matrix L
to the imaginary axis is negative and real [21].

Assumption 1: Each follower i ∈ VF is located inside
the communication triangle whose vertices are occupied by in-
neighbor quadcopters i1 , i2 , i3 ∈ Ni . Therefore, the followers’
communication weights are all positive.

Assumption 2: Digraph G defining interagent communica-
tion among quadcopters contains a spanning tree, and position
information flows from leaders to every quadcopter i ∈ VF .

Assumption 3: If NL > 3, the FL-communication matrix
Ω from (2) is partitioned as follows:

Ω =
[
Ωpf Ωsf

]
(19)

where Ωpf ∈ R(N −NL )×3 and Ωsf ∈ R(N −NL )×(NL −3) . Note
that subscripts are defined such that p indicates the set of primary
leaders, s indicates the set of secondary leaders, and f indicates
followers.

Assumption 4: If NL > 3, we define

Ωps =

⎡

⎢
⎢
⎣

α4,1 α4,2 α4,3

...
...

...

αNL ,1 αNL ,2 αNL ,3

⎤

⎥
⎥
⎦ ∈ R(NL −3)×3 (20)

where each α-parameter αi,j (i = 4, . . . , NL and j = 1, 2, 3) is
computed from (14) given the initial position of secondary leader
i ∈ VL \ {1, 2, 3} and the primary leaders’ positions. Because
the leading polygon is strongly convex at the initial time t0 , the
secondary leaders are all outside the leading triangle. Therefore,
each secondary leader has at least one negative communication
weight and one positive communication weight.

Theorem 1: We define

zm,H T ,p (t) =

⎡

⎢
⎣

m1,H T

m2,H T

m3,H T

⎤

⎥
⎦, zm,H T ,s (t) =

⎡

⎢
⎢
⎣

m4,H T

...

mNL ,H T

⎤

⎥
⎥
⎦

zm,H T ,f (t) =

⎡

⎢
⎢
⎣

mNL +1,H T

...

mN,H T

⎤

⎥
⎥
⎦

as componentsm ∈ {x, y, z} for the primary leaders, secondary
leaders, and followers. If follower communication weights and
secondary leader α-parameters are consistent with initial quad-
copter positions and assigned using (18), then

[
Ωps −I 0

Ωpf Ωsf L

]
⎡

⎢
⎣

zm,H T ,p (t0)
zm,H T ,s (t0)
zm,H T ,f (t0)

⎤

⎥
⎦ =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦. (21)

Theorem 2: If follower communicationweightswi,i1 ,wi,i2 ,
wi,i3 satisfy (18), and the communication graph G contains a
spanning tree, the following statements are true.

1) The matrix L ∈ R(N −NL )×(N −NL ) is Hurwitz.
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2) The matrix

WL = −L−1Ω = −L−1 (Ωpf + Ωsf Ωpf )

∈ R(N −NL )×3 (22)

is one-sum row, i.e., the sum of the row elements is 1 for
all rows of matrix WL .

3) The entry of row i − NL and column j of WL is equal
to αi,j (i ∈ VF , j ∈ {1, 2, 3}), where αi,j is determined
by (14) given initial positions of the three leaders and
follower i ∈ VF .

Corollary (Global Desired Configuration): The followers’
global desired positions, defined by a homogeneous transfor-
mation, are given by

∀t ≥ t0 , m = x, y, z, zm,H T ,f = WLzm,H T ,p . (23)

V. QUADCOPTER TEAM COLLECTIVE DYNAMICS

Given the quadcopter dynamics modeled in Appendix A, the
quadcopter team collective dynamics can be expressed as

żMQS = ASYSzMQS + BSYSuMQS (24)

where

ASYS = I3 ⊗

⎡

⎢
⎢
⎢
⎣

0N IN 0N 0N

0N 0N IN 0N

0N 0N 0N IN

k4W k3W −k2IN −k1IN

⎤

⎥
⎥
⎥
⎦

BSYS =
(
I3 ⊗

[
0NL ×N 0NL ×N 0NL ×N INL

0NL ×(N −NL )
])T

“⊗” is the Kronecker product symbol, 0NL ×N ∈ RNL ×N

and 0NL ×(N −NL ) ∈ RNL ×(N −NL ) are zero-entry matrices, and
I3 ∈ R3×3 , INL

∈ RNL ×NL , IN ∈ RN ×N are identitymatrices.
In addition

zMQS =
[
zT

x · · · ...
zT

x zT
y · · · ...

zT
y zT

z · · · ...
zT

z

]T

∈ R12N ×1

is the quadcopter team state vector given by

zx = [zT
x,l z

T
x,f ]T , zx,l = [x1 · · · xNL

]T ,

zx,f = [xNL +1 · · · xN ]T

zy = [zT
y ,l z

T
y ,f ]T , zy ,l = [y1 · · · yNL

]T ,

zy ,f = [yNL +1 · · · yN ]T

zz = [zT
z ,l z

T
z ,f ]T , zz ,l = [z1 · · · zNL

]T ,

zz ,f = [zNL +1 · · · zN ]T .

We define

zm,H T (t) =

[
zm,H T ,l (t)
zm,H T ,f (t)

]

with (m = x, y, z), t ≥ t0 , zm,H T ,l = [m1,H T · · ·mNL ,H T ]T ,
and zm,H T ,f = [mNL +1,H T · · · mN,H T ]T . uMQS is then

given by

uMQS =
4∑

j=0

kj
d4−j

dt4−j

⎛

⎜
⎝

⎡

⎢
⎣

zx,H T ,l

zy ,H T ,l

zz ,H T ,l

⎤

⎥
⎦

⎞

⎟
⎠ (25)

where k0 = 1. Note that W was previously defined in (1).
Remark 3: Matrix W is Hurwitz (see Theorem 2). Con-

trol gains k1 through k4 are selected such that the roots of the
quadcopter team collective characteristic equation

CH(s) =
∣
∣sI − ASYS

∣
∣ = 0 (26)

are all located in the open left-half s-plane, where I ∈
R12N ×12N is the identity matrix.

A. Collective Error Dynamics

Let z̃m (m = x, y, z) be the difference between actual and
desired quadcopter positions

z̃m =

⎡

⎢
⎣

z̃m,l

· · ·
z̃m,f

⎤

⎥
⎦ =

⎡

⎢
⎣

zm,l − zm,H T ,l

· · ·
z̃m,f − zm,H T ,f

⎤

⎥
⎦ . (27)

Then, the MQS collective dynamics (24) can be rewritten as

2∑

j=0

kj
d4−j

dt4−j

⎛

⎜
⎝

⎡

⎢
⎣

zx

zy

zz

⎤

⎥
⎦

⎞

⎟
⎠+

4∑

j=3

kj

(

I3 ⊗
[
−I 0

Ω L

])

× d4−j

dt4−j

⎛

⎜
⎝

⎡

⎢
⎣

zx

zy

zz

⎤

⎥
⎦

⎞

⎟
⎠

=
4∑

j=0

kj

(

I3 ⊗
[

INL

0(N −NL )×NL

])
d4−j

dt4−j

⎛

⎜
⎝

⎡

⎢
⎣

zx,H T ,l

zy ,H T ,l

zz ,H T ,l

⎤

⎥
⎦

⎞

⎟
⎠ .

(28)

Let Ω = −L(−L−1Ω) = −LWL be substituted in (28) where
WL was previously defined in (22). Then

Ωzx,l = −LWL (z̃x,l + zx,H T ,l) = Ωz̃x,l − Lzx,H T ,f

(29a)

Ωzy ,l = −LWL (z̃y ,l + zy ,H T ,l) = Ωz̃y ,l − Lzy ,H T ,f (29b)

Ωzz ,l = −LWL (z̃z ,l + zz ,H T ,l) = Ωz̃z ,l − Lzz ,H T ,f .
(29c)

Therefore

2∑

j=0

⎛

⎜
⎝

d4−j

dt4

⎛

⎜
⎝

⎡

⎢
⎣

z̃x

z̃y

z̃z

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠+

4∑

j=3

kj (I3 ⊗ W)
d4−j

dt4−j

×

⎛

⎜
⎝

⎡

⎢
⎣

zx,H T ,l

zy ,H T ,l

zz ,H T ,l

⎤

⎥
⎦

⎞

⎟
⎠ = EQ

(30)
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where

EQ =
2∑

j=0

kj

(

I3 ⊗
[

0

WL

])
d4−j

dt4−j

⎛

⎜
⎝

⎡

⎢
⎣

z̃x,H T ,l

z̃y ,H T ,l

z̃z ,H T ,l

⎤

⎥
⎦

⎞

⎟
⎠ ∈ R3N ×1 .

(31)

Defining

zMQS,H T

= [zT
x,H T · · · ...zT

x,H T zT
y ,H T · · · ...zT

y ,H T zT
z ,H T · · · ...zT

z ,H T ]T

∈ R12N ×1

and z̃MQS = zMQS − zMQS,H T , the error collective dynamics
(30) can be expressed by the following state-space form:

˙̃zMQS = ASYS z̃MQS +
(
I3 ⊗

[
0N ×3N IN

])T EQ . (32)

The solution of the error dynamics in (32) is given by

z̃MQS = CSYS

[

eAS Y S t z̃MQS(0) +
∫ t

0
eAS Y S τ

×
(

I3 ⊗
[
03N ×N

IN

])

EQdτ

]

(33)

where CSYS = I3 ⊗ [IN 000] . EQ(
t

Ttotal
) is a vector [see

(15)], where Ttotal is the travel time between initial and target
formations. Ttotal is selected sufficiently large that the deviation
of every quadcopter i is less than upper bound δ

∀i ∈ VF , ‖ri − ri,H T ‖ ≤ δ. (34)

VI. SAFE AND SCALABLE COORDINATION CONDITIONS

This section assigns safety conditions ensuring interagent
collision avoidance and quadcopter containment in a large-scale
continuum deformation coordination.

A. Safe Continuum Deformation Coordination

Using polar decomposition, the homogeneous transformation
Jacobian matrix can be expressed as Q = RDUD , where ro-
tation matrix RD is orthogonal and matrix UD is a positive
definite. This is because RD is orthogonal UD

2 = QT Q.
Note that λi = λi(UD ) = λi(

√
QT Q) > 0 if leaders do not

align during the continuum deformation. Because the leading
polygon is normal to the vector ê3 at any time t, λ3 = 1. The
paper assumes that 0 ≤ λ1 ≤ λ2 .
Let DB be the minimum separation distance between all

leader and follower quadcopter pairs, and let DS denote the
minimum distance of any follower quadcopter from the bound-
ary of the leading triangle at initial time t0 (see Fig. 5). It is
assumed that each quadcopter is enclosed by a ball with radius
ε. Given DS , DB , and ε, we define

δmax = min
{

1
2
(DB − 2ε), (DS − ε)

}

(35)

as the upper-bound for the error signal

∀t ≥ t0 ∀i, δ = sup ‖ri(t) − ri,H T (t)‖. (36)

Fig. 5. Containment prism schematic showing minimum separation
DB and boundary distance DS at initial time t0 .

Because δmax is assigned based on DB and DS using (35),
both containment guarantees and interagent collision avoidance
are assured if every quadcopter satisfies inequality (34) and
δ ≤ δmax for all times t.

Theorem 3: We assume

λCD ,min ≤ λ1 (UD ) (37)

where

λCD ,min =
δ + ε

δmax + ε
=

δ/δmax + ε/δmax

1 + ε/δmax
(38)

λ1 is the smallest eigenvalue of the matrix UD , ε is the quad-
copter body size, and δmax and δ are assigned by (35) and (36),
respectively. Then, the following statements are true: 1) intera-
gent collision avoidance is assured and 2) quadcopters remain
inside a containment prism with two polygonal bases1 and NL

rectangular surfaces between the two bases. Note that rectan-
gular boundary surfaces all have the same height 2(δ + ε) (see
Fig. 5).

B. Scalable Continuum Deformation Coordination

We call continuum deformation coordination scalable if both
inequalities (safety conditions) (34) and (37) are satisfied for
a large value of N . Inequality (34) is a temporal constraint
that can be satisfied by choosing a sufficiently large travel time
Ttotal . This property is demonstrated in Fig. 11 of the simula-
tion section. Inequality (37) imposes a geometric constraint on
quadcopter continuum deformation by assigning a lower bound
on the eigenvalues of matrix UD given deviation upper bound
δ, quadcopter size ε, and δmax assigned by (35).

Fig. 6 plots λCD ,min versus ε/δmax for different δ/δmax
(δ/δmax = 0, . . . , 0.9). For large N , continuum deformation
safety is guaranteed, if λ1(UD ) is greater than λCD ,min at any
time t given the upper bound δ, quadcopter size ε, and δmax .
Note that δ depends on quadcopter control performance as well
as Ttotal , that is, deviation upper bound δ decreases as Ttotal
rises. λCD ,min (lower limit for UD eigenvalues), quadcopter
size ε, and δmax must be appropriately selected such that safety
is guaranteed in a large-scale team.

1Bases of the containment prism are translated copies of the leading convex
polygon and are equidistant from the leading convex polygon.
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Fig. 6. λCD ,m in versus ε/δm ax for δ/δm ax = 0, 0.1, . . . , 0.9.

Fig. 7. Quadcopter team initial and target formations.

VII. SIMULATION RESULTS

We consider a quadcopter team consisting of 40 quadcopters
in a collective descent scenario. Quadcopters 1, 2, 3 are pri-
mary leaders and quadcopters 4, 5, 6 are secondary leaders. The
remaining quadcopters are followers. The quadcopter team is
treated as a 2-D continuum deforming in a 3-D motion space.
Quadcopter initial positions are shown in Fig. 7.

A. CRF Evolution

Given primary leaders’ initial positions (r1,0 = 360êx +
900êz , r2,0 = 72êx + 108êy + 1008êz , and r3,0 = 108êx −
72êy + 1080êz ), the basis of the deformation plane is obtained
from

ê1(t0) =
r2,0 − r1,0

‖r2,0 − r1,0‖2
=
[−0.8835 0.3313 0.3313

]T

ê2(t0) =
[−0.1280 −0.8509 0.5096

]T

ê3(t0) =
[
0.4507 0.4078 0.7941

]T
.

The case study objective for the quadcopter team is to safely land
on a podium inside a narrow passage as shown in Fig. 7. Leader
goal (destination) states are located at rg ,1 = r1(Ttotal) =
224êx + 434êy + 560êz , rg ,2 =r2(Ttotal) = 126êx + 224êy +
560êz , and rg ,3 = r3(Ttotal) = 322êx + 224êy + 560êz . Pri-
mary leader trajectories are assigned by (15). Given the primary
leader trajectories, the elements of Q and d are computed us-
ing (11). Eigenvalues of matrix UD =

√
QT Q can be plotted

Fig. 8. Eigenvalues of pure deformation matrix UD versus t
T t o t a l

.

versus t
T t o t a l

as shown in Fig. 8. Observe that λCD ,min = 0.54
is the lower limit for the UD eigenvalues.

B. Secondary Leaders’ Evolution:

Secondary leaders are initially positioned at r4,0 = −72êx +
117.6êy + 1084êz , r5,0 = −198êx + 37êy + 1197êz , and
r6,0 = −36êx − 62êy + 1156êz . Given Q(t, 0) and d(t, 0),
computed by (11), the secondary leaders’ positions at time t
are given by

∀t ≥ 0, i = 4, 5, 6, ri,H T (t) = Q(t, 0)ri,0 + d(t, 0).

C. Collision Avoidance

Given leader positions, the eigenvalues ofmatrixUD are plot-
ted versus time in Fig. 10. Note that one of the eigenvalues of
thematrixUD is always 1. Furthermore, λ1(t) > 0.50 (∀t ≥ 0);
therefore, we choose λCD ,min = 0.54 as the lower-limit of the
eigenvalues of matrix UD . Observe that quadcopter 14 has a
minimum distance DS = 14.6168 m from boundary 1–2 of
the leading triangle at the initial time. In addition, quadcopters
14 and 15 are the closest quadcopters with minimum separa-
tion distance DB = 19.2603 m at the initial time. We assume
that the ball Ba enclosing quadcopter i has radius ε = 1.5 m
and center located at the centroid of quadcopter i. Using (35),
δmax = min

{ 1
2 (DB − 2ε), (DS − ε)} = 8.1302 m. Deviation

upper bound δ is calculated from (38)

δ = λCD ,min (δmax + ε) − ε = 3.7003 m.

Because δ > 0, interagent collision avoidance can be assured by
increasing the travel time Δt and choosing appropriate values
for control gains k1 through k4 .

D. Continuum Deformation Acquisition

Follower quadcopters use the communication graph shown in
Fig. 2 to acquire continuum deformation through local commu-
nication. Communication weights are consistent with agents’
initial positions and assigned by using (18). Selecting k1 = 8,
k2 = 24, k3 = 51.5625, and k4 = 23.4375, quadcopter team
collective dynamics is stable; roots of the characteristic (26) are
all placed in the open left-half s-plane. x, y, and z components
of follower quadcopter 20 are plotted versus time in Fig. 9. The
maximum deviation of all followers at any t ≥ 0 is given by

Emax = max
∀i∈V

(‖ri − ri,H T ‖∞)
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Fig. 9. Follower quadcopter 20 position versus time.

Fig. 10. Maximum follower deviation Em ax for different values of travel
times ttota l .

Fig. 11. Minimum separation distance DB and minimum boundary
distance DS versus time.

where ‖ · ‖∞ denotes the infinity norm. In Fig. 10, Emax is
plotted for 50 ≤ Ttotal ≤ 400 s. It is seen that Emax(Ttotal) ≤
3.7003 m, if Ttotal > TThreshold = 115 s. Choosing Ttotal =
200 s, minimum separation distanceDB and minimum distance
DS , from the lateral surfaces of the containment prism, are plot-
ted versus time in Fig. 11. Because DS > 0 at all t, no quad-
copter leaves the containment prism. Also, no two quadcopters
collide as DB > 0 for all times t.

VIII. CONCLUSION

Continuum deformation for quadcopter team collective mo-
tion offers team scalability and substantial deformability within
the group. This paper has extended continuum deformation
from single/double integrator systems to multiquadcopter sys-
tems with six DOF nonlinear dynamics and moving reference
frames based on moving leader positions. We showed that con-
tinuum deformation can be achieved with interagent collision-
avoidance quadcopter containment guarantees. Scalability and
safety of quadcopter team collective motion are demonstrated
in a simulation scenario in which 40 quadcopters collectively
land on a podium inside a narrow channel.

APPENDIX A
QUADCOPTER MODEL

The actual position ri of every quadcopter is expressed with
respect to an inertial coordinate system with unit bases êx , êy ,
and êz [see (3)]. However, it is more convenient to represent
quadcopter rotational dynamics with respect to the body frame.
Bases of the quadcopter body frame, denoted by îb,i , ĵb,i , and
k̂b,i , are related to êx , êy , and êz by

⎡

⎢
⎣

îb,i

ĵb,i

k̂b,i

⎤

⎥
⎦

=

⎡

⎢
⎣

Cθi
Cψi

Cθi
Sψi

−Sθi

Sφi
Sθi

Cψi
− Cφi

Sψi
Sφi

Sθi
Sψ + Cφi

Cψi
Sφi

Cθi

Cφi
Sθi

Cψi
+ Sφi

Sψi
Cφi

Sθi
Sψi

− Sφi
Cψ Cφi

Cθi

⎤

⎥
⎦

×

⎡

⎢
⎣

êx

êy

êz

⎤

⎥
⎦. (39)

In (39), C(.) and S(.) are abbreviations for cos(.) and sin(.),
respectively. φi , θi , and ψi are roll, pitch, and yaw angles of
quadcopter i ∈ V. Throughout this paper, it is assumed that ψi

is updated by ψ̈i = uψ,i , where ψi(0) = 0, ψ̇i(0) = 0, and uψ,i

is updated by the stable dynamics

uψ,i = −kφ,iψi − kφ̇,i ψ̇i . (40)

If kφ,i , kφ̇,i > 0, ψi(t) = 0 for all t and (39) simplifies to

⎡

⎢
⎣

îb,i

ĵb,i

k̂b,i

⎤

⎥
⎦ =

⎡

⎢
⎣

cos θi 0 − sin θi

sin φi sin θi cos φi sin φi cos θi

cos φi sin θi − sin φi cos φi cos θi

⎤

⎥
⎦

⎡

⎢
⎣

ê1

ê2

ê3

⎤

⎥
⎦.

(41)
Define the (actual) position ri = xi êx + yi êy + zi êz , veloc-

ity vi = vx,i êx + vy,i êy + vz,i êz , the gravity g = 9.81 m/s2 ,
mass mi , thrust force per mass F̄T ,i = FT , i

m i
, and control input

Vi = [uT ,i uφi
uθ,i ]T . The dynamics of quadcopter i ∈ V is

given by
{

Ẋi = f (Xi) + g (Xi)Vi

h (Xi) = ri = [xi yi zi ]
T (42)

where Xi = [xi yi zi vx,i vy ,i vz ,i F̄T ,i φi θi
˙̄FT ,i φ̇i θ̇i ]T ∈

R12×1 is the control state, h is the control output

gT =
[
0 I

] ∈ R3×12

f = [vx,i vy ,i vz ,i f4 f5 f6 f7 f8 f9 0 0 0]T

f4 = F̄T ,i cos φi sin θi

f5 = −F̄T ,i sin φi

f6 = −g + F̄T ,i cos φi cos θi

fj+3 = ḟj , j = 4, 5, 6.
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Note that 0 ∈ R3×9 is the zero-entry matrix and I ∈ R3×3 is the
identity matrix. The quadcopter dynamics given by (42) has a
total relative degree nr = 12. Using IO feedback linearization,
quadcopter dynamics (42) can be converted to

d4ri

dt4
= Ui (43a)

Ui = MT φθ,iVi + NT φθ,i (43b)

where

MT φθ,i

=

⎡

⎢
⎣

cos φi sin θi −F̄T ,i sin φi sin θi F̄T ,i cos φi cos θi

− sin φi −F̄T ,i cos φi 0
cos φi cos θi −F̄T ,i cos θi sin φi −F̄T ,i cos φi sin θi

⎤

⎥
⎦

NT φθ,i = −2 ˙̄FT ,i

⎡

⎢
⎢
⎣

θ̇i cos φi cos θi − φ̇i sin φi sin θi

−φ̇i cos φi

−θ̇i cos φi sin θi − φ̇i sin φi cos θi

⎤

⎥
⎥
⎦

− F̄T ,i

⎡

⎢
⎢
⎣

−
(
θ̇2

i + φ̇2
i

)
cos φi sin θi − 2θ̇i φ̇i sin φi cos θi

φ̇2
i sin φi

−
(
θ̇2

i + φ̇2
i

)
cos φi cos θi + 2θ̇i φ̇i sin φi sin θi

⎤

⎥
⎥
⎦.

Define

Pd,i =
1∑

j=0

k4−j
djrd,i

dtj
and Pi =

4∑

j=0

k4−j
djri

dtj
.

Choose the

Ui = Pd,i − Pi (44)

position of quadcopter i updated by the following fourth-order
dynamics. By equating the right-hand sides of (43b) and (44),
it is concluded that

Ui =
d2t

dt2

⎛

⎜
⎝

⎡

⎢
⎣

0
0
−g

⎤

⎥
⎦+ F̄T ,i

⎡

⎢
⎣

cos φi sin θi

− sin φi

cos φi cos θi

⎤

⎥
⎦

⎞

⎟
⎠ . (45)

Equation (45) can be rewritten as

Vi =

⎡

⎢
⎣

uT ,i

uφ,i

uθ,i

⎤

⎥
⎦ =

⎡

⎢
⎣

¨̄FT ,i

φ̈i

θ̈i

⎤

⎥
⎦ = M−1

T φθ,i (Ui − NT φθ,i) . (46)

Quadcopter i’s controller functionality is shown in Fig. 12.

APPENDIX B
PROOFS OF THE THEOREMS

Proof of Theorem 1: The initial position of quadcopter
i ∈ V can be expressed by ri,H T ,0 = r1,H T ,0 + γi(t0)ê1 +
βi(t0)ê2 . If communication weights are determined by (18),

Fig. 12. Block diagram of the controller for quadcopter i.

then we can set up a weight matrix W using (2) where
[

Ωps −I 0

Ωpf Ωsf L

]
[
γ1 (t0) · · · γN (t0)

]T = 0. (47a)

[
Ωps −I 0

Ωpf Ωsf L

]
[
β1 (t0) · · · βN (t0)

]T = 0. (47b)

Note that row i − 3 of (47) is equal to
{∑3

j=1 αi,j (γj (t0) − γi (t0)) = 0 i ∈ VL \ {1, 2, 3}
∑

j∈Ni
wi,j (γj (t0) − γi (t0)) = 0 i ∈ VF

(48a)
{∑3

j=1 αi,j (βj (t0) − βi (t0)) = 0 i ∈ VL \ {1, 2, 3}
∑

j∈Ni
wi,j (βj (t0) − βi (t0)) = 0 i ∈ VF .

(48b)

Hence

i ∈ VF ,
∑

j∈Ni

wi,j (rj,H T ,0 − ri,H T ,0)

= r1

⎛

⎝
∑

j∈Ni

wi,j − 1

⎞

⎠

+
∑

j∈Ni

wi,j

[
(γj (t0) − γi (t0)) ê1 + (βj (t0)

− βi (t0)) ê2
]

=
∑

j∈Ni

wi,j

[
(γj (t0) − γi (t0)) ê1 + (βj (t0)

− βi (t0)) ê2
]

= 0. (49)

Similarly, it is concluded that

i ∈ VL \ {1, 2, 3},
3∑

j=1

αi,j (rj,H T ,0 − ri,H T ,0) = 0. (50)

Consequently, (21) is satisfied when (49) and (50) are written in
component-wise forms.

Proof of Theorem 2: There exist at least NL followers
communicating with NL leaders. Because W is the zero-sum
row, the sum of the elements in at least NL rows of matrix L is
negative; however, the sum of elements in the remaining rows of
matrix L is zero. While diagonal elements of L are all −1, off-
diagonal elements of L are non-negative. If the communication
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graph G contains a spanning tree, matrix L is irreducible and
−L is a nonsingular M-matrix. Therefore, matrix L + I has a
spectral radius ρ < 1 and eigenvalues of matrixL are all located
inside a disk centered at −1 + j0 and radius ρ [42]. From (21),
we can write

zm,H T ,s (t0) = Ωpszm,H T ,p (t0) (51a)

zm,H T ,f (t0) = −L−1 (Ωpf zm,H T ,p (t0) + Ωsf zm,H T ,s (t0))
(51b)

where m ∈ {x, y, z}. Substituting (51a) into (51b)
yields zm,H T ,f (t0) = Wf pzm,H T ,p(t0), where Wf p =
−L−1(Ωpf + Ωsf Ωpf ). The entry of row i − NL and column
j (i ∈ VF , j ∈ V) entry of matrix Wf p is equal to αi,j

from (14). Thus, Wf p and WL are both one-sum row
(Wf p = WL ).

Proof of Theorem 3: Let m1 and m2 define two unique
points of the leading triangle with minimum separation distance
at initial time t0 . If 0.5(DB − 2ε) ≤ (DS − ε), thenm1 andm2
are assigned based on the two most closely spaced quadcopters
at initial time t0 . If DS − ε < 0.5(DB − 2ε), m1 represents a
quadcopter and m2 is the closest point to m1 on the bound-
ary of the leading triangle. Consider (35), ‖rm 1 ,0 − rm 2 ,0‖ =
μ(δmax + ε), where μ = 1 if m2 represents the closest point on
the boundary of the leading triangle. Also, μ = 2, if m2 repre-
sents a quadcopter inside the leading triangle with the closest
separation distance. Interagent collision is avoided and no quad-
copter leaves the leading triangle if

μ = 1, 2, ‖rm 1 (t) − rm 2 (t)‖ ≤ μ (δ + ε)

≤ ‖rm 1 ,H T (t) − rm 2 ,H T (t)‖.
Under a homogeneous transformation, rm 1 ,H T and rm 2 ,H T

are updated by (5), where rm 1 ,0 = rm 1 ,H T (t0) and rm 2 ,0 =
rm 2 ,H T (t0). Consequently

‖rm 1 ,H T (t) − rm 2 ,H T (t)‖2 = (rm 1 ,0 − rm 2 ,0)
T

× QT Q (rm 1 ,0 − rm 2 ,0)

= (rm 1 ,0 − rm 2 ,0)
T U2

D (rm 1 ,0 − rm 2 ,0)

at any time t and, thus, λCD ,mim =
δ + ε

δmax + ε
≤ λ1 ≤

‖rm 1 ,H T (t) − rm 2 ,H T (t) ‖
‖rm 1 ,0 − rm 2 ,0‖ .
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