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ABSTRACT

The Epoch of Reionization (EoR) is an uncharted era in our Universe’s history during which the birth
of the first stars and galaxies led to the ionization of neutral hydrogen in the intergalactic medium.
There are many experiments investigating the EoR by tracing the 21 cm line of neutral hydrogen.
Because this signal is very faint and difficult to isolate, it is crucial to develop analysis techniques
that maximize sensitivity and suppress contaminants in data. It is also imperative to understand
the trade-offs between different analysis methods and their effects on power spectrum estimates.
Specifically, with a statistical power spectrum detection in HERA’s foreseeable future, it has become
increasingly important to understand how certain analysis choices can lead to the loss of the EoR
signal. In this paper, we focus on signal loss associated with power spectrum estimation. We describe
the origin of this loss using both toy models and data taken by the 64-element configuration of the
Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). In particular, we
highlight how detailed investigations of signal loss have led to a revised, higher 21 cm power spectrum
upper limit from PAPER-64. Additionally, we summarize errors associated with power spectrum error
estimation that were previously unaccounted for. We focus on a subset of PAPER-64 data in this
paper; revised power spectrum limits from the PAPER experiment are presented in a forthcoming
paper by Kolopanis et al. (in prep.) and supersede results from previously published PAPER analyses.

1. INTRODUCTION

By about one billion years after the Big Bang (z ∼ 6),
the first stars and galaxies are thought to have ionized
all the neutral hydrogen that dominated the baryonic
matter content in the Universe. This transition period,
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during which the first luminous structures formed from
gravitational collapse and began to emit intense radia-
tion that ionized the cold neutral gas into a plasma, is
known as the Epoch of Reionization (EoR). The EoR
is a relatively unexplored era in our Universe’s history,
which spans the birth of the first stars to the full reion-
ization of the intergalactic medium (IGM). This epoch
encodes important information regarding the nature of
the first galaxies and the processes of structure forma-
tion. Direct measurements of the EoR would unlock
powerful characteristics about the IGM, revealing con-
nections between the matter distribution exhibited via
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cosmic microwave background (CMB) studies and the
highly structured web of galaxies we observe today (for
a review, see Barkana & Loeb (2001), Furlanetto et al.
(2006) and Loeb & Furlanetto (2013)).

One promising technique to probe the EoR is to tar-
get the 21 cm wavelength signal that is emitted and ab-
sorbed by neutral hydrogen via its spin-flip transition
(Furlanetto et al. 2006; Barkana & Loeb 2008; Morales
& Wyithe 2010; Pritchard & Loeb 2010; Pritchard &
Loeb 2012). This technique is powerful because it can
be observed both spatially and as a function of redshift
— that is, the wavelength of the signal reaching our
telescopes can be directly mapped to a distance from
where the emission originated before stretching out as
it traveled through expanding space. Hence, 21 cm to-
mography offers a unique window into both the spatial
and temporal evolution of ionization, temperature, and
density fluctuations.

In addition to the first tentative detection of our Cos-
mic Dawn (pre-reionization era) made by the Exper-
iment to Detect the Global EoR Signature (EDGES;
Bowman et al. 2018; Bowman & Rogers 2010), there
are several radio telescope experiments that have suc-
ceeded in using the 21 cm signal from hydrogen to place
constraints on the brightness of the signal. Examples of
experiments investigating the mean brightness temper-
ature of the 21 cm signal relative to the CMB are the
Large Aperture Experiment to Detect the Dark Ages
(LEDA; Bernardi et al. 2016), the Dark Ages Radio
Explorer (DARE; Burns et al. 2012), the Sonda Cos-
mológica de las Islas para la Detección de Hidrógeno
NeutroSciHi (SCI-HI; Voytek et al. 2014), the Broad-
band Instrument for Global HydrOgen ReioNisation
Signal (BIGHORNS; Sokolowski et al. 2015), and the
Shaped Antenna measurement of the background RA-
dio Spectrum (SARAS; Patra et al. 2015). Radio in-
terferometers which seek to measure statistical power
spectra include the Giant Metre-wave Radio Telescope
(GMRT; Paciga et al. 2013a), the LOw Frequency AR-
ray (LOFAR; van Haarlem et al. 2013), the Murchison
Widefield Array (MWA; Tingay et al. 2013), the 21 Cen-
timeter Array (21CMA; Peterson 2004; Wu 2009), the
Square Kilometre Array (SKA; Koopmans et al. 2015),
and PAPER (Parsons et al. 2010). The Hydrogen Epoch
of Reionization Array (HERA), which is currently be-
ing built, is a next-generation instrument that aims to
combine lessons learned from previous experiments and
has a forecasted sensitivity capable of a high-significance
power spectrum detection with an eventual 350 elements
using current analysis techniques (Pober et al. 2014; Liu
& Parsons 2016; Dillon & Parsons 2016; DeBoer et al.
2017).

The major challenge that faces all 21 cm experiments
is isolating a small signal that is buried underneath fore-
grounds and instrumental systematics that are, when
combined, four to five orders of magnitude brighter (e.g.,
Santos et al. 2005; Ali et al. 2008; de Oliveira-Costa
et al. 2008; Jelić et al. 2008; Bernardi et al. 2009, 2010;

Ghosh et al. 2011; Pober et al. 2013; Bernardi et al.
2013; Dillon et al. 2014; Kohn et al. 2016). A clean mea-
surement therefore requires an intimate understanding
of how data analysis choices, which are often tailored
to maximize sensitivity and minimize contaminants, af-
fect power spectrum results. More specifically, it is im-
perative to develop techniques that ensure the accurate
extraction and recovery of the EoR signal, despite the
analysis method chosen and how much loss (of both con-
taminants and the EoR signal) accompanies the method.
In this paper, we specifically discuss signal loss — the
loss of the cosmological signal — associated with power
spectrum estimation. This is an issue that is essential to
investigate for a robust 21 cm power spectrum analysis
and one that has motivated a revised PAPER analysis.
We first approach this topic from a broad perspective,
and then perform a detailed case study using data from
the 64-element configuration of PAPER. In this study we
use a subset of PAPER-64 data to illustrate our revised
analysis methods, while a related paper, Kolopanis et
al. (in prep.), builds off of the methods in this paper to
present revised PAPER-64 results for multiple redshifts
and baseline types.

Finally, we also highlight several additional errors
made in previous PAPER analyses, including those re-
lated to bootstrapping and error estimation. This paper
accompanies the erratum of Ali et al. (2018) and adds
to the growing foundations of lessons which have been
documented, for example, in Paciga et al. (2013b), Patil
et al. (2016), and Jacobs et al. (2016), by the GMRT,
LOFAR, and MWA projects respectively. These lessons
are imperative as the community as a whole moves to-
wards higher sensitivities and potential EoR detections.

This paper is organized into three main sections. In
Section 2 we use toy models to develop intuition about
signal loss, its origin, and its subtleties. In Section 3,
we present a case study using data from the PAPER-
64 array, highlighting key changes from the signal loss
methods used in the published result in Ali et al. (2015),
henceforth known as A15, which previously underes-
timated loss. In Section 4, we summarize additional
lessons learned since A15 that have shaped our revised
analysis. Finally, we conclude in Section 5.

2. SIGNAL LOSS TOY MODELS

Signal loss refers to attenuation of the target cosmo-
logical signal in a power spectrum estimate. Certain
analysis techniques can cause this loss, and if the amount
of loss is not quantified accurately, it could lead to false
non-detections and overly aggressive upper limits. De-
termining whether an analysis pipeline is lossy, and es-
timating the amount of loss if so, has subtle challenges
but is necessary to ensure the accuracy of any result.

One type of signal loss can occur when weighting data
by itself. Broadly speaking, a dataset can be weighted
to emphasize certain features and minimize others. For
example, one flavor of weighting employed by previous
PAPER analyses is inverse covariance weighting in fre-
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quency, which is a generalized version of inverse variance
weighting that also takes into account frequency corre-
lations (Liu & Tegmark 2011; Dillon et al. 2013; Liu
et al. 2014a; Liu et al. 2014b; Dillon et al. 2014; Dillon
et al. 2015). Using such a technique enables the down-
weighting of contaminant modes that obey a different
covariance structure from that of cosmological modes.
However, a challenge of inverse covariance weighting is
in estimating a covariance matrix that is closest to the
true covariance of the data; the discrepancy between
the two, as we will see, can have large impacts on signal
loss. In this paper we focus specifically on loss associ-
ated with the use of an empirically estimated covariance
matrix with the “optimal quadratic estimator” formal-
ism. This loss was significantly underestimated in the
A15 analysis and is the main reason motivating a revised
power spectrum result.

2.1. The Quadratic Estimator Method

We begin with an overview of the quadratic estima-
tor (QE) formalism used for power spectrum estimation.
The goal of power spectrum analysis is to produce an
unbiased estimator of the EoR power spectrum in the
presence of both noise and foreground emission. Prior
to power spectrum estimation, the data will often have
been prepared to have minimal foregrounds by some
method of subtraction, so this foreground emission may
appear either directly (because it was not subtracted)
or as a residual of some subtraction process not in the
power spectrum domain. If an accurate estimate of the
total covariance of the data is known, including both the
desired signal and any contaminants, then the “optimal
quadratic estimator” formalism provides a method of
producing a minimum variance, unbiased estimator of
the desired signal, as shown in Liu & Tegmark (2011),
Dillon et al. (2013), Liu et al. (2014a), Liu et al. (2014b),
Trott et al. (2012), Dillon et al. (2014), Dillon et al.
(2015), Switzer et al. (2015), and Trott et al. (2016).

Suppose that the measured visibilities for a single
baseline in Jy are arranged as a data vector, x. It has
length NtNf , where Nt is the number of time integra-
tions and Nf is the number of frequency channels. The
covariance of the data is given by

C ≡ 〈xx†〉 = S + U (1)

where the average over an ensemble of data realizations
produces the true covariance, and we further assume it
may be written as the sum of the desired cosmological
signal S and other terms U.

We are interested in estimating the three-dimensional
power spectrum of the EoR. Visibilities are measure-
ments of the Fourier transform of the sky along two
spatial dimensions (using the flat-sky approximation),
and since we are interested in three-dimensional Fourier
modes we only need to take one Fourier transform of our
visibilities along the line-of-sight dimension. We con-
sider band powers Pα of the power spectrum of x over
some range in cosmological k, where α indexes a wave-
band in k‖ (a cosmological wavenumber k‖ is the Fourier

dual to frequency under the delay approximation (Par-
sons et al. 2012b), which is a good approximation for the
short baselines that PAPER analyzes). The fundamen-
tal dependence of the covariance on the power spectrum
band powers Pα is encoded as

S =
∑
α

Pα
∂C

∂Pα
≡
∑
α

PαQα (2)

where we define ∂C
∂Pα ≡ Qα. In other words, Q describes

the response of the covariance to a change in the power
spectrum, relating a quadratic statistic of the data (the
covariance) to a quadratic statistic in Fourier-space (the
power spectrum).

The optimal quadratic estimator prescription is then
to compute

P̂α =
∑
β

(F−1)αβ(q̂β − b̂β) (3)

where F is the Fisher matrix (which determines errors
on the power spectrum estimate)

Fαβ ≡ 1

2
tr
(
C−1QαC−1Qβ

)
, (4)

q̂ is the un-normalized power spectrum estimate

q̂α =
1

2
x†C−1QαC−1x, (5)

and b̂ is the additive bias

b̂α =
1

2
tr
(
UC−1QαC−1

)
. (6)

The power spectrum estimator in Equation (3) is the
minimum variance (smallest error bar) estimate of the
power spectrum subject to the constraint that it is also
unbiased; that is, the ensemble average of the estimator
is equal to its true value

〈P̂α〉 = Pα (7)

(Tegmark 1997; Bond et al. 1998).
Intuitively, the estimator must be capable of “sup-

pressing” or “removing” the effects of contaminants in
order to obtain an unbiased estimate of the power spec-
trum. By construction, the subtraction of the residual
foreground and noise bias accomplishes this, removing
any additive bias. However, the C−1 piece of Equation
(5) also has the effect of suppressing residual foregrounds
and noise, in both the additive bias and any contribu-
tions the residuals may have to the variance.

More specifically, the effect of the weighting in Equa-
tion (5) is to project out the modes of U with a different
covariance structure than S in the power spectrum esti-
mate, and the effect of Equation (6) is to subtract out
the remaining bias. Similar effects for a realistic model
of the EoR and foregrounds are shown in Liu & Tegmark
(2011). If the covariance structure of the contaminants
is sufficiently different from the desired power spectrum,
then the linear bias term may be expected to be quite
small, and it is only necessary to know C and Qα, but
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not U. Since the foregrounds are expected to be strongly
correlated between frequencies whereas the EoR is not,
we expect different covariance structures and therefore
a small linear bias. Moreover, because the linear bias
is always positive and there is no multiplicative bias,
the quadratic-only term will always produce an estimate
which is high relative to the true value, and which can
conservatively be interpreted as an upper limit. These
considerations, and the difficulty of obtaining an esti-
mate for U, motivate the neglect of the linear bias in
the rest of this analysis.

Motivated by the desire to retain the advantageous
behavior of suppressing contributions of U to estimates
of the EoR power spectrum, we note that is possible
to define a modified version of the quadratic estimator
where Equation (5) is replaced by

q̂α =
1

2
x†RQαRx (8)

where R is a weighting matrix chosen by the data ana-
lyst. For example, inverse covariance weighting (the op-
timal form of QE) would set R ≡ C−1 and a uniform-
weighted case would use R ≡ I, the identity matrix.
Again, the matrix Qα encodes the dependence of the co-
variance on the power spectrum but in practice also also
does other things, including implementing a transform
of the frequency domain visibilities to k-space, taking
into account cosmological scalings, and converting the
visibilities from Jansky to Kelvin.

With an appropriate normalization matrix M, the
quantity

P̂ = Mq̂ (9)

is a sensible estimate of the true power spectrum P.
To ensure that M correctly normalizes our power spec-

trum, one may take the expectation value of Equation
(9) to obtain

〈P̂α〉= 1

2

∑
βγ

Mαγtr
(
RQγRQβ

)
P β +

1

2

∑
γ

tr (URQγR)

≡
∑
β

WαβP β +
1

2

∑
γ

tr (URQγR) , (10)

where Wαβ are elements of a window function matrix.
Considering the first term of this expression (again, we
are assuming that the linear bias term is significantly
suppressed; and if this is not the case, we are simply as-
suming that we are setting a conservative upper limit),
if W ends up being the identity matrix for our choices
of R and M, then we recover Equation (7) for the first
term, and we have an estimator that has no multiplica-
tive matrix bias. However, Equation (7) is a rather re-
strictive condition, and it is possible to violate it and
still have a sensible (and correctly normalized) power
spectrum estimate. In particular, as long as the rows
of W sum to unity, our power spectrum will be cor-
rectly normalized. Beyond this, the data analyst has a
choice for M, and for simplicity throughout this paper
we choose M to be diagonal. In a preview of what is

to come, we also stress that the derivation that leads to
Equation (10) assumes that R and x are not correlated.
If this assumption is violated, a simple application of
the (now incorrect) formulae in this section can result
in an improperly normalized power spectrum estimator
that does not conserve power, i.e., one that has signal
loss.

Given the advantages of inverse covariance weighting,
a question arises of how one goes about estimating C.
One method is to empirically derive it from the data
x itself. Similar types of weightings that are based on
variance information in data are done in Chang et al.
(2010) and Switzer et al. (2015). In previous PAPER
analyses, one time-averages the data to obtain:

Ĉ ≡ 〈xx†〉t ≈ 〈xx†〉, (11)

assuming 〈x〉t = 0 (a reasonable assumption since
fringes average to zero over a sufficient amount of time),
where 〈〉t denotes a finite average over time. The weight-
ing matrix for our empirically estimated inverse covari-

ance weighting is then R ≡ Ĉ
−1

, where we use a hat
symbol to distinguish the empirical covariance from the
true covariance C.

In the next three sections, we use toy models to inves-
tigate the effects of weighting matrices on signal loss by
experimenting with different matrices R and examining
their impact on the resulting power spectrum estimates

P̂. Our goal in experimenting with weighting is to sup-
press foregrounds and investigate EoR losses associated
with it. We note that we purposely take a thorough
and pedagogical approach to describing the toy model
examples given in the next few sections. The specifics
of how signal loss appears in PAPER’s analysis is later
described in Section 3.

As a brief preview, we summarize our findings in the
following sections here:

• If the covariance matrix is estimated from the
data, a strong correlation between the estimated
modes and the data will in general produce an
estimate of the signal power spectrum which is
strongly biased low relative to the true value. In
this context, this is what we call “signal loss” (Sec-
tion 2.2).

• The effect of the bias is worsened when the num-
ber of independent samples used to estimate the
covariance matrix is reduced (Section 2.3).

• The rate at which empirical eigenvectors converge
to their true forms depends on the sample variance
in the empirical estimate and the shape of the em-
pirical eigenspectrum. In general, larger sample
variances lead to more loss (Section 2.3).

• Knowing these things, there are some simple ways
of altering the empirical covariance matrix to de-
couple it from the data and produce unbiased
power spectrum estimates (Section 2.4).
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Figure 1. Our toy model dataset to which we apply differ-
ent weighting schemes to in order to investigate signal loss.
We model a mock foreground-only visibility with a sinusoid
signal that varies smoothly in time and frequency. We model
a mock visibility of an EoR signal as a random Gaussian sig-
nal. We add the two together to form x = xFG +xEoR. Real
parts are shown here.

2.2. Empirical Inverse Covariance Weighting

Using a toy model, we will now build intuition into
how weighting by the inverse of the empirically esti-

mated covariance, Ĉ
−1

, can give rise to signal loss. We
construct a simple dataset that contains visibility data
with 100 time integrations and 20 frequency channels.
This model represents realistic dimensions of about an
hour of PAPER data which might be used for a power
spectrum analysis. For PAPER-64 (both the A15 anal-
ysis and our new analysis) we use ∼ 8 hours of data
(with channel widths of 0.5 MHz and integration times
of 43 seconds), but here we scale it down with no loss of
generality.

We create mock visibilities, x, and assume a non-
tracking, drift-scan observation. Hence, flat spectrum
sources (away from zenith) lead to measured visibilities
which oscillate in time and frequency. We therefore form
a mock visibility measurement of a bright foreground
signal, xFG, as a complex sinusoid that varies smoothly
in time and frequency, a simplistic but realistic repre-
sentation of a single bright source. We also create a
mock visibility measurement of an EoR signal xEoR as a
complex, Gaussian random signal. A more realistic EoR
signal would have a sloped power spectrum in p(k) (in-
stead of flat, as in the case of white noise), which could
be simulated by introducing frequency correlations into
the mock EoR signal. However, here we treat all k’s sep-
arately, so a simplistic white noise approximation can be
used. Our combined data vector is then x = xFG+xEoR,
to which we apply different weighting schemes through-
out Section 2. The three data components are shown in
Figure 1.

We compute the power spectrum of our toy model

dataset x using Equations (8) and (9), with R ≡ Ĉ
−1

.
Figure 2 shows the estimated covariances of our toy

model datasets along with the Ĉ
−1

weighted data. The

foreground sinusoid is clearly visible in ĈFG. The power
spectrum result is shown in green in the left plot of

0 5 10 15

Frequency Channel

0

5

10

15

Fr
e
q
u
e
n
cy

 C
h
a
n
n
e
l
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(Ĉ−1x)EoR

0 5 10 15
Frequency Channel
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Figure 2. The estimated covariance matrices (top row) and
inverse covariance-weighted data (bottom row) for FG only
(left), EoR only (middle), and FG + EoR (right). Real parts
are shown here.

Figure 3. Also plotted in the figure are the uniform-
weighted (R ≡ I) power spectrum of the individual
components xFG (blue) and xEoR (red). As shown, our

Ĉ
−1

weighted result successfully suppresses foregrounds,
demonstrated in Figure 3 by the missing foreground
peak in the weighted power spectrum estimate (green).
It is also evident that our result fails to recover the EoR
signal — it exhibits the correct shape, but the ampli-
tude level is slightly low. It is this behavior which we
describe as signal loss.

As discussed in Section 2.1, this behavior is not ex-
pected in the case that we were to use a true C−1 weight-
ing. Rather, we would obtain a nearly unbiased estimate
of the power spectrum. The key difference is that since

Ĉ is estimated from the data, its eigenvectors and eigen-
values are strongly coupled to the particular data real-
ization that was used to compute it, and this coupling
leads to loss.

For the case of an eigenmode which can be safely as-
sumed to be predominantly a foreground, its presence
in the true covariance matrix will result in the desired
suppression via a kind of projection; whether or not it
is strongly correlated with the the actual data vector is
irrelevant. However, in the case of an empirically esti-

mated covariance matrix, the eigenmodes of ĈEoR will
both be incorrect and can be correlated with the data. If
these incorrect eigenmodes are not correlated with the
data, it will lead to non-minimum variance estimates
but will not produce the suppression of the power spec-
trum amplitude as seen in the left plot of Figure 3. As

described in Section 3.1, however, if ĈEoR is correlated
with the data vector x, there is a kind of projection of
power in the non-foreground modes from the resulting
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Figure 3. Resulting power spectrum estimates for the toy model simulation described in Section 2.2 — foregrounds only (blue),
EoR only (red), and the weighted FG + EoR dataset (green). The power spectrum of the foregrounds peaks at a k-mode based
on the frequency of the sinusoid used to create the mock FG signal. In the two panels, we compare using empirically estimated
inverse covariance weighting where C is derived from the data (left), and projecting out the zeroth eigenmode only (right). In

the former case, signal loss arises from the coupling of the eigenmodes of Ĉ to the data. There is negligible signal loss when all
eigenmodes besides the foreground one are no longer correlated with the data.

power spectrum estimate, thus producing an estimate
that is biased low. In short, if the covariance is com-
puted from the data itself, it carries the risk of overfitting
information in the data and introducing a multiplicative
bias (per k) to estimates of the signal.

The danger of an empirically estimated covariance ma-
trix comes mostly from not being able to describe the
EoR-dominated eigenmodes of C accurately, for which
the EoR signal is brighter than foregrounds. In such
a case, the coupling between these modes to the data
realization leads to the overfitting and subtraction of
the EoR signal. More specifically, the coupling between
the estimated covariance and the data is anti-correlated
in nature (which is explained in more detail in Sec-
tion 3.1), which leads to loss. Mis-estimating C for
EoR-dominated eigenmodes is therefore more harmful
than for FG-dominated modes, and since the lowest-
valued eigenmodes of an eigenspectrum are typically
EoR-dominated, using this part of the spectrum for
weighting is most dangerous.

Armed with this information, we can tweak the co-
variance in a simple way to suppress foregrounds and
yield minimal signal loss. Recall that our toy model
foreground can be perfectly described by a single eigen-
mode. Using the full dataset’s (foreground plus EoR
signal) empirical covariance, we can project out the ze-
roth eigenmode and then take the remaining covariance
to be the identity matrix. This decouples the covariance
from the data for the EoR modes. The resulting power
spectrum estimate for this case is shown in the right
plot of Figure 3. In this case we recover the EoR signal,
demonstrating that if we can disentangle the foreground-
dominated modes and EoR-dominated modes, we can
suppress foregrounds with negligible signal loss.

Altering Ĉ as such is one specific example of a reg-
ularization method for this toy model, in which we are

changing Ĉ in a way that reduces its coupling to the

data realization. There are several other simple ways to

regularize Ĉ, and we will discuss some in Section 2.4.

2.3. Fringe-Rate Filtering

We have shown how signal loss can arise due to the
coupling of EoR-dominated eigenmodes to the data. We
will next show how this effect is exacerbated by reducing
the total number of independent samples in a dataset.

A fringe-rate filter is an analysis technique designed
to maximize sensitivity by integrating in time (Parsons
et al. 2016). Rather than a traditional box-car average in
time, a time domain filter can be designed to up-weight
temporal modes consistent with the sidereal motion on
the sky, while down-weighting modes that are noise-like.

Because fringe-rate filtering is analogous to averaging
in time, it comes at the cost of reducing the total number
of independent samples in the data. With fewer inde-
pendent modes, it becomes more difficult for the empir-
ical covariance to estimate the true covariance matrix
of the fringe-rate filtered data. We can quantify this

effect by evaluating a convergence metric ε(Ĉ) for the
empirical covariance, which we define as

ε(Ĉ) ≡

√√√√∑ij(Ĉij − Cij)2∑
ij C

2
ij

, (12)

where C is the true covariance matrix. To compute
this metric, we draw different numbers of realizations
(different draws of Gaussian noise) of our toy model
EoR measurement, xEoR, and take their ensemble av-
erage. We then compare this to the “true” covariance,
which in our simulation is set to be the empirical co-
variance after a large number (500) of realizations. As
shown in Figure 4, we perform this computation for a
range of total independent ensemble realizations (hori-
zontal axis) and number of independent samples in the
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data following time-averaging, or “fringe-rate filtering”
(different colors). With more independent time samples
(i.e., more realizations) in the data, one converges to the
true fringe-rate filtered covariance more quickly.

The situation here with using a finite number of time
samples to estimate our covariance is analogous to a
problem faced in galaxy surveys, where the non-linear
covariance of the matter power spectrum is estimated
using a large — but finite — number of expensive sim-
ulations. There, the limited number of independent
simulations results in inaccuracies in estimated covari-
ance matrices (Dodelson & Schneider 2013; Taylor &
Joachimi 2014), which in turn result in biases in the final
parameter constraints (Hartlap et al. 2007). In our case,
the empirically estimated covariances are used for esti-
mating the power spectrum, and as we discussed in the
previous section (and will argue more thoroughly in Sec-
tion 3.1), couplings between these covariances and the
data can lead to power spectrum estimates that are bi-
ased low—which is precisely signal loss. In future work,
it will be fruitful to investigate whether advanced tech-
niques from the galaxy survey literature for estimating
accurate covariance matrices can be successfully adapted
for 21 cm cosmology. These techniques include the im-
position of sparsity priors (Padmanabhan et al. 2016),
the fitting of theoretically motivated parametric forms
(Pearson & Samushia 2016), covariance tapering (Paz
& Sánchez 2015), marginalization over the true covari-
ance (Sellentin & Heavens 2016), and shrinkage methods
(Pope & Szapudi 2008; Joachimi 2017).

The overall convergence of the covariance is impor-
tant, but also noteworthy is the fact that different eigen-
vectors converge to their true forms at different rates.
This is illustrated by Figure 5, which shows the conver-
gence of eigenvectors in an empirical estimate of a co-
variance matrix. For this particular toy model, we con-
struct a covariance whose true form combines the same
mock foreground from the previous toy models with an
EoR component that is modeled as a diagonal matrix
with eigenvalues spanning one order of magnitude (more
specifically, we construct the EoR covariance as a diago-
nal matrix in the Fourier domain, where the signal is ex-
pected to be uncorrelated; its Fourier transform is then
the true covariance of the EoR in the frequency domain,
or CEoR). For different numbers of realizations, we draw
random EoR signals that are consistent with CEoR, add
them to the mock foreground data, and compute the
combined empirical covariance by averaging over the re-
alizations. The eigenvectors of this empirical covariance
are then compared to the true eigenvectors v̂, where we
use as a convergence metric ε(v̂), defined as:

ε(v̂) ≡

√√√√Nf∑
i

|v− v̂|2i , (13)

where Nf is the number of frequencies (20) in the mock
data. The eigenmode convergence curves in Figure 5
are ranked ordered by eigenvalue, such that “Eigenmode

#0” illustrates the convergence of the eigenvector with
the largest eigenvalue, “Eigenmode #1” for the second
largest eigenvalue, and so on. We see that the zeroth
eigenmode — the mode describing the foreground signal
— is quickest to converge.

Our numerical test reveals that the convergence rates
of empirical eigenvectors is related to the sample vari-
ance in our empirical estimate. In general, computing
an empirical covariance from a finite ensemble average
means that the empirical eigenmodes have sample vari-
ances. Consider first a limiting case where all eigenval-
ues are equal. In such a scenario, any linear combination
of eigenvectors is also an eigenvector, and thus there is
no sensible way to define the convergence of eigenvec-
tors. In our current test, aside from the zeroth mode,
the eigenvalues have similar values but are not precisely
equal. Hence, there is a well-defined set of eigenvectors
to converge to. However, due to the sample variance
of our empirical covariance estimate, there may be acci-
dental degeneracies between modes, where some modes
are mixing and swapping with others. Therefore, the
steeper an eigenspectrum, the easier it is for the eigen-
modes to decouple from each other and approach their
true forms. A particularly drastic example of this can be
seen in the behavior of mode 0 (the foreground mode),
whose eigenvalue differs enough from the others that it is
able to converge reasonably quickly despite substantial
sample variance in our empirical covariance estimate.
To break degeneracies in the remaining modes, however,
requires many more realizations.

While the connection between the rate of convergence
of an empirical eigenvector with the sample variance of
an eigenspectrum is interesting, it is also important to
note that regardless of convergence rate, any mode that
is coupled to the data is susceptible to signal loss. The
true eigenvectors are not correlated with the data re-
alizations; thus, if our empirical eigenvectors are con-
verged fully, there will not be any signal loss. However,
an unconverged eigenvector estimate will retain some
memory of the data realizations used in its generation,
leading to signal loss.

In the toy models throughout Section 2, we exploit
the fact that the strongest eigenmode (highest eigen-
value mode) is dominated by foregrounds in order to
purposely incur signal loss for that mode. Even for the
case of real PAPER data (Section 3), we make the as-
sumption that the strongest eigenmodes are likely the
most contaminated by foregrounds. However, in gen-
eral, foregrounds need not be restricted to the strongest
eigenmodes, and as we have seen, it is really the degen-
eracies between modes that determines how quickly they
converge, and hence how much signal loss can result.

With Figures 4 and 5 establishing the connection be-
tween convergence rates (of empirical covariances and
eigenvectors) and number of realizations, we now turn
back to our original toy model used in Section 2.2, which
is comprised of a mock foreground and mock EoR sig-
nal. We mimic a fringe-rate filter by averaging every
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Figure 4. The convergence level, as defined by Equation
(12), of empirically estimated covariances of mock EoR sig-
nals with different numbers of independent samples. In
red, the mock EoR signal is comprised entirely of indepen-
dent samples (100 of them). Subsequent colors show time-
averaged signals. As the number of realizations increases,
we see that the empirical covariances approach the true co-
variances. With more independent samples, the quicker an
empirical covariance converges (i.e., the quicker it decouples
from the data), and the less signal loss we would expect to
result.

Figure 5. The convergence level, as defined by Equation
(13), of empirically estimated eigenvectors for different num-
bers of mock data realizations. The colors span from the 0th
eigenmode (has the highest eigenvalue) to the 19th eigen-
mode (has the lowest eigenvalue), where they are ordered
by eigenvalue in descending order. This figure shows that
the zeroth eigenmode converges the quickest, implying that
eigenvectors with eigenvalues that are substantially different
than the rest (the FG-dominated mode has a much higher
eigenvalue than the EoR modes) are able to converge to the
true eigenvectors the quickest. On the other hand, eigen-
modes 1-19 have similar eigenvalues and are slower to con-
verge because of degeneracies between them.

four time integrations of our toy model dataset together,
yielding 25 independent samples in time (Figure 6). We
choose these numbers so that the total number of inde-
pendent samples is similar to the number of frequency
channels — hence our matrices will be full rank. We use
this “fringe-rate filtered” mock data for the remainder
of Section 2.
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Figure 6. Our “fringe-rate filtered” (time-averaged) toy
model dataset. We average every four samples together,
yielding 25 independent samples in time. Real parts are
shown here.
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Figure 7. Resulting power spectrum estimate for the
“fringe-rate filtered” (time-averaged) toy model simulation
— foregrounds only (blue), EoR only (red), and the weighted
FG + EoR dataset (green). We use empirically estimated
inverse covariance weighting where C is computed from the
data. There is a larger amount of signal loss than for the non-
averaged data, a consequence of weighting by eigenmodes
that are more strongly coupled to the data due to there be-
ing fewer independent modes in the data.

The power spectrum results for this model are shown
in Figure 7, and as expected there is a much larger
amount of signal loss for this time-averaged dataset since
we do a worse job estimating the true covariance. In ad-
dition, as a result of having fewer independent samples,
we obtain an estimate with more scatter. This is evi-
dent by noticing that the green curve in Figure 7 fails
to trace the shape of the uniform-weighted EoR power
spectrum (red).

Using our toy model, we have seen that a sensitivity-
driven analysis technique like fringe-rate filtering has
trade-offs of signal loss and noisier estimates when using
data-estimated covariance matrices. Longer integrations
increase sensitivity but reduce the number of indepen-
dent samples, resulting in eigenmodes correlated with
the data that can overfit signal greatly. We note that
a fringe-rate filter does have a range of benefits, many
described in Parsons et al. (2016), so it can still be ad-
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vantageous to use one despite the trade-offs.

2.4. Other Weighting Options

In Section 2.2 we showed one example of how alter-

ing Ĉ can make the difference between nearly zero and
some signal loss. We will now use our toy model to

describe several other ways to tailor Ĉ in order to min-
imize signal loss. We choose four independent regular-
ization methods to highlight in this section, which have
been chosen due to their simplicity in implementation
and straightforward interpretations. We illustrate the
resulting power spectra for the different cases in Figure
8. These examples are not meant to be taken as sug-
gested analysis methods but rather as illustrative cases.

As a first test, we model the covariance matrix of EoR
as a proof of concept that if perfect models are known,
signal loss can be avoided. We know that our simulated
EoR signal should have a covariance matrix that mimics
the identity matrix, with its variance encoded along the
diagonal. We model CEoR as such (i.e., the identity), in-
stead of computing it based on xEoR itself. Next, we add

CEoR+ĈFG (where ĈFG = 〈xFGx
†
FG〉t) to obtain a final

Ĉreg (regularized empirical covariance matrix) to use in
weighting. In Figure 8 (upper left), we see that there
is negligible signal loss. This is because by modeling
CEoR, we avoid overfitting EoR fluctuations in the data
that our model doesn’t know about (but, an empirically

derived ĈEoR would know about the fluctuations). In
practice such a weighting option is not feasible, as it is

difficult to model CEoR, and ĈFG is unknown because
we do not know how to separate out the foregrounds
from the EoR in our data.

The second panel (top right) in Figure 8 uses a regu-

larization method of setting Ĉreg ≡ Ĉ+γI, where γ = 5
(an arbitrary strength of I for the purpose of this toy
model). By adding the identity matrix, element-wise,
we are weighting the diagonal elements of the estimated
covariance matrix more heavily than those off-diagonal.
Since the identity component does not know anything
about the data realization, it alters the covariance to be
less coupled to the data and there is no loss.

The third panel (bottom left) in Figure 8 minimizes
signal loss by only using the first three eigenmodes
of the estimated covariance. Recalling that our toy
model foregrounds can be described entirely by the ze-
roth eigenmode, this method intentionally projects out
the highest-valued modes only by replacing all but the
three highest weights in the eigenspectrum with 1’s
(equal weights). Again, avoiding the overfitting of EoR-
dominated modes which are coupled to the data results
in negligible signal loss. While this case is illuminat-
ing for the toy model, in practice it is not obvious which
eigenmodes are foreground or EoR dominated (and they
could be mixed as well), so determining which subset of
modes to down-weight is not trivial. We experiment
with this idea using PAPER data in Section 3.3.

The last regularization scheme we are highlighting

here is setting Ĉreg ≡ Ĉ ◦ I (element-wise multiplica-
tion), or inverse variance weighting (i.e., keeping only

the diagonal elements of Ĉ). In the bottom right panel
of Figure 8, we see that this method does not down-
weight the foregrounds at all — this regularization al-

tered Ĉ in a way where it is no longer coupled to
any of the empirically estimated eigenmodes, including
the FG-dominated one. To understand this, we recall
that our foregrounds are spread out in frequency and
therefore have non-negligible frequency-frequency cor-
relations. Multiplying by the identity matrix, element-
wise, results in a diagonal matrix, meaning we do not
have any correlation information. Because of this, we
do a poor job suppressing the foreground. But because
we decoupled the whole eigenspectrum from the data,
we also avoid signal loss. Although this method did not
successfully recover the EoR signal for this particular
simulation, it is important that we show that there are
many options for estimating a covariance matrix, and
some may down-weight certain eigenmodes more effec-
tively than others based on the spectral nature of the
components in a dataset.

In summary, we have shown how signal loss is caused
by weighting a dataset by itself, and in particular how
estimated covariances can overfit EoR modes when they
are coupled to data and not converged to their true
forms. We have also seen that there are trade-offs
between a chosen weighting method, its foreground-
removal effectiveness, the number of independent sam-
ples in a dataset, and the amount of resulting signal
loss.

3. SIGNAL LOSS IN PAPER-64

We now turn to a detailed signal loss investigation us-
ing a subset of the PAPER-64 dataset from A15. In
the previous section we showed how signal loss arises
when weighting data with empirically estimated covari-
ances; in this section we highlight how the amount of this
loss was underestimated in the previous analysis. Addi-
tionally, we illustrate how we have revised our analysis
pipeline in light of our growing understandings.

As a brief review, PAPER is a dedicated 21 cm exper-
iment located in the Karoo Desert in South Africa. The
PAPER-64 configuration consists of 64 dual-polarization
drift-scan elements that are arranged in a grid layout.
For our case study, we focus solely on Stokes I esti-
mated data (Moore et al. 2013) from PAPER’s 30 m
East/West baselines (Figure 9). All data is compressed,
calibrated (using self-calibration and redundant calibra-
tion), delay-filtered (to remove foregrounds inside the
wedge), LST-binned, and fringe-rate filtered. For de-
tailed information about the backend system of PAPER-
64, its observations, and data reduction pipeline, we re-
fer the reader to Parsons et al. (2010) and A15. We note
that all data processing steps are identical to those in
A15 until after the LST-binning step in Figure 3 of A15.

The previously best published 21 cm upper limit result
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Figure 8. Resulting power spectra estimates for our “fringe-rate filtered” (time-averaged) toy model simulation — foregrounds
only (blue), EoR only (red), and the weighted FG + EoR dataset (green). We show four alternate weighting options that each

minimize signal loss, including modeling the covariance matrix of EoR (upper left), regularizing Ĉ by adding an identity matrix

to it (upper right), using only the first three eigenmodes of Ĉ (lower left), and keeping only the diagonal elements of Ĉ (lower
right). The first case (upper left) is not feasible in practice since we do not know CFG and CEoR like we do in the toy model.

Figure 9. The PAPER-64 antenna layout. We use only 10 of
the 30 m East/West baselines for the analysis in this paper
(i.e., a subset of the shortest horizontal spacings).

from A15 placed a 2σ upper limit on ∆2(k), defined as

∆2(k) =
k3

2π2
P̂ (k), (14)

of (22.4 mK)2 in the range 0.15 < k < 0.5h Mpc−1 at
z = 8.4. The need to revise this limit stems mostly from
previously underestimated signal loss, which we address
in this section.

For the analysis in this paper, we use 8.1 hours of
LST, namely an RA range of 0.5-8.6 hours (A15 uses a
slightly longer RA range of 0-8.6 hours; we found that
some early LSTs were more severely foreground contam-
inated). We also use only 10 baselines, a subset of the 51

total East/West baselines used in A15, in order to illus-
trate our revised methods. All power spectrum results
are produced for a center frequency of 151 MHz using a
width of 10 MHz (20 channels), identical to the analysis
in A15. In the case study in this paper, we only use one
baseline type instead of the three as in A15, but Kolopa-
nis et al. (in prep.) uses the full dataset presented in
A15 to revise the result and place limits on the EoR at
multiple redshifts (using a straightforward and not lossy
approach to avoid many of the issues that will be made
clear later on).

The most significant changes from A15 occur in our
revised power spectrum analysis, which is explained in
the rest of this paper, but we also note that the applied
fringe-rate filter is also slightly different. In A15, the
applied filter was not equivalent to the optimal fringe-
rate filter (which is designed to maximize power spec-
trum sensitivity). Instead, the optimal filter was de-
graded slightly by widening it in fringe-rate space. This
was chosen in order to increase the number of indepen-
dent modes and reduce signal loss associated with the
quadratic estimator, though as we will explain in the
next section, this signal loss was still underestimated.
With the development of a new, robust method for as-
sessing signal loss, we choose to use the optimal filter
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Figure 10. Top: the normalized optimal power-spectrum
sensitivity weighting in fringe-rate space for our fiducial base-
line and Stokes I polarization beam. Bottom: the time do-
main convolution kernel corresponding to the top panel. Real
and imaginary components are illustrated in cyan and ma-
genta, respectively, with the absolute amplitude in black.
The fringe-rate filter acts as an integration in time, increasing
sensitivity but reducing the number of independent samples
in the dataset.

in order to maximize sensitivity. This filter is computed
for a fiducial 30 m baseline at 150 MHz, the center fre-
quency in our band. The filter in both the fringe-rate
domain and time domain is shown in Figure 10.

Finally, we emphasize that the discussion that follows
is solely focused on signal loss associated with empirical
covariance weighting. As mentioned in Section 2, there
are a number of steps in our analysis pipeline which
could lead to loss, including gain calibration, delay fil-
tering, and fringe-rate filtering, which have been inves-
tigated at various levels of detail in Parsons et al. (2014)
and A15 but are clearly the subject of future work. Here
we only focus on the most significant source of loss we
have identified and note that Kolopanis et al. (in prep.)
and other future work will consider additional sources
of signal loss and exercise increased caution in reporting
results.

We present our PAPER-64 signal loss investigation
in three parts. We first give an overview of our signal
injection framework which is used to estimate loss. In
this framework (and as in A15), we inject simulated cos-
mological signals into our data and test the recovery of
those signals (an approach also taken by Masui et al.
(2013)). As we will see, correlations between the in-
jected signals and the data are significant complicating
factors which were previously not taken into account.
Next, we describe our methodology in practice and de-
tail how we map our simulations into a posterior for the
EoR signal. Finally, we build off of the previous section
by experimenting with different regularization schemes
on PAPER data in order to minimize loss. Throughout
each section, we also highlight major differences from
the signal loss computation used in A15.

3.1. Signal Loss Methodology

In short, our method for estimating signal loss con-
sists of adding an EoR-like signal into visibility data
and then measuring how much of this injected signal
would be detectable given any attenuation of this signal
by the (lossy) data analysis pipeline. To capture the full
statistical likelihood of signal loss, one requires a quick
way to generate many realizations of simulated 21 cm
signal visibilities. Here we use the same method as in
A15, where mock Gaussian noise visibilities (mock EoR
signals) are filtered in time using an optimal fringe-rate
filter to retain only “sky-like” modes. Since the optimal
filter has a shape that matches the rate of the sidereal
motion of the sky, this transforms the Gaussian noise
into a measurement that PAPER could make. This sig-
nal is then added to the visibility data.1

Mathematically, suppose that e is the mock injected
EoR signal (at some amplitude level). We do not know
the true EoR signal contained within our visibility data,
x, so e takes on the role of the true EoR signal (for which
we measure its loss). Furthermore, one can make the as-
sumption that the true EoR signal is small within our
measured data, so the data vector x itself is represen-
tative of mostly contaminants. Using this assumption,
the sum of x and e, defined as r:

r = x + e, (15)

can be thought of as the sum of contaminants plus EoR.
The quantity r then becomes the dataset for which we
are measuring how much loss of e there is due to our
power spectrum pipeline.

We are interested in quantifying how much variance
in e is lost after weighting r and estimating the power
spectrum according to QE formalism. We investigate
this by comparing two quantities we call the input power

spectrum and output power spectrum: P̂in and P̂out,
estimated using QE as

P̂αin ≡ Mα
ine
†IQαIe (16)

and

P̂αout≡ P̂
α

r

= Mα
r r
†RrQ

αRrr, (17)

where, for illustrative purposes and notational simplic-
ity, we have written these equations with scalar normal-
izations M, even though for our numerical results we

1 One specific change from A15 is that we add this simulated
signal - which has been fringe-rate filtered once already in order
to transform it into a “sky-like” signal - into the analysis pipeline
before a fringe-rate filter is applied to the data (i.e., prior to the
analysis step of fringe-rate filtering). Previously, the addition was
done after the fringe-rate filter analysis step. This change results
in an increased estimate of signal loss, likely due to the use of the
fringe-rate filter as a simulator. However, this pipeline difference,
while significant, is not the dominant reason why signal loss was
underestimated in A15 (the dominant reason is explained in the
main text in Section 3.1).
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choose a diagonal matrix normalization using M as in
Equation (9).

The quantity P̂in, defined by Equation (16), is a uni-
formly weighted estimator of the power spectrum of e.
It can be considered the power spectrum of this par-
ticular realization of the EoR; alternatively, it can be
viewed as the true power spectrum of the injected sig-

nal up to cosmic variance fluctuations. The role of P̂in

in our analysis is to serve as a reference for the power
spectrum that would be measured if there were no signal
loss or other systematics. The input power spectrum is

then to be compared to P̂out, which approximates the
(lossy) power spectrum estimate that is output by our
analysis pipeline prior to any signal loss adjustments.

Under this injection framework, we can begin to see
explicitly why there can be large signal loss. Expanding

out Equation (17), P̂out becomes:

P̂αout = Mα
r (x + e)†RrQ

αRr(x + e)

= Mα
ax
†RrQ

αRrx + Mα
b e
†RrQ

αRre

+ Mα
c x
†RrQ

αRre + Mα
de
†RrQ

αRrx. (18)

Assuming Rr is symmetric, the two cross-terms (terms
with one copy of e and one copy of x) can be summed
together as:

P̂αout = Mα
ax
†RrQ

αRrx + Mα
b e
†RrQ

αRre

+ 2Mα
c x
†RrQ

αRre. (19)

One of the key takeaways of this section is that the A15
analysis estimated signal loss by comparing only the
signal-only term (second term in Equation (19)) with

P̂in, whereas in fact the cross-term (third term in Equa-

tion (19)) can substantially lower P̂out. In order to in-
vestigate the effect of each of these terms on signal loss,
all three components are plotted in Figure 11 for two
cases: empirically estimated inverse covariance weight-

ing (Rr ≡ Ĉ
−1

r ) and uniform weighting (Rr ≡ I). We
will now go into further detail and examine the behavior
of this equation in three different regimes of the injected
signal - very weak (left ends of the Pin axes in Figure
11), very strong (right ends), and in between (middle
portions).
Small injection: In this regime, the cross-terms

(red) behave as noise averaged over a finite number of
samples. Output values are Gaussian distributed around
zero, spanning a range of values set by the injection level.

This is because R̂r is dominated by the data x, avoid-
ing correlations with e that can lead to solely negative
power (explained further below). In fact, for the uni-
formly weighted case, the cross-term Mα

xx
†IQαIe is well

modeled as a symmetric distribution with zero mean and

width

√
P̂e

√
P̂x. We also note that in this regime, P̂r

(black) approaches the data-only power spectrum value
(gray) as expected.
Large injection: When the injected signal is much

larger than the measured power spectrum, the data-only
components can be neglected as they are many orders
of magnitude smaller. We include a description of this
regime for completeness in our discussion, but note that
the upper limits that we compute are typically not de-
termined by simulations in this regime (i.e., in using an
empirical weighting scheme we’ve assumed the data to
be dominated by foregrounds rather than the cosmo-
logical signal). However, it is useful as a check of our
system in a relatively simple case. As we can see from
Figure 11, the cross-terms (red) are small in compari-
son to the signal-only term (green). Here only does the
signal-only term used in A15 dominate the total power
output. We again see that, in the empirical inverse co-
variance weighted case, the cross-terms behave as noise
(positive and negative fluctuations around zero mean).
This is for the same reason as at small injections — here

Ĉr is dominated by the signal e. The cross-correlation
can again be modeled as a symmetric distribution of

zero mean and width

√
P̂e

√
P̂x.

In between: When the injected signal is of a similar
amplitude to the data by itself, the situation becomes
less straightforward. We see that the weighted injected
power spectrum component mirrors the input power in-
dicating little loss (i.e., the green curve follows the dot-
ted black line), eventually departing from unity when
the injected amplitude is well above the level of the data
power spectrum. However, in this regime the cross-term
(red) has nearly the same amplitude, but with a negative
sign. As explained below, this negativity is the result
of cross-correlating inverse covariance weighted terms.

This negative component drives down the P̂out estima-
tor (black). Again, we emphasize that in A15, signal
loss was computed by only looking at the second term
in Equation (19) (green), which incorrectly implies no
loss at the data-only power spectrum level. Ignoring the
effect of the negative power from the cross-terms is the
main reason for underestimating power spectrum limits
in A15.

The source of the strong negative cross-term is not
immediately obvious, however it is an explainable effect.

When Rr is taken to be Ĉ
−1

r , the third term of Equa-

tion (19) is a cross-correlation between Ĉ
−1

r x and Ĉ
−1

r e.
As shown in Switzer et al. (2015), this cross-correlation
term is non-zero, and in fact negative in expectation.
This negative cross-term power arises from a coupling

between the inverse of Ĉr and x. Intuitively, we can see
this by expanding the empirical covariance of r = x+e:

Ĉr = 〈rr†〉t
= 〈xx†〉t + 〈xe†〉t + 〈ex†〉t + 〈ee†〉t, (20)

where we can neglect the first term because x is small
(i.e., the large negative cross-term power in the left panel
of Figure 11 occurs when the injected amplitude sur-
passes the level of the data-only power spectrum). With-
out loss of generality, we will assume an eigenbasis of e,
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∝ eĈ−1
r QĈ−1
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∝ xĈ−1
x QĈ−1
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Figure 11. Illustration of the power spectrum amplitude of five different power spectrum terms, each a function of visibility
data (x), simulated injected EoR signal (e), or both (r). This figure shows how these quantities behave as the power level of
the injected EoR signal increases (along the x-axis). The details of the simulation used to generate the figure is explained in
Section 3.2; here we sample a larger Pin range and fit smooth polynomials to our data points to make an illustrative example.

We emphasize that the output power spectrum in black (P̂out = P̂r) approximates the (lossy) power spectrum estimate that
is output by our analysis pipeline prior to any signal loss adjustments. Roughly speaking, it can be compared to the input
signal level (Pin) to estimate the amount of signal loss. Left: Empirical inverse covariance weighting is used in power spectrum
estimation, as done in A15. The dotted diagonal black line indicates perfect 1:1 input-to-output mapping (no signal loss).

The gray horizontal line is the power spectrum value of data alone, P̂x (it does not depend on injected power). The green

signal-signal component is the term used in A15 to estimate signal loss. It is significantly higher than P̂r (black) when the
cross-terms (red) are large and negative (black = green + red + blue). In the regime where cross-correlations between signal

and data are not dominant (small and large Pin), the cross-terms have a noise-like term with width
√

P̂e

√
P̂x. However, at

power levels comparable to the data (the middle region), the cross-terms can produce large, negative estimates due to couplings

between x and e which affect Ĉr. This causes the difference between the green curve (which exhibits negligible loss at the
data-only power spectrum value) and the black curve (which exhibits ∼ 4 orders of magnitude of loss). Right: The same power
spectrum terms illustrated for the uniform weighted case.

so that 〈ee†〉t is diagonal. The middle two terms, how-
ever, can have power in their off-diagonal terms due to
the fact that, when averaging over a finite ensemble,
〈xe†〉t is not zero. As shown in Appendix C of Parsons
et al. (2014), to leading order the inversion of a diagonal-

dominant matrix like Ĉr (from 〈ee†〉t) with smaller off-
diagonal terms results in a new diagonal-dominant ma-
trix with negative off-diagonal terms. These off-diagonal

terms depend on both x and e. Then, when Ĉ
−1

r is mul-
tiplied into x, the result is a vector that is similar to x
but contains a residual correlation to e from the off-

diagonal components of Ĉ
−1

r . The correlation is nega-

tive because the product Ĉ
−1

r x effectively squares the

x-dependence of the off-diagonal terms in Ĉ
−1

r while re-
taining the negative sign that arose from the inversion
of a diagonal-dominant matrix.

In general: Another way to phrase the shortcom-
ing of the empirical inverse covariance estimator is that
it is not properly normalized. Signal loss due to cou-
plings between the data and its weightings arise be-
cause our unnormalized quadratic estimator from Equa-
tion (8) ceases to be a quadratic quantity, and instead
contains higher order powers of the data. However, the
normalization matrix M is derived assuming that the
unnormalized estimator is quadratic in the data. The
power spectrum estimate will therefore be incorrectly
normalized, which manifests as signal loss. We leave a
full analytic solution for M for future work, since our
simulations already capture the full phenomenology of
signal loss and have the added benefit of being more
easily generalizable in the face of non-Gaussian system-
atics.
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3.2. Signal Loss in Practice

We now shift our attention towards computing up-
per limits on the EoR signal for the fringe-rate filtered
PAPER-64 dataset in a way that accounts for signal
loss. While our methodology outlined below is inde-
pendent of weighting scheme, here we demonstrate the
computation using empirically estimated inverse covari-

ance weighting (R ≡ Ĉ
−1

), the weighting scheme used
in A15 which leads to substantial loss.

One issue to address is how one incorporates the ran-

domness of P̂out into our signal loss corrections. A dif-
ferent realization of the mock EoR signal is injected with
each bootstrap run, causing the output to vary in three
ways — there is noise variation from the bootstraps,
there is cosmic variation from generating multiple real-
izations of the mock EoR signal, and there is a variation
caused by whether the injected signal looks more or less
“like” the data (i.e., how much coupling there is, which
affects how much loss results).

For each injection level, the true Pin is simply the av-

erage of our bootstrapped estimates P̂in, since P̂in,α is by
construction an unbiased estimator. Phrased in the con-
text of Bayes’ rule, we wish to find the posterior prob-

ability distribution p(Pin|P̂out), which is the probability
of Pin given the uncorrected/measured power spectrum

estimate P̂out. Bayes’ rule relates the posterior, which
we don’t know, to the likelihood, which we can forward
model. In other words,

p(Pin|P̂out) ∝ L(P̂out|Pin) p(Pin), (21)

where L is the likelihood function defined as the dis-
tribution of data plus signal injection (P̂out) given the
injection Pin. We construct this distribution by fixing
Pin and simulating our analysis pipeline for many real-
izations of the injected EoR signal consistent with this
power spectrum. The resulting distribution is normal-

ized such that the sum over P̂out is unity, and the whole
process is then repeated for a different value of Pin.

The implementation details of the injection process
require some more detailed explanation. In our code,
we add a new realization of EoR to each independent
bootstrap of data (see Section 4.1 for a description of
PAPER’s bootstrapping routine) with the goal of si-
multaneously capturing cosmic variance, noise variance,
and signal loss. To limit computing time we perform
20 realizations of each Pin level. We also run 50 total
EoR injection levels, yielding Pin values that range from
∼105 mK2 (h−1 Mpc)3 to ∼1011 mK2 (h−1 Mpc)3, re-

sulting in a total of 1000 data points on our Pin vs. P̂out

grid.
Going forward, we treat every k-value separately in

order to determine an upper limit on the EoR signal per
k. We bin our simulation outputs along the Pin axis
(one bin per injection level) and, since they are well-
approximated by a Gaussian distribution in our numer-

ical results, we smooth the distribution of P̂out values

by fitting Gaussians for each bin based on its mean and
variance (and normalize them). Stitching all of them to-
gether results in a 2-dimensional transfer function — the

likelihood function in Bayes’ rule, namely L(P̂out|Pin).
We then have a choice for our prior, p(Pin), and we
choose to invoke a Jeffreys prior (Jaynes 1968) because
it is a true uninformative prior.

Finally, our transfer functions are shown in Figure
12 for both the weighted (left) and unweighted (right)
cases. Our bootstrapped power spectrum outputs are
shown as black points and the colored heat-map over-
laid on top is the likelihood function modified by our
prior. Although we only show figures for one k-value,
we note that the shape of the transfer curve is similar
for all k’s. We then invoke Bayes’ interpretation and re-

interpret it as the posterior p(Pin|P̂out) where we recall

that P̂out represents a (lossy) power spectrum. To do
this we make a horizontal cut across at the data value
P̂x (setting P̂out = P̂x), shown by the gray solid line,
to yield a posterior distribution for the signal. We nor-
malize this final distribution and compute the 95% con-
fidence interval (an upper limit on EoR).

By-eye inspection of the transfer function in Figure
12 gives a sense of what the signal loss result should be.

The power spectrum value of our data, P̂x is marked by
the solid gray horizontal lines. From the left plot (empir-
ically estimated inverse covariance weighting), one can
eyeball that a data value of 105 mK2 (h−1 Mpc)3, for
example, would map approximately to an upper limit of
∼ 109 mK2 (h−1 Mpc)3, implying a signal loss factor of
∼ 104.

The loss-corrected power spectrum limit for empiri-
cally estimated inverse covariance weighted PAPER-64
data is shown in Figure 13 (solid red), which we can
compare to the original lossy result (dashed red). Post-
signal loss estimation, the power spectrum limits are
higher than both the theoretical noise level (green) and
uniform-weighted power spectrum (which is shown three
ways: black and gray points are positive and negative
power spectrum values, respectively, with 2σ error bars
from bootstrapping, the solid blue is the upper limit on
the EoR signal using the full signal injection framework,
and the shaded gray is the power spectrum values with
thermal noise errors). We elaborate on this point in the
next section, as well as investigate alternate weighting
schemes to inverse covariance weighting, with the goal
of finding one that balances the aggressiveness of down-
weighting contaminants and minimizing the loss of the
EoR signal.

3.3. Minimizing Signal Loss

With a signal loss formalism established, we now have
the capability of experimenting with different weighting
options for R. Our goal here is to choose a weight-
ing method that successfully down-weights foregrounds
and systematics in our data without generating large
amounts of signal loss as we have seen with the inverse
covariance estimator. We have found that the balance
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Figure 12. Signal loss transfer functions showing the relationship of Pin and P̂out, as defined by Equations (16) and (17).

Power spectra values (black points) are generated for 20 realizations of e per signal injection level. Since our P̂out values are
well-approximated by a Gaussian distribution, we fit Gaussians to each injection level based on the mean and variance of the
simulation outputs. This entire likelihood function is then multiplied by a Jeffreys prior for p(Pin), with the final result shown
as the colored heat-maps on top of the points. Two cases are displayed: empirically estimated inverse covariance weighted
PAPER-64 data (left) and uniform-weighted data (right). The dotted black diagonal lines mark a perfect unity mapping, and

the solid gray horizontal line denotes the power spectrum value of the data P̂x, from which a posterior distribution for the
signal is extracted. From these plots, it is clear that the weighted case results in ∼ 4 orders of magnitude of signal loss at the
data-only power spectrum value, whereas the uniform-weighted case does not exhibit loss. The general shape of these transfer
functions are also shown by the black curves in Figure 11 for comparison.

between the two is a delicate one and requires a careful
understanding and altering of empirical covariances.

We saw in Section 2.4 how limiting the number of
down-weighted eigenmodes (i.e., flattening out part of
the eigenspectrum and effectively decoupling the lowest-
valued eigenmodes, which are typically EoR-dominated,
from the data) can help minimize signal loss. We
experiment with this idea on PAPER-64 data, dial-
ing the number of modes that are down-weighted from
zero (which is equivalent to identity-weighting, or the
uniform-weighted case) to 21 (which is the full inverse
covariance estimator). The power spectrum results for
one k-value, both before and after signal loss estima-
tion, are shown in the top panel in Figure 14. We see
that the amount of signal loss increases as weighting be-
comes more aggressive (dashed red). In other words,
more EoR-dominated fluctuations are being overfit and
subtracted as more modes are down-weighted. We also
find that the power spectrum upper limit, post-signal
loss estimation, increases with the number of down-
weighted modes (solid red). The more modes we use in
down-weighting, the stronger the coupling between the
weighting and the data, and the greater the error we
have in estimating the power spectrum. Switzer et al.
(2013) took a similar approach in determining the op-
timal number of modes to down-weight in GBT data,

finding similar trends and noting that removing too few
modes is limited by residual foregrounds and removing
too many modes is limited by large error bars and signal
loss.

Optimistically, we expect there to be a “sweet spot”
as we dial our regularization knob; a level of regular-
ization where weighting is beneficial compared to uni-
form weighting (blue). In other words, we would like
a weighting scheme that down-weights eigenmodes that
predominantly describe foreground modes, but not EoR
modes. We see in Figure 14 that this occurs roughly
when only the ∼ 3 highest-valued eigenmodes are down-
weighted and the rest are given equal weights (though
for the case shown, weighting only slightly outperforms
uniform weighting). For a similar discussion on project-
ing out modes (zeroing out eigenmodes, rather than just
ignoring their relative weightings as we do in this study),
see Switzer et al. (2013).

We also saw in Section 2.4 how adding the identity
matrix to the empirical covariance can minimize signal
loss. We experiment with this idea as well, shown in
the bottom panel of Figure 14. The dashed red and
solid red lines represent power spectrum limits pre and
post-signal loss estimation, respectively, as a function

of the strength of I that is added to Ĉ, quantified

as a percentage of Tr(Ĉ)I added to Ĉ. We param-
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Figure 13. A power spectrum of a subset of PAPER-64 data illustrating the use of empirical inverse covariance weighting. The
solid red curve is the 2σ upper limit on the EoR signal estimated from our signal injection framework using empirical inverse
covariance weighting. Shown for comparison is the lossy limit prior to signal loss estimation (dashed red). The theoretical
2σ thermal noise level prediction based on observational parameters is in green, whose calculation is detailed in Section 4.2.
Additionally, the power spectrum result for the uniform weighted case is shown in three different ways: power spectrum values
(black and gray points as positive and negative values, respectively, with 2σ error bars from bootstrapping), the 2σ upper limit
on the EoR signal using our full signal injection framework (solid blue), and the measured power spectrum values with 2σ
thermal noise errors (gray shaded regions). The vertical dashed black lines signify the horizon limit for this analysis using 30 m
baselines. In this example, we see that the lossy power spectrum limit is ∼ 4 orders of magnitude too low when using empirical
inverse covariance weighting.

eterize this “regularization strength” parameter as γ,

namely Ĉ ≡ Ĉ + γTr(Ĉ)I. From this plot we see that

only a small percentage of Tr(Ĉ) is needed to signifi-
cantly reduce loss. We expect that as the strength of
I is increased (going to the left), both the red curves
will approach the uniform-weighted case. We also no-
tice that the post-signal loss limit hovers around the
uniform-weighted limit for a large range of regulariza-
tion strengths and while an overall trend from high-to-
low signal loss is seen as the strength increases, there
does not appear to be a clear “minimum” that produces
the least loss.

In addition to our thermal noise prediction (green)
and uniform-weighted power spectrum limit (blue), one
additional horizontal line is shown in Figure 14 in both
panels and represents a third regularization technique.
This line (black) denotes the power spectrum value,
post-signal loss estimation, for inverse variance weight-

ing (multiplying an identity matrix element-wise to Ĉ).
This result is single-valued and not a function of the
horizontal axis. We see that all three regularization
schemes shown (solid red top panel, solid red bottom
panel, black) perform similarly at their best (i.e., when
∼ 3 eigenmodes are down-weighted in the case of the
top panel’s solid red curve). However, for the remain-
der of this paper, we choose to use the weighting op-

tion of Ĉ + 0.09 Tr(Ĉ)I, or γ = 0.09, which we will

denote as Ĉeff . We choose this weighting scheme merely
as a simple example of regularizing PAPER-64 covari-
ances, noting that the power spectrum upper limit re-
mains roughly constant for a broad range of values of
γ.

It is important to note that our signal injection
methodology for assessing loss makes the assumption
that we know the true signal’s strength and structure.
Realistically, these details about the EoR signal are un-
known and our signal loss framework is limited by our
simulations. Therefore, while this paper employs this
methodology as an example of one way of estimating
loss, Kolopanis et al. (in prep.) use uniform weightings
in order to produce more trustworthy, straightforward
power spectrum limits that do not suffer from loss.

The power spectrum result for our subset of PAPER-
64 data (using only one baseline separation type, 10

baselines, and Ĉeff) using the analysis presented in this
paper is shown in Figure 15. Again, the solid red curve
represents our upper limit on the EoR signal using the
full signal injection framework. The uniform weighted
case is shown as the black and gray points, which cor-
respond to positive and negative power spectrum values
respectively (with 2σ errors bars from bootstrapping).
It is also shown as an upper limit using the signal injec-
tion framework (solid blue), which is interestingly larger
than the errors computed from bootstrapping, likely be-
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Figure 14. Power spectra 2σ upper limits for k = 0.393h Mpc−1 for fringe-rate filtered PAPER-64 data. Top: Values are
shown before (dashed red) and after (solid red) signal loss estimation via our signal injection framework as a function of number

of eigenmodes of Ĉ that are down-weighted. This regularization knob is tuned from 0 modes on the left (i.e., unweighted) to
21 modes on the right (i.e., the full inverse covariance estimator). ∼ 4 orders of magnitude of signal loss results when using
empirically estimated inverse covariance weighting. Bottom: Power spectrum upper limits before (dashed red) and after (solid
red) signal loss estimation as a function of identity added to the empirical covariance. This regularization knob is tuned from
γ = 10−4 on the right (i.e., very little regularization) to γ = 1 on the left (see main text for the definition of γ). Also plotted
in both panels for comparison are 2σ power spectrum upper limits for the uniform-weighted case (blue) and inverse variance
weighted case (black); both are after signal loss estimation. Finally, a theoretical prediction for noise (2σ error) is plotted as

green. In the PAPER-64 analysis in this paper, we choose to use a regularization scheme of Ĉeff ≡ 0.09 Tr(Ĉ)I+Ĉ (γ = 0.09) as
a simple example of regularization that minimizes loss, and note that the power spectrum limits using this type of regularization
are roughly constant across a large range of values of γ.
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cause the full injection framework takes into account ad-
ditional sample variance whereas the bootstrapped er-
rors do not. Finally, the gray shaded regions combine
the measured uniform weighted power spectrum values
with thermal noise errors. We show this power spectrum
result as one example of how a simple regularization of
an empirical covariance matrix can minimize signal loss,
though we also note that this weighting does not produce
more stringent limits than the uniform weighted case,
thus further motivating uniform-weighting for Kolopa-
nis et al. (in prep.).

In this section we have shown three simple ways of

regularizing Ĉ to minimize signal loss using PAPER-64
data. There are many other weighting schemes that we
leave for consideration in future work. For example, one

could estimate Ĉ using information from different sub-
sets of baselines. For redundant arrays this might mean

calculating Ĉ from a different but similar baseline type,
such as the ∼ 30 m diagonal PAPER baselines (instead
of the horizontal E/W ones). Alternatively, covariances
could be estimated from all baselines except the two
being cross-multiplied when forming a power spectrum
estimate. This method was used in Parsons et al. (2014)
(a similar method was also used in Dillon et al. (2015))
in order to avoid suppressing the 21 cm signal, and it is
worth noting that the PAPER-32 results are likely less
impacted from the issue of signal loss underestimation
because of this very reason (however, they are affected
by the error estimation issues described in Section 4.2,
so we also regard those results as suspect and superseded
by those of Kolopanis et al. (in prep.)).

Another possible way to regularize Ĉ is to use in-
formation from different ranges of LST. For example,

one could calculate Ĉ with data from LSTs where
foregrounds are stronger (earlier or later LSTs than
the “foreground-quiet” range typically used in forming
power spectra) — doing so may yield a better descrip-
tion of the foregrounds that we desire to down-weight,
especially if residual foreground chromaticity is instru-
mental in origin and stable in time. Fundamentally, each
of these examples are similar in that they rely on a com-

putation of Ĉ from data that is similar but not exactly
the same as the data that is being down-weighted. Ide-
ally this would be effective in down-weighting shared
contaminants yet avoid signal loss from overfitting EoR
modes in the power spectrum dataset itself.

In Section 3, we have detailed several aspects of sig-
nal loss in PAPER-64: how the loss arises, how it can
be estimated from an injection framework, and ways
it can be minimized. We again emphasize that these
lessons learned about signal loss are largely responsible
for shaping our revised analysis of PAPER data. In the
remainder of this paper, we will transition to other as-
pects of our analysis that have been revised since A15.

4. ADDITIONAL PAPER-64 REVISIONS

Underestimated signal loss is the main reason for the
revision of the power spectrum limits from A15. It is

interesting to note that — had all the other aspects of
the original analysis been correct — the underestimated
limits may have been more easily caught. Unfortunately,
two related power spectrum components, namely the er-
ror bars on the power spectrum data points and the
theoretical noise prediction, were also calculated incor-
rectly.

In this section, we summarize multiple inconsisten-
cies and errors that have been found since the previous
analysis in terms of error estimation. We first describe
updated methods regarding bootstrapping, which deter-
mines the error bars on our limits. We then highlight an
updated calculation for the theoretical noise sensitivity
of PAPER-64 and illustrate how our revised calculation
has been verified through simulations.

4.1. Bootstrapping

Broadly speaking, we desire robust methods for de-
termining accurate confidence intervals for our measure-
ments. For PAPER’s analysis, we choose a data-driven
method of error estimation, computing error bars that
have been derived from the inherent variance of our mea-
surements. A common technique used to do this is boot-
strapping, which we first define below and then discuss
its application to PAPER.

Bootstrapping uses sampling with replacement to es-
timate a posterior distribution. For example, bootstrap
measurements (of power spectra, for example) can be
made from different random samples of data. Each of
these bootstraps is a different realization drawn from
some underlying distribution, and realizations are cor-
related with each other to a degree set by the fraction of
sampled points that are held in common between them.
Through the process of re-sampling and averaging along
different axes of a dataset, such as along baselines or
times, we can estimate error bars for our results which
represent the underlying distribution of values that are
allowed by our measurements (Efron & Tibshirani 1994;
Andrae 2010).

One major caveat of bootstrapping arises when work-
ing with correlated data. If, for example, a dataset has
many repeated values inside it, this would be reflected in
each bootstrap. The same value would be present multi-
ple times within a bootstrap and also be present between
bootstraps, purely because it has a more likely chance
of being drawn if there are repeats of itself. Therefore,
bootstrapping correlated data results in a smaller varia-
tion between bootstraps, and hence, underestimates er-
rors.

This is the precisely how errors were underestimated
in PAPER-64. Because of fringe-rate filtering, which
averages data in time to increase sensitivity, PAPER-64
data is correlated along the time axis. Hence, there are
fewer independent samples after filtering, thus decreas-
ing the variance of the bootstraps.

More specifically, the PAPER-64 pipeline outputs 20
bootstraps (over baselines), each a 2-dimensional power
spectrum that is a function of k and time. In A15, a
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Figure 15. A power spectrum of a subset of PAPER-64 data illustrating the use of Ĉeff to minimize signal loss. The solid red
curve is the 2σ upper limit on the EoR signal estimated from our signal injection framework. The theoretical 2σ thermal noise
level prediction based on observational parameters is in green. Additionally, the power spectrum result for the uniform weighted
case is shown in three different ways: power spectrum values (black and gray points as positive and negative values, respectively,
with 2σ error bars from bootstrapping), the 2σ upper limit on the EoR signal using our full signal injection framework (solid
blue), and the measured power spectrum values with 2σ thermal noise errors (gray shaded regions). The vertical dashed black
lines signify the horizon limit for this analysis using 30 m baselines. This power spectrum result does not use the full dataset’s
sensitivity as in A15 and Kolopanis et al. (in prep.), though we include all analysis changes which have mostly stemmed from
revisions regarding signal loss, bootstrapping, and the theoretical error computation. We see that the regularization scheme
used here produces limits similar to the unweighted limits.

second round of bootstrapping occurred over the time
axis, and a total of 400 bootstraps were created in this
step, each comprised of randomly selected values sam-
pled with replacement (i.e., each of these bootstraps
contained the same number of values as the number
of time integrations, which, at ∼ 700, greatly exceeds
the approximate number of independent samples after
fringe-rate filtering). Means were then taken of the val-
ues in each bootstrap. Finally, power spectrum limits
were computed by taking the mean and standard devia-
tion over all the bootstraps. We emphasize again that in
this previous analysis, the number of elements sampled
per bootstrap greatly exceeded the number of indepen-
dent LST samples, underestimating errors. A random
draw of 700 measurements from this dataset has many
repeated values, and the variance between hundreds of
these random samples is smaller than the true underly-
ing variance of the data.

Given our new understanding of the sensitivity of
bootstraps to the number of elements sampled, we have
removed the second bootstrapping step along time en-
tirely and now simply bootstrap over the baseline axis.
Power spectrum 2σ errors (computed from bootstrap
variances) with and without this bootstrapping change
for a fringe-rate filtered noise simulation are shown in
Figure 16 in black and gray, respectively. The esti-
mates are uniformly weighted in order to disentangle

the effects of bootstrapping from signal loss. As shown
in the figure, when more elements are drawn for each
bootstrap than the number of independent samples (by
over-sampling elements along the time axis), repeated
values begin to crop up and the apparent variation be-
tween bootstraps drops, resulting in limits (gray) below
the predicted noise level (green). Using the revised boot-
strapping method, where bootstrapping only occurs over
the baseline axis, the limits (black) are shown to agree
with the analytic prediction for noise. While Figure 16
implies that errors, computed prior to our bootstrap-
ping change (gray), are underestimated by a factor of ∼
5 in mK2 for the noise simulation (whose creation de-
tails are outlined in the next section), in practice this
factor is lower for the case of real data (a factor of ∼
3 in mK2 instead), possibly due to the data being less
correlated in time than the fringe-rate filtered noise in
the simulation.

In addition to learning how sample independence af-
fects bootstrapped errors, we have made three additional
changes to our bootstrapping procedure since A15, sum-
marized here:

• A second change to our bootstrapping procedure
is that we now bootstrap over baseline cross-
products, instead of the baselines themselves. In
the previous analysis, baselines were bootstrapped
prior to forming cross power spectra, and using
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this particular ordering of operations (bootstrap-
ping, then cross-multiplication) yields variances
that have been found to disagree with predicted
errors from bootstrapping using simulations. On
the contrary, bootstrapping over cross power spec-
tra ensures that we are estimating the variance of
our quantity of interest (i.e., the power spectrum).
This change, while fundamental in retaining the
integrity of the bootstrapping method in general,
alters the resulting power spectrum errors by fac-
tors of < 2 in practice.

• In A15, individual baselines were divided into five
independent groups, where no baselines were re-
peated in each group. Then, baselines within
each group were averaged together, and the groups
were cross-multiplied to form power spectra. This
grouping method was used to reduce computa-
tional time, however upon closer examination it
has been found that the initial grouping introduces
an element of randomness into the final measure-
ments — more specifically, the power spectrum
value fluctuates depending on how baselines are
assigned into their initial groups. Our new ap-
proach removes this element of randomness at the
cost of computational expense, as we now perform
all baseline cross-products.

• Finally, the last change from the A15 method is
that our power spectrum points (previously com-
puted as the mean of all bootstraps), are now
computed as the power spectrum estimate result-
ing from not bootstrapping at all. More specifi-
cally, we compute one estimate without sampling,
and this estimate is propagated through our sig-

nal loss computation (this estimate is P̂x). The
difference between taking the mean of the boot-
strapped values and using the estimate from the
no-bootstrapping case is small, but doing the lat-
ter ensures that we are forming results that reflect
the estimate preferred by all our data.

In summary, we have learned several lessons regarding
bootstrapping and have revised our analysis procedure
in order to determine error bars that correctly reflect
the variance in our power spectrum estimates. Boot-
strapping can be an effective and straightforward way to
estimate errors of a dataset, however, bootstrapping as
a means of estimating power spectrum errors from real
fringe-rate filtered data requires knowledge of the num-
ber of independent samples, which is not always a trivial
task. We have thus avoided this issue by removing one
of our bootstrap axes, as well as updated several other
details of our procedure to ensure accurate re-sampling
and error estimation.

4.2. Theoretical Error Estimation

One useful way of cross-checking measured power
spectrum values and errors is to compute a theoreti-
cal estimation of thermal noise based on observational
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Figure 16. 2σ power spectrum errors (from bootstrap vari-
ances) for a noise simulation (computed via Equation (27)
using PAPER-64 observing parameters) using two different
bootstrapping methods. The noise is fringe-rate filtered and
a weighting matrix of I (uniform-weighted) is used in order to
disentangle the effects of bootstrapping from signal loss. The
bootstrapping method used in A15 is shown in gray, where
bootstrapping occurs along both the baseline and time axes.
This underestimates errors by sampling more values than in-
dependent ones in the dataset (fringe-rate filtering reduces
the number of independent samples along time). We use the
method illustrated by the black curve in our updated analy-
sis, where bootstrapping only occurs along the baseline axis.
We find that these revised limits agree with the 2σ analytic
prediction for noise (green).

parameters. Although a theoretical model often differs
from true errors, it is helpful to understand the ideal
case and the factors that affect its sensitivity. Upon
re-analysis of PAPER-64, we have discovered that this
estimate was also underestimated in previous analyses.

To compute our theoretical noise estimate, we use an
analytic sensitivity calculation. Through detailed stud-
ies using several independently generated noise simu-
lations, what we found was that our simulations all
agreed but were discrepant with the previous calcula-
tions. The analytic calculation is only an approxima-
tion and attempts to combine a large number of pieces
of information in an approximate way; however, when
re-considering some of the approximations, the differ-
ences were large enough (factors of 10 in some cases)
to warrant a careful investigation. What follows here is
an accounting of the differences which have been discov-
ered. We note that our theoretical error estimate, which
is plotted as the solid green curve in many of the pre-
vious power spectrum plots in this paper, is computed
with these changes accounted for.

The noise prediction n(k) (Parsons et al. 2012a; Pober
et al. 2013) for a power spectral analysis of interferomet-
ric 21 cm data, in temperature-units, is:

N(k) =
X2Y ΩeffT

2
sys√

2NlstNseps tintNdaysNblsNpols

. (22)

We will now explain each factor in Equation (22) and
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highlight key differences from the numbers used in A15.

• X2Y : Conversion factors from observing coordi-
nates (angles on the sky and frequency) to cos-
mological coordinates (co-moving distances). For
z = 8.4, X2Y = 5× 1011 h−3 Mpc3 str−1 GHz−1.

• Ωeff : The effective primary beam area in steradi-
ans (Parsons et al. 2010; Pober et al. 2012). The
effective beam area changes with the application
of a fringe-rate filter, since different parts of the
beam are up-weighted and down-weighted. Using
numbers from Table 1 in Parsons et al. (2016),
Ωeff = 0.742/0.24 for an optimal fringe-rate filter
and the PAPER primary beam.

• Tsys: The system temperature is set by:

Tsys = 180
( ν

0.18

)−2.55

+ Trcvr, (23)

where ν are frequencies in GHz (Thompson et al.
2001). We use a receiver temperature of 144 K,
yielding Tsys = 431 K at 150 MHz. This is lower
than the Tsys of 500 K used in A15 because of sev-
eral small miscalculation errors that were identi-
fied2.

•
√

2: This factor in the denominator of the sensitiv-
ity equation comes from taking the real part of the
power spectrum estimates after cross-multiplying
two independent visibility measurements. In A15,
a factor of 2 was mistakenly used.

• Nlst: The number of independent LST bins that go
into a power spectrum estimation. The sensitiv-
ity scales as the square root because we integrate
incoherently over time. For PAPER-64, Nlst = 8.

• Nseps: The number of baseline separation types
(where baselines of a unique separation type have
the same orientation and length) averaged inco-
herently in a final power spectrum estimate. For
the analysis in this paper, we only use one type
of baseline (PAPER’s 30 m East/West baselines).
However, both the updated limits in Kolopanis et
al. (in prep.) and the sensitivity prediction in Fig-
ure 17 use three separation types (Nseps = 3) to
match A15.

• tint: Length of an independent integration of the
data. It is crucial to adapt this number if filtering
is applied along the time axis (i.e., a fringe-rate fil-
ter). We compute the effective integration time of
our fringe-rate filtered data by scaling the original
integration time ti using the following:

tint = ti

∫
1 df∫

w2(f) df
, (24)

2 For example, there was a missing a square root in going from
a variance to a standard deviation.

where ti = 43 seconds, tint is the fringe-rate fil-
tered integration time, w is the fringe-rate profile,
and the integral is taken over all fringe-rates. For
PAPER-64, this number is tint = 3857 s.

• Ndays: The total number of days of data analyzed.
In A15, this number was set to 135. However, be-
cause we divide our data in half (to form “even”
and “odd” datasets, or Ndatasets = 2), this num-
ber should reflect the number of days in each in-
dividual dataset instead of the total. Addition-
ally, this number should be adjusted to reflect the
actual number of cross-multiplications that occur
between datasets (“even” with “odd” and “odd”
with “even”, but not “odd” with “odd” or “even”
with “even” in order to avoid noise biases). Fi-
nally, because our LST coverage is not 100% com-
plete (it doesn’t overlap for every single day), we
incorporate a root-mean-square statistic in com-
puting a realistic value of Ndays. Our expression
therefore becomes:

Ndays =
√
〈N2

i 〉
√

(N2
datasets −Ndatasets) (25)

where i indexes LST and frequency channel over
all datasets (Jacobs et al. 2015). For PAPER-64,
our revised estimate of Ndays is ∼ 47 days.

• Nbls: The number of baselines contributing to
the sensitivity of a power spectrum estimate.
In A15, this number was the total number of
30 m East/West baselines used in the analysis.
However, using the total number of baselines
(Nbls total = 51) neglects the fact that the A15
analysis averages baselines into groups for com-
putational speed-up when cross-multiplying data.
Our revised estimate for the parameter is:

Nbls =
Nbls total

Ngps

√
N2

gps −Ngps

2
, (26)

where, in the A15 analysis, Ngps = 5. Each base-
line group averages down linearly as the number of
baselines entering the group (Nbls total/Ngps) and
then as the square root of the number of cross-

multiplied pairs
(√

N2
gps−Ngps

2

)
. A revised A15

analysis should therefore use Nbls ∼ 32 instead of
51, and this change is taken into account in Fig-
ure 17. However, the analysis in this paper and
in Kolopanis et al. (in prep.) no longer averages
baselines into groups (Ngps = 1). For the subset
of data presented in this paper, Nbls = 10.

• Npols: The number of polarizations averaged to-
gether. For the case of Stokes I, Npols = 2.

An additional factor of
√

2 is gained in sensitivity
when folding together positive and negative k’s to form
∆2(k).



22 Cheng et al.

0.0 0.1 0.2 0.3 0.4 0.5
k [h Mpc−1]

10-1

100

101

102

103

104

105

106

107

k
3

2π
2
 P

(k
) 

[m
K

2
]

PAPER-64 Sensitivity

Ali et al. 2015

Revised for same analysis

Figure 17. An updated prediction for the thermal noise level
of PAPER-64 data (black) is shown in comparison to previ-
ously published sensitivity limits (gray), both computed for
the parameters and methods used in A15. Major factors
that contribute to the discrepancy are Ωeff , Ndays and Nbls,
as in Equation (22) and described in Section 4.2, which when
combined decreases our sensitivity (higher noise floor) by a
factor of ∼ 7 in mK2.

Our revised sensitivity estimate for the A15 analysis of
PAPER-64 is shown in Figure 17. Together, the revised
parameters yield a decrease in sensitivity (higher noise
floor) by a factor of ∼ 7 in mK2.

To verify our thermal noise prediction, we form power
spectra estimates using a pure noise simulation. We
create Gaussian random noise assuming a constant Trcvr

(translated into Tsys via Equation (23)) but accounting
for the trueNdays as determined by LST sampling counts
for each time and frequency in the LST-binned data. We
convert Tsys into a root-mean-square variance statistic
using:

Trms =
Tsys√

∆ν∆tNdaysNpols

, (27)

where ∆ν is the channel spacing, ∆t is the integration
time, Ndays is the number of daily counts for a particular
time and frequency that went into our LST-binned set,
and Npols is the number of polarizations (2 for Stokes
I). This temperature sets the variance of the Gaussian
random noise.

Power spectrum results for the noise simulation, which
uses our full power spectrum pipeline, are shown in Fig-
ure 18. We highlight that the bootstrapped data (black
and gray points, with 2σ error bars) and thermal noise

prediction (solid green) show good agreement, as boot-
strapping provides an accurate estimate of the noise
variance. However, the limits from the full signal loss
framework (weighted and unweighted in red and blue,
respectively) are inflated, likely due to the additional
inclusion of sample variance that comes from the EoR
simulations. While the noise simulation provides an im-
portant indicator about the accuracy of our theoreti-
cal noise calculation, we note that the calculation did
not take into account additional sources of error asso-
ciated with earlier analysis steps (for example, Trott &
Wayth (2017) show how calibration specifically can add
errors to visibilities). Additionally, we recommend that
future work investigate possible error correlations be-
tween baseline pairs and any interaction effects between
signal and noise that may effect error calculations. Be-
cause of these reasons, we therefore interpret our noise
prediction as the sensitivity floor for our measurements.

5. CONCLUSION

Although current 21 cm published power spectrum up-
per limits lie several orders of magnitude above pre-
dicted EoR levels, ongoing analyses of deeper sensitivity
datasets from PAPER, MWA, and LOFAR, as well as
next generation instruments like HERA, are expected to
continue to push towards EoR sensitivities. As the field
progresses towards a detection, we have shown that it is
crucial for future analyses to have a rigorous understand-
ing of signal loss in an analysis pipeline and be able to
accurately and robustly calculate both power spectrum
and theoretical errors.

In particular, in this paper we have investigated the
subtleties and tradeoffs of common 21 cm power spec-
trum techniques on signal loss and error estimation,
which can be summarized as follows:

• Substantial signal loss can result when weighting
data using empirically estimated covariances due
to couplings with the data realizations (Section 2).
Loss of the 21 cm signal is especially significant the
fewer number of independent modes that exist in
the data. Hence, there exists a trade-off between
sensitivity driven time-averaging techniques such
as fringe-rate filtering and signal loss when using
empirically estimated covariances.

• Signal injection and recovery simulations can be
used to quantify signal loss (Section 3.1). How-
ever, a signal-only simulation (i.e., comparing a
uniformly weighted vs. weighted power spectrum
of EoR only) can underestimate loss by failing to
account for correlations between the data and sig-
nal which can be large and negative.

• Errors that are estimated via bootstrapping can
be underestimated if samples in the dataset are
significantly correlated (Section 4.1). However, if
the number of independent samples in a dataset
is well-determined, bootstrapping is a simple and
accurate way of estimating errors.
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Figure 18. The power spectrum for a noise simulation that mimics the noise level of a subset of PAPER-64 data, where the

solid red curve is the 2σ upper limit on the EoR signal estimated from our signal injection framework using Ĉeff . The theoretical
2σ thermal noise level prediction based on observational parameters (calculated by Equation (22)) is in green. Additionally,
the power spectrum result for the uniform weighted case is shown in three different ways: power spectrum values (black and
gray points as positive and negative values, respectively, with 2σ error bars from bootstrapping), the 2σ upper limit on the EoR
signal using our full signal injection framework (solid blue), and the measured power spectrum values with 2σ thermal noise
errors (gray shaded regions). The vertical dashed black lines signify the horizon limit for this analysis using 30 m baselines. We
highlight that the bootstrapped data points and thermal noise prediction show good agreement, while the limits from the full
injection framework (red and blue) are inflated due to the additional inclusion of sample variance that comes from the injection
simulations.

As a consequence of our investigations, we have also
used a subset of PAPER-64 data to make a new power
spectrum analysis. This serves as an illustrative example
of using a signal injection framework, correctly comput-
ing errors via bootstrapping, and accurately estimating
thermal noise. Our revised PAPER-64 limits are pre-
sented in Kolopanis et al. (in prep.), which supersede
all previously published PAPER limits. Because of the
many challenges associated with signal loss and its esti-
mation as described in this paper, Kolopanis et al. (in
prep.) use a straightforward power spectrum estimation
approach that is not lossy. However, the main reasons
for a previously underestimated limit (Ali et al. 2018)
and ways in which our new analysis differs can still be
summarized by the following:

• Signal loss, previously found to be < 2% in A15,
was underestimated by a factor of >1000 for the
case of empirically estimated inverse covariance
weighting. Using a regularized covariance weight-
ing method can minimize loss (Section 3.3), how-
ever, because a regularized weighting method is
not as aggressive as the former, it produces lim-
its that are still higher than the lossy empirical
inverse covariance limits. Underestimated signal
loss therefore represents the bulk of our revision.

• Power spectrum errors, originally computed by

bootstrapping, were underestimated for the data
by a factor of ∼ 2 in mK due to oversampling
data whose effective number of independent sam-
ples was reduced from fringe-rate filtering (Section
4.1). Several other errors were also found regard-
ing error estimation, though with smaller effects.

• Several factors used in an analytic expression to
predict the noise-level in PAPER-64 data were re-
vised, yielding a decrease in predicted sensitivity
level by a factor of ∼ 3 in mK (Section 4.2). We
note that our sensitivity prediction is revised by a
factor less than our overall power spectrum result,
implying that if taken at face value, the theoreti-
cal prediction for noise in A15 was too high for its
data points.

The future of 21 cm cosmology is exciting, as new ex-
periments have sensitivities that expect to reach and
surpass EoR levels, improved foreground mitigation and
removal strategies are being developed, and simulations
are being designed to better understand instruments.
On the power spectrum analysis side, robust signal loss
simulations and precise error calculations will play criti-
cal roles in accurate 21 cm results. With strong founda-
tions being established now, it is safe to say that we can
expect to learn much about reionization and our early
Universe in the coming years.
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Jelić, V., et al. 2008, MNRAS, 389, 1319

Joachimi, B. 2017, MNRAS, 466, L83

Kohn, S. A., et al. 2016, ApJ, 823, 88

Koopmans, L., et al. 2015, Advancing Astrophysics with the

Square Kilometre Array (AASKA14), 1

Liu, A., & Parsons, A. R. 2016, Monthly Notices of the Royal

Astronomical Society, 457, 1864

Liu, A., Parsons, A. R., & Trott, C. M. 2014a, PhRvD, 90,

023018

—. 2014b, PhRvD, 90, 023019

Liu, A., & Tegmark, M. 2011, Phys. Rev. D, 83, 103006

Loeb, A., & Furlanetto, S. 2013, The First Galaxies in the

Universe (Princeton University Press)

Masui, K. W., et al. 2013, ApJL, 763, L20

Moore, D. F., Aguirre, J. E., Parsons, A. R., Jacobs, D. C., &

Pober, J. C. 2013, The Astrophysical Journal, 769, 154

Morales, M. F., & Wyithe, J. S. B. 2010, ARA&A, 48, 127

Paciga, G., et al. 2013a, MNRAS

—. 2013b, MNRAS, 433, 639

Padmanabhan, N., White, M., Zhou, H. H., & O’Connell, R.

2016, MNRAS, 460, 1567

Parsons, A., Pober, J., McQuinn, M., Jacobs, D., & Aguirre, J.

2012a, ApJ, 753, 81

Parsons, A. R., Liu, A., Ali, Z. S., & Cheng, C. 2016, ApJ, 820,

51

Parsons, A. R., Pober, J. C., Aguirre, J. E., Carilli, C. L.,

Jacobs, D. C., & Moore, D. F. 2012b, ApJ, 756, 165

Parsons, A. R., et al. 2010, AJ, 139, 1468

—. 2014, ApJ, 788, 106

Patil, A. H., et al. 2016, MNRAS, 463, 4317

Patra, N., Subrahmanyan, R., Sethi, S., Udaya Shankar, N., &

Raghunathan, A. 2015, ApJ, 801, 138

Paz, D. J., & Sánchez, A. G. 2015, MNRAS, 454, 4326

Pearson, D. W., & Samushia, L. 2016, MNRAS, 457, 993

Peterson, U.-L. P. X.-P. W. J. 2004, ArXiv Astrophysics e-prints

Pober, J. C., et al. 2012, AJ, 143, 53

Pober, J. C., et al. 2013, The Astrophysical Journal Letters, 768,

L36

Pober, J. C., et al. 2013, AJ, 145, 65

—. 2014, ApJ, 782, 66

Pope, A. C., & Szapudi, I. 2008, MNRAS, 389, 766

Pritchard, J. R., & Loeb, A. 2010, PhRvD, 82, 023006

—. 2012, Reports on Progress in Physics, 75, 086901

Santos, M. G., Cooray, A., & Knox, L. 2005, ApJ, 625, 575

Sellentin, E., & Heavens, A. F. 2016, MNRAS, 456, L132

Sokolowski, M., et al. 2015, PASA, 32, e004

Switzer, E. R., Chang, T.-C., Masui, K. W., Pen, U.-L., &

Voytek, T. C. 2015, ApJ, 815, 51

Switzer, E. R., et al. 2013, MNRAS, 434, L46

Taylor, A., & Joachimi, B. 2014, MNRAS, 442, 2728

Tegmark, M. 1997, PhRvD, 55, 5895

Thompson, A. R., Moran, J. M., & Swenson, Jr., G. W. 2001,

Interferometry and Synthesis in Radio Astronomy, 2nd Edition

Tingay, S. J., et al. 2013, PASA, 30, 7

Trott, C. M., & Wayth, R. B. 2017, Publications of the

Astronomical Society of Australia, 34, e061

Trott, C. M., Wayth, R. B., & Tingay, S. J. 2012, ApJ, 757, 101

Trott, C. M., et al. 2016, The Astrophysical Journal, 818, 139



Characterizing Signal Loss in the 21 cm Reionization Power Spectrum 25

van Haarlem, M. P., et al. 2013, A&A, 556, A2

Voytek, T. C., Natarajan, A., Jáuregui Garćıa, J. M., Peterson,
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