
0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 1

On the Optimal Recovery Threshold of Coded
Matrix Multiplication

Sanghamitra Dutta∗, Mohammad Fahim∗, Farzin Haddadpour∗, Haewon Jeong∗, Viveck Cadambe, Pulkit Grover

Abstract—We provide novel coded computation strategies for
distributed matrix-matrix products that outperform the recent
“Polynomial code” constructions in recovery threshold, i.e., the
required number of successful workers. When a fixed 1/m
fraction of each matrix can be stored at each worker node, Poly-
nomial codes require m2 successful workers, while our MatDot
codes only require 2m− 1 successful workers. However, MatDot
codes have higher computation cost per worker and higher
communication cost from each worker to the fusion node. We also
provide a systematic construction of MatDot codes. Further, we
propose “PolyDot” coding that interpolates between Polynomial
codes and MatDot codes to trade off computation/communication
costs and recovery thresholds. Finally, we demonstrate a novel
coding technique for multiplying n matrices (n ≥ 3) using ideas
from MatDot and PolyDot codes.

I. INTRODUCTION

As the era of Big Data advances, massive parallelization
has emerged as a natural approach to overcome limitations
imposed by saturation of Moore’s law (and thereby of single
processor compute speeds). However, massive parallelization
leads to computational bottlenecks due to faulty nodes and
stragglers [2]. Stragglers refer to a few slow or delay-prone
processors that can bottleneck the entire computation because
one has to wait for all the parallel nodes to finish. The issue
of straggling [2] and faulty nodes has been a topic of active
interest in the emerging area of “coded computation” with
several interesting works, e.g. [3]–[39]. Coded computation
not only advances on coding approaches in classical works
in Algorithm-Based Fault Tolerance (ABFT) [40], [41], but
also provides novel analyses of required computation time
(e.g. expected time [3] and deadline exponents [42]). Perhaps
most importantly, it brings an information-theoretic lens to
the problem by examining fundamental limits and comparing
them with existing strategies. A broader survey of results and
techniques of coded computation is provided in [43].

∗Author ordering in alphabetical order. The first four authors contributed
equally to the work.

Manuscript received May 14, 2018; revised April 16, 2019.
This work was presented in part at the Annual Allerton Conference on

Communication, Control, and Computing (Allerton) in October 2017 [1].
This work was supported by Systems on Nanoscale Information fabriCs

(SONIC) which is one of the six SRC STARnet Centers sponsored by
MARCO and DARPA, as well as NSF Awards 1350314, 1464336, 1553248
and 1763657.

Sanghamitra Dutta (sanghamd@andrew.cmu.edu), Haewon Jeong (hae-
won@cmu.edu) and Pulkit Grover (pgrover@andrew.cmu.edu) are with the
Department of Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213.

Mohammad Fahim (fahim@psu.edu), Farzin Haddadpour (fxh18@psu.edu)
and Viveck Cadambe (vxc12@psu.edu) are with the Department of Electrical
Engineering, Pennsylvania State University, University Park, PA 16802.

In this paper, we focus on the problem of coded ma-
trix multiplication. Matrix multiplication is central to many
modern computing applications, including machine learning
and scientific computing. Not surprisingly, there is a lot of
interest in classical ABFT literature (starting from [40], [41])
and more recently in coded computation literature (e.g. [6],
[44]) to make matrix multiplications resilient to faults and
delays. In particular, Yu, Maddah-Ali, and Avestimehr [6]
provide novel coded matrix-multiplication constructions called
Polynomial codes that outperform classical work from ABFT
literature in terms of the recovery threshold, the minimum
number of successful (non-delayed, non-faulty) processing
nodes required for completing the computation.

In this work, we consider the standard setup used in [6],
[44] with P worker nodes that perform the computation
in a distributed manner. A master node helps coordinate
the computation by performing some low complexity pre-
processing on the inputs and distributes the inputs to the
workers. A fusion node aggregates the results of the work-
ers.1 We propose MatDot codes that advance on existing
constructions in scaling sense. More precisely, when an m-
th fraction of each matrix can be stored in each worker node,
Polynomial codes have the recovery threshold of m2, while
the recovery threshold of MatDot is only 2m − 1. However,
as we note in Section III-B, this comes at an increased
per-worker computation and communication cost2. We also
propose PolyDot codes that interpolate between MatDot and
Polynomial code constructions in terms of recovery thresholds
and per-worker computation/communication costs.

Our main contributions in this work are as follows:
• We present our system model in Section II, and describe

MatDot codes in Section III. While Polynomial codes
have a recovery threshold of Θ(m2), MatDot codes have
a recovery threshold of Θ(m) when each node stores only
a fixed 1/m fraction of each matrix multiplicand.

• We present a systematic version of MatDot codes, where
the operations of the first m worker nodes may be viewed
as multiplication in uncoded form, in Section IV.

• In Section V, we propose “PolyDot codes,” a unified
view of MatDot and Polynomial codes that leads to

1This separation of a master node from a fusion node is only conceptual,
and it makes our exposition easier throughout the paper. One can think of a
master node and a fusion node as one physical machine.

2Note that, the total computational cost, i.e., the per-worker computational
cost multiplied by the total number of workers required to finish (recovery
threshold) is similar in scaling sense for both MatDot and Polynomial codes.
This is because the per-worker computational cost is increased in MatDot
codes by a factor of Θ(m), while the recovery threshold is reduced by a
factor of Θ(m).

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 2

a trade-off between recovery threshold and per-worker

computation/communication costs.

• In Section VI, we apply the constructions of Section III

to study coded computation for multiplying more than

two matrices.

We note that following the publication of an initial ver-

sion of this paper [1], the works of Yu, Maddah-Ali, and

Avestimehr [45] and Dutta, Bai, Jeong, Low and Grover [46]

obtained constructions that can reduce the recovery threshold

achieved by PolyDot codes within a factor of 2. Nevertheless,

MatDot codes continue to have the best known recovery

threshold for distributed matrix multiplication under storage

constraints. Importantly, Yu et al. [45] also provide fundamen-

tal limits that show that MatDot codes are, in fact, optimal

for the chosen partitioning of the matrices under storage

constraints when using linear codes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a computation system that consists of three

different types of nodes as follows: (i) a master node; (ii)

worker nodes; and (iii) a fusion node. The roles of the master,

fusion and worker nodes are illustrated in Fig. 1.

Fig. 1. A computational system: The master node receives the computational
inputs and sends appropriate tasks to the workers. The workers are prone
to faults and delays. The fusion node aggregates the computational outputs
from the subset of successful workers and produces the desired computational
outputs.

The following definition specifies a computational system

for computing the matrix multiplication: C = AB.

Definition II.1. [An (N, k, P,m) Computational system for

Matrix Multiplication] A computational system consists of the

following:

(i) A master node that receives computational inputs, i.e.,

two N × N matrices A and B and obtains, via linear
pre-processing, 2P matrices as follows:

Ãi = fi(A) and B̃i = gi(B) for i = 1, 2, . . . , P.

Here, fi and gi are two functions such that fi : F
N×N →

F
N/t×N/s and gi : F

N×N → F
N/s×N/t. Each Ãi for

i = 1, 2, . . . , P is an N/t×N/s matrix and each B̃i for

i = 1, 2, . . . , P is an N/s×N/t matrix, where s and t are

two integers that satisfy st = m and m is an integer that

divides N . Specifically, each entry of Ãi (respectively

B̃i) is restricted to be an F-linear combination3 of the

entries of A (respectively B).

(ii) P worker nodes that perform the following operations:

For i = 1, · · · , P , the i-th worker node receives Ãi, B̃i

from the master node, and performs some computation on

these matrices. A successful worker sends the resulting

computation to the fusion node. A failed worker does not

send the result to the fusion node.

(iii) A fusion node that receives outputs from the subset of

successful worker nodes. If the number of successful

workers is atleast k, the fusion node performs post-

processing (e.g., decoding) and produces the computa-

tional output AB. Otherwise, it declares a “computation

failure.”

An (N, k, P,m) computation system for matrix multipli-

cation is one where there are master pre-processing, worker

computation and fusion post-processing algorithms such that,

if the number of successful workers is at least k, then the

output is AB.

We make some informal remarks on the system model

before describing our problem statement.

• For a given computation system, the parameter k is

referred to as its recovery threshold. Note that as per

the definition, the recovery threshold is a worst-case

evaluation, i.e., over the worst possible choice of inputs

A,B as well as the worst set of worker failures.

• The parameter m controls the memory of each worker in

the model, i.e., each worker node can store only upto a

1/m fraction of each of the input matrices.

• For convenience, we simply refer to an (N, k, P,m)
computation system for matrix multiplication as a com-
putation system in this paper; the parameters N, k, P,m
can be inferred from context.

• A worker node can fail due to various reasons such as: (i)

straggling due to other jobs in the queue; (ii) straggling

due to network congestion; (iii) temporary unavailability

(e.g., system updates or power outage). In particular,

while our model states that the failed worker nodes do

not send their computational outputs to the fusion node,

in practice, a straggling worker node that sends its result

later than an acceptable deadline may also be considered

as a failure in our model. We use the term failed nodes

interchangeably with the term straggling nodes in this

paper. The parameter P −k represents fault-tolerance, or

equivalently, the straggler-tolerance of the system.

• Elementary coding theory also implies that an

(N, k, P,m) computation systems can correct �P−k
2 �

erroneous worker nodes, i.e., nodes that can output

incorrect computations, though we do not focus

explicitly on error correction in this paper.

• For a given computation system, the computational com-

plexities of the master, workers, and the fusion node are

referred to as the pre-processing, online, and decoding

3We restrict pre-processing to be linear to capture memory constraints of
each worker node. Note that, allowing for non-linear pre-processing with
infinite precision can allow the master node to encode the entire input A,B
into smaller dimensional matrices over real or complex fields.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 3

complexities. In addition to recovery thresholds, we also
evaluate various computation schemes in terms of these
computation complexities, as well as the communication
cost from the worker nodes to the fusion node. The
communication cost between the master node and worker
nodes is constant in all the strategies because of the
storage constraint, i.e., the master sends upto N2/m
symbols to each worker node.

• Our strategies also extend when the matrices Ãi and
B̃i are allowed to be of dimensions N/t1 × N/s and
N/s×N/t2 (discussed in Remark V.2 later), i.e., asym-
metric storage constraints for the two inputs. Our system
model also assumes that A,B are square matrices with
equal dimensions for simplicity of notation. Our ideas
and results will naturally apply for cases where A,B are
non-square matrices as well, as long as the product AB
is defined.

B. Problem Statement

We consider an (N, k, P,m) computation system where the
computational complexities of the master, worker and fusion
nodes, when evaluated in terms of parameter N,P,m, are all
less than the complexity of any sequential algorithm that takes
inputs A,B and computes the product AB as the output4.
Given parameters N,P,m, among these considered systems,
our problem is to to determine the computation system with
the smallest achievable recovery threshold.

Although the problem stated here remains open, we will
present non-trivial coding strategies that achieve significantly
smaller recovery threshold than previously known systems. For
simplicity, we report results assuming naive matrix multiplica-
tion with complexity Θ(N3) in our paper; our ideas and results
extend, with minor modifications, to include lower complexity
algorithms such as Strassen’s algorithm [47].

Finally, our problem can be naturally extended to multi-
plying more than two matrices; we study such extensions in
Section VI.

C. Some Notations and Definitions

We now provide some notation used throughout this paper.
• P : The total number of worker nodes used.
• N : The dimension (row/column) of each of the square

matrices being multiplied.
• A and B: The two square matrices being multiplied. Each

of them belong to FN×N where F can be any field such
that |F| > P .

• m: The storage parameter that denotes that a fixed 1/m
fraction of each of the input matrices can be stored at
each node.

For f(n) and g(n) that are two functions of the variable n,
f(n) = O(g(n)) if there exists an n0 and a constant c such that

4The computational complexity requirement is necessary. Without this
requirement, it is easy to design a (N, k = m,P,m) computation system by
simply storing A,B using a (P,m) Maximum Distance Separable code at
the workers, which sends the stored symbols to the fusion node which then
decodes A,B and then performs the multiplication. However, in practice, this
is not parallelizing the matrix-multiplication task.

for all n > n0, f(n) ≤ cg(n). Similarly, f(n) = o(g(n)) if for
any chosen ε > 0, one can find an n0 such that for all n > n0,
f(n) ≤ εg(n). Lastly, f(n) = Θ(g(n)) if f(n) = O(g(n))
and g(n) = O(f(n)).

We will be using the term “row-block” to denote the sub-
matrices formed when we split a matrix A horizontally as

follows: A =

[
A0

A1

]
. Similarly, we will be using the term

“column-block” to denote the sub-matrices formed when we
split a matrix vertically into sub-matrices as follows: A =[
A0 A1

]
.

III. MATDOT CODES

In this section, we will describe the distributed matrix-
matrix multiplication strategy using MatDot codes, and then
examine the computation and communication costs of the
proposed strategy. Before proceeding further into the detailed
construction and analyses of MatDot codes, we will first give
some motivating examples which contrast MatDot codes with
existing techniques.

A. Motivating Examples and Summary of Previous Results

Consider the problem statement described in Section II.
We describe three different strategies as possible solutions to
the problem: (i) ABFT matrix multiplication [40] (also called
product-coded matrices in [44]), (ii) Polynomial codes [6]
and then (iii) our proposed construction, MatDot codes, each
progressively improving, i.e., reducing the recovery threshold.
We will evaluate the straggler tolerance of a strategy by its
recovery threshold, k. For all the examples, we consider the
most simple case with m = 2. Let us begin by describing the
first strategy, namely, ABFT matrix multiplication.

Example III.1. [ABFT codes [40] (m = 2, k = 2
√
P)]

Consider two N × N matrices A and B that are split as
follows:

A =

[
A0

A1

]
,B =

[
B0 B1

]
where A0,A1 are sub-matrices (row-blocks) of A of dimen-
sion N/2×N and B0,B1 are sub-matrices (column-blocks)
of B of dimension N × N/2. Using ABFT, it is possible
to compute AB over P nodes such that, (i) each node uses
N2/2 linear combinations of the entries of A and N2/2
linear combinations of the entries of B and (ii) the overall
computation is tolerant to P − 2

√
P stragglers in the worst

case. Thus, any P − (P −2
√
P) = 2

√
P worker nodes suffice

to recover AB.
ABFT codes use the following strategy: P processors are

arranged in a
√
P ×

√
P grid. ABFT codes encode two row-

blocks of A and two column-blocks of B separately using
two systematic (

√
P , 2) MDS codes. Then, we distribute the

i-th encoded row-block of A to all the worker nodes on the
i-th row of the grid, and the j-th encoded column-block of
B to all the worker nodes on the j-th column of the grid.
Note that here the grid indexing is i = 1, 2, . . . ,

√
P and j =

1, 2, . . . ,
√
P . An example for P = 9 is shown in Fig. 2. The

worst case arises when all but one worker node in the lower
right (

√
P−1)×(

√
P−1) part of the grid fail. Thus, the worst

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 4

case recovery threshold is P − (
√
P − 1)2 + 1 = 2

√
P . For

the example given in Fig. 2 where P = 9, recovery threshold
is 2
√
P = 6. �

Fig. 2. ABFT matrix multiplication [40] for P = 9 worker nodes with

m = 2, where A =

[
A0

A1

]
, B = [B0 B1]. The recovery threshold is 6.

Fig. 3. Polynomial Codes [6] with m = 2. The recovery threshold is 4.

In the previous example, the recovery threshold was a
function of P and thus it requires more successful worker
nodes as we use more processors. However, as we will show
in the next example, Polynomial codes [6] provide a superior
recovery threshold that does not depend on P .

Remark III.1. In the worst-case ABFT codes might require
Θ(
√
P) nodes to finish, but in the best-case only m2 nodes

might suffice, e.g., if all the systematic nodes finish first.
Therefore, some specific subsets of nodes of size smaller than
the recovery threshold can sometimes suffice for reconstruc-
tion, even though not all subsets of this size suffice. For a
detailed discussion on best-case and average-case recovery,
the reader is referred to [44].

Example III.2. [Polynomial codes [6] (m = 2, k = 4)]
Consider two N × N matrices A and B that are split as
follows:

A =

[
A0

A1

]
,B =

[
B0 B1

]
.

Polynomial codes compute AB over P nodes such that, (i)
each node uses N2/2 linear combinations of the entries of A

and N2/2 linear combinations of the entries of B and (ii)
the overall computation is tolerant to P − 4 stragglers, i.e.,
any 4 nodes suffice to recover AB. Polynomial codes use
the following strategy: Node i computes (A0 + A1i)(B0 +
B1i

2), i = 1, 2, . . . P, so that from any 4 of the P nodes, the
polynomial p(x) = (A0B0 +A1B0x+A0B1x

2 +A0B1x
3)

can be interpolated. Having interpolated the polynomial, AB

as
[
A0B0 A0B1

A1B0 A1B1

]
can be obtained from the coefficients

(matrices) of the polynomial. �

Our novel MatDot construction achieves a smaller recovery
threshold as compared with Polynomial codes. Unlike ABFT
and Polynomial codes, MatDot divides matrix A vertically into
column-blocks and matrix B horizontally into row-blocks.

Example III.3. [MatDot codes (m = 2, k = 3)]
MatDot codes compute AB over P nodes such that, (i)

each node uses N2/2 linear combinations of the entries of A
and N2/2 linear combinations of the entries of B and (ii)
the overall computation is tolerant to P − 3 stragglers, i.e., 3
nodes suffice to recover AB. The proposed MatDot codes use
the following strategy: Matrix A is split vertically and B is
split horizontally as follows:

A = [A0 A1] , B =

[
B0

B1

]
, (1)

where A0,A1 are column-blocks of A of dimension N×N/2
and B0,B1 are row-blocks of B of dimension N/2×N .

Let pA(x) = A0 + A1x and pB(x) = B0x + B1. Let
x1, x2, · · · , xP be distinct elements in F. The master node
sends pA(xr) and pB(xr) to the r-th worker node where the r-
th worker node performs the multiplication pA(xr)pB(xr) and
sends the output to the fusion node. The exact computations at
each worker node are depicted in Fig. 4. We can observe that
the fusion node can obtain the product AB using the output of
any three successful workers as follows: Let the worker nodes
1, 2, and 3 be the first three successful worker nodes, then the
fusion node obtains the following three matrices:

pA(x1)pB(x1) = A0B1 + (A0B0 + A1B1)x1 + A1B0x
2
1,

pA(x2)pB(x2) = A0B1 + (A0B0 + A1B1)x2 + A1B0x
2
2,

pA(x2)pB(x3) = A0B1 + (A0B0 + A1B1)x3 + A1B0x
2
3.

Since these three matrices can be seen as three evaluations
of the matrix polynomial pA(x)pB(x) of degree 2 at three
distinct evaluation points x1, x2, x3, the fusion node can
obtain the coefficients of x in pA(x)pB(x) using polynomial
interpolation. This includes the coefficient of x, which is
A0B0+A1B1 = AB. Therefore, the fusion node can recover
the matrix product AB. �

In the example, we have seen that for m = 2, the recovery
threshold of MatDot codes is k = 3 which is lower than
Polynomial codes as well as ABFT matrix multiplication. The
following theorem shows that for any integer m, the recovery
threshold of MatDot codes is k = 2m− 1.

Theorem III.1. For the matrix multiplication problem spec-
ified in Section II-B computed on the system defined in

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 5

Fig. 4. An illustration of the computational system with four worker nodes and applying MatDot codes with m = 2. The recovery threshold is 3.

Definition II.1, a recovery threshold of 2m − 1 is achievable
where m ≥ 2 is a positive integer that divides N .

Before we prove Theorem III.1, we first describe the con-

struction of MatDot codes.

Construction III.1. [MatDot Codes]
Splitting of input matrices: The matrix A is split vertically

into m equal column-blocks (of N2/m symbols each) and B is
split horizontally into m equal row blocks (of N2/m symbols
each) as follows:

A = [A0 A1 . . . Am−1] , B =

⎡⎢⎢⎢⎣
B0

B1

...
Bm−1

⎤⎥⎥⎥⎦ , (2)

where, for i ∈ {0, . . . ,m−1}, and Ai,Bi are N ×N/m and
N/m×N dimensional sub-matrices, respectively.

Master node (encoding): Let x1, x2, . . . , xP be distinct
elements in F. Let pA(x) =

∑m−1
i=0 Aix

i and pB(x) =∑m−1
j=0 Bjx

m−1−j . The master node sends to the r-th worker
the evaluations of pA(x), pB(x) at x = xr, that is, it sends
pA(xr), pB(xr) to the r-th worker.

Worker nodes: For r ∈ {1, 2, . . . , P}, the r-th worker node
computes the matrix product pC(xr) = pA(xr)pB(xr) and
sends it to the fusion node on successful completion.

Fusion node (decoding): The fusion node uses outputs of
any 2m − 1 successful workers to compute the coefficient of
xm−1 in the product pC(x) = pA(x)pB(x) (the feasibility of
this step will be shown later in the proof of Theorem III.1). If
the number of successful workers is smaller than 2m− 1, the
fusion node declares a failure.

Notice that in MatDot codes, we have

AB =
m−1∑
i=0

AiBi, (3)

where Ai and Bi are as defined in (2). The simple observation

of (3) leads to a different way of computing the matrix product

as compared with Polynomial-codes-based computation. In

particular, to compute the product, we only require, for each

i, the product of Ai and Bi. We do not require products of

the form AiBj for i 	= j unlike Polynomial codes, where,

after splitting the matrices A,B in to m parts, all m2 cross-

products are required to evaluate the overall matrix product.

This leads to a significantly smaller recovery threshold for our

construction.

Proof of Theorem III.1. To prove the theorem, it suffices to

show that in the MatDot code construction described above,

the fusion node is able to reconstruct C from any 2m − 1
worker nodes. Observe that the coefficient of xm−1 in:

pC(x) = pA(x)pB(x) =

(
m−1∑
i=0

Aix
i

)⎛⎝m−1∑
j=0

Bjx
m−1−j

⎞⎠
(4)

is AB =
∑m−1

i=0 AiBi (from (3)), which is the desired matrix-

matrix product. Thus it is sufficient to compute this coefficient

at the fusion node as the computation output for successful

computation. Now, because the polynomial pC(x) has degree

2m− 2, evaluation of the polynomial at any 2m− 1 distinct

points is sufficient to compute all of the coefficients of powers

of x in pA(x)pB(x) using polynomial interpolation. This

includes AB =
∑m−1

i=0 AiBi, the coefficient of xm−1. �

In Section III-B, we provide a complexity analysis that

shows that using this strategy, the master and fusion nodes

have a lower computational complexity as compared to the

worker nodes in the regime where m,P
 N .

B. Complexity Analysis of MatDot codes

Encoding/decoding complexity: Encoding for each worker

requires evaluating two polynomials pA(x) and pB(x), each

of degree m − 1, at a unique value of x where the coeffi-

cients of these polynomials are sub-matrices of size N2/m.

We examine the encoding complexity using two algorithms

here. One encoding algorithm could be to take a linear

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 6

combination of m sub-matrices of size N2/m, leading to
an overall encoding complexity of O(mN2/m) = O(N2)
for each worker. Thus, the overall computational complexity
of encoding for P workers is O(N2P). Alternatively, one
could also use fast polynomial evaluation algorithms [48],
[49] which allow one to evaluate a polynomial (of degree
m− 1) at P (> m) arbitrary points within a time complexity
of O(P log2m) (or more practically O(P log2m log logm)).
Because this evaluation has to be repeated N2/m times, the
overall encoding complexity using fast polynomial evaluation
algorithms becomes O

(
N2P log2 m log logm

m

)
.

Next, we examine the decoding complexity. Decoding re-
quires interpolating the coefficient of xm−1 (of size N2) in the
polynomial pC(x) of degree 2m−2. Because we are interested
in only one coefficient of the polynomial pC(x) and not all of
them, we consider the problem of inverting the corresponding
Vandermonde matrix for polynomial interpolation and then
computing the corresponding coefficient of xm−1 separately.

Let pC(x) = C0+C1x+. . .+Ck−1x
k−1 where k = 2m−1

and we are interested in interpolating only Cm−1. Also, let
x̃1, x̃2, . . . , x̃k denote the k(= 2m−1) unique values at which
the k fastest workers evaluated the polynomial pC(x) and V
denote the k × k Vandermonde matrix given by:

V =


1 x̃1 x̃21 . . . x̃k−11

1 x̃2 x̃22 . . . x̃k−12
...

...
. . .

...
1 x̃k x̃2k . . . x̃k−1k

 . (5)

Observe that

(V ⊗ IN×N)


C0

C1

...
Ck−1

 =


pC(x̃1)
pC(x̃2)

...
pC(x̃k)



=⇒


C0

C1

...
Ck−1

 =
(
V−1 ⊗ IN×N

)

pC(x̃1)
pC(x̃2)

...
pC(x̃k)

 , (6)

where ⊗ denotes the Kronecker product and IN×N denotes
an identity matrix of dimensions N × N . The decoder first
inverts the matrix V (complexity is at most O(k3) using naive
inversion algorithms5) and then picks the m-th row of V−1

which corresponds to the linear combination of evaluations
leading to the coefficient of xm−1. Next, it linearly combines
these k evaluations pC(x̃1), pC(x̃2), . . . , pC(x̃k) (of size N2

each) using the k values in [m-th row of V−1], effectively
performing the computation

Cm−1 =
(
[m-th row of V−1]⊗ IN×N

)

pC(x̃1)
pC(x̃2)

...
pC(x̃k)

 .
5Note that, it might be possible to reduce the term k3 to k2 using improved

methods of inverting Vandermonde matrices [50]–[54]. However, since this
is not the dominant term in this decoding complexity analysis, we stick with
the most conservative estimate k3.

This second step is of complexity O(N2k). Thus, the total
decoding complexity is O(N2k+k3), of which, the first term
dominates as we are interested in regimes where k(= 2m −
1)� N .

Each worker’s computational cost: Each worker multi-
plies two matrices of dimensions N ×N/m and N/m ×N ,
requiring N3/m operations (using standard matrix multipli-
cation algorithms6). Hence, the computational complexity for
each worker is O(N3/m). Thus, as long as P and m are
sufficiently small compared to N , the encoding and decoding
complexity is smaller than per-worker computational complex-
ity in a scaling sense. More specifically, for the decoding
complexity to be negligible, we need m2 = o(N) (derived
from N2(2m − 1) = o(N3/m)). Similarly, for the encoding
complexity to be negligible, we need mP = o(N) (derived
from N2P = o(N3/m)), again sticking to the conservative
estimate of encoding complexity.

Communication cost: The master node communicates
O(PN2/m) symbols, and the fusion node receives O(mN2)
symbols from the successful worker nodes. While the master
node communication cost is identical to that in Polynomial
codes, the fusion node there only receives O(m2N2/m2) =
O(N2) symbols.

Remark III.2. We note that in addition to communication
costs, the computational cost per node is also higher for
MatDot codes (O(N3/m)) as compared to Polynomial codes
(O(N3/m2)). This is suggestive of a trade-off. Thus, we also
propose PolyDot codes which provide a trade-off between
MatDot codes (lowest recovery threshold, higher communi-
cation and computation cost) and Polynomial codes (higher
recovery threshold, lower communication and computation
cost), with these two codes being its two special cases. These
trade-offs are also pictorially illustrated later in Fig. 6 and
Fig. 7.

Discussion on applicability of MatDot codes:
• In our recent work [56], we demonstrate the potential

advantages of MatDot codes in practice. Reference [56]
presents a distributed implementation of Fast approximate
k-Nearest Neighbor computation using MatDot codes.
The problem reduces to the online multiplication of only
a set of few selected rows of a large matrix with another
matrix/vector in real-time. Encoding and storing sub-
matrices in advance is allowed, but the index set of rows
of the first matrix is only available in the online phase.
It is difficult to apply horizontal splitting in this case as
the index set of rows is not known apriori, and vertical
splitting of the first matrix, as done in MatDot codes, is
better suited.

• In several large-scale computing settings, storage is the
primary cause that necessitates parallelizing or distribut-
ing the computation across multiple nodes. The actual
computation cost is often cheap, and in fact often cheaper
than communication costs too. The main cause of latency

6More sophisticated algorithms [55] also require super-quadratic complex-
ity in N , and so a similar conclusion can be derived here if those algorithms
are used at workers as well, as long as the complexity is super-quadratic in
N .

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 7

or straggling is attributed to several factors, which also
include queuing of other tasks or limitations of communi-
cation bandwidth [8], [9]. Thus, the actual time that each
worker node takes is a combination of three terms: the
delay-free computation cost, the delay-free communica-
tion cost and the unpredictable delay or straggling, which
could even be higher than the first two terms depending
on the nature of the queuing in the system. In several
models in existing literature, the total time has also been
modeled with distributions which do not depend on the
computation cost or communication cost [8], [9]. In such
scenarios, MatDot codes would be significantly beneficial
in reducing latency as compared to existing techniques as
it requires the fusion node to wait for the fewest workers.
Alternatively, when the computation and communication
costs dominate storage costs, one could use Polynomial
codes, or interpolate between these two codes using our
proposed PolyDot framework (see Section V).

• MatDot codes can also be written in a systematic form
(see Sec. IV), which thereby opens the door for more flex-
ible straggler management strategies. This is discussed in
Remark IV.1 in the next section.

C. How do MatDot codes compare with the fundamental limits
in [6]?

The statement of [6, Theorem 1] says that when a fixed
1/m fraction of the first matrix and 1/n fraction of the second
matrix are allowed to be stored at each node, the fundamental
limit on recovery threshold is mn. When each node is allowed
to store a fixed 1/m fraction of both the matrices, i.e., m =
n, the expression of this fundamental limit takes the value
m2. Interestingly, MatDot codes also store only a fixed 1/m
fraction of each matrix but achieve a lower recovery threshold
of 2m − 1. This might seem to contradict the fundamental
limits of [6].

To understand why this is possible, one needs to carefully
examine the system model and assumptions in [6, Section
2], and the derivation of the fundamental limit in [6, Theorem
1], which uses a cut-set argument to count the number of
bits/symbols required for computing the product AB. In doing
so, the authors make the assumption that the number of
symbols communicated by each worker to the fusion node
is N2/m2. This is a fallout of storing an encoded sub-matrix
of A of dimensions N

m ×N , and an encoded sub-matrix of B
of dimensions N × N

m (the opposite of the dimensions used
here) and then multiplying the two encoded sub-matrices of
dimensions N

m ×N and N × N
m with each other.

The bound in [6], therefore, does not apply to our con-
struction: each worker now communicates N2 symbols to the
fusion node, an outcome of the novel partitioning of the two
matrices proposed in this work. Note that, while the amount
of information in each worker’s transmissions is less, i.e.,
O(N2/m) (because the N × N matrices communicated by
the workers can have rank N2/m), this is still significantly
larger than N2/m2 assumption made in the fundamental limits
in [6].

From a communication viewpoint, MatDot codes require
communicating a total of (2m−1)N2 symbols, which is larger

than the N2 symbols in the product AB. Similarly, the per-
node computation cost of MatDot codes is also O(N2/m)
which is larger than the computation cost of Polynomial
codes (O(N2/m2)). This is suggestive of a trade-off between
minimal number of workers and minimal (sum-rate) communi-
cation from non-straggling workers as well as minimum com-
putation per-node. Thus, in Section V, we describe a unified
view of MatDot and Polynomial codes, which describes the
trade-off between worker-fusion communication cost and per-
node computation cost with the recovery threshold.

In practice, whether this increased worker-fusion node
communication cost and the increased per-node computation
cost using MatDot codes is worth paying for will depend on
the specific computational fabric and system implementation
choices. Even in systems where communication costs may
be significant, it is possible that more communication from
fewer successful workers is less expensive than requiring more
successful workers as required in Polynomial codes. Also note
that if P = Ω(m2) (e.g. when the system is highly fault prone
or the deadline [42] is very short), communication complexity
at the master node will dominate, and hence MatDot codes
may not impose a substantial computing overhead.

IV. SYSTEMATIC MATDOT CODE CONSTRUCTION

In this section, we provide a systematic code construction
for MatDot codes. As the notion of systematic codes in the
context of the matrix multiplication problem is ambiguous, we
will first define systematic codes in our context.

Definition IV.1. [Systematic code in distributed matrix-matrix
multiplication] For the problem stated in Section II-B com-
puted on the system defined in Definition II.1 such that the
matrices A and B are split as in (2), a code is called systematic
if the output of the r-th worker node is the product Ar−1Br−1,
for all r ∈ {1, · · · ,m}. We refer to the first m worker nodes,
that output Ar−1Br−1 for r ∈ {1, · · · ,m}, as systematic
worker nodes.

Note that the final output AB can be obtained by summing
up the outputs from the m systematic worker nodes:

AB =
m∑
r=1

Ar−1Br−1.

The presented systematic code, named “systematic MatDot
code”, is advantageous over MatDot codes in two aspects.
Firstly, even though both MatDot and systematic MatDot
codes have the same recovery threshold, systematic MatDot
codes can recover the output as soon as the m systematic
worker nodes successfully finish, this is unlike MatDot codes
which always require 2m−1 workers to successfully finish to
recover the final result. Furthermore, when the m systematic
worker nodes successfully finish first, the decoding complexity
using systematic MatDot codes is O(mN2), which is slightly
less than the decoding complexity of MatDot codes, i.e.,
O(kN2 + k3) where k = 2m − 1. Another advantage for
systematic MatDot codes over MatDot codes is that the
systematic MatDot approach may be useful for backward-
compatibility with current practice. What this means is that,

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 8

Fig. 5. An illustration of the computational system with four worker nodes and applying systematic MatDot codes with m = 2. The recovery threshold is 3.

for systems that are already established and operating with no

straggler tolerance, but do an m-way parallelization, it is easier

to apply the systematic approach as the infrastructure could be

appended to additional worker nodes without modifying what

the first m nodes are doing.

The following theorem shows that there exists a systematic

MatDot code construction that achieves the same recovery

threshold as MatDot codes.

Theorem IV.1. For the matrix-matrix multiplication problem
specified in Section II-B computed on the system defined
in Definition II.1, there exists a systematic code, where the
product AB is the summation of the output of the first
m worker nodes, that solves this problem with a recovery
threshold of 2m − 1, where m ≥ 2 is any positive integer
that divides N .

Before we describe the construction of systematic MatDot

codes, that will be used to prove Theorem IV.1, we first present

a simple example to illustrate the idea of systematic MatDot

codes.

Example IV.1. [Systematic MatDot code, m = 2, k = 3]

Matrix A is split vertically into two sub-matrices (column-

blocks) A0 and A1, each of dimension N × N
2 and matrix

B is split horizontally into two sub-matrices (row-blocks) B0

and B1, each of dimension N
2 ×N as follows:

A = [A0 A1] , B =

[
B0

B1

]
. (7)

Now, we define the encoding functions pA(x) and pB(x)
as pA(x) = A0

x−x2

x1−x2
+A1

x−x1

x2−x1
and pB(x) = B0

x−x2

x1−x2
+

B1
x−x1

x2−x1
, for distinct x1, x2 ∈ F. Let x3, · · · , xP be elements

of F such that x1, x2, x3, · · · , xP are distinct. The master

node sends pA(xr) and pB(xr) to the r-th worker node, for

all r ∈ {1, · · · , P}, where the r-th worker node performs

the multiplication pA(xr)pB(xr) and sends the output to the

fusion node. The exact computations at each worker node are

depicted in Fig. 5.

We can observe that the outputs of the worker nodes 1, 2 are

A0B0,A1B1, respectively, and hence this code is systematic.

Let us consider a scenario where the systematic worker nodes,

i.e., worker nodes 1 and 2, complete their computations first.

In this scenario, the fusion node does not require a decoding

step and can obtain the product AB by simply performing the

summation of the two outputs it has received: A0B0+A1B1.

Now, let us consider a different scenario where worker nodes

1, 3, 4 are the first three successful workers. Then, the fusion

node receives three matrices, pA(x1)pB(x1), pA(x3)pB(x3),
and pA(x4)pB(x4). Since these three matrices can be seen as

three evaluations of the polynomial pA(x)pB(x) of degree 2
at three distinct evaluation points x1, x3, x4, the coefficients of

the polynomial pA(x)pB(x) can be obtained using polynomial

interpolation. Finally, to obtain the product AB, we evaluate

pA(x)pB(x) at x = x1, x2 and sum them up:

pA(x1)pB(x1) + pA(x2)pB(x2) = A0B0 +A1B1 = AB.

�

We now describe the general construction of the systematic

MatDot codes for matrix-matrix multiplication. As all the

code constructions in this paper follow the polynomial format

given in Construction III.1, in our subsequent constructions,

we will only highlight major differences, such as, encoding

polynomials.

Construction IV.1. [Systematic MatDot codes]
Splitting of input matrices: A and B are split as in (2).
Master node (encoding): The master node encodes matrices

A and B using the following polynomials:

pA(x) =
m∑
i=1

Ai−1Li(x), pB(x) =
m∑
i=1

Bi−1Li(x), (8)

where
Li(x) =

∏
j∈{1,··· ,m}\{i}

x− xj

xi − xj
. (9)

Fusion node (decoding): For any k such that m ≤
k ≤ 2m − 1, whenever the outputs of the first k successful
workers contain the outputs of the systematic worker nodes
1, · · · ,m, i.e., {pC(xr)}r∈{1,··· ,m} is contained in the set of
the first k outputs received by the fusion node, the fusion
node performs the summation

∑m
r=1 pC(xr). Otherwise, if

{pC(xr)}r∈{1,··· ,m} is not contained in the set of the first

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 9

2m−1 evaluations received by the fusion node, the fusion node
performs the following steps: (i) interpolates the polynomial
pC(x) = pA(x)pB(x) (the feasibility of this step will be shown
later in the proof of Theorem IV.1), (ii) evaluates pC(x) at
x1, · · · , xm, (iii) performs the summation

∑m
r=1 pC(xr).

If the number of successful worker nodes is smaller than
2m− 1 and the first m worker nodes are not included in the
successful worker nodes, the fusion node declares a failure.

The following lemma proves that the construction given here
is systematic.

Lemma IV.1. For Construction IV.1, the output of the r-th
worker node, for r ∈ {1, · · · ,m}, is the product Ar−1Br−1.
That is, Construction IV.1 is a systematic code for distributed
matrix-matrix multiplication as defined in Definition IV.1

Proof of Lemma IV.1. The lemma follows from the fact that
pA(xr) = Ar−1, and pB(xr) = Br−1, for r ∈ {1, · · · ,m}.
Thus, pC(xr) = pA(xr)pB(xr) = Ar−1Br−1, for any r ∈
{1, · · · ,m}. �

Now, we proceed with the proof of Theorem IV.1.

Proof of Theorem IV.1. Since Construction IV.1 is a system-
atic code for matrix-matrix multiplication (Lemma IV.1), in
order to prove the theorem, it suffices to show that Construc-
tion IV.1 is a valid construction with a recovery threshold
k = 2m − 1. From (9), observe that the polynomials Li(x),
i ∈ {1, · · · ,m}, have degrees m− 1 each. Therefore, each of
pA(x) =

∑m
i=1 Ai−1Li(x) and pB(x) =

∑m
i=1 Bi−1Li(x)

has a degree of m − 1 as well. Consequently, pC(x) =
pA(x)pB(x) has a degree of 2m − 2. Now, because the
polynomial pC(x) has degree 2m − 2, evaluation of the
polynomial at any 2m − 1 distinct points is sufficient to
interpolate C(x) using polynomial interpolation algorithm.
Now, since Construction IV.1 is systematic (Lemma IV.1), the
product AB is the summation of the outputs of the first m
workers, i.e., AB =

∑m
r=1 pC(xr). Therefore, after the fusion

node interpolates C(x), evaluating pC(x) at x1, · · · , xm, and
performing the summation

∑m
r=1 pC(xr) yields the product

AB. �

A. Complexity Analysis of Systematic MatDot codes

Apart from the encoding/decoding complexity, the com-
plexity analyses of systematic MatDot codes are the same as
their MatDot counterpart. In the following, we investigate the
encoding/decoding complexity of Construction IV.1.

Encoding/Decoding Complexity: Encoding for each
worker first requires performing evaluations of polynomials
Li(x) for all i ∈ {1, · · · ,m}, with each evaluation requir-
ing O(m) operations. This gives O(m2) operations for all
polynomial evaluations. Afterwards, two linear combinations
of m sub-matrices of size N2/m each is taken, which is
of complexity O(mN2/m) = O(N2). Therefore, the over-
all encoding complexity for each non-systematic worker is
O(max(N2,m2)) = O(N2) because m � N . For the
systematic workers, no further encoding is required on the
sub-matrices of A and B. Thus, the overall computational
complexity of encoding for P workers is O(N2(P − m)).

This is similar to the encoding for MatDot codes given in
Section III.

For decoding, two cases would arise depending on whether
all the m systematic nodes finished first or not. When all the
m systematic nodes finish first, the decoding is equivalent to
taking the sum of the m systematic evaluations and is thus of
complexity O(N2m). Alternatively, when the m systematic
nodes do not finish first, the decoder waits for the first
k(= 2m− 1) nodes to send their evaluations of pC(x). Then
it is required to interpolate the coefficients of pC(x), evaluate
it at the systematic points x1, x2, . . . , xm, and then take the
sum of the systematic evaluations. Because we are interested in
only the final sum of the systematic evaluations and not in the
individual systematic evaluations or coefficient interpolations,
we again consider the problem of deriving the appropriate
linear combination and taking the final linear combination on
the matrices separately.

Recall from Section III-B that pC(x) = C0 + C1x +
. . . + Ck−1x

k−1 where k = 2m − 1 but now we are
interested in computing the sum of the systematic evaluations
of pC(x) at x1, x2, . . . , xm. Also let x̃1, x̃2, . . . , x̃k denote the
k(= 2m − 1) unique values at which the k fastest workers
evaluated the polynomial pC(x) and V denote the k × k
Vandermonde matrix as defined in (5). Recall that,

C0

C1

...
Ck−1

 =
(
V−1 ⊗ IN×N

)

pC(x̃1)
pC(x̃2)

...
pC(x̃k)

 .
Let V̂ denote the m× k Vandermonde matrix for evaluation,
consisting of increasing powers of the m systematic values
x1, x2, . . . , xm, as follows:

V̂ =

1 x1 x21 . . . xk−11
...

...
. . .

...
1 xm x2m . . . xk−1m

 .
Now, the evaluation of pC(x) at the systematic values
x1, x2, . . . , xm is equivalent to the following operation:

(
V̂ ⊗ IN×N

)
C0

C1

...
Ck−1

 =
(

(V̂V−1)⊗ IN×N
)

pC(x̃1)
pC(x̃2)

...
pC(x̃k)

 .
Finally, the summation of these m systematic evaluations can
be written as:

([1, 1, . . . , 1]1×m ⊗ IN×N)
(
V̂ ⊗ IN×N

)
C0

C1

...
Ck−1



=
(

([1, 1, . . . , 1]1×mV̂V−1)⊗ IN×N
)

pC(x̃1)
pC(x̃2)

...
pC(x̃k)

 .
The decoder first computes the final row-vector

([1, 1, . . . , 1]1×mV̂V−1) (complexity is at most O(k3) as it is

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 10

dominated by the inversion of the matrix V). Next, it linearly
combines the k evaluations pC(x̃1), pC(x̃2), . . . , pC(x̃k) (of
size N2 each) using the k values in the final row vector
(complexity is O(N2k)). Thus, the total decoding complexity
is O(N2k + k3) = O(N2k) when k(= 2m − 1) � N . This
is similar to MatDot codes.

Note that, these encoding and decoding complexities may
be improved further in functions of m and P in different
scenarios, e.g., using alternate methods of faster evaluation,
or using the outputs of the systematic nodes more efficiently
during decoding if at least some of them are in the set of k
fastest workers (if not all) that will be pursued as a future
work. Here, we restrict ourselves to somewhat conservative
estimates for our proposed strategy as our main goal is to
explore dependence on N in the regime where m,P � N .

Remark IV.1. The flexibility offered by systematic MatDot
codes makes them more amenable to straggler mitigation in
practice. In several modern distributed computing systems
[57], [58], stragglers are handled in a “reactive” manner
where the computation is initially performed over a number
of workers without redundancy. The strategy of issuing re-
dundant computations is reactively speculated based on the
delay pattern of the systematic workers. Specifically, after a
certain time, the master or fusion node speculates which nodes
are straggling based on how much of the computation they
have performed so far, and then issues clones or redundant
computations corresponding to these speculated stragglers.
After this, the master or fusion node waits for a sufficient
set of nodes to finish out of the total nodes that are still
computing, which includes the speculated stragglers as well as
the newly issued redundant workers. Reactive schemes, where
nodes that appear to be straggling, are selectively replicated
have been widely studied in distributed computing systems
research under the term “speculative execution” (See, e.g.,
[59], [60] and references therein). Since reactive strategies
have fewer unnecessary redundant computations, they incur
lower computation overhead in the system than proactive
strategies, where all the computations (including the redundant
ones) are issued at the beginning, independent of the run-time
delay pattern of worker nodes.

An advantage of systematic MatDot codes, unlike their non-
systematic counterpart, is that they may be used in reactive
straggler mitigation strategies, thus lowering the overall com-
putation burden on the system. As an example, consider the
case where the m systematic (uncoded) worker nodes issue
their computation as follows: for i ∈ {1, 2, . . . ,m}, the i-th
systematic worker node receives Ai and Bi, and computes the
product AiBi. A centralized scheduling node (e.g., master or
fusion node) waits for a prespecified time after which it specu-
lates that the workers that did not complete their computation
are stragglers. Suppose that the speculated set of straggling
systematic nodes are R = {r1, · · · , rs} ⊆ {1, · · · ,m}. The
master node reactively applies systematic MatDot codes only
on the inputs of the speculated stragglers. That is, ` > s − 1
redundant parity computations are encoded using systematic
MatDot for Aj ,Bj , j ∈ R. Among the worker nodes that are
still computing (the s systematic nodes in R and the ` newly-

issued redundant computations), the fusion node can recover
the output from any 2s−1 worker nodes to obtain

∑s
i AriBri ,

and hence compute the product AB by adding the result to
the outputs of the non-straggler systematic worker nodes.

In contrast, a replication-based scheme would issue one or
more clones of each of these s straggling jobs. Suppose the
replication strategy issues ` (where s divides `) redundant jobs
that have `

s clones of each of the s original jobs. This strategy
would require certain specific subsets of s workers (among
the ` clones and the s original jobs) to complete the job but it
cannot recover the output from every subset of 2s−1 workers.
In the worst case, the replication strategy might have to wait
for l + s− l

s nodes to finish which is its recovery threshold.
It must be noted that it is unclear whether the replication-

based scheme or the systematic MatDot scheme would lead
to greater speed-up. We suspect that a good engineering
solution would require a careful choice based on the available
resources, e.g., number of redundant nodes `, system response
characteristics etc. A detailed performance comparison of
replication versus systematic MatDot via reactive straggler
mitigation is an open question worthy of future systems
performance evaluation research.

V. UNIFYING MATDOT AND POLYNOMIAL CODES:
TRADE-OFF BETWEEN PER-WORKER

COMPUTATION/COMMUNICATION COSTS AND RECOVERY
THRESHOLD

In this section, we present a code construction, named
PolyDot, that provides a trade-off between per-worker com-
putation/communication costs and recovery thresholds. Poly-
nomial codes [6] have a higher recovery threshold of m2, but
have a lower per-worker computation cost of O(N3/m2) and
communication cost of O(N2/m2) per worker node. On the
other hand, MatDot codes have a lower recovery threshold of
2m − 1, but have a higher per-worker computation cost of
O(N3/m) and a higher communication cost of O(N2) per-
worker. This section constructs a code that bridges the gap
between Polynomial codes and MatDot codes so that we can
get intermediate per-worker computation/communication costs
and recovery thresholds, with Polynomial and MatDot codes
being two special cases. To achieve this goal, we propose
PolyDot codes, which may be viewed as an interpolation of
MatDot codes and Polynomial codes, with one extreme being
MatDot codes and the other extreme being Polynomial codes.

We follow the same problem setup and system assumptions
in II-B. In the following theorem, we obtain the recovery
threshold achieved by PolyDot codes.

Theorem V.1. For the matrix multiplication problem specified
in Section II-B computed on the system defined in Defi-
nition II.1, there exist codes with a recovery threshold of
t2(2s− 1) and a communication cost from each worker node
to the fusion node bounded by O(N2/t2) for any positive
integers s, t such that st = m and both s and t divide N .

Before we move on to describe the PolyDot code construc-
tion and prove Theorem V.1, we first introduce PolyDot codes
with a simple example for m = 4 and s = t = 2.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 11

Example V.1. [PolyDot codes (m = 4, s = 2, k = 12)]
Matrix A is split into sub-matrices A0,0,A0,1,A1,0,A1,1,

each of dimension N/2×N/2. Similarly, matrix B is split into
sub-matrices B0,0,B0,1,B1,0,B1,1 each of dimension N/2×
N/2 as follows:

A =

[
A0,0 A0,1

A1,0 A1,1

]
,B =

[
B0,0 B0,1

B1,0 B1,1

]
. (10)

Notice that, from (10), the product AB can be written as

AB =

[∑1
i=0 A0,iBi,0

∑1
i=0 A0,iBi,1∑1

i=0 A1,iBi,0

∑1
i=0 A1,iBi,1

]
. (11)

Now, we define the encoding functions pA(x) and pB(x) as

pA(x) = A0,0 + A1,0x+ A0,1x
2 + A1,1x

3,

pB(x) = B0,0x
2 + B1,0 + B0,1x

8 + B1,1x
6.

Observe the following:

(i) the coefficient of x2 in pA(x)pB(x) is
∑1

i=0 A0,iBi,0,
(ii) the coefficient of x8 in pA(x)pB(x) is

∑1
i=0 A0,iBi,1,

(iii) the coefficient of x3 in pA(x)pB(x) is
∑1

i=0 A1,iBi,0,
and

(iv) the coefficient of x9 in pA(x)pB(x) is
∑1

i=0 A1,iBi,1.

Let x1, · · · , xP be distinct elements of F. The master node
sends pA(xr) and pB(xr) to the r-th worker node for r ∈
{1, · · · , P}. The r-th worker node performs the multiplication
pA(xr)pB(xr) and sends the result to the fusion node.

Let worker nodes indexed from 1 to 12 be the first 12 worker
nodes that send their results to the fusion node. Then the
fusion node obtains the matrices pA(xr)pB(xr) for all r ∈
{1, · · · , 12}. Since these 12 matrices are essentially twelve
distinct evaluations of the matrix polynomial pA(x)pB(x) of
degree 11 at twelve distinct points x1, · · · , x12, the coefficients
of the matrix polynomial pA(x)pB(x) can be obtained using
polynomial interpolation. This includes the coefficients of
xi+2+6j for all i, j ∈ {0, 1}, i.e.,

∑1
k=0 Ai,kBk,j for all

i, j ∈ {0, 1}. Once the matrices
∑1

k=0 Ai,kBk,j for all
i, j ∈ {0, 1} are obtained, the product AB is obtained by
(11). �

The recovery threshold for m = 4 in Example V.1 is k = 12.
This is larger than the recovery threshold of MatDot codes,
which is k = 2m − 1 = 9, and smaller then the recovery
threshold of Polynomial codes, which is k = m2 = 16. Hence,
we can see that the recovery thresholds of PolyDot codes are
between those of MatDot codes and Polynomial codes.

Construction V.1 describes the general construction of
PolyDot(m, s, t) codes. Note that, although two parameters m
and s are sufficient to characterize a PolyDot code, we include
t in the parameters for better readability.

Construction V.1. [PolyDot(m, s, t) codes]

Splitting of input matrices: A and B are split both
horizontally and vertically:

A =

 A0,0 · · · A0,s−1
...

. . .
...

At−1,0 · · · At−1,s−1

 ,

B =

 B0,0 · · · B0,t−1
...

. . .
...

Bs−1,0 · · · Bs−1,t−1

 , (12)

where, for i = 0, · · · , s − 1, j = 0, · · · , t − 1, Aj,i’s are
N/t×N/s sub-matrices of A and Bi,j’s are N/s×N/t sub-
matrices of B. We choose s and t such that both s and t divide
N and st = m.

Master node (encoding): Define the encoding polynomials
as:

pA(x, y) =
t−1∑
i=0

s−1∑
j=0

Ai,jx
iyj ,

pB(y, z) =

s−1∑
k=0

t−1∑
l=0

Bk,ly
s−1−kzl. (13)

The master node sends the evaluations of pA(x, y), pB(y, z)

at x = xr, y = xtr, z = x
t(2s−1)
r to the r-th worker where xr’s

are all distinct for r ∈ {1, 2, . . . , P}. By this substitution, we
are transforming the three-variable polynomial to a single-
variable polynomial as follows7:

pC(x, y, z) = pC(x) =
∑
i,j,k,l

Ai,jBk,lx
i+t(s−1+j−k)+t(2s−1)l,

and evaluate the polynomial pC(x) at xr for r = 1, · · · , P .
In Lemma V.1, we show that this transformation is one-to-one.

Worker nodes: For r ∈ {1, 2, . . . , P}, the r-th
worker node computes the matrix product pC(xr, yr, zr) =
pA(xr, yr)pB(yr, zr) and sends it to the fusion node on
successful completion.

Fusion node (decoding): The fusion node uses outputs of
the first t2(2s−1) successful workers to compute the coefficient
of xi−1ys−1zl−1 in pC(x, y, z) = pA(x, y)pB(y, z), i.e., it
computes the coefficient of xi−1+(s−1)t+(2s−1)t(l−1) of the
transformed single-variable polynomial. The proof of Theorem
V.1 shows that this is indeed possible. If the number of
successful workers is smaller than t2(2s− 1), the fusion node
declares a failure.

Discussion on applicability of PolyDot codes: Before we
prove the theorem, let us discuss the utility of PolyDot codes.
Under a fixed storage constraint (1/m), as t increases and s
decreases while keeping st(= m) fixed, the recovery threshold
keeps increasing and the computation and communication
costs keep decreasing. By choosing different s and t, we
can trade off communication/computation cost and recovery
threshold. For s = m and t = 1, PolyDot(m, s = m, t = 1)
code is a MatDot code which has a low recovery threshold

7An alternate substitution can reduce the recovery threshold further as
mentioned in subsequent works [45], [46]. We will clarify this in Remark V.1.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 12

0 200 400 600 800 1000 1200 1400

Recovery Threshold

0

10

20

30

40

50

60

70

80
C
om

m
u
n
ic
at
io
n
C
os
t
(#

sy
m
b
ol
s/
N

2
)

Communication - Recovery Threshold Trade-off (m = 36)

t = m, s = 1
(Polynomial Code)

t =
√

m, s =
√

m

t = 1, s = m
(MatDot Code)

Fig. 6. An illustration of the trade-off between communication cost (from the
workers to the fusion node) and the recovery threshold of PolyDot codes by
varying s and t for a fixed m (m = 36). The minimum communication cost
is N2, corresponding to polynomial codes, that have the largest recovery
threshold. It is important to note here that in the above, we are only
including the communication cost from the workers to the fusion node. The
communication from the master node to the workers is not included, and it
can dominate in situations when the workers are highly unreliable.

0 200 400 600 800 1000 1200 1400

Recovery Threshold

0

2000

4000

6000

8000

10000

12000

C
om

p
u
ta
ti
on

al
C
os
t
(#

m
u
lt
ip
li
ca
ti
on

s/
w
or
ke
r)

Computation - Recovery Threshold Trade-off (N = 72,m = 36)

t = m, s = 1
(Polynomial Code)

t =
√

m, s =
√

m

t = 1, s = m
(MatDot Code)

Fig. 7. An illustration of the trade-off between the computation cost per
worker and the recovery threshold of PolyDot codes by varying s and t for a
fixed N,m (N = 72,m = 36). The minimum computation cost per worker is
288 multiplication operations per worker, corresponding to polynomial codes,
that have the largest recovery threshold.

but a high communication/computation cost. At the other
extreme, for s = 1 and t = m, PolyDot(m, s = 1, t = m)
code is a Polynomial code. Now, let us consider a code
with intermediate s and t values, such as, s =

√
m and

t =
√
m. A PolyDot(m, s =

√
m, t =

√
m) code has a

recovery threshold of m(2
√
m− 1) = Θ(m1.5), and the total

number of symbols to be communicated to the fusion node
is Θ

(
(N/
√
m)2 ·m1.5

)
= Θ(

√
mN2), which is smaller than

Θ(mN2) as required by MatDot codes but larger than Θ(N2)
as required by Polynomial codes. This trade-off between
communication cost and recovery threshold is illustrated in

Fig. 6 for m = 36. Similarly, in terms of computational
cost per worker node, a PolyDot(m, s =

√
m, t =

√
m)

code requires O(N3/m1.5) operations, which is less than the
O(N3/m) operations required by MatDot codes but higher
than the O(N3/m2) operations required by Polynomial codes.
This trade-off between the computation per worker and the
recovery threshold is illustrated in Fig. 7 for N = 72,m = 36.

In regimes where the storage-constraint is more critical
than the computation or communication time, PolyDot codes
with the MatDot configuration (or at least closer to MatDot
codes, i.e., higher s, lower t) is more appropriate. Alter-
natively, in settings where computation and communication
time dominate significantly, PolyDot codes with Polynomial
codes configuration (or at least close to Polynomial codes,
i.e., higher t, lower s) may be more preferable. Interestingly
though, even in systems where communication costs may
be significant, it is possible that more communication from
fewer successful workers is less expensive than requiring more
successful workers as required in Polynomial codes, which we
hope to explore experimentally in future work.

Now, we proceed to prove Theorem V.1. We need the
following lemma.

Lemma V.1. The following function

f :{0, · · · , t− 1} × {0, · · · , 2s− 2} × {0, · · · , t− 1}
→ {0, · · · , t2(2s− 1)− 1}
(α, β, γ) 7→ α+ tβ + t(2s− 1)γ (14)

is a bijection.

Proof. Let us assume, for the sake of contradiction, that
for some (α′, β′, γ′) 6= (α, β, γ), f(α′, β′, γ′) = f(α, β, γ).
Then (f(α, β, γ) mod t) = α = (f(α′, β′, γ′) mod t) = α′

and hence α = α′. Similarly, (f(α, β, γ) mod t(2s − 1)) =
(f(α′, β′, γ′) mod t(2s − 1)) gives α + tβ = α′ + tβ′, and
thus β = β′ (because α = α′). Now, because α = α′ and
β = β′, as we just established, f(α, β, γ) = f(α′, β′, γ′)
from our assumption, it follows that γ = γ′. This contradicts
our assumption that (α, β, γ) 6= (α′, β′, γ′). �

Proof of Theorem V.1. The product of pA(x, y) and pB(y, z)
can be written as follows:

pC(x, y, z) = pA(x, y)pB(y, z)

=

t−1∑
i=0

s−1∑
j=0

Ai,jx
iyj

(s−1∑
k=0

t−1∑
l=0

Bk,ly
s−1−kzl

)
=
∑
i,j,k,l

Ai,jBk,lx
iys−1+j−kzl. (15)

Note that the coefficient of xi−1ys−1zl−1 in pC(x, y, z) is
equal to Ci,l =

∑s−1
k=0 Ai,kBk,l. By our choice of y = xt and

z = xt(2s−1) we can further simplify pC(x, xt, xt(2s−1)):

pC(x, y, z) = pC(x) =
∑
i,j,k,l

Ai,jBk,lx
i+t(s−1+j−k)+t(2s−1)l.

(16)
The maximum degree of this polynomial is when i =

t − 1, j − k = s − 1 and l = t − 1, which is (t −
1) + (2s − 2)t + t(2s − 1)(t − 1) = t2(2s − 1) − 1.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 13

Furthermore, if we let α = i, β = s − 1 + j − k, γ = l,
the function f(α, β, γ) in Lemma V.1 is the degree of x
in (16). This implies that for different pairs of (i, j − k, l),
we get different powers of x. When j − k = 0, we obtain
(
∑s−1

k=0 Ai,kBk,l)x
i+t(s−1)+t(2s−1)l = Ci,lx

i+t(s−1)+t(2s−1)l

which is the desired product we want to recover.
This implies that if we have t2(2s − 1) successful worker

nodes, we can compute all the coefficients in (16) by polyno-
mial interpolation. Hence, we can recover all Ci,l’s, i.e., the
coefficients of xi+t(s−1)+t(2s−1)l, for i, l = 0, · · · , t− 1. �

Remark V.1. PolyDot codes essentially introduce a general
framework which transforms the matrix-matrix multiplication
problem into a polynomial interpolation problem with three
variables x, y, z. For the PolyDot codes proposed in the initial
version of this work [1], we used the substitution y = xt and
z = xt(2s−1) to convert the polynomial in three variables to
a polynomial in a single variable, and obtained the recovery
threshold of t2(2s− 1). However, based on subsequent works
[45], [46], by using a different substitution, x = yt, z = yst,
a smaller recovery threshold of st2 + s − 1 can be achieved
for this problem. This is an improvement within a factor of 2.

Remark V.2. We first introduce the novel PolyDot framework
for matrix-matrix multiplication which block-partitions the
two matrices A and B into t× s and s× t respectively, using
two multivariate polynomials:

pA(x, y) =
t−1∑
i=0

s−1∑
j=0

Ai,jx
iyj ,

pB(y, z) =

s−1∑
k=0

t−1∑
l=0

Bk,ly
s−1−kzl. (17)

It is trivial to see that for an asymmetric partitioning, e.g.,
where A is split in t1 × s and B is split in s× t2 blocks, the
encoding polynomials in the PolyDot framework change as:

pA(x, y) =

t1−1∑
i=0

s−1∑
j=0

Ai,jx
iyj ,

pB(y, z) =
s−1∑
k=0

t2−1∑
l=0

Bk,ly
s−1−kzl. (18)

In this work, the novelty lies in cleverly choosing pA(x, y)
and pB(y, z), such that, in the product of the two multivariate
polynomials, i.e., in pC(x, y, z)(= pA(x, y)pB(y, z)) some
coefficients correspond to parts of the required resultant ma-
trix AB. After this, we convert the multivariate polynomial
pC(x, y, z) into a polynomial of a single variable in [1]
using a substitution which preserves bijection between all the
coefficients (including the ones that are not required).

Because only some of the coefficients of pC(x, y, z) are
actually required for reconstructing AB, it is not necessary
to preserve bijection between all the coefficients in the poly-
nomial of a single variable. In subsequent works [45], [46] a
lower recovery threshold is obtained by choosing an improved
substitution such that some of the garbage coefficients in
pC(x, y, z) align with each other resulting in a polynomial
of a single variable with fewer coefficients.

A. Complexity Analysis of PolyDot codes

Encoding/decoding complexity: Encoding for one worker
requires the evaluation of the polynomials pA(x) and pB(x)
at a unique value of x. As both the polynomials have m
non-zero coefficients which are sub-matrices of A and B re-
spectively, the encoder scales the m sub-matrices with N2/m
elements each and adds them up. This requires computational
complexity of O(m · N2/m) = O(N2). Thus, the overall
computational complexity of encoding for P worker nodes
is O(N2P). One could alternatively also use fast polynomial
evaluation algorithms [48], [49] to evaluate the two polyno-
mials of respective degrees st − 1 and t2(2s − 1) − st at
P arbitrary points, leading to an encoding complexity of at
most O

(
N2P log2 (st2) log log (st2)

m

)
, that can be rewritten as

O
(
N2P log2 (m2/s) log log (m2/s)

m

)
using st = m.

Decoding requires interpolating t2 coefficients of the poly-
nomial pC(x) of degree t2(2s− 1)− 1 where each coefficient
is of size N2/t2. We examine a choice of two decoding
algorithms here, and interestingly, again observe a trade-off
between MatDot and Polynomial codes in decoding. If we use
a decoding technique similar to MatDot codes by considering
the problem of deriving the required t2 linear combinations
from the inverse of the k×k Vandermonde matrix V and then
combining the k evaluated sub-matrices sent by the worker
nodes using these t2 linear combinations, then the overall
decoding complexity is O(t2 · N

2

t2 k + k3) = O(N2k + k3)
where k = t2(2s − 1). Again, as k � N , the complexity is
dominated by the term N2k.

Alternatively, the decoder could also choose to solve for all
the coefficients of pC(x) from the evaluations, as a single
interpolation problem. There exist fast polynomial interpo-
lation methods that have a complexity of O(k log2 k) theo-
retically [48] (or more practically O(k log2 k log log k) [49])
for a polynomial of degree k − 1. For this problem k =
t2(2s−1). Therefore, using these fast polynomial interpolation
algorithms, the decoding complexity per coefficient matrix
element is O(t2(2s− 1) log2 t2(2s− 1) log log t2(2s− 1)) =
O(t2s log2(m2/s) log logm2/s) using m = st. As the in-
terpolation is performed N2/t2 times for the coefficient
matrices of size N2/t2, the overall decoding complexity is
O(N2s log2(m2/s) log log (m2/s)).

Remark V.3. Note that, when we substitute t = 1, s = m in
the second expression of decoding complexity for PolyDot
codes, we get O(N2m log2(m) log log (m)) which differs
from the decoding complexity of MatDot and systematic
MatDot codes by a factor of log2(m) log log (m) although it
matches with the decoding complexity of Polynomial codes
for t = m, s = 1. This is because for MatDot codes, we only
require one coefficient of the polynomial pC(x) and hence the
decoding complexity can be lowered by log2(m) log log (m)
by treating the matrix-inversion and the final coefficient com-
putation separately than solving them together as a single
interpolation problem as done in the second case because
interpolation also produces all the other coefficients that are
not required in MatDot codes. Alternatively, for Polynomial
codes, it makes sense to solve a single interpolation problem

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 14

as all the coefficients of pC(x) are useful. For a general
PolyDot coding scheme, one can choose to invert first and
then compute only the required coefficients (first decoding
algorithm) or to decode as a single interpolation problem
(second decoding algorithm) depending on whether O(N2st2)
or O(N2s log2(m2/s) log log (m2/s)) is lower.

Each worker’s computational complexity: Multiplication
of matrices of size N/t × N/s and N/s × N/t requires
O(N3

st2) = O(N3s
m2) computations. For the decoding complexity

to be negligible in comparison to the per-node computational
complexity, we need either m2t2 = m4/s2 = o(N) or
m2 log2(m2/s) log log (m2/s) = o(N). Similarly, for the
encoding complexity to be negligible in comparison to the
per-node computational complexity, we need m2P/s = o(N).

Communication complexity: Master node communicates
O(N2/ts) = O(N2/m) symbols to each worker, hence total
outgoing symbols from the master node will be O(PN2/M).
For decoding, each node sends O(N2/t2) symbols to the
fusion node and the recovery threshold is O(t2(2s − 1)).
Total number of symbols communicated to the fusion node
is O((2s− 1)N2).

VI. MULTIPLYING MORE THAN TWO MATRICES

In this section, we present a coding technique for multiply-
ing n matrices (n-matrix multiplication), i.e., computing

C = D(1)D(2) · · ·D(n). (19)

We state the problem formally in Section VI-A and then
explain why this is different from multiplying two matrices.
Then, in Section VI-B, we provide a new code construction
called n-matrix codes which applies MatDot codes and Poly-
nomial codes in an alternating fashion. With this construction,
we show that we can achieve recovery threshold of Θ(mdn/2e)
(see Theorem VI.1) followed by a complexity analysis in
Section VI-C. After that, we propose a Generalized n-matrix
codes in Section VI-D which allows for both horizontal
and vertical partitioning of all the matrices being multiplied
and again explore the trade-off between recovery threshold
(see Theorem VI.2 in Section VI-D) and communication and
computation complexity (Section VI-E).

A. Problem Statement

We consider a generalization of the system model of Section
II with a master node, P worker nodes, and a fusion node, to
multiply more than two matrices. Here the goal is to compute
the product C =

∏n
i=1 D

(i) of N × N square matrices,
D(1), · · · ,D(n). As we will treat the matrices D(i) with odd
and even indices differently, we will denote the D(i)’s with
odd indices as A(di/2e) and the D(i)’s with even indices as
B(i/2) for all i ∈ {1, · · · , n}. Using this notation, C can be
written as:

C =

{∏n
2
i=1 A

(i)B(i) if n is even,(∏bn2 c
i=1 A(i)B(i)

)
A(dn2 e) if n is odd.

(20)

In our model, each worker can receive at most nN2/m
symbols from the master node, where each symbol is an

element of F. Specifically, for each matrix D(i), each worker
receives N2/m symbols which are F-linear combinations
of the entries of the matrix. Similar to Section II-B, the
computational complexities of the operations at master, worker
and fusion nodes, in terms of the parameters N,P,m, are
required to be strictly less than the computational complexity
of a sequential algorithm that computes the product. The goal
is to perform this matrix product utilizing faulty or straggling
workers with as low recovery threshold as possible. Again, in
the following discussion, we will assume that |F| > P .

B. Codes for n-matrix multiplication

Theorem VI.1 (Recovery threshold for n-matrix codes). For
the matrix multiplication problem specified in Section VI-A
computed on the system defined in Definition II.1, there exists
a code with a recovery threshold of

k(n,m) =

{
2mn/2 − 1 if n is even,
(m+ 1)mb

n
2 c − 1 if n is odd.

(21)

Proof. See Appendix A. �

Discussion on applicability of n-matrix codes:
Before describing the code construction for n-matrix multi-

plication, we first discuss when n-matrix multiplication codes
can be useful despite having a recovery threshold that grows
exponentially with n. First, note that as n-matrix multiplication
is a chain of (n − 1) matrix-matrix multiplications, one may
think that we can apply the coding techniques developed in
the previous sections to each pairwise matrix multiplication
instead of developing a new coding technique for n-matrix
multiplication. For example, let us consider computing C =
A(1)B(1)A(2). A master node can first encode A(1) and B(1)

using MatDot codes and distribute encoded matrices to all the
worker nodes and the fusion node can decode E = A(1)B(1)

from the output of successful worker nodes. Then we again
encode E and A(2) using MatDot code and distribute encoded
matrices to the worker nodes. Finally, the fusion node can
reconstruct C by decoding the outputs of successful worker
nodes. As you can see from this example, simply applying
MatDot codes on each matrix-matrix multiplication requires
two rounds of communication after computing E = A(1)B(1)

and C = EA(2). For n-matrix multiplication, it requires
n− 1 rounds of communication. This can be inefficient in the
systems when the communication cost increases with number
of rounds of communication (e.g., due to large communication
setup overheads).

What we propose in this section is a coded n-matrix multi-
plication strategy which requires only one round of communi-
cation. Our main result in Theorem VI.1 shows that n-matrix
codes need Θ(mdn/2e) successful nodes to recover the compu-
tation result. On the other hand, successively applying MatDot
codes requires Θ(m) nodes to successfully recover the final
result, which is is in scaling sense smaller than Θ(mdn/2e) for
large n. This suggests that n-matrix codes avoid intermediate
communications at the cost of larger recovery threshold. When
communication start-up cost is the main source of delay, one
should use n-matrix codes, and when number of computation
nodes is limited, one should sequentially apply coding strategy

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 15

for two-matrix multiplication such as MatDot or PolyDot
codes.

Moreover, in many applications such as power-iteration-
based methods, one often prefers to compute Anx(0) (where
x(0) ∈ Rn is an initial vector) instead of calculating An

due to higher computational complexity. Our suggested coded
multiple matrix-matrix multiplications can be employed in
such applications simply by letting D(1) = D(2) = . . . =
D(n) = A. Further details about this idea can be found in
[61]. Therefore, redundancy overhead used in our scheme can
be useful in such scenarios for two main reasons: (i) Saving
communication cost; and (ii) Providing robustness against
stragglers.

We will now begin with simple examples for even and odd
n. The first example shows the example for even n, and present
a construction for general n.

Example VI.1. [Multiplying 4 matrices (n = 4,m = 2, k =
7)]

Here, we give an example of multiplying 4 matrices and
show that a recovery threshold of 7 is achievable. For
i ∈ {1, 2}, matrix A(i) is split vertically into sub-matrices
A

(i)
0 ,A

(i)
1 each of dimension N × N

2 as follows: A(i) =[
A

(i)
0 A

(i)
1

]
, while, for i ∈ {1, 2}, matrix B(i) is split

horizontally into sub-matrices B
(i)
0 ,B

(i)
1 each of dimension

N
2 ×N as follows:

B(i) =

[
B

(i)
0

B
(i)
1

]
. (22)

Notice that the product C =
∏2

i=1 A
(i)B(i) can now be

written as
2∏

i=1

A(i)B(i) =
(
A(1)B(1)

)(
A(2)B(2)

)
=
(
A

(1)
0 B

(1)
0 + A

(1)
1 B

(1)
1

)(
A

(2)
0 B

(2)
0 + A

(2)
1 B

(2)
1

)
. (23)

Now, we define the encoding polynomials
pA(i)(x), pB(i)(x), i ∈ {1, 2} as follows:

pA(1)(x) = A
(1)
0 + A

(1)
1 x,

pB(1)(x) = B
(1)
0 x+ B

(1)
1 ,

pA(2)(x) = A
(2)
0 + A

(2)
1 x,

pB(2)(x) = B
(2)
0 x+ B

(2)
1 . (24)

From (24), we have

pA(1)(x)pB(1)(x) = A
(1)
0 B

(1)
1 + (A

(1)
0 B

(1)
0 + A

(1)
1 B

(1)
1)x

+ A
(1)
1 B

(1)
0 x2,

pA(2)(x)pB(2)(x) = A
(2)
0 B

(2)
1 + (A

(2)
0 B

(2)
0 + A

(2)
1 B

(2)
1)x

+ A
(2)
1 B

(2)
0 x2. (25)

From (23) along with (25), we can observe the following:
(i) the coefficient of x in pA(1)(x)pB(1)(x) is A

(1)
0 B

(1)
0 +

A
(1)
1 B

(1)
1 = A(1)B(1),

(ii) the coefficient of x2 in pA(2)(x2)pB(2)(x2) is the product
A

(2)
0 B

(2)
0 + A

(2)
1 B

(2)
1 = A(2)B(2), and

(iii) the coefficient of x3 in
pA(1)(x)pB(1)(x)pA(2)(x2)pB(2)(x2) is the product∏2

i=1 A
(i)B(i) (our desired output).

Let x1, · · · , xP be distinct elements of F, the master node
sends pA(i)(xir) and pB(i)(xir), for all i ∈ {1, 2}, to the
r-th worker node, r ∈ {1, · · · , P}, and the r-th worker
node performs the multiplication

∏2
i=1 pA(i)(xir)pB(i)(xir) and

sends the output to the fusion node.
Let worker nodes 1, · · · , 7 be the first 7 worker nodes to

send their computation outputs to the fusion node, then the
fusion node receives the matrices

∏2
i=1 pA(i)(xir)pB(i)(xir) for

all r ∈ {1, · · · , 7}. Since these 7 matrices can be seen as 7
evaluations of the matrix polynomial

∏2
i=1 pA(i)(xi)pB(i)(xi)

of degree 6 at 7 distinct evaluation points x1, · · · , x7, the
coefficients of the matrix polynomial

∏2
i=1 pA(i)(xi)pB(i)(xi)

can be obtained using polynomial interpolation. This includes
the coefficient of x3, i.e.,

∏2
i=1 A

(i)B(i). �

Now we show an example for odd n.

Example VI.2. [Multiplying 3 matrices (n = 3,m = 2, k =
5)]

Here, we give an example of multiplying 3 matrices and
show that a recovery threshold of 5 is achievable. In this
example, we have three input matrices A(1), B(1), and A(2),
each of dimension N × N and need to compute the product
A(1)B(1)A(2). First, the three input matrices are split in the
same way as in Example VI.1. The product A(1)B(1)A(2) can
now be written as

C = A(1)B(1)A(2) =
[
A(1)B(1)A

(2)
0 A(1)B(1)A

(2)
1

]
,

(26)
where A(1)B(1) = A

(1)
0 B

(1)
0 + A

(1)
1 B

(1)
1 .

Now, we define the encoding polynomials
pA(1)(x), pB(1)(x), pA(2)(x) as follows:

pA(1)(x) = A
(1)
0 + A

(1)
1 x,

pB(1)(x) = B
(1)
0 x+ B

(1)
1 ,

pA(2)(x) = A
(2)
0 + A

(2)
1 x. (27)

From (27), we have

pA(1)(x)pB(1)(x)pA(2)(x2) = A
(1)
0 B

(1)
1 A

(2)
0

+ (A
(1)
0 B

(1)
0 + A

(1)
1 B

(1)
1)A

(2)
0 x

+ (A
(1)
1 B

(1)
0 A

(2)
0 + A

(1)
0 B

(1)
1 A

(2)
1)x2

+ (A
(1)
0 B

(1)
0 + A

(1)
1 B

(1)
1)A

(2)
1 x3 + A

(1)
1 B

(1)
0 A

(2)
1 x4. (28)

From (28), we can observe the following:

(i) the coefficient of x in pA(1)(x)pB(1)(x)pA(2)(x2) is the
product A(1)B(1)A

(2)
0 , and

(ii) the coefficient of x3 in pA(1)(x)pB(1)(x)pA(2)(x2) is the
product A(1)B(1)A

(2)
1 .

From (26), these two coefficients suffice to recover C. Let
x1, · · · , xP be distinct elements of F, the master node sends
pA(i)(xir), for all i ∈ {1, 2}, and pB1

(xr) to the r-th worker
node, r ∈ {1, · · · , P}, where the r-th worker node performs

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 16

the multiplication pA(1)(xr)pB(1)(xr)pA(2)(x2r) and sends the
output to the fusion node.

Let worker nodes 1, · · · , 5 be the first 5 worker nodes to
send their computation outputs to the fusion node, then the fu-
sion node receives the matrices pA(1)(xr)pB(1)(xr)pA(2)(x2r)
for all r ∈ {1, · · · , 5}. Since these 5 matrices can be seen as
5 evaluations of the polynomial pA(1)(x)pB(1)(x)pA(2)(x2) of
degree 4 at five distinct evaluation points x1, · · · , x5, the coef-
ficients of the matrix polynomial pA(1)(xr)pB(1)(xr)pA(2)(x2r)
can be obtained using polynomial interpolation. This in-
cludes the coefficients of x and x3, i.e., A(1)B(1)A

(2)
0 and

A(1)B(1)A
(2)
1 . �

Next, we present a code construction for n-matrix multipli-
cation for general n and m.

Construction VI.1. [n-matrix codes]
Splitting of input matrices: for every i ∈ {1, · · · , dn2 e} and

j ∈ {1, · · · , bn2 c}, Ai and Bj are split as follows

A(i) =
[
A

(i)
1 A

(i)
2 . . . A(i)

m

]
, B(j) =


B

(j)
1

B
(j)
2
...

B
(j)
m

 , (29)

where, for k ∈ {1, . . . ,m}, A
(i)
k ,B

(j)
k are N × N/m and

N/m×N dimensional matrices, respectively.
Master node (encoding): Let x1, x2, . . . , xP−1 be arbi-

trary distinct elements of F. For i ∈ {1, · · · , dn2 e}, define
pA(i)(x) =

∑m
j=1 A

(i)
j xj−1, and, for i ∈ {1, · · · , bn2 c},

define pB(i)(x) =
∑m

j=1 B
(i)
j xm−j . For r ∈ {1, 2, . . . , P},

the master node sends to the r-th worker the evaluations,
pA(i)(xm

i−1

r) and pB(j)(xm
j−1

r), for all i ∈ {1, · · · , dn2 e} and
j ∈ {1, · · · , bn2 c}.

Worker nodes: For i ∈ {1, · · · , dn2 e}, define

pC(i)(x) =

{
pA(i)(x)pB(i)(x) if i ∈ {1, · · · , bn2 c},
pA(i)(x) if n is odd and i = dn2 e.

(30)

For r ∈ {1, 2, . . . , P}, the r-th worker node computes the
matrix product Π

dn2 e
i=1 pC(i)(xm

i−1

r) and sends it to the fusion
node on successful completion.

Fusion node (decoding): If n is even, the fusion node
uses outputs of any 2m

n
2 − 1 successful workers to com-

pute the coefficient of xm
n/2−1 in the matrix polynomial

Π
n
2
i=1pC(i)(xm

i−1

), and if n is odd, the fusion node uses
outputs of any mb

n
2 c(m+1)−1 successful workers to compute

the coefficients of xjm
bn

2
c−1, for all j ∈ {1, · · · ,m}, in the

matrix polynomial Π
dn2 e
i=1 pC(i)(xm

i−1

) (the feasibility of this
step will be shown later in the proof of Theorem VI.1).

If the number of successful workers is smaller than 2m
n
2 −1

for even n or smaller than mb
n
2 c(m + 1) − 1 for odd n, the

fusion node declares a failure.

Remark VI.1. The coefficient of xm
i−mi−1

in pC(i)(xm
i−1

),
for any i ∈ {1, · · · , bn2 c}, is

∑m
j=1 A

(i)
j B

(i)
j = A(i)B(i).

Remark VI.2. A reader might wonder why there is a differ-
ence between odd-valued and even-valued n, and if one can
be reduced to the other by introducing an identity matrix of
dimensions N × N in the n-matrix multiplication problem.
In this work, we have an assumption that the matrices being
multiplied are not known in advance and may even be chosen
by an adversary. If it is known in advance that one of the
matrices is an identity matrix or even a matrix with a special
structure, e.g., a Toeplitz matrix (essentially convolution), then
alternative coding techniques might be applicable altogether,
which we hope to explore as a future work. Here, we assume
that none of the matrices are known to us, and we aim to find
a general scheme. When n = 2, the n-matrix codes is exactly
MatDot codes. When n = 3, (e.g., multiplying ABC), it is
Polynomial codes applied to AB and C, followed by MatDot
codes. It reduces to simply computing AB when we know that
the third matrix C is identity, but without the hindsight, we
still have to encode the identity matrix, resulting in a bigger
recovery threshold than multiplying two matrices.

C. Complexity Analyses of n-matrix codes (Construction VI.1)

Encoding/decoding complexity: Decoding requires inter-
polating a 2mn/2 − 2 degree polynomial if n is even or a
mb

n
2 c(m + 1) − 2 degree polynomial if n is odd for each

element in the matrix. Using polynomial interpolation algo-
rithms of complexityO(k log2 k) [48], orO(k log2 k log log k)
[49], where k = k(n,m) as defined in (21), complex-
ity per matrix element is O(md

n
2 e log2md

n
2 e) log logmd

n
2 e).

Thus, for N2 elements, the decoding complexity is
O(N2md

n
2 e log2md

n
2 e log logmd

n
2 e).

Encoding for each worker requires performing n additions,
each adding m scaled matrices of size N2/m, for an overall
encoding complexity for each worker of O(mnN2/m) =
O(nN2). Thus, the overall computational complexity of en-
coding for P workers is O(nN2P).

Each worker’s computational cost: Each worker multi-
plies n matrices of dimensions N ×N/m and N/m×N . For
any worker r with r ∈ {1, · · · , P}, the multiplication can be
performed as follows:

Case 1: n is even
In this case, worker r wishes to compute the product:

pA(1)(xr)pB(1)(xr)pA(2)(xmr)pB(2)(xmr) · · ·

pA(n/2)(xm
n/2−1

r)pB(n/2)(xm
n/2−1

r).

Worker r does this multiplication in the following order:
1. Compute pB(i)(xm

i−1

r)pA(i+1)(xm
i

r) for all
i ∈ {1, · · · , n/2 − 1} with a total complexity of
O(nN3/m2).

2. Compute the product of the output matrices of the pre-
vious step with a total complexity of O(nN3/m3). Call
this product matrix D. Notice that D has a dimension of
N/m×N/m.

3. Compute pA(1)(xr)D with complexity O(N3/m2). Call
this product matrix E. Notice that E has a dimension of
N ×N/m.

4. Compute E pB(n/2)(xm
n/2−1

r) with complexity
O(N3/m).

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 17

Hence, the overall computational complexity per worker for
even n is O(max(nN3/m2, nN3/m3, N3/m2, N3/m)) =
O(max(nN3/m2, N3/m)).

Case 2: n is odd
In this case, worker r wishes to compute the product:

pA(1)(xr)pB(1)(xr) · · · pA((n−1)/2)(xm
(n−3)/2

r)

pB((n−1)/2)(xm
(n−3)/2

r)pA((n+1)/2)(xm
(n−1)/2

r).

Worker r does this multiplication in the following order:
1. Compute pB(i)(xm

i−1

r)pA(i+1)(xm
i

r) for all
i ∈ {1, · · · , (n − 1)/2} with a total complexity of
O(nN3/m2).

2. Compute the product of the output matrices of the pre-
vious step with a total complexity of O(nN3/m3). Call
this product matrix D. Notice that D has a dimension of
N/m×N/m.

3. Compute pA(1)(xr)D with complexity O(N3/m2).
Hence, the overall computational complexity per worker

for odd n is O(max(nN3/m2, nN3/m3, N3/m2)) =
O(nN3/m2).

In conclusion, the computational complexity per worker is
O(max(nN3/m2, N3/m)) if n is even, and O(nN3/m2) if
n is odd8.

Communication cost: The master node communicates total
of O(nPN2/m) symbols to the worker nodes, and the fu-
sion node receives O(mb

n
2 cN2) symbols from the successful

worker nodes.

D. Codes for Generalized n-matrix multiplication

Here, we give another code construction for n-matrix mul-
tiplication which is a generalization of the code construction
given in the previous section. The new construction allows
us to split input matrices more flexibly and trades off com-
munication and computation (similar to PolyDot codes in
Section V for two matrices). The results presented here are an
improvement over [1], and are built on techniques from [45],
[46].

Theorem VI.2 (Recovery threshold for Generalized n-matrix
codes). For the matrix multiplication problem specified in
Section VI-A and computed on the system defined in Defi-
nition II.1, there exists a code with a recovery threshold of

k(n, s, t) =

{
s

n
2 t

n
2 +1 + s

n
2 t

n
2−1 − 1 if n is even,

s
n+1
2 t

n+1
2 + s

n−1
2 t

n−1
2 − 1 if n is odd

(31)

for any integers s, t that satisfy m = st.

Proof. See Appendix B. �

Remark VI.3. If we substitute st = m in (31), we get:

k(n, s, t) =

{
m

n
2 (t+ 1)− t if n is even,

m
n−1
2 (m+ t)− t if n is odd

(32)

8The expressions for even n and odd n are different due to the last step
in the even n case where we compute the matrix multiplication of dimension
N×N/m and N/m×N , which has computational complexity ofO(N3/m)

By plugging in s = m, t = 1, we can see that k(n, s, t) =

2mn/2 − 1 for n even, and k(n, s, t) = m
n+1
2 + m

n−1
2 − 1

for n odd. This matches the recovery threshold given in (21).
Also, note that if we consider the substitutions given here for
the particular case of two-matrix multiplication, i.e., n = 2,
the recovery thresholds that we obtain are actually better than
the recovery threshold of PolyDot codes as proposed in the
initial version of this work in [1], and matches the recovery
threshold for two-matrix multiplication in subsequent works
[45], [46].

We now give a construction of Generalized n-matrix codes.

Construction VI.2 (Generalized n-matrix multiplication
code).

Splitting of input matrices: We split Ai’s and Bi’s as
follows:

A(i) =


A

(i)
0,0 · · · A

(i)
0,s−1

...
. . .

...
A

(i)
t−1,0 · · · A

(i)
t−1,s−1

 ,

B(i) =


B

(i)
0,0 · · · B

(i)
0,t−1

...
. . .

...
B

(i)
s−1,0 · · · B

(i)
s−1,t−1

 , (33)

where A
(i)
j,k’s have dimension N/t × N/s and B

(i)
j,k’s have

dimension N/s×N/t.
Master node (encoding): Define the encoding polynomials

as

pA(1)(z1, z2) =
t−1∑
i=0

s−1∑
j=0

A
(1)
i,j z

i
1z

j
2,

pB(1)(z2, z3) =

s−1∑
i=0

t−1∑
j=0

B
(1)
i,j z

s−1−i
2 zj3,

...,

pB(n/2)(zn, zn+1) =
s−1∑
i=0

t−1∑
j=0

B
(n/2)
i,j zs−1−in zjn+1.

for n even, and

pA(1)(z1, z2) =
t−1∑
i=0

s−1∑
j=0

A
(1)
i,j z

i
1z

j
2,

...,

pB((n−1)/2)(zn−1, zn) =
s−1∑
i=0

t−1∑
j=0

B
((n−1)/2)
i,j zs−1−in−1 zjn,

pA((n+1)/2)(zn, zn+1) =
t−1∑
i=0

s−1∑
j=0

A
((n−1)/2)
i,j zt−1−in zjn+1,

for n odd.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 18

The master node sends to the r-th worker evaluations of
pA(i) ’s, and pB(i) ’s at

z1 = xs
n/2tn/2−1

, z2 = x, z3 = xs, · · · ,

zn = xs
n/2−1tn/2−1

, zn+1 = xs
n/2tn/2

for n even, (34)

z1 = xs
(n−1)/2t(n−1)/2

, z2 = x, x3 = xs, · · · ,

zn = xs
(n−1)/2t(n−3)/2

, zn+1 = xs
(n−1)/2t(n+1)/2

for n odd.
(35)

where xr’s are all distinct for r ∈ {1, 2, . . . , P}.
Fusion node (decoding): The fusion node uses outputs of

any k(n, s, t) successful workers (given in (31)) to compute
the coefficients of pC(z). If the number of successful workers
is smaller than k(n, s, t), the fusion node declares a failure.

Remark VI.4. The two strategies for n-matrix multiplication
proposed in this work can be understood better in our general
PolyDot framework (see Table I). Essentially, they differ in
the substitutions for the variables z1, · · · , zn+1 to convert the
polynomial in n variables into a polynomial in a single variable
for the ease of interpolation. The main intuition behind the
substitutions of (34) and (35) is that for z1 and zn+1, their
powers grow from 0 to t − 1 (or s − 1), while all the other
terms have powers growing from 0 to 2s−2 (or 2t−2). Hence,
to minimize the maximum degree of the product polynomial,
it is best to assign high powers of x to z1 and zn+1. An
alternate substitution could also be to start with z1 = x and
then continue substituting z2 = xt, z3 = xst, z4 = xst

2

, . . .,
zn+1 = sb

n
2 ctd

n
2 e. The recovery threshold resulting due to this

substitution is given by:

k(n, s, t) =

{
s

n
2 t

n
2 +1 + s

n
2 t

n
2 − t if n is even,

s
n+1
2 t

n+1
2 + s

n−1
2 t

n+1
2 − t if n is odd

(36)

for any integers s, t that satisfy m = st. This is slightly higher
than the recovery threshold obtained in Theorem VI.2. Thus,
for n > 2, we can improve the recovery threshold by delving
deeper into the order of the substitution.

E. Complexity Analysis of Generalized n-matrix codes

Encoding/decoding complexity: Encoding communication
cost is O(nN2P) as in Section VI-C. Decoding complexity is
O(N2

t2 k(n, s, t) log2 k(n, s, t) log log k(n, s, t)) (even case) or
O(N2

ts k(n, s, t) log2 k(n, s, t) log log k(n, s, t)) (odd case).
Communication Complexity: The master node sends out

O(nPN2/m) encoded symbols in the beginning. After the
completion of computation, each node has to send O(N2/t2)
symbols to the fusion node. Hence, total number of symbols
the fusion node receives is k(n, s, t) · N2/t2. Let us first
consider the case when n is even. By substituting (31), we
obtain k(n, s, t)N2/t2 = O(mn/2/t). This is the same trade-
off we observed using PolyDot codes for single matrix-matrix
multiplication. For a fixed m, recovery threshold k(n, s, t)
grows linearly with t while communication cost is inversely
related to t (See Fig.6). When n is odd, we do not see such
trade-off. Recovery threshold is always m(n−1)/2(m+t)−t =
O(m(n+1)/2) regardless of the choice of t. Communication

cost on the other hand is k(n, s, t)N2/t2 = O(m(n+1)/2/t2 +
m(n−1)/2/t) which decreases with growing t. For instance, if
t = 1, communication cost is O(m(n+1)/2), and when t = m,
communication cost is O(m(n−3)/2). This suggests that when
n is odd, it is always better to choose t = m as m grows to
infinity.

Each worker’s computation cost: Using the simi-
lar technique shown in Section VI-C, we can show
that each worker’s computation complexity is at most
O(max(nN3/m1.5, N3/m)) for any choice of s, t. If we com-
pare the computation complexity for encoding/decoding and
the computation complexity at each worker node, we can see
that as long as N > O(mn/2−1.5 logm), encoding/decoding
computation overhead is amortized.

Remark VI.5. Our result given here splits A(i)’s into s × t
grid of blocks and B(i)’s into t× s grid of blocks. However,
it is not necessary that all matrices have to be split in the
same fashion. For instance, A(1) can be divided into t1 × s1
grid and B(1) can be divided into s1 × t2 grid, and so on.
In this more general setting A(i)’s are split into ti × si grid
and B(i)’s are split into si × ti+1 grid. Let us denote s =
[s1, · · · , sn/2], t = [t1, · · · , tn/2+1]. Then Theorem VI.2 can
be rewritten as follows.

k(n, s, t) =

{
(tn/2+1 + 1/t1)

∏n/2
i=1 siti − 1 if n even,

(t1s(n+1)/2 + 1)
∏(n−1)/2

i=1 siti − 1 if n odd.
(37)

Remark VI.6. In this work we assumed that all matrices have
size N × N for simplicity. However, this assumption is not
necessary in the results presented here. When we have matrices
with different dimensions to multiply, splitting each matrix in
a different way would be more beneficial. For example, when
we multiply matrices A,B with dimensions N×N and N×2,
we can divide A into t× s grid and divide B into s× 1 grid.

VII. DISCUSSION AND FUTURE WORK

We provide a novel MatDot code construction for coded
matrix multiplication with a recovery threshold of 2m−1. Cur-
rently, this is the best known recovery threshold for storage-
constrained coded matrix multiplication. We also present a
systematic MatDot construction achieving the same recovery
threshold. Note that a recent converse of Yu et al. [45] shows
that the recovery threshold of MatDot codes is optimal for the
chosen partitioning of the matrices under the given storage
constraints when using linear codes. In this paper, we also
provide full proofs of results that appeared in [1], including
PolyDot constructions which allow a trade-off between com-
munication cost and recovery threshold. Finally, we provide
code constructions for multiplying more than two matrices.

We conclude with a discussion that uses an important open
problem, namely coded tensor products, to demonstrate how
focusing exclusively on recovery thresholds, and ignoring
encoding/decoding costs in coded computing problems, can
provide impractical solutions.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 19

TABLE I
COMPARISON OF DIFFERENT STRATEGIES FOR MULTIPLYING n MATRICES USING DIFFERENT SUBSTITUTIONS IN THE GENERAL POLYDOT FRAMEWORK

WHEN n IS EVEN.

n-matrix codes Generalized n-matrix codes Alternate Substitution

Substitution z1 = z2 = x, z3 = z4 =
xm, · · · , zn−1 = xn =

xmn/2−1
, zn+1 = xmn/2

z1 = xsn/2tn/2−1
, z2 =

x, x3 = xs, · · · , zn =

xsn/2−1tn/2−1
, zn+1 =

xsn/2tn/2

z1 = x, z2 = xt, z3 =
xst, · · · , zn+1 =

xsn/2tn/2

Recovery Threshold 2mn/2 − 1 s
n
2 t

n
2
+1 + s

n
2 t

n
2
−1 − 1 s

n
2 t

n
2
+1 + s

n
2 t

n
2 − t

A. When is coded computing useful? An example of coded
tensor products

Consider the problem of computing the tensor product of
two N × N square matrices A and B, i.e., A ⊗ B, using
P workers in the system defined in Section II. As usual, our
goal is to implement this in a parallelized fashion with a low
recovery threshold. For this problem, we show (below) that an
application of Polynomial codes [6] yields a recovery threshold
of m2. However, we also show that this makes the decoding
complexity at the fusion node comparable to (or sometimes
even larger than) the overall per-worker computational com-
plexity. This can be undesirable when coded computing is
performed to address straggling because now the fusion node
itself becomes the bottleneck. This leads to two interesting
questions for future work:
• Is there an application where the high decoding cost at

the fusion node can be justified?
• Are there alternative techniques of coding tensor products

with reduced decoding overhead?
To be concrete, the Polynomial coded tensor-product strat-

egy is as follows. We split the two matrices A and B as
follows:

A =
[
A0 A1 . . . Am−1

]
,B =

[
B0 B1 . . . Bm−1

]
.

Note that,

A⊗B = [A0 ⊗B . . . Am−1 ⊗B]

= [A0 ⊗B0 A0 ⊗B1 · · ·A0 ⊗Bm−1 · · ·
Am−1 ⊗B0 · · · Am−1 ⊗Bm−1]

and thus it suffices to compute all terms of the form Ai⊗Bj

for i, j = 0, · · · ,m− 1 to obtain A⊗B.
Let us define pA(x) =

∑m−1
i=0 Aix

i and pB(x) =∑m−1
j=0 Bjx

mj respectively. Let us also choose distinct scalars
x1, x2, . . . , xP for each worker. Each worker receives the
evaluation of pA(x) and pB(x) at distinct scalar values, i.e.,
at x = x1, x2, . . . , xP respectively. The worker then computes
the tensor product pA(x) ⊗ pB(x) that we will denote as
pA⊗B(x) at a distinct scalar value of x. Thus, worker r
computes pA(xr)⊗ pB(xr) for r = 1, 2, . . . , P .

Observe that pA⊗B(x) is a polynomial of degree m2 − 1:

pA⊗B(x) = pA(x)⊗ pB(x) =
(m−1∑

i=0

Aix
i
)
⊗
(m−1∑

j=0

Bjx
mj
)

=
m−1∑
i=0

m−1∑
j=0

(Ai ⊗Bj)x
i+mj .

The coefficient of xi+mj in pA⊗B(x) is in fact Ai ⊗ Bj ,
for 0 ≤ i, j ≤ m − 1. Thus, if the fusion node is able to
interpolate all the coefficients of the polynomial pA⊗B(x),
it can successfully recover all the matrices in the set {Ai ⊗
Bj , i, j = 0, 1, . . . ,m − 1}, and therefore A ⊗ B. Because
the polynomial is of degree m2 − 1, the fusion node needs
m2 evaluations of the polynomial at distinct values. Worker
node r produces an evaluation of the polynomial pA⊗B(x) at
x = xr. The fusion node is thus required to wait for any m2

successful worker nodes, and then it can interpolate pA⊗B(x).
The computational complexity of the fusion node is

Θ
(

N4

m2m
2 log2(m2)

)
= Θ

(
N4 log2(m)

)
, which is compara-

ble to the complexity of the entire tensor product, i.e., Θ(N4).
From the viewpoint of applications, it is typically necessary to
have computational complexity at the fusion node to be smaller
than the computational complexity at each worker node.

To determine whether coded computing adds significant
overhead, we can conceptually classify the computations, that
are known to allow for coding in existing literature, into three
different categories as follows:

• Both encoding and decoding complexity is negligible
compared to the per-node computational complexity: ex-
amples include convolutions [42] and matrix multiplica-
tions in the regime where the number of nodes P is much
smaller than the dimensions of the vectors being con-
volved or the matrices being multiplied. For computations
in this category, both encoding and decoding can be done
online because they both add negligible overhead.

• Only decoding complexity is negligible compared to
the per-node computational complexity: examples include
coded matrix-vector products in the regime where the
number of nodes P is much smaller than the dimensions
of the matrix. For such computations, the encoding cost
can be amortized in applications where the encoding is
performed only once, e.g., the same matrix is multiplied
with different vectors across multiple iterations, even
though decoding can be performed online with negligible
overhead. An example of such an application is (non-
adaptive) inference in machine learning, where the model
is fixed and its encoding cost can be amortized over
multiple instances of inference [10].

• The decoding complexity is comparable to the per-node
computational complexity: examples may include tensor
products discussed above, where decoding online would
add a significant overhead to the computation. For tensor
products in particular, the encoding can be done online
as the encoding complexity is smaller than the per-node

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 20

computational complexity. However, finding an applica-
tion where the high decoding cost can be justified is an
interesting question.

B. Fully-Decentralized Implementations

It will also be useful to obtain fully decentralized real-
izations of coded computing techniques with no centralized
master node. This often avoids a “single source of failure,”
particularly if the encoder or decoder are themselves prone
to straggling or errors. We refer interested readers to [13],
[32], [46], [62]–[64] for works on completely decentralized
implementations.

APPENDIX A
PROOF OF THEOREM VI.1

We will first prove Lemmas A.1 and A.2 which provide
properties of coefficients of products of polynomials. Using
Lemmas A.1 and A.2, we show Claims A.1 and A.2 which
demonstrate that the product C is contained in a set of
coefficients of the matrix polynomial Π

dn2 e
i=1 pCi

(xm
i−1

), where
pCi

(x) is as defined in (30), for i ∈ {1, · · · , dn/2e}. Finally,
we provide a proof of Theorem VI.1 using Claims A.1 and
A.2.

Lemma A.1. If p(x) =
∑2di−1−2

j=0 pjx
j is a polynomial with

degree 2di−1 − 2 for some i ≥ 2, and q(x) =
∑2d−2

j=0 qjx
j is

any other polynomial with degree 2d−2, then pdi−1−1qd−1 is
the coefficient of xd

i−1 in p(x)q(xd
i−1

).

Proof. We first expand out p(x) and q(x) as following:

p(x) =

di−1−2∑
j=0

pjx
j

︸ ︷︷ ︸
p̃1(x)

+pdi−1−1x
di−1−1 +

2di−1−2∑
j=di−1

pjx
j

︸ ︷︷ ︸
p̃2(x)

(38)

q(x) =
d−2∑
j=0

qjx
j

︸ ︷︷ ︸
q̃1(x)

+qd−1x
d−1 +

2d−2∑
j=d

qjx
j

︸ ︷︷ ︸
q̃2(x)

(39)

We show that the term of degree di − 1 in p(x)q(xd
i−1

) is
only generated by multiplication of the term of degree di−1−1
in p(x) and the term of degree di−1(d − 1) in q(xd

i−1

). For
this purpose, we consider following terms:

1. Consider the multiplication of two lowest degree terms
in p̃1(x) and q̃2(xd

i−1

) of equations (38) and (39). That
is, qdixd

i

p0 = p0qdixd
i

which has higher degree in
comparison to xd

i−1. Consequently, the degree of any
term in the multiplication of p̃1(x) and q̃2(xd

i−1

) will be
strictly greater than di − 1.

2. Consider the multiplication of two highest degree of
terms in p̃2(x) and q̃1(xd

i−1

) of equations (38) and (39),

qd−2x
di−1(d−2)p2di−1−2x

2di−1−2 = qd−2p2di−1−2x
di−2

is less than di−1. Consequently, the degree of any term in
the multiplication of p̃2(x) and q̃1(xd

i−1

) will be strictly
less than di − 1.

3. Since the degree of any term in the multiplication of
p̃2(x) and q̃1(xd

i−1

) is strictly less than di − 1, and any
term in p̃1(x) has degree less than the degree of any term
in p̃2(x), we conclude that any term in the multiplication
of p̃1(x) and q̃1(xd

i−1

) has degree strictly less than di−1.
4. Since the degree of any term in the multiplication of
p̃1(x) and q̃2(xd

i−1

) is strictly greater than di − 1, and
any term in p̃2(x) has degree larger than the degree
of any term in p̃1(x), we conclude that any term in
p̃2(x)q̃2(xd

i−1

) has degree strictly greater than di − 1
which completes the proof.

�

Lemma A.2. If p(x) =
∑2di−1−2

j=0 pjx
j is a polynomial with

degree 2di−1−2 for some i ≥ 2, and q(x) =
∑d−1

j=0 qjx
j is any

other polynomial with degree d− 1, then, for 0 ≤ j ≤ d− 1,
pdi−1−1qj are the coefficients of x(j+1)di−1−1 in p(x)q(xd

i−1

).

Proof. First, we expand out p(x) as in (38), and expand q(x)
as follows:

q(x) =

j−1∑
k=0

qkx
k

︸ ︷︷ ︸
q̃1(x)

+qjx
j +

d−1∑
k=j+1

qjx
j

︸ ︷︷ ︸
q̃2(x)

(40)

In order to prove Lemma A.2, we show that x(j+1)di−1−1

term in p(x)q(xd
i−1

) is produced solely by the multiplication
of the term pdi−1−1x

di−1−1 in p(x) with the term qjx
j(di−1)

in q(xd
i−1

). First, it is clear that the product of the term
pdi−1−1x

di−1−1 in p(x) with the term qjx
j(di−1) in q(xd

i−1

)
has degree (j + 1)di−1 − 1. Thus, to complete the proof, we
show that no other terms in p(x) produce x(j+1)di−1−1 term
when multiplied with any term in q(xd

i−1

). To do so, we
consider the following terms:

1. Consider the multiplication of two lowest degree terms in
p̃1(x) and q̃2(xd

i−1

) as defined in (38) and (40). That is,
p0qj+1x

(j+1)di−1

which has higher degree in comparison
to x(j+1)di−1−1. Consequently, the degree of any term in
the multiplication of p̃1(x) and q̃2(xd

i−1

) will be strictly
greater than (j + 1)di−1 − 1.

2. Consider the multiplication of two highest degree of
terms in p̃2(x) and q̃1(xd

i−1

), the product

qj−1x
(j−1)di−1

p2di−2x
2di−1−2 = qj−1p2di−2x

(j+1)di−1−2

has degree less than (j + 1)di−1 − 1. Consequently, the
degree of any term in the multiplication of p̃2(x) and
q̃1(xd

i−1

) will be strictly less than (j + 1)di−1 − 1.
3. Since the degree of any term in the multiplication of
p̃2(x) and q̃1(xd

i−1

) is strictly less than (j+ 1)di−1− 1,
and the degree of any term in p̃1(x) is less than the degree
of any term in p̃2(x), we conclude that any term in the
multiplication of p̃1(x) and q̃1(xd

i−1

) has degree strictly
less than (j + 1)di−1 − 1.

4. Since the degree of any term in the multiplication of
p̃1(x) and q̃2(xd

i−1

) is strictly greater than (j+1)di−1−1,
and the degree of any term in p̃2(x) is larger than the
degree of any term in p̃1(x), we conclude that any

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 21

term in p̃2(x)q̃2(xd
i−1

) has degree strictly greater than
(j + 1)di−1 − 1 which completes the proof.

�

Now, we are able to state the following claims.

Claim A.1. The coefficient of xm
bn

2
c−1 in

∏bn2 c
i=1 pC(i)(xm

i−1

)

is
∏bn2 c

i=1 A(i)B(i), where, for i ∈ {1, · · · , bn2 c}, pC(i)(x) is as
defined in (30).

Proof. We prove the claim iteratively. Since pC(1)(x) has
degree 2mi−1−2 with i = 2, and pC(2)(x) has degree 2m−2,
we have, by Lemma A.1, that the coefficient of xm

2−1 in
pC(1)(x)pC(2)(xm) is the product of the coefficient of xm−1 in
pC(1)(x) and the coefficient of xm

2−m in pC(2)(xm). However,
from Remark VI.1, we already know that A(1)B(1) is the coef-
ficient of xm−1 in pC(1)(x) and that A(2)B(2) is the coefficient
of xm

2−m in pC(2)(xm). Therefore, A(1)B(1)A(2)B(2) is the
coefficient of xm

2−1 in pC(1)(x)pC(2)(xm).
Similarly, consider the two polynomials p′(x) =

pC(1)(x)pC(2)(xm) and pC(3)(x). Notice that p′(x) has de-
gree 2mi−1 − 2 with i = 3, and pC(3)(x) has degree
2m − 2, therefore, from Lemma A.1, the coefficient of
xm

3−1 in p′(x)pC(3)(xm
2

) is the product of the coeffi-
cient of xm

2−1 in p′(x) and the coefficient of xm
3−m2

in
pC(3)(xm

2

). However, from the previous step, we already
know that A(1)B(1)A(2)B(2) is the coefficient of xm

2−1

in p′(x). In addition, from Remark VI.1, we already know
that A(3)B(3) is the coefficient of xm

3−m2

in pC(3)(xm
2

).
Therefore, A(1)B(1)A(2)B(2)A(3)B(3) is the coefficient of
xm

3−1 in p′(x)pC(3)(xm
2

) = pC(1)(x)pC(2)(xm)pC(3)(xm
2

).
Repeating the same procedure, we conclude that∏bn2 c
i=1 A(i)B(i) is the coefficient of xm

bn
2
c−1 in∏bn2 c

i=1 pC(i)(xm
i−1

). �

Claim A.2. If n ≥ 3 and odd, then, for any j ∈ {1, · · · ,m},(∏bn2 c
i=1 A(i)B(i)

)
A

(dn2 e)
j is the coefficient of xjm

bn
2
c−1 in∏dn2 e

i=1 pC(i)(xm
i−1

), where, for i ∈ {1, · · · , dn2 e}, pC(i)(x)
is as defined in (30).

Proof. First, notice that since the degree of pC(i)(x) is 2m−2

for all i ∈ {1, · · · , bn2 c}, the degree of Π
bn2 c
i=1 pC(i)(xm

i−1

) is
(2m − 2)

∑bn2 c
i=1 m

i−1 = 2mb
n
2 c − 2. In addition, the matrix

polynomial p
C(dn

2
e)(x) has degree m − 1. Therefore, from

Lemma A.2, for 1 ≤ j ≤ m, the product of the coeffi-
cient of xm

bn
2
c−1 in Π

bn2 c
i=1 pC(i)(xm

i−1

) and the coefficient
of xj−1 in p

C(dn
2
e)(x) is the coefficient of xjm

bn
2
c−1 in

Π
dn2 e
i=1 pC(i)(xm

i−1

). However, we already know, from Claim
A.1, that the coefficient of xm

bn
2
c−1 in Π

bn2 c
i=1 pC(i)(xm

i−1

) is∏bn2 c
i=1 A(i)B(i), also, by definition, the coefficient of xj−1 in

p
C(dn

2
e)(x) is A

(dn2 e)
j . Thus,

(∏bn2 c
i=1 A(i)B(i)

)
A

(dn2 e)
j is the

coefficient of xjm
bn

2
c−1 in

∏dn2 e
i=1 pC(i)(xm

i−1

). �

Now, we prove Theorem VI.1.

Proof of Theorem VI.1. To prove the theorem, it suffices to
show that for Construction VI.1, the fusion node is able to

construct C from any 2mn/2 − 1 worker nodes if n is even
or from any (m+ 1)mb

n
2 c − 1 if n is odd.

First, for the case in which n is even, we need to com-
pute C =

∏n
2
i=1 A

(i)B(i). Notice, from Claim A.1, that
the desired matrix product C is the coefficient of xm

n/2−1

in
∏n

2
i=1 pC(i)(xm

i−1

). Thus, it is sufficient to compute this
coefficient at the fusion node as the computation output
for successful computation. Now, because the polynomial∏n

2
i=1 pC(i)(xm

i−1

) has degree 2mn/2 − 2, evaluation of
the polynomial at any 2mn/2 − 1 distinct points is suf-
ficient to compute all of the coefficients of powers of x

in
∏n

2
i=1 pC(i)(xm

i−1

) using polynomial interpolation. This
includes C, the coefficient of xm

n/2−1.
Now, for the case in which n is odd, we need to com-

pute C =
(∏bn2 c

i=1 A(i)B(i)
)
A(dn2 e). First, notice that C

is a concatenation of the matrices
(∏bn2 c

i=1 A(i)B(i)
)
A

(dn2 e)
j ,

j ∈ {1, · · · ,m} as follows:

C =

bn2 c∏
i=1

A(i)B(i)

A(dn2 e) =

bn2 c∏
i=1

A(i)B(i)

A
(dn2 e)
1

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
bn2 c∏

i=1

A(i)B(i)

A
(dn2 e)
m

 .
(41)

From Claim A.2, for all j ∈ {1, · · · ,m}, the product(∏bn2 c
i=1 A(i)B(i)

)
A

(dn2 e)
j is the coefficient of xjm

bn
2
c−1 in∏dn2 e

i=1 pC(i)(xm
i−1

). Thus, it is sufficient to compute these
coefficients, for all j ∈ {1, · · · ,m}, at the fusion node as the
computation output for successful computation. Now, because
the polynomial

∏dn2 e
i=1 pC(i)(xm

i−1

) has degree mb
n
2 c(m+1)−

2, evaluation of the polynomial at any mb
n
2 c(m + 1) − 1

distinct points is sufficient to compute all of the coefficients
of powers of x in

∏dn2 e
i=1 pC(i)(xm

i−1

) using polynomial in-
terpolation. This includes the coefficients of xjm

bn
2
c−1, i.e.(∏bn2 c

i=1 A(i)B(i)
)
A

(dn2 e)
j , for all j ∈ {1, · · · ,m}. �

APPENDIX B
PROOF OF THEOREM VI.2

Proof of Theorem VI.2. Here, we only derive the proof for the
case of even n. The proof for odd n can be derived in a similar
manner with minor differences in the expressions. What we
have to show to complete the proof are as follows:

Claim B.1. The maximum degree of pC(x) is s
n
2 t

n
2 +1 +

s
n
2 t

n
2−1 − 1.

Claim B.2. Ci,j is the coefficient of xd(n,i,j) for i, j =
1, · · · , t where

d(n, i, j) = s−1+s(t−1)+st(s−1)+· · ·+i·sn
2 t

n
2−1+j·sn

2 t
n
2 .

(42)

Claim B.3. xd(n,i,j) term is obtained only when: i) i1 = i, ii)
j1 = i2, · · · , jn−1 = in, iii) jn = j.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 22

Let us first rewrite pC(x) as follows:

pC(x) =∑
i1=1···t,··· ,in=1···s
j1=1···s,··· ,jn=1···t

A
(1)
i1,j1

B
(1)
i2,j2
· · ·A(n/2)

in−1,jn−1
B

(n/2)
in,jn

x(s−1+j1−i2)+···+i1s
n
2 t

n
2
−1+jns

n
2 t

n
2 .
(43)

Note that we get the maximum degree when i1 = t−1, s−
1 + j1 − i2 = 2s− 2, · · · , jn = t− 1. Hence,

max deg of pC(x) = 2s− 2 + s(2t− 2) + · · ·+
sn/2−1tn/2−1(2s− 2) + (t− 1)sn/2tn/2−1

+ (t− 1)sn/2tn/2

= sn/2tn/2−1 + sn/2tn/2+1 − 2

= k(n, s, t)− 1.

This shows Claim B.1. To show Claim B.2, note that Ci,j =∑
j1,j2,··· ,jn−1

A
(1)
i,j1

B
(1)
j1,j2

A
(2)
j2,j3

B
(2)
j3,j4
· · ·A(n/2)

jn−2,jn−1
B

(n/2)
jn−1,j

.
Among the terms in the sum in (43), Ci,j is the sum of
terms that are from the i-th row of the first matrix A(1)

and the j-th column on the last matrix B(n/2), and that
have the second index and the first index of two adjacent
matrices matching, e.g., j1 = i2 and j2 = i3. By setting these
i1, · · · , in, j1, · · · , jn values, we obtain (42).

Lastly, we want to show Claim B.3. Let d be the degree of
x in (43)

d = (s− 1 + j1 − i2) + · · ·+ s
n
2−1t

n
2−1(s− 1 + jn−1 − in)

+ i1s
n
2 t

n
2−1 + jns

n
2 t

n
2 , (44)

which can be rewritten as:

d = d0+d1 ·s+d2 ·st+· · ·+dn−1 ·s
n
2 t

n
2−1+dn ·s

n
2 t

n
2 , (45)

where

d0 = d mod s

d1 = (d− d0)/s mod t

d2 = (d− d0 − d1 · s)/st mod s

...

dn = (d− d0 − d1 · t− · · · − dn−1 · sn/2tn/2−1)/sn/2tn/2.

We can think of this representation as a mixed radix system D
with n+2 digits, (d0, d1, · · · , dn+1), which has an alternating
radix (t, s, t, s, · · · , t, s). By substituting d0 = t − 1, d1 =
s − 1, · · · , dn+1 = s − 1, we can confirm that the biggest
number we can represent with (45) is sn+1tn+1 − 1 >
k(n, s, t)−1. Also, from its construction, any number between
0 and sn+1tn+1 − 1 can be uniquely determined by the pair
(d0, d1, · · · , dn+1) (for more explanation, see Theorem 1 in
[65]). Hence, any 0 ≤ d ≤ k(n, s, t) − 1 can be uniquely
represented with (d0, d1, · · · , dn+1).

Now, we want to show that d = d(n, i, j) only when d0 =
s−1, d1 = t−1, · · · , dn−3 = t−1, dn−2 = s−1 and dn−1 =
i, dn = j. It is easy to see that d0 = d(n, i, j) mod s = s−1,

and similarly d1 = (d(n, i, j) − d0) mod t = t − 1 and so
on. Since i1 varies only from 0 to t− 1,

dn−1 = (i · sn
2 t

n
2−1 + j · sn

2 t
n
2)/sn/2tn/2−1 mod t

= (i+ jt) mod t

= i.

Finally, dn = (j · sn
2 t

n
2)/s

n
2 t

n
2 = j. As there is only one

unique representation of any d with a tuple (d0, d1, · · · , dn),
by comparing (44) and (45), we can conclude that j1 =
i2, · · · , jn−1 = in, and i1 = i, jn = j. This completes the
proof.

�

ACKNOWLEDGMENTS

We thank Mayank Bakshi and Yaoqing Yang for help-
ful discussions. We acknowledge support from NSF CNS-
1702694, CCF-1553248, CCF-1464336, and CCF-1350314.
This work was also supported in part by Systems on Nanoscale
Information fabriCs (SONIC), one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA.

REFERENCES

[1] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multi-
plication,” in IEEE Communication, Control, and Computing (Allerton),
Oct 2017, pp. 1264–1270.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[4] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in IEEE Communication, Control, and Computing (Allerton), 2015, pp.
964–971.

[5] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” in Machine Learning Systems Workshop, Advances in Neural
Information Processing Systems (NIPS), 2016.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplication,”
in Advances In Neural Information Processing Systems (NIPS), 2017,
pp. 4403–4413.

[7] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off
in content download from coded distributed storage systems,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 989–
997, 2014.

[8] D. Wang, G. Joshi, and G. Wornell, “Using Straggler Replication to Re-
duce Latency in Large-Scale Parallel Computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, 2015.

[9] D. Wang, G. Joshi, and G. Wornell, “Efficient Task Replication for
Fast Response Times in Parallel Computation,” ACM SIGMETRICS
Performance Evaluation Review, vol. 42, no. 1, pp. 599–600, 2014.

[10] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” in
Advances In Neural Information Processing Systems (NIPS), 2016, pp.
2092–2100.

[11] N. Azian-Ruhi, A. S. Avestimehr, F. Lahouti, and B. Hassibi,
“Consensus-based distributed computing,” in Information Theory and
Applications Workshop, 2017.

[12] Y. Yang, P. Grover, and S. Kar, “Fault-tolerant Distributed Logistic
Regression Using Unreliable Components,” in IEEE Communication,
Control, and Computing (Allerton), 2016, pp. 940–947.

[13] Y. Yang, P. Grover, and S. Kar, “Computing Linear Transformations
With Unreliable Components,” IEEE Transactions on Information The-
ory, vol. 63, no. 6, pp. 3729–3756, 2017.

[14] Y. Yang, P. Grover, and S. Kar, “Fault-tolerant parallel linear filtering
using compressive sensing,” in IEEE International Symposium on Turbo
Codes and Iterative Information Processing (ISTC), 2016, pp. 201–205.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 23

[15] S. Li, M. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A Fundamen-
tal Tradeoff Between Computation and Communication in Distributed
Computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109–128, 2018.

[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A Unified Coding
Framework for Distributed Computing with Straggling Servers,” in
Globecom Workshops (GC Wkshps), 2016, pp. 1–6.

[17] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr,
“Coded TeraSort,” in IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2017, pp. 389–398.

[18] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded Distributed
Computing: Straggling Servers and Multistage Dataflows,” in IEEE
Communication, Control, and Computing (Allerton), 2016, pp. 164–171.

[19] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in International
Conference on Machine Learning (ICML), 2017, pp. 3368–3376.

[20] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from
cyclic mds codes and expander graphs,” in International Conference on
Machine Learning (ICML), 2018, pp. 4302–4310.

[21] M. Aktas, P. Peng, and E. Soljanin, “Effective Straggler Mitigation:
Which Clones Should Attack and When?” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 45, no. 2, pp. 12–14, 2017.

[22] M. Aktas, P. Peng, and E. Soljanin, “Straggler Mitigation by Delayed
Relaunch of Tasks,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 45, no. 2, pp. 224–231, 2018.

[23] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against
processing delays for virtualized cloud-based channel decoding,” IEEE
Transactions on Communications, vol. 67, no. 1, pp. 28–38, 2019.

[24] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” in IEEE International Sym-
posium on Information Theory (ISIT), 2017, pp. 2408–2412.

[25] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using reed-solomon codes,” in IEEE International
Symposium on Information Theory (ISIT), 2018, pp. 2027–2031.

[26] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in IEEE International Symposium on Information Theory (ISIT), 2017,
pp. 2890–2894.

[27] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler Mitigation in
Distributed Optimization through Data Encoding,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 5440–5448.

[28] Y. Yang, P. Grover, and S. Kar, “Coded Distributed Computing for In-
verse Problems,” in Advances in Neural Information Processing Systems
(NIPS), 2017, pp. 709–719.

[29] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation
schemes over wireless networks,” in IEEE Communication, Control, and
Computing (Allerton), 2017, pp. 1256–1263.

[30] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in IEEE International Symposium on
Information Theory (ISIT), 2017, pp. 2413–2417.

[31] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier
transform,” in IEEE Communication, Control, and Computing (Allerton),
2017, pp. 494–501.

[32] H. Jeong, T. M. Low, and P. Grover, “Masterless Coded Computing:
A Fully-Distributed Coded FFT Algorithm,” in IEEE Communication,
Control, and Computing (Allerton), 2018, pp. 887–894.

[33] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-Proofing
Massive-Scale Distributed Matrix Multiplication with D-Dimensional
Product Codes,” in IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 1993–1997.

[34] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded ma-
trix multiplication,” in IEEE Communication, Control, and Computing
(Allerton), 2017, pp. 1271–1278.

[35] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient distributed
matrix-vector multiplication using rateless fountain codes,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 8192–8196.

[36] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
in International Conference on Machine Learning (ICML), 2018, pp.
5139–5147.

[37] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded
linear transform,” arXiv preprint arXiv: 1804.09791, 2018.

[38] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-Diagonal and
LT Codes for Distributed Computing With Straggling Servers,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 1739–1753, 2019.

[39] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in International Conference on Machine Learning (ICML),
2018, pp. 5606–5615.

[40] K. H. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. 100, no. 6,
pp. 518–528, 1984.

[41] T. Herault and Y. Robert, Fault-Tolerance Techniques for High Perfor-
mance Computing. Springer, 2015.

[42] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in IEEE International
Symposium on Information Theory (ISIT), 2017, pp. 2403–2407.

[43] V. Cadambe and P. Grover, “Codes for Distributed Computing: A
Tutorial,” IEEE Information Theory Society Newsletter, vol. 67, no. 4,
pp. 3–15, Dec. 2017.

[44] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded ma-
trix multiplication,” in IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 2418–2422.

[45] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal cod-
ing,” in IEEE International Symposium on Information Theory (ISIT),
2018, pp. 2022–2026.

[46] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A Unified Coded
Deep Neural Network Training Strategy based on Generalized PolyDot
codes,” in IEEE International Symposium on Information Theory (ISIT),
2018, pp. 1585–1589.

[47] V. Strassen, “Gaussian elimination is not optimal,” Numerische mathe-
matik, vol. 13, no. 4, pp. 354–356, 1969.

[48] H. T. Kung, “Fast evaluation and interpolation,” Carnegie Mellon
University, Tech. Rep., 1973.

[49] K. S. Kedlaya and C. Umans, “Fast polynomial factorization and
modular composition,” SIAM Journal on Computing, vol. 40, no. 6, pp.
1767–1802, 2011.

[50] I. Gohberg and V. Olshevsky, “The fast generalized Parker-Traub algo-
rithm for inversion of Vandermonde and related matrices,” Journal of
Complexity, vol. 13, no. 2, pp. 208–234, 1997.

[51] A. Bjorck and V. Pereyra, “Solution of Vandermonde systems of
equations,” Mathematics of Computation, vol. 24, no. 112, pp. 893–903,
1970.

[52] I. Kaufman, “The inversion of the Vandermonde matrix and transfor-
mation to the Jordan canonical form,” IEEE Transactions on Automatic
Control, vol. 14, no. 6, pp. 774–777, 1969.

[53] F. Parker, “Inverses of Vandermonde matrices,” The American Mathe-
matical Monthly, vol. 71, no. 4, pp. 410–411, 1964.

[54] J. F. Traub, “Associated polynomials and uniform methods for the
solution of linear problems,” Siam Review, vol. 8, no. 3, pp. 277–301,
1966.

[55] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, no. 4, pp. 354–356, 1969.

[56] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen,
T. Roos, and P. Grover, “An Application of Storage-Optimal MatDot
Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Esti-
mation,” in IEEE Big Data (Short Paper), 2018.

[57] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[58] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008.

[59] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance
using smart speculative execution strategy,” IEEE Transactions on
Computers, vol. 63, no. 4, pp. 954–967, 2014.

[60] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: Trimming Stragglers in Approximation Analytics,”
in USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), 2014, pp. 289–302.

[61] F. Haddadpour, Y. Yang, V. Cadambe, and P. Grover, “Cross-Iteration
Coded Computing,” in IEEE Communication, Control, and Computing
(Allerton), 2018, pp. 196–203.

[62] S. Dutta, Z. Bai, T. M. Low, and P. Grover, “CodeNet: Training Large
Scale Neural Networks in Presence of Soft-Errors,” Workshop on Coding
Theory for Large-Scale Machine Learning, International Conference on
Machine Learning (ICML), 2019.

[63] Y. Yang, P. Grover, and S. Kar, “Can a noisy encoder be used to com-
municate reliably?” in IEEE Communication, Control, and Computing
(Allerton), 2014, pp. 659–666.

[64] M. G. Taylor, “Reliable information storage in memories designed from
unreliable components,” Bell System Technical Journal, vol. 47, no. 10,
pp. 2299–2337, 1968.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2929328, IEEE
Transactions on Information Theory

IT-18-0324.R2 24

[65] A. S. Fraenkel, “Systems of numeration,” The American Mathematical
Monthly, vol. 92, no. 2, pp. 105–114, 1985.

Sanghamitra Dutta [S’15] received her B.Tech in electronics and electrical
communication engineering from the Indian Institute of Technology, Kharag-
pur, India, in 2015.

She is a doctoral candidate in the Department of Electrical and Computer
Engineering at Carnegie Mellon University, PA, USA. She was a summer
research intern at the IBM TJ Watson Research Center from May 2017
to August 2017. Her main contributions to science are towards developing
novel erasure-codes for reliable computing in presence of faults, stragglers
and errors, and deriving fundamental information-theoretic limits on their
performance. She is interested in novel algorithmic solutions for reliable and
trustworthy machine learning, that address computational challenges of large-
scale machine learning as well as the emerging trust issues concerning fairness
and privacy.

Ms. Dutta is a recipient of the 2019 Axel Berny Presidential Graduate
Fellowship, 2017 Tan Endowed Graduate Fellowship, 2016 Prabhu and
Poonam Goel Graduate Fellowship and the 2014 HONDA Young Engineer
and Scientist Award.

Mohammad Fahim [S’17] received his B.Sc. degree (Hons.) and M.Sc.
degree in electrical engineering from Alexandria University, Alexandria,
Egypt, in 2012 and 2015, respectively.

He is a Graduate Research Assistant at the School of Electrical Engineering
and Computer Science, Pennsylvania State University, PA, USA since August
2015. He was a Research Assistant at the American University in Cairo
between 2012 and 2015, and a Teaching Assistant at Alexandria University,
Egypt between 2013 and 2015. He did an internship at Texas A&M University
at Qatar on summer 2013. His previous research interests include space
time codes in wireless communications and network coding. He is currently
interested in providing secure, communication-efficient and fault-tolerant
coding techniques in large scale distributed computing systems using tools
from information theory and coding theory.

Farzin Haddadpour received the B.Sc. degree in electrical engineering from
University of Tabriz, Tabriz, Iran, in 2010 and his M.Sc. degree from Sharif
University of Technology, Tehran, Iran in 2012, respectively. He is currently
working towards the Ph.D. degree in the Department of Electrical Engineering
and Computer Science, Pennsylvania State University, State College, PA. He
was awarded the Trust scholarship from the Cambridge University in 2014.
His research interests include distributed optimization for machine learning
problems and coding and information theory.

Haewon Jeong [M.S. CMU 16, B.S. KAIST 14] is a PhD student at Carnegie
Mellon University. Her main contributions to science are towards solving
a 60-year-old problem that was raised by Von Neumann: can we reliably
compute in the presence of noise? By connecting classical theory of error
correcting codes and large-scale parallel computing, she has developed several
computing strategies using unreliable processors (coded computing), including
her recent work on an optimal matrix multiplication strategy under uncertainty
in computing. She is also interested in green communication, and came up
with an idea of energy-adaptive codes. She received 2014 NSDI Community
Award and 2014 Samsung HumanTech Paper Award.

Viveck Cadambe [M’06] received his Ph.D in electrical and computer
engineering from the University of California, Irvine, CA, USA in 2011.
He received his B.Tech and M.Tech in electrical engineering from the Indian
Institute of Technology Madras, Chennai, India, in 2006.

He is an Assistant Professor in the Department of Electrical Engineering
at Pennsylvania State University, University Park, PA USA. Between 2011
and 2014, he was a postdoctoral researcher, jointly with the Electrical
and Computer Engineering (ECE) department at Boston University, and the
Research Laboratory of Electronics (RLE) at the Massachusetts Institute
of Technology (MIT). His research uses tools of information theory, error
correcting codes and theory of distributed systems to understand fundamental
engineering trade-offs in data communication, storage and computing systems.

Dr. Cadambe is a recipient of the 2009 IEEE Information Theory Society
Best Paper Award, 2011 CPCC Best Dissertation Award from University
of California, Irvine, the 2014 IEEE International Symposium on Network
Computing and Applications (NCA) Best Paper Award, the 2015 NSF CRII
Award, the 2016 NSF Career Award and a finalist for the 2016 Bell Labs
Prize. He has served as an Associate Editor for the IEEE Transactions on
Wireless Communications since December 2014.

Pulkit Grover [Ph.D. UC Berkeley’10, SM’16] is an Associate Professor at
CMU in Electrical and Computer Engineering and Carnegie Mellon Neuro-
sciences Institute. His main contributions to science are towards developing
and experimentally validating a new theory of information (fundamental
limits, practical designs) for optimizing designs of artificial, as well as
understanding designs of biological, communication and computing systems.
This includes developing formal mathematical tools for estimating flows of
information and minimizing energy in computing. Pulkit received the 2010
best student paper award at IEEE Conference on Decision and Control; the
2011 Eli Jury Dissertation Award from UC Berkeley; the 2012 IEEE Leonard
G. Abraham journal paper award; a 2014 NSF CAREER award; a 2015
Google Research Award; and the 2019 Best Tutorial Paper Award from IEEE
ComSoc. In 2018, he received the inaugural award from the Chuck Noll
Foundation for Brain Injury Research and the Joel and Ruth Spira Excellence
in Teaching Award.

