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ABSTRACT. In this paper, we give a new generalization of positive
sectional curvature called positive weighed sectional curvature, which
depends on a choice of Riemannian metric and a smooth vector field.
We give several simple examples of Riemannian metrics that do not
have positive sectional curvature but support a vector field that gives
them positive weighted curvature. On the other hand, we generalize a
number of the foundational results for compact manifolds with posi-
tive sectional curvature to positive weighted curvature. In particular,
we prove generalizations of Weinstein’s theorem, O’Neill’s formula for
submersions, Frankel’s theorem, and Wilking’s connectedness lemma.
As applications of these results, we recover weighted versions of topo-
logical classification results of Grove-Searle and Wilking for manifolds
of high symmetry rank and positive curvature.

1. INTRODUCTION

Understanding Riemannian manifolds with positive sectional curvature is a deep
and notoriously difficult problem in Riemannian geometry. A common approach
to such problems in mathematics is to generalize a problem to a more flexible
one, and then study this generalization with the hope that it will shed light on the
harder, original problem. Indeed, there are a number of generalizations of positive
sectional curvature that have been studied. The most obvious is non-negative
sectional curvature, but other conditions such as quasi-positive or almost positive
curvature have been studied in the literature (see [Zil07, KT14] and references
therein).

In this paper, we propose a different approach to generalizing positive curva-
ture, one that depends on choosing a positive, smooth density function, denoted
by e−f , or a smooth vector field X. Our motivation for considering such a gener-
alization is the corresponding theory of Ricci curvature for manifolds with density,
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which was studied by Lichnerowicz [Lic70, Lic72] and was later generalized and

popularized by Bakry-Emery and their collaborators [BÉ85]. There are too many
recent results in this area to reference all of them here, but some that are more
relevant to this article include [Lot03,Mor05,Mor09b,MW12,WW09]. Also see
Chapter 18 of [Mor09a] and the references therein.

For a triple (Mn, g,X), where (M,g) is a Riemannian manifold and X is a
smooth vector field, the m-Bakry-Emery Ricci tensor is

RicmX = Ric+
1
2
LXg −

X♯ ⊗X♯

m
,

where m is a constant that is also allowed to be infinite, in which case we write
Ric∞X = RicX = Ric+ 1

2LXg. For a manifold with density, we set X = ∇f and
write Ricmf = Ric+Hess f − df ⊗ df/m.

The Bakry-Emery Ricci tensors come up in many areas of geometry and anal-
ysis, including optimal transport [LV09,Stu06a,Stu06b,vRS05], the isoperimetric
inequality [Mor05], and the Ricci flow [Per]. Our definition of positive weighted
sectional curvature, which looks similar to the Bakry-Emery Ricci tensors, is the
following.

Definition. A Riemannian manifold (M,g) equipped with a vector field X
has positive weighted sectional curvature if, for every point p ∈ M , every 2-plane
σ ⊆ TpM , and every unit vector V ∈ σ , one of the following hold:

• sec(σ)+ 1
2(LXg)(V, V) > 0;

• X = ∇f and sec(σ)+Hessf (V,V)+ df (V)2 > 0 for some function f .

Note that a Riemannian manifold with positive sectional curvature admits
positive weighted sectional curvature, where X is chosen to be zero. The converse
to this statement does not hold, as we show by example in Propositions 3.11 and
3.16. (For additional examples that further illustrate the difference between these
notions, see Section 3.)

This definition is motivated by earlier work of the second author [Wy115],
where generalizations of classical results such as the classification of constant cur-
vature spaces, the theorems of Cartan-Hadamard, Synge, and Bonnet-Myers, and
the (homeomorphic) quarter-pinched sphere theorem are proven for manifolds
with density.

There are a number of reasons why positive weighted sectional curvature is a
natural generalization of positive sectional curvature. We will discuss this in more
detail in Section 2. For example, we observe in Section 2 that the following low-
dimensional result holds (see Theorem 2.1 and the following remarks). It follows
from earlier work of the second author [Wy108, Wy115].

Theorem A. Suppose M is a compact manifold of dimension two or three. If M
admits a metric and a vector field with positive weighted sectional curvature, then M
is diffeomorphic to a spherical space form.

This raises the following motivating question in higher dimensions.
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Question (Motivating Question). If (Mn, g,X) is compact and with positive
weighted curvature, does M admit a metric of positive sectional curvature?

Theorem A shows the answer is “yes” in dimensions two and three. On the
other hand, we show there are complete metrics with density on R × Tn with
positive weighted sectional curvature. By a theorem of Gromoll-Meyer [GM69],
R× Tn does not admit a metric of positive curvature, so the answer is “no” in the
complete case.

We approach this question by considering spaces with a high amount of sym-
metry. Since the 1990s, when Grove popularized the approach, quite a lot of
powerful machinery has been developed for studying manifolds with positive cur-
vature through symmetry. (See the survey articles [Wil07,Gro09,Zil14] for details
as well as many applications.)

A first consideration is that a given vector field X may not be invariant un-
der the isometries of g. In Section 4, we deal with this issue by showing that,
given a triple (M,g,X) with positive weighted curvature and a compact group of
isometries G acting on (M,g), it is always possible to change X to X̃ that is in-
variant under G so that (M,g, X̃) has positive weighted sectional curvature. The
fact that we can always assume that the density is invariant under a fixed compact
subgroup of isometries will be a key observation in most of our results. In fact, it
immediately gives the following result in the homogeneous case (see Proposition
4.7).

Theorem B. If a compact, homogeneous Riemannian manifold (M,g) supports
a gradient field X = ∇f such that (M,g,X) has positive weighted curvature, then
(M,g) has positive sectional curvature.

Simple examples show that this proposition is not true if the manifold is not
compact (see Example 3.2). In Section 3, we also give examples of cohomogeneity-
one metrics on spheres and projective spaces that have positive weighted sectional
curvature but not positive sectional curvature, so the homogeneous assumption
cannot be weakened.

Another way to quantify that a Riemannian manifold has a large amount of
symmetry is the symmetry rank, which is the largest dimension of a torus that
acts effectively on M by isometries. Our main result regarding symmetry rank and
positive weighted sectional curvature is an extension of the maximal symmetry
rank theorem of Grove-Searle [GS94] to positive weighted sectional curvature (see
Theorem 8.1).

Theorem C (Maximal symmetry rank theorem). Let (Mn, g,X) be closed
with positive weighted sectional curvature. If T r is a torus acting effectively by isome-
tries on M , then r ≤ ⌊(n + 1)/2⌋. Moreover, if equality holds and M is simply
connected, then M is homeomorphic to Sn or CPn/2.

In higher dimensions, Wilking has shown that one can assume less symmetry
and still obtain a homotopy classification [Wil03, Theorem 2]. We also give an
extension of this result (see Theorem 8.3).
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Theorem D (Half-maximal symmetry rank theorem). Let (Mn, g,X) be
closed and simply connected with positive weighted sectional curvature. If M admits
an effective, isometric torus action of rank r ≥ n/4+ log2n, thenM is homeomorphic
to Sn or tangentially homotopy equivalent to CPn/2.

Theorems C and D show that the answer to our motivating question is “yes”
(at least up to homeomorphism or homotopy) in the case of high-enough symme-
try rank. On the other hand, our results are slightly weaker than the results in the
unweighted setting. (We discuss this further in Sections 8 and 9.)

There are two key tools used in the proofs of Theorems C and D. The first is
an extension of Berger’s theorem (Corollary 6.3) to the weighted case. The proof
follows as in [GS94], and makes use of the O’Neill formula in the weighted case
(Theorem 5.1). The second main tool is a generalization of Wilking’s connect-
edness lemma [Wil03, Theorem 2.1] to positive weighted sectional curvature (see
Theorem 7.4).

Theorem E (Wilking’s connectedness lemma). Let (Mn, g,X) be closed with
positive weighted sectional curvature. The following hold:

(1) If X is tangent to Nn−k, a closed, totally geodesic, embedded submanifold of
M , then the inclusion N → M is (n− 2k+ 1)-connected.

(2) If X and Nn−k are as above, and if G acts isometrically on M , fixes N point-
wise, and has principal orbits of dimension δ, then the inclusion N → M is
(n− 2k+ 1+ δ)-connected.

(3) If X is tangent to Nn−k1
1 and Nn−k2

2 , a pair of closed, totally geodesic, em-
bedded submanifolds with k1 ≤ k2, then N1 ∩N2 → N2 is (n − k1 − k2)-
connected.

The only assumption in Theorem E not needed in the unweighted version is
that X be tangent to the submanifolds. This of course is true in the unweighted
setting where X = 0. In the applications, this extra assumption holds, since the
submanifolds to which we are applying the result will be fixed-point sets of isome-
tries, and X will be invariant under these actions (see Corollary 7.2 and the fol-
lowing discussion). The proof of Theorem E follows from Wilking’s arguments in
[Wil03] by using the second variation formula for the weighted curvatures derived
in [Wy115] in place of the classical one.

This paper is organized as follows. In Sections 2 and 3, we recall the no-
tion of weighted sectional curvature from [Wy115], define positive weighted sec-
tional curvature, survey its basic properties (including Theorem A), and construct
a number of examples. In Sections 4-7, we establish these properties and use them
to prove Theorem B as well as generalizations of the O’Neill formulas, Weinstein’s
theorem, and Wilking’s connectedness lemma (Theorem E). In Section 8, we use
these tools to prove Theorems C and D. Finally, in Section 9, we discuss future
directions.
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2. DEFINITIONS AND MOTIVATION

In this section, we fix some notation and go into more detail about the motivation
for the definition of positive weighted sectional curvature. At the end of this
section (see Subsection 2.3), we address the fact that weighted sectional curvature
is not simply a function of 2-planes in the way that sectional curvature is, and
we discuss a symmetrized version of weighted sectional curvature that is such a
function.

2.1. Definition of positive weighted sectional curvature. First, we recall
some notation from [Wy115]. For a Riemannian manifold (M,g) and a vector V
on M , we will call the symmetric (1,1)-tensor RV , given by

RV (U) = R(U,V)V = ∇U∇VV −∇V∇UV −∇[U,V]V,

the directional curvature operator in the direction of V . Given a smooth vector
field X, the weighted directional curvature operator in the direction of V is another
symmetric (1,1)-tensor,

RVX = R
V +

1
2
(LXg)(V, V) id,

where id is the identity operator. The strongly weighted directional curvature opera-
tor in the direction of V is defined as R̄VX = R

V
X + g(X,V)

2 id.
Given an orthonormal pair (U,V) of vectors in TpM for some p ∈ M , the

sectional curvature sec(U,V) of the plane spanned by U and V is, by definition,
sec(U,V) = g(RV (U),U). In the weighted cases, we similarly define

secVX(U) = g(R
V
X(U),U) = sec(V,U)+

1
2
(LXg)(V, V),

secVX(U) = g(R̄
V
X(U),U) = secVX(U)+ g(X,V)

2.

We say that secX ≥ λ if secVX(U) ≥ λ for every orthonormal pair (V,U), or,
equivalently, if all of the eigenvalues of RVX are at least λ for every unit vector V .
We define the condition secX ≥ λ in the analogous way. Note that secVX(U) ≥
secVX(U), so that secX ≥ λ implies secX ≥ λ.

In terms of this notation, we can then rephrase the definition of positive
weighted sectional curvature.

Definition. A Riemannian manifold (M,g) equipped with a vector field X
has positive weighted sectional curvature if one of the following hold:

• secX > 0;
• X = ∇f and secf > 0 for some function f .

Note that, unlike sec(U,V), the weighted sectional curvatures are not sym-
metric in U and V . This may at first seem unnatural, but it is necessary if we want
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the weighted sectional curvatures to agree with the Bakry-Emery Ricci curvatures
in dimension two, as the Bakry-Emery Ricci tensors of a surface with density will
generally have two different eigenvalues. (See Section 2.3 for a discussion of a
symmetrized version.)

Also note that secVX and secVX average to Bakry-Emery Ricci curvatures in the
following sense. Let {Ei}

n−1
i=1 be an orthonormal basis of the orthogonal comple-

ment of V ; then,

Ric(n−1)X(V, V) =
n−1∑

i=1

secVX(Ei),

Ric−(n−1)
(n−1)X(V, V) =

n−1∑

i=1

secVX(Ei).

In particular, for surfaces, secX ≥ λ is equivalent to RicX ≥ λ, and similarly for

secX and Ric−1
X . The curvature Ric−(n−1)

(n−1)X is an example of Bakry-Emery Ricci
curvature with negative m that has been studied recently in [KM, Oht].

2.2. Properties of positive weighted sectional curvature. Now that we
have introduced the main equations involving weighted sectional curvature, we
summarize some of the properties that the condition of positive weighted sectional
curvature shares with positive sectional curvature. We then give a basic outline of
how these facts lead to the proof of Theorems C and D.

First, positive weighted sectional curvature is preserved under covering maps.
Specifically, if (M,g,X) has positive weighted sectional curvature and M̃ is a cover
ofM , then (M̃, g̃, X̃) has positive weighted sectional curvature where g̃ and X̃ are
the pullbacks of g and X, respectively, under the covering map.

A second property of positive weighted sectional curvature is that the funda-
mental group is finite in the compact case. Indeed, this follows from [Wy108,
Theorem 1.1] and [Wy115, Theorem 1.14] by the fact that positive weighted
sectional curvature lifts to covers, as follows.

Theorem 2.1. Let (M,g) be a complete Riemannian manifold. If there exists a
vector field X such that RicX > λ > 0, or if M is compact and there is a function f
such that Ric−(n−1)

f > λ > 0, then π1(M) is finite.

This theorem immediately implies the classification of compact two- and
three-dimensional manifolds with positive weighted sectional curvature stated in
Theorem A. Indeed, this follows in dimension two from the classification of sur-
faces, and in dimension three from the Ricci flow proof of the Poincaré conjecture.

We note that, for positive Ricci curvature, the finiteness of fundamental group
follows from the Bonnet-Myers diameter estimate. There is no diameter estimate
for the weighted curvatures, as there are complete non-compact examples with
secf > λ > 0 (see Example 3.2).

A third property of positive weighted sectional curvature is that the vector
field X can always be chosen so that it is invariant under a fixed compact group of



Positive Weighted Sectional Curvature 425

isometries. We interpret this as a shared property with positive sectional curvature,
since the zero vector field is always invariant. Specifically we have the following
result.

Corollary 2.2. If (M,g,X) has positive weighted sectional curvature, and if G
is a compact subgroup of the isometry group of (M,g), then X can be replaced by a G-
invariant vector field X̃ such that (M,g, X̃) has positive weighted sectional curvature.

When M is compact, the isometry group is compact, and hence this corollary
applies in this case where G is the entire isometry group. As we mentioned in
the Introduction, reducing to the invariant case will be key in most of our results.
Corollary 2.2 follows immediately from Lemmas 4.3 and 4.5 below.

A fourth property of positive weighted sectional curvature is that Riemannian
submersions preserve it in the following sense.

Corollary 2.3. Let π : (M,g) → (B,h) be a Riemannian submersion. Let X
be a vector field X on M that descends to a well-defined vector field π∗X on B. If
(M,g,X) has positive weighted sectional curvature, then so does (B,h,π∗X).

This follows immediately from a generalization of O’Neill’s formulas proved
below (Theorem 5.1). We also obtain from O’Neill’s formulas that Cheeger de-
formations preserve positive weighted sectional curvature (Lemma 5.3).

Corollary 2.3 implies the following: if (M,g,X) is compact with positive
weighted sectional curvature and G is a closed subgroup of the isometry group that
acts freely on M , then M/G admits positive weighted sectional curvature. Indeed,
by Corollary 2.2 we can modify X so that it is G-invariant and thus descends to
a vector field on M/G via the quotient map π : M → M/G. It follows that M/G
equipped with the vector field π∗X has positive weighted sectional curvature by
Corollary 2.3. We implicitly use this fact in the proof of Berger’s theorem (see
Corollary 6.3).

Finally, a crucial property of positive weighted sectional curvature is that
Synge-type arguments for positive sectional curvature generalize to the weighted
setting. This follows from studying a second variation formula for energy of
geodesics that was derived in [Wy115]. Given a variation γ̄ : [a, b]×(−ε, ε)→ M
of a geodesic γ = γ̄(·,0), let V = (∂γ̄/∂s)|s=0 denote the variation vector field
along γ. The second variation of energy is given by

d2

ds2

∣∣∣∣
t=0
E(γs) = I(V, V)+ g

(
∂2γ̄

∂s2

)∣∣∣∣
t=b

t=a
,

where I(V, V) is the index form of γ. The usual formula for the index form is

I(V, V) =

∫ b

a
(|V ′|2 − Rγ

′

(V, V))dt.
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In terms of the weighted directional curvature operators, the index form can be
re-written as follows (see [Wy115, Section 5]):

I(V, V) =

∫ b

a
(|V ′|2 − R

γ′

X (V, V)− 2g(γ′, X)g(V,V ′))dt(2.1)

+ g(γ′, X)|V |2
∣∣∣
t=b

t=a

=

∫ b

a
(|V ′ − g(γ′, X)V |2 − R̄

γ′

X (V, V))dt(2.2)

+ g(γ′, X)|V |2
∣∣∣
t=b

t=a
.

It may not be immediately apparent why these formulas are natural, but they do
allow us to generalize Synge-type arguments using the following result.

Lemma 2.4. Fix a triple (M,g,X). Let γ : [a, b]→ M be a geodesic onM , and
let Y be a unit-length, parallel vector field along and orthogonal to γ. The following
hold:

(1) If secX > 0, then the variation γs(t) = exp(sY) of γ satisfies

d2

ds2

∣∣∣∣
s=0
E(γs) < g(γ

′(t),Xγ(t))
∣∣∣
t=b

t=a
.

(2) If X = ∇f and secf > 0, then the variation γs(t) = exp(sefY) of γ
satisfies

d2

ds2

∣∣∣∣
s=0
E(γs) < e

f (γ(t))g(γ′(t),Xγ(t))
∣∣∣
t=b

t=a
.

This lemma is used in Sections 6 and 7 to generalize theorems of Weinstein,
Berger, Synge, and Frankel, as well as Wilking’s connectedness lemma. Once we
have these results, it is not hard to see how to generalize the proofs of Theorems
C and D to the weighted setting. We indicate briefly how the arguments go.

The proofs proceed by induction on the dimension n, with the base cases
n ∈ {2,3} being handled by the classification of simply connected, compact
manifolds in these dimensions. If a torus acts effectively on M , which has pos-
itive weighted sectional curvature, then we obtain a fixed point set N of lower
dimension by Berger’s theorem. The fixed point set of a subgroup of isometries
is always a totally geodesic submanifold, and since we can assume X is invariant
under the group, we also obtain that X is tangent to N. It follows immediately
that N with restricted vector field X also has positive weighted sectional curva-
ture. Finally, we can restrict the torus action on M to a torus action on N, so it
might follow by induction on the dimension of the manifold that N satisfies the
conclusion of the theorem. If the induction hypothesis does not apply, the codi-
mension of N is small, and other arguments are used to again show that N satisfies
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the conclusion of the theorem. By applying Wilking’s connectedness lemma, the
topology of M is recovered from the topology of N.

2.3. Symmetrized weighted sectional curvature. Unlike sectional curva-
ture, the weighted sectional curvatures do not define a function of 2-planes. In
this subsection, we define a symmetrized version that does. We also compare the
notions of sectional curvature and symmetrized weighted sectional curvature.

Given a vector field X on a Riemannian manifold M , secX can be regarded as
a function secX(σ ,V) of (σ ,V), where σ ⊆ TpM is a two-plane and V is a unit
vector in σ . To evaluate secX(σ ,V), choose either of the two unit vectors in σ
orthogonal to V , call it U , and evaluate secVX(U).

Note that the unit circle S1(σ) in σ is defined by the metric, so it makes sense
to average over unit vectors eiθ ↔ V ∈ S1(σ). We denote this by

sym secX(σ) =
1

2π

∫ 2π

0
secX(σ , e

iθ)dθ.

One can similarly define sym secX . One appealing aspect of this curvature
quantity is that it is the same kind of object as sec, a function on two-planes.

This definition was motivated by a suggestion of Guofang Wei, who suggested
looking at the quantity

secVX(U)+ secUX(V).

Note that 1
2(secVX(U) + secUX(V)) equals sym secX , and likewise in the strongly

weighted case.
We analyze the conditions sym secX > 0 and sym secX > 0 in dimension two.

First, it is clear that in any dimension,

secX > 0 ⇒ sym secX > 0
⇓ ⇓

secX > 0 ⇒ sym secX > 0.

Second, in dimension two, sym secf = scal /2 + ∆f . This is the same as the
weighted Gauss curvature studied in [CHH+06, CM11], which contain proofs
that the Gauss-Bonnet theorems hold for this weighted curvature. In particular,
we have the following result (compare [CHH+06, Proposition 5.3]).

Theorem 2.5 (Gauss-Bonnet). If M2 is orientable, then

∫

M
sym secX = 2πχ(M).

This gives the following generalization of one case of Theorem A, which im-
plies that a two-dimensional, compact manifold M that admits secX > 0 for some
vector field X is diffeomorphic to a spherical space form.
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Corollary 2.6. If M2 is compact and admits a metric and vector field X with
sym secX > 0, then M2 is diffeomorphic to a spherical space form.

On the other hand, the torus T 2, while it does not admit sym secX > 0, does
admit a metric with sym secX > 0. To see this, equip the torus with a flat metric
and a unit-length Killing field X; then, we have

sym secX = 0+ 0+
1

2π

∫ 2π

0
g(X, eiθ)2 dθ = 1.

In fact, this example can be immediately generalized as follows.

Proposition 2.7. If (N,g) is a Riemannian manifold with positive sectional
curvature, then S1 ×N admits a metric and a vector field X such that sym secX > 0.

Proof. Let g be the product metric, and let X denote the unit-length Killing
field tangent to the circle factor. If σ is a two-plane tangent to N, then

sym secX(σ) ≥ secgN (σ) > 0.

If σ is a two-plane not contained in the tangent space to N, then

sym secX(σ) ≥
1
2
|projσ (X)|

2 > 0,

where projσ denotes the projection onto σ . ❐

This raises the following question.

Question 2.8. Does the torus admit secX > 0 or sym secf > 0? More generally,
are there compact manifolds with secX > 0 or sym secf > 0 and infinite fundamental
group?

We point out that Gauss-Bonnet type arguments do not seem to give a dif-
ferent proof that any compact surface with density with secf > 0 is a sphere.
Indeed, if we trace secX , we obtain scal+div(X) + |X|2. The integral of this is

4πχ(M)+
∫ |

M
X|2 d volg, which is not a topological quantity.

We also note that the Gauss-Bonnet theorem gives interesting information
about other inequalities involving curvature. First, we consider a positive lower
bound.

Proposition 2.9. Let (M,g) be a compact surface with sym secX ≥ 1. The area
of M is at most 4π . Moreover, if secX ≥ 1 and the area of M is 4π , then (M,g) is
the round sphere, and X is a Killing field.

Proof. We apply the discussion above to the universal cover M̃ ofM , endowed
with the pulled back metric g̃ and vector field X̃. It follows that χ(M̃) > 0, so
that χ(M̃) = 2 and area(M) ≤ area(M̃) ≤ 4π . Moreover, if area(M) = 4π ,
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then both of these inequalities are equalities. In particular, π1(M) is trivial, and
secX̃ = RicX̃ = g̃, so that (M,g,X) = (M̃, g̃, X̃) is a compact, two-dimensional
Ricci soliton. A result of Chen, Lu, and Tian [CLT06] then shows that M has
constant curvature 1 and that X is a Killing field. Since M is simply connected,
this proves the proposition. ❐

We can also consider the case of negative curvature in dimension two. It was
shown in [Wy115] that if a compact manifold has secX ≤ 0, then the universal
cover is diffeomorphic to Euclidean space, showing that a compact surface admits
secX ≤ 0 if and only if it is not the sphere or real projective space. In fact, the
Gauss-Bonnet argument improves this result for surfaces, as it shows that the con-
clusion holds if sym secX ≤ 0. Moreover, it also shows that if a metric on the torus
supports a vector field with sym secX ≤ 0, then the metric is flat and X is Killing.
In particular, the two-torus has no metric with density on it with sym secX < 0.

The discussion above, along with the work of Corwin and Morgan [CM11]
certainly shows that the study of the symmetrized weighted sectional curvature
is warranted. In fact, the results in Section 5 of this paper about Riemannian
submersions and Cheeger deformation have analogues for the symmetrized cur-
vatures with the same proofs. On the other hand, there does not seem to be a
good second variation formula for the symmetrized curvatures that can give us a
version of Lemma 2.4. Note that the unsymmetrized curvatures also appear in the
second variation of the weighted distance (see [Mor06, Mor09b]). Without some
kind of second variation formula for the symmetrized curvatures, it seems unlikely
that the other results of this paper can be generalized to the symmetrized case, or
that many of the facts for surfaces mentioned above can be generalized to higher
dimensions.

3. EXAMPLES

In this section, we discuss a number of examples of metrics with positive weighted
curvature, including some that do not have positive sectional curvature. As a
warm-up, we first consider the case of products.

Definition 3.1. Given (M1, g1, X1) and (M2, g2, X2) where (Mi, gi) are Rie-
mannian manifolds and Xi are smooth vector fields, the product of (M1, g1, X1)
and (M2, g2, X2) is the triple (M1 ×M2, g1 + g2, X1 +X2).

A basic fact about positive sectional curvature is that it is not preserved by
taking products, as the sectional curvature of a plane spanned by vectors in each
factor is zero. Indeed, one of the most famous open problems in Riemannian
geometry is the Hopf conjecture, which states that S2 × S2 does not admit any
metric of positive sectional curvature. In the weighted case, there are noncompact
examples of products that have positive weighted sectional curvature.

Example 3.2. We define the one-dimensional Gaussian as the real lineR with
coordinate x, standard metric g = dx2, and vector field X = 1

2∇(x
2) = xd/dx.
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This triple has secX = 1. If we take the product of two one-dimensional Gaus-
sians, we get a two-dimensional Gaussian: namely, R2 with the Euclidean metric
and vector field X = ∇f where f (A) = 1

2 |A|
2. This triple still has secX = 1.

Moreover, taking further products, we obtain the n-dimensional Gaussian as the
product of n one-dimensional Gaussians, all of which have secX = 1.

On the other hand, it is easy to see that such examples cannot exist in the
compact case.

Proposition 3.3. No product of the form (M1×M2, g1+g2, X1+X2) with one
of the Mi compact has positive weighted sectional curvature.

Proof. LetM1 be the compact factor, and suppose first that secX > 0. Consider
the “vertizontal” curvature given by Y tangent to M1 and U tangent to M2:

secX(Y ,U) = sec(Y ,U) +
1
2
LXg(Y , Y) =

1
2
LX1g1(Y , Y).

This shows that if secX > 0, then 1
2LX1g1 > 0. This is impossible ifM1 is compact

by the divergence theorem, as tr(LX1g) = div(X1).
The case where secf > 0 is analogous. Here, we obtain that the function

u1 = ef1 has Hessg1 u1 > 0 on M1, which is again impossible on a compact
manifold. ❐

This shows that the Hopf conjecture is also interesting for weighted sectional
curvature.

Question 3.4 (Weighted Hopf conjecture). Does S2 × S2 admit a metric and
vector field with positive weighted sectional curvature?

In the next few sections, we investigate examples with positive weighted sec-
tional curvature, using the simple construction of warped products over a one-
dimensional base. As we can see even in the case of products, it is easier to
construct non-compact examples than compact ones, so we will investigate the
non-compact case first.

3.1. Noncompact examples. A warped product metric over a one-dimen-
sional base is a metric of the form g = dr 2 + ϕ2(r)gN where N is an (n −
1)-dimensional manifold. Up to rescaling ϕ and the fiber metric gN and re-
parametrizing r , there are three possibilities for the topology of complete metrics
of this form:

(1) If ϕ(r) > 0 for r ∈ R and (N,gN) is complete, then g gives a complete
metric on R ×N. If ϕ is also periodic, then we can take the quotient to
get a metric on S1 ×N.

(2) If ϕ(r) > 0 for r ∈ (0,∞) and ϕ is an odd function with ϕ′(0) = 1,
and if (N,gN) is a round sphere of constant curvature 1, then g defines a
complete rotationally symmetric metric on Rn.
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(3) If ϕ(r) > 0 for r ∈ (0, R) and ϕ is an odd function at 0 and R with
ϕ′(0) = 1 and ϕ′(R) = −1, and if (N,gN) is a round sphere of constant
curvature 1, then g defines a complete rotationally symmetric metric on
Sn.

For Y,Z tangent to gN , we have the following well-known formulas for the
curvature operator of a one-dimensional warped product:

R(∂r ∧ Y) = −
ϕ′′

ϕ
∂r ∧ Y,

R(Y ∧ Z) = RN(Y ∧ Z)

(
ϕ′

ϕ

)2

Y ∧ Z,

where RN denotes the curvature operator of N. We will be interested in lower
bounds on weighted curvature of the warped product. All of our examples will
also have the property that X = ∇f , so we focus only on this case. The following
lemma simplifies the problem of proving such lower bounds for warped product
metrics over a one-dimensional base.

Lemma 3.5. Let dr 2 +ϕ2(r)gN be a warped product metric, and assume f is
a smooth function that only depends on r . The weighted curvature secf ≥ λ if and
only if

λ ≤ sec∂rf (Y) = −
ϕ′′

ϕ
+ f ′′,

λ ≤ secYf (∂r ) = −
ϕ′′

ϕ
+ f ′

ϕ′

ϕ
,

λ ≤ secYf (Z) =
secgN(Y , Z) − (ϕ′)2

ϕ2
+ f ′

ϕ′

ϕ
,

for all orthonormal pairs (Y , Z), where Y and Z are tangent to N.
Similarly, secf ≥ λ if and only if these three inequalities hold with f ′ replaced by

u′/u and f ′′ replaced by u′′/u, where u = ef .

This lemma implies that one can show secf ≥ λ for these metrics by plugging
in “test pairs” of the form (∂r , Y), (Y , ∂r ), and (Y , Z), where Y and Z are tangent
to N. In particular, if secgN is bounded from below, then proving secf ≥ λ reduces
to showing three inequalities involving the functions ϕ and f .

Proof. As the proof is similar, we omit the proof in the strongly weighted case.
Let U = a∂r + Y and V = b ∂r + Z be an arbitrary orthonormal pair of vectors,
where Y and Z are tangent to N. By orthonormality,

|Y ∧ Z|2 = 1− a2 − b2,
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so a2 +b2 ≤ 1. Since ∂r ∧ (aZ −bY) and Y ∧Z are eigenvalues of the curvature
operator, we have

sec(U,V) = 〈R(U ∧ V),U ∧ V〉

= −
ϕ′′

ϕ
|∂r ∧ (aZ − bY)|

2 +

(
secN(Y , Z) − (ϕ′)2

ϕ2

)
|Y ∧ Z|2

= −
ϕ′′

ϕ
(a2 + b2)+

(
secN(Y , Z) − (ϕ′)2

ϕ2

)
(1− a2 − b2).

Next, we calculate

Hess f (U,U)|V |2 = a2f ′′ + (1− a2)f ′
ϕ′

ϕ
.

Observe that secUf (V) = sec(U,V) +Hess f (U,U)|V |2 is a linear function in the

quantities a2 and a2 + b2. Moveover, these quantities vary over a triangle, since

0 ≤ a2 ≤ a2 + b2 ≤ 1,

so the minimal (and maximal) values of secUf (V) occur at one of the three corners.
This proves the lemma, since these corners correspond to orthonormal pairs of the
form (∂r , Y), (Y , ∂r ), and (Y , Z). ❐

As a first application of Lemma 3.5, we consider the problem of prescribing
positive weighted sectional curvature locally on a subset of the round sphere.

Proposition 3.6. Let M be a round sphere of constant curvature 1, and H+

an open round hemisphere in M . For any λ ∈ R, there is a density on H+ with
secf ≥ λ, and there is no density defined on an open set containing the closure of H+

with secf > 1.

Proof. First, we prove the non-existence. It suffices to show that a geodesic
ball B of radius π/2 + ε cannot admit a density f such that secf > 1. On B,
we can write the round metric as the warped product dr 2 + sin2(r)gSn−1 , where
r ∈ (0, π/2 + ε). By Lemma 4.5 proved in the next section, we can assume
that f = f (r). By Lemma 3.5, secf > 1 only if (u′/u) cot(r) > 0. However,
cot(π/2) = 0, so the second inequality is impossible to satisfy.

On the other hand, to find a density f with secf ≥ λ, we only need that

f ′′ ≥ λ− 1 and f ′ cot(r) ≥ λ− 1.

Such a density exists; for example, f given by

f (r) = (λ− 1)
∫

tan(x)dx = −(λ− 1) log(cos(r))

satisfies these properties. Note that in these examples, f blows up at the equator
r = π/2. ❐
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On the other hand, we note the general fact that every point p in a Riemann-
ian manifold has a neighborhood U supporting a density such that secf ≥ λ.

Proposition 3.7. Let (M,g) be a Riemannian manifold, p ∈ M , and λ ∈ R.
There exists an open set U containing p that supports a density f such that secf ≥ λ
on U .

Proof. Let r be the distance function to p. Since Hess r ∼ 1/r as r → 0, there
exists 0 < ε < 1 such that r Hess r > εg on B(p, ε). Let ρ = inf sec(B(p, ε), g).
Define f = ((λ− ρ)/(2ε))r 2. We have that

Hess f =
λ− ρ

ε
dr ⊗ dr +

λ− ρ

ε
r Hess r ≥ (λ− ρ)g,

which implies that secf ≥ λ on B(p, ε). ❐

We now come to our first complete example.

Proposition 3.8. Let (N,gN) be a metric of non-negative sectional curvature.
For any λ, the metric g = dr 2 + e2rgN on R × N admits a density of the form
f = f (r) such that secf ≥ λ. On the other hand, g admits no density of the form
f = f (r) with secf ≥ −1+ ε with ε > 0.

Proof. First set ϕ(r) = er . Because N has non-negative sectional curvature,
Lemma 3.5 implies secf ≥ λ if and only if −1+u′′/u ≥ λ and −1+u′/u ≥ λ.
This can be achieved by taking u = eAr for some sufficiently large A ∈ R.

On the other hand, for a general f = f (r), if we have secf ≥ −1+ ε, then f
satisfies f ′′(r) ≥ ε and f ′(r) ≥ ε for all r ∈ R. This is impossible. ❐

Remark 3.9. Gromoll and Meyer [GM69] proved that a non-compact, com-
plete manifold with sec > 0 is diffeomorphic to Euclidean space. These examples
show this is not true for secf > 0. Moreover, Cheeger and Gromoll [CG72]
showed that a non-compact complete manifold with sec ≥ 0 is the normal bundle
over a compact totally geodesic submanifold called a soul. While our examples are
topologically R×N, we note that the cross sections {r0}×N are not geometrically
a “soul,” as they are not totally geodesic.

Remark 3.10. If we take gN to be a flat metric, then the metric given by
g = dr 2 + e2rgN is a hyperbolic metric. If we also choose f (r) = r , then we get
a density with constant secf = 0.

3.2. Compact examples. We now give examples of rotationally symmetric
metrics on the n-sphere that admit a density f such that secf > 0, but that do
not have sec ≥ 0.

In general, a rotationally symmetric on the sphere will be of the form g =
dr 2 +ϕ2(r)gSn−1 for r ∈ [0,2L]. The smoothness conditions for the warping
function ϕ and density function f are that ϕ(0) = ϕ(2L) = 0, ϕ′(0) = 1,
ϕ′(2L) = −1, ϕ(even)(0) = ϕ(even)(2L) = 0, and f ′(0) = f ′(2L) = 0. Our main
construction is contained in the following proposition.
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Proposition 3.11. There are rotationally symmetric metrics on Sn that support
a density f such that secf > 0, but that do not have sec ≥ 0.

Proof. First, we shall define ϕ(r) = r on [0, π/6] and ϕ(r) = sin(r) on
[π/3, π/2]. On the interval (π/6, π/3), extend ϕ smoothly so that ϕ′′ ≤ 0
and ϕ′ ≥ 0. Then, we reflect ϕ across π/2 to obtain a warping function defined
on [0, π] that gives a smooth rotationally symmetric metric on the sphere. Geo-
metrically, this metric consists of two flat discs connected by a region of positive
curvature.

Now, define f (r) = 1
2r

2 on [0, π/3], and extend f on (π/3, π/2] so that
f ′ > 0 on (π/3, π/2) and has f (odd)(π/2) = 0, so that f also defines a smooth
function when reflected across π/2.

We now consider the potential function λf ′′ for a positive constant λ. The
table below shows the values for the eigenvalues of the curvature operator and
Hessian of λf on the different regions:

−ϕ′′/ϕ (1− (ϕ′)2)/ϕ2 λf ′′ λf ′ϕ′/ϕ

[0, π/6] 0 0 λ λ

(π/6, π/3] > 0 > 0 λ ≥ λ

(π/3, π/2] 1 1 λf ′′ ≥ 0

By Lemma 3.5, secf ≥ λ on [0, π/3]. On (π/3, π/2], note that f ′′ < 0 some-
where since f ′ must decrease from π/3 to 0. However, by choosing λ small
enough, we can make 1+λf ′′ ≥ λ on [π/3, π/2], and then we will have secf ≥ λ
everywhere.

We have thus constructed examples with secf > 0 but that do not have sec >
0. Of course, this example does have sec ≥ 0. However, since having secf > 0 is
an open condition, we can perturb the metric in an arbitrary small way and still
have secf > 0. This will give metrics with some negative sectional curvatures that
still have secf > 0. ❐

On the other hand, we note that most rotationally symmetric metrics on the
sphere do not have any density such that secf > 0.

Proposition 3.12. Let g = dr 2 +ϕ2(r)gSn−1, r ∈ [0,2L], be a metric on
Sn. The following hold:

(1) If there is a density f such that secf > 0, then

∫ 2L

0

−ϕ′′(r)

ϕ(r)
dr ≥ 0.

(2) If there is a density f such that secf > 0, then ϕ has a unique critical point
t0. Moreover, at t0, the metric has positive sectional curvature.
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Proof. By Lemmas 4.3 and 4.5, we can assume in either case that f is a func-
tion of r . Both results are simple consequences of the equations for curvature. For
the first, we consider the equation

sec∂rf (Y) =
−ϕ′′

ϕ
+ f ′′ > 0.

For f to define a smooth function, we must have f ′(0) = f ′(2L) = 0, so integrat-
ing the equation gives (1). In dimension two, this is the Gauss-Bonnet Theorem
(Theorem 2.5) that we discussed in Section 2.3.

For (2), consider a point where ϕ′(t) = 0. Fix at this point an orthonormal
pair of vectors Y and Z that are tangent to N. Since we have that Hessu(Y, Y) =
u′(ϕ′/ϕ)g(Y , Y) = 0, the only way secYf (∂r ) and secYf (Z) can be positive is if
sec(∂r , Y) and sec(Y , Z) are positive. It follows that all sectional curvatures are
positive at this point. Moreover, it follows that ϕ′′(t) < 0 at each critical point t,
so there can be at most one critical point of ϕ. ❐

Remark 3.13. Proposition 3.12 (2), shows that a spherical “dumbbell” metric
consisting of two spheres connected by a long neck of non-positive curvature does
not have any density with secf > 0.

We now consider doubly warped products of the form

g = dr 2 +ϕ2(r)gSk +ψ
2(r)gSm , r ∈ [0, L].

These metrics are also cohomogeneity-one with G =O(k+1)×O(m+1), so by
Lemmas 4.3 and 4.5, we can assume that the density is of the form f = f (r). We
also have Hess r = ϕ′ϕgSk +ψ

′ψgSm . Thus,

Hess f = f ′′ dr 2 + f ′ϕ′ϕgSk + f
′ψ′ψgSm .

In order for f to be C2, we thus need f ′(0) = f ′(L) = 0.
We let Y,Z denote vectors in the Sk factor, and U,V be vectors in the Sm

factor. The curvature operator in this case is

R(∂r ∧ Y) = −
ϕ′′

ϕ
∂r ∧ Y,

R(∂r ∧U) = −
ψ′′

ψ
∂r ∧U,

R(Y ∧ Z) =
1− (ϕ′)2

ϕ2
Y ∧ Z,

R(U ∧ V) =
1− (ψ′)2

ψ2
U ∧ V,

R(Y ∧U) = −
ϕ′ψ′

ϕψ
Y ∧U.
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This shows that, at a point (r , p, q), there exists a basis {Ei} of the tangent
space such that the following hold:

• The Ei are eigenvectors of Hess f .
• The Ei ∧ Ej for i < j are eigenvectors of R.

In this setting, we will use the following algebraic lemma to show that certain
doubly warped products on the sphere have positive weighted sectional curvature.
The proof is algebraic, and is postponed until the next subsection.

Corollary 3.14. Let (M,g) be a closed Riemannian manifold with non-negative
curvature operator R. Let X be a vector field on M . Assume that, for all p ∈ M , the
tangent space at p has a basis {Ei} such that all of the following hold:

• Ei is an eigenvector for LXg with eigenvalue µi for all i.
• Ei ∧ Ej is an eigenvalue for R with eigenvalue λij for all i < j.
• λij > 0 or min(µi, µj) > 0 for all i < j.

There exists λ > 0 such that (M,g, λX) has positive weighted sectional curvature.

More geometrically, this result allows us to conclude that secλf > 0 by testing
this condition on orthonormal pairs of the form (Ei, Ej) or (Ej , Ei) with i < j.

Proposition 3.15. For any positive integers m and k, there is a doubly warped
product metric on Sk+m+1 of the form g = dr 2 + ϕ2(r)gSk + ψ

2(r)gSm with
secf > 0, but that does not have sec ≥ 0.

Proof. Let r vary over the interval [0, π/2], choose ϕ and f as in the proof
of Proposition 3.11, and set ψ(r) = cos(r). The proof of Proposition 3.11 shows
that we can scale f so that the weighted sectional curvatures of the pairs involving
∂r and Y are positive. For this argument, we apply Corollary 3.14.

Choose an orthonormal basis {Ei}
k+m
i=0 for the tangent space with E0 = ∂r ,

with E1, . . . , Ek tangent to Sk, and with Ek+1, . . . , Ek+m tangent to Sm. This basis
satisfies the first two conditions of Corollary 3.14. It suffices to check the third
condition.

Using the expressions above for the curvature operator, all λij > 0, except in
the case where r ∈ [0, π/6], and where Ei and Ej are tangent to the Sk factor.
For these indices, however, µi = Hessf (Ei, Ei) > 0 and µj = Hessf (Ej , Ej) > 0.
By Corollary 3.14, we have secλf > 0 for some λ > 0. The fact that we can
make sec < 0 for some two-planes follows for the same reason it was true in the
rotationally symmetric case. ❐

Applying O’Neill’s formula from Section 5, this also gives us an example on
CPn.

Proposition 3.16. There are cohomogeneity-one metrics on CPn that admit a
density such that secf > 0, but that do not have sec ≥ 0.

Proof. Consider a double warped product metric on the sphere S2n+1 of the
form

g = dr 2 +ϕ2(r)gS2n−1 +ψ2(r)dθ2.
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Consider the Hopf fibration on S2n−1, and write the metric gS2n−1 = k+h where
h is the metric tangent to the Hopf fiber and k is the metric on the orthogonal
complement. Complex multiplication on the S2n−1 and S1 factors induces a free
isometric action on g, and the quotient is CPn. The quotient map is a Riemann-
ian submersion if we equip CPn with the metric

dr 2 +ϕ2(r)k+
(ϕ(r)ψ(r))2

ϕ2(r)+ψ2(r)
h.

By O’Neill’s formula (Theorem 5.1), we know this metric also has secf > 0. Note
also that if Y is a horizontal vector field in the S2n−1 factor, then for r > 0,
[∂r , Y] = 0, which implies that the sectional curvature sec∂rf (Y) does not change
under the submersion. Since there are curvatures in the doubly warped product
of this form that are negative, we also obtain that the metric on CPn has some
negative sectional curvatures. ❐

3.3. Proof of Corollary 3.14. This section is devoted to the proof of Corol-
lary 3.14, which is applied in the previous section. The proof is algebraic and not
required for the rest of the paper, so the reader may choose to skip this subsection.
The result is restated here for convenience.

Corollary (Corollary 3.14). Let (M,g) be a closed Riemannian manifold with
non-negative curvature operator R. Let X be a vector field on M . Assume that, for all
p ∈M , the tangent space at p has a basis {Ei} such that all of the following hold:

• Ei is an eigenvector for LXg with eigenvalue µi for all i.
• Ei ∧ Ej is an eigenvalue for R with eigenvalue λij for all i < j.
• λij > 0 or min(µi, µj) > 0 for all i < j.

There exists λ > 0 such that (M,g, λX) has positive weighted sectional curvature.
To prove this result, first note that it suffices to prove that a λ > 0 as in the

conclusion exists at every point in M . It is then straightforward to conclude this
pointwise claim from the following lemma together with the non-negativity of the
curvature operator.

Lemma 3.17. Let (V, 〈·, ·〉) be a finite-dimensional inner product space. Let
L and R be symmetric, linear maps on V and Λ2V , respectively. Assume there exists
an orthonormal eigenbasis {Ei} for L such that {Ei ∧ Ej}i<j is an eigenbasis for R.
Denote the corresponding eigenvalues by µi and λij , respectively. Set λji = λij for
i < j. Considered as a function of orthonormal pairs (Y , Z) in V , the minimum and
maximum values of

S(Y , Z) = 〈R(Y ∧ Z), Y ∧ Z〉 + 〈L(Y), Y〉

lie in the set

{λij + µi | i, j distinct} ∪
{

1
2
(λij + λkℓ + µi + µj) | i, j, k, ℓ distinct

}
.
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Proof. Let n = dim(V). Let Y =
∑
aiEi and Z =

∑
biEi be an orthonormal

pair in V . Observe that

S(Y , Z) =
∑

i<j

λijzij +
∑

i

µixi = S(xi, zij),

where xi = a
2
i for 1 ≤ i ≤ n, where zij = (aibj − ajbi)2 for 1 ≤ i < j ≤ n.

To simplify notation later, set zii = 0 and zji = zij for 1 ≤ i < j ≤ n. By
orthonormality of (Y , Z), all of the following hold:

(1) xi ≥ 0 and
∑
xi = 1, and hence the vector x = (xi) lies on the

standard simplex ∆n−1 ⊆ Rn.

(2) Likewise, z = (zij) lies on the standard simplex ∆(
n
2)−1 ⊆ Rn(n−1)/2.

(3) For all 1 ≤ i ≤ n, xi ≤
∑n
j=1 zij.

Hence, S(Y , Z) equals S(x, z) for some point (x, z) in the convex polytope C ⊆
Rn ×Rn(n−1)/2 defined by

C =
{
(x, z) ∈ ∆n−1 ×∆(

n
2)−1 | xi ≤

∑

j

zij for all i
}
.

To prove the lemma, it suffices to show that the function S : C → R has extremal
values in the set described in the conclusion of the lemma.

We prove this claim by induction over n. First, if n = 2, then C = ∆1 ×∆0,
so

S(x, z) = λ12 + µ1x1 + µ2x2

has extremal values λ12 + µ1 and λ12 + µ2, as claimed. Assume now that n ≥ 3
and that the claim holds in dimension n− 1.

Since C is a convex polytope—that is, an intersection of half-spaces—and
since S is linear, the extremal values are attained at the corners (or zero-dimensional
faces) of C. We now evaluate S at these corners.

Let (x, z) ∈ C be a corner. There exist 0 ≤ k ≤ n and distinct indices
i1, . . . , ik such that all of the following hold:

(1) (x, z) lies in the interior of a k-dimensional face of ∆n−1 ×∆(
n
2)−1.

(2) xih =
∑n
j=1 zihj for 1 ≤ h ≤ k.

(3) xi ≤
∑n
j=1 zij for all 1 ≤ i ≤ n.

Indeed, each corner of C is obtained by intersecting some k-dimensional face

of ∆n−1 × ∆(
n
2) with some choice of k hyperplanes xi =

∑
j zij . Recall that a

k-dimensional face of the product is a product of an ℓ-dimensional face with a
(k − ℓ)-dimensional face for some 0 ≤ ℓ ≤ k. Also recall that a k-dimensional
face of a standard simplex is given by a choice of k+ 1 indices i0, . . . , ik for which
xi0 + · · · +xik = 1 and all other xi = 0. Moreover, the interior of this face is the
set of such points where, in addition, each of the xih > 0.
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First, suppose that k = 0. In other words, suppose that (x, z) lies on a corner

of ∆n−1 × ∆(
n
2). There exist i and p < q such that xi = 1, zpq = 1, and all

other entries of x and z are zero. By condition (3), i ∈ {p,q}, and hence S(x, z)
equals λiq + µi or λpi + µi, as required.

Second, suppose that k ≥ 1 and there exists ih with xih = 0. By conditions
(1) and (2), zihj = 0 for all j. Hence, S(x, z) does not contain any terms with
index ih. The claim follows in this case by the induction hypothesis.

Finally, suppose that k ≥ 1 and xih > 0 for all 1 ≤ h ≤ k. In particular, x
does not lie in a face of dimension less than k − 1. Hence, condition (1) implies
that x lies in the interior of a (k − 1)- or k-dimensional face of ∆n−1, and that
z ∈ ∆(

n
2)−1 lies in the interior of a one-dimensional face or a corner, respectively.

We consider these cases separately:

(a) In the first case, there exists i0 6∈ {i1, . . . , ik} such that we have xi0 > 0 and
xi0 + xi1 + · · · + xik = 1. Moreover, there exists p < q such that zpq = 1 and
zrs = 0 for all (r , s) ≠ (p, q). By condition (3), i0 ∈ {p,q} and likewise for all
of the distinct indices i0, i1, . . . , ik. It follows that k cannot be larger than one.
Moreover, if k = 1, then {i0, i1} = {p,q}, so

S(x, z) = λi0i1 + µi0xi0 + µi1xi1 .

Since xi0 and xi1 are positive and sum to one, this quantity is at least λi0i1 + µi0
or λi0i1 + µi1 , as required.

(b) In the second case, xi1 +· · ·+xik = 1, and there exists p < q and r < s such
that zpq > 0, zrs > 0, and zpq + zrs = 1. By condition (3), ih ∈ {p,q} ∪ {r , s}
for all h, so clearly k ≤ 4. In fact, if k ≥ 3, then there exist ih1 ∈ {p,q} and
ih2 ∈ {r , s}, which implies

1 =
k∑

h=1

xih > xih1
+ xih2

=
∑

j

zih1j
+
∑

j

zih2j
≥ zpq + zrs = 1,

a contradiction.
This leaves the possibilities that k = 2 and k = 1. First, suppose k = 1. It

follows that xi1 = 1 and that

S(x, z) = λpqzpq + λrszrs + µi1 .

Hence, S(x, z) is bounded between λpq + µi1 and λrs + µi1 . Moreover,

1 = xi1 =
∑

j

zi1j ,

so all zij that do not appear in this sum are zero. In particular, i1 ∈ {p,q} and
i1 ∈ {r , s}, so the claim follows in this case.
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This leaves the case with k = 2. We start by showing that i1 cannot be in both
{p,q} and {r , s}. Indeed, if it were, then conditions (1) and (2) imply that

1 = xi1 + xi2 > xi1 =
∑

j

zi1j ≥ zpq + zrs = 1,

a contradiction. By a similar argument, i2 cannot be in both sets. Condition (3)
implies i1, i2 ∈ {p,q} ∪ {r , s}. If i1 and i2 lie in different sets (e.g., i1 ∈ {p,q}
and i2 ∈ {r , s}), then condition (2) further implies that xi1 = zpq and xi2 = zrs ;
hence,

S(x, z) = (λpq + µi1)zpq + (λrs + µi2)zrs ,

so the claim follows in this case. Finally, if i1 and i2 lie in the same set (e.g.,
{p,q}), then

S(x, z) = λi1i2zi1i2 + λrszrs + µi1xi1 + µi2xi2 .

Moreover, in this case, condition (2) implies xi1 = zpq = xi2 , and condition (1)
implies that 1 = xi1 + xi2 = 2zpq; hence, all four variables are equal to 1

2 . This
concludes the proof of the claim.

This shows in all cases that the extremal values of S : C → R are given as in the
conclusion of the lemma. As established at the beginning of the proof, the same
holds true of S. ❐

Regarding the proof of Lemma 3.17, we note here that the point (x, z) with

x1 = x2 = z12 = z34 =
1
2 and all other entries zero lies in the set C. Moreover,

since the λij and µi are arbitrary, we have provided the optimal solution to the
optimization problem for the function S : C → R. On the other hand, S(Y , Z)
actually equals S(x, z) for some (x, z) ∈ C0, where C0 is a proper subset of C.
Indeed, given the definitions of xi and zij as in the proof, it is straightforward to
check that

(4) zij ≤ xi + xj for all i < j.

Note that the point (x, z) with x1 = x2 = z12 = z34 =
1
2 is not in the smaller set

C0. This suggests that Lemma 3.17 could be improved to state that the optimal
values are of the form λij +µi or λij + µj with i < j. Since this is not needed for
our applications, we do not pursue it here.

4. AVERAGING THE DENSITY

In this section, we begin to establish the properties of positive weighted sectional
curvature described in Section 2. Our first consideration is that, in studying man-
ifolds with density and symmetry, a symmetry of the metric might not be a sym-
metry of the density. We prove in this section that this difficulty can be overcome
in the compact case. At the end, we apply these ideas to study weighted curvature
properties of homogeneous metrics.
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4.1. Preservation of weighted curvature bounds under averaging. Fix a
Riemannian manifold (M,g) and a vector field X on M . Let G be a compact
subgroup of the isometry group, and let dµ denote a unit-volume, bi-invariant
measure on G. Define a new, G-invariant vector field X̄ on M as follows:

X̄p =

∫

G
ϕ−1
∗ (Xϕ(p))dµ,

where we identify the elementsϕ ∈ G with isometriesϕ : M → M . In the gradient

case, where X = ∇f , we similarly define f̄ (p) =
∫

G
f (ϕ(p))dµ.

As a basic observation note that, for a fixed vector field V in TpM ,

g(X̄, V) = g

(∫

G
ϕ−1
∗ (X)dµ,V

)
=

∫

G
g(ϕ−1

∗ (X), V)dµ,

DV

(∫

G
g(ϕ−1

∗ (X), V)dµ

)
=

∫

G
g(∇Vϕ

−1
∗ (X), V)dµ

+

∫

G
g(ϕ−1

∗ (X),∇VV)dµ.

This follows from the fact that all of the functions involved are smooth, from the
linearity of the integral, and from the fact that G as a compact space admits a finite
partition of unity. Similar identities for passing integrals over G past a derivative
also hold for the same reasons. We will use these facts repeatedly below without
further comment.

We now claim the following result.

Lemma 4.1. With the notation above, for any vector field X and any V ∈ TpM ,

(LX̄g)(V, V) =

∫

G
(LXg)(ϕ∗V,ϕ∗V)dµ.

Proof. This follows from a straightforward calculation:

g(∇V X̄, V) = DVg(X̄, V)− g(X̄,∇VV)

= DVg

(∫

G
ϕ−1
∗ (X)dµ,V

)
− g

(∫

G
ϕ−1
∗ (X)dµ,∇VV

)

=

∫

G
DVg(ϕ

−1
∗ (X), V)dµ −

∫

G
g(ϕ−1

∗ (X),∇VV)dµ

=

∫

G
g(∇V (ϕ

−1
∗ (X)), V)dµ

=

∫

G
g(∇ϕ∗VX,ϕ∗V)dµ. ❐

For a function, we also have the following result.
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Lemma 4.2. With the notation above, for any function f ,

∇f̄ = ∇f ,

Hess f̄ =
∫

G
Hess f (ϕ∗V,ϕ∗V)dµ.

Proof. First, note that the second equation follows from the first combined
with Lemma 4.1, along with the fact that

Hess f =
1
2
L∇fg.

To prove the first equation, let V be a vector field on M , and observe that

g(∇f̄ , V) = DV

(∫

G
f ◦ϕ dµ

)
=

∫

G
df (ϕ∗V)dµ

=

∫

G
g(ϕ−1

∗ (∇f ), V) = g(∇f , V). ❐

We are now ready to show that the weighted curvatures can be averaged over
the compact group G. First, we consider the ∞-cases.

Lemma 4.3. Given a triple (M,g,X) and a compact subgroup G of the isometry
group, the weighted curvatures satisfy

RicX̄(U,V) =
∫

G
RicX(ϕ∗U,ϕ∗V)dµ,

secV
X̄
(U) =

∫

G
secϕ∗VX (ϕ∗U)dµ,

where X̄ is the average of X. In particular, if secX ≥ λ, then secX̄ ≥ λ where X̄ is
G-invariant.

Remark 4.4. One can similarly draw conclusions about upper bounds and
for the Bakry-Emery Ricci curvature. In addition, analogous statements hold for
Ricf and secf . They follow immediately from Lemmas 4.2 and 4.3.

Proof. Using Lemma 4.1, we can see all we need to show is

Ric(U,V) =
∫

G
Ric(ϕ∗U,ϕ∗V)dµ

sec(U,V) =
∫

G
sec(ϕ∗U,ϕ∗V)dµ.

But this just follows from the isometry invariance of the curvature as well as the
fact that dµ has unit volume. ❐
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For the strongly weighted curvatures, averaging the vector field X causes some
issues, as the equation contains terms that are quadratic in X. In the gradient case,
we can overcome this by changing the form of the potential function. Given m,
set u = e−f/m; then, a simple calculation shows that

Hess f −
df ⊗ df

m
= −

mHessu
u

.

So, we have

Ricmf = Ric−
mHessu

u
,

and, choosing m = −1,

secVf (U) = sec(V,U) +
Hessu
u

(V,V).

In these cases, it is natural to average the function u.

Let ũ(p) =
∫

G
u(ϕ(p))dµ, and define f̃ = −m log(ũ). Then, we have the

following lemma.

Lemma 4.5. Given a triple (M,g, f ) and a compact subgroup G of the isometry
group, the weighted curvatures satisfy

ũRicm
f̃
(U,V) =

∫

G
uRicmf (ϕ∗U,ϕ∗V)dµ,

ũ secV
f̃
(U) =

∫

G
u secϕ∗Vf (ϕ∗U)dµ,

where ũ is the average of u = e−f/m and f̃ = −m log(ũ). In particular, if secf ≥ λ,
then secf̃ ≥ λ, where f̃ is G-invariant.

Proof. We will discuss the Ricci case, and the sectional curvature case will
follow from an analogous argument. We have

uRicmf (V, V) = uRic(V, V)−mHessu(V,V),
∫

G
uRicmf (ϕ∗V,ϕ∗V)dµ =

∫

G
(uRic(ϕ∗V,ϕ∗V)−mHessu(ϕ∗V,ϕ∗V))dµ

= ũRic(V, V)−mHess ũ(V, V) = ũRicm
f̃
(V, V).

To see the final remark, note that, if Ricmf ≥ λg, then

Ricm
f̃
(U,V) =

∫

G
uRicmf (ϕ∗U,ϕ∗V)dµ

ũ
≥

∫

G
λug(U,V)dµ

ũ
= λg(U,V),

so Ricm
f̃
≥ λg as well. Similar arguments hold for upper bounds. ❐
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We remind the reader that Lemmas 4.3 and 4.5 immediately imply Corollary
2.2: if (M,g,X) has positive weighted sectional curvature and G is a compact
subgroup of the isometry group of (M,g), then there exists a G-invariant vector
field X̃ such that (M,g, X̃) has positive weighted sectional curvature. Indeed, if
secX > 0, then one can replace X by its average X̄ over the G-orbits. If X = ∇f

and secf > 0, then one can replace X by X̃ = ∇f̃ , where f̃ = log(ũ) and where
ũ is the average of u = ef over the G-orbits.

Remark 4.6. Note that Lemma 4.5 does not clearly extend to the non-
gradient case, since there is no globally defined function u to average. We can
still average over X, but only one side of the curvature bound is preserved. To see
this, note that the strongly weighted curvatures satisfy

secV
X̄
(U) =

∫

G
secϕ∗VX (ϕ∗U)dµ +

(∫

G
g(X,ϕ∗V)dµ

)2

−

∫

G
g(X,ϕ∗V)

2 dµ.

In particular, by the Cauchy-Schwarz inequality,

secV
X̄
(U) ≤

∫

G
secϕ∗VX (ϕ∗U)dµ,

so upper bounds on strongly weighted curvatures are preserved by averaging the
density. Similar statements hold in the gradient case. For the m-Bakry-Emery
curvature, we similarly have

RicmX̄ (V, V) =
∫

G
RicmX (ϕ∗V,ϕ∗V)dµ

−
1
m

[(∫

G
g(X,ϕ∗V)

)2

−

∫

G
g(X,ϕ∗V)

2
]
.

4.2. Homogeneous metrics. We now apply averaging the density to the spe-
cial case of homogeneous metrics. Homogeneous Riemannian manifolds with
positive sectional curvature are classified Wallach [Wal72] and Bérard-Bergery
[BB76]. By averaging the density, we show here that there are no additional ex-
amples in the weighted case when X = ∇f .

Proposition 4.7. Let (M,g) be a compact homogeneous manifold, and let also
f ∈ C∞(M). We have the following:

(1) If Ricf ≥ λg or Ricmf ≥ λg, then Ric ≥ λg.
(2) If secf ≥ λg or secf ≥ λg, then sec ≥ λg.

Analogous results hold for upper bounds.

This proposition immediately implies Theorem B from the Introduction. In-
deed, if (M,g) admits a gradient field X = ∇f with positive weighted sectional
curvature, then secf > 0, and hence this proposition applies.
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Proof. Let G be the isometry group of (M,g). In all cases, we can replace f by

a G-invariant function f̃ such that the f̃ -weighted curvatures have the same lower

bounds as the f -weighted curvatures. Since G acts transitively, f̃ is constant, so

the f̃ -weighted curvatures are equal to the usual, unweighted curvatures. ❐

It is not clear whether this fact is also true when the field X is not gradient.
Averaging the field so that it is invariant under the isometries will not necessarily
make the field Killing, but there is one important case where it does.

Proposition 4.8. If a compact Lie group with a bi-invariant metric admits an
X such that secX ≥ λ or RicX ≥ λg, then sec ≥ λ or Ric ≥ λg, respectively.

Proof. We can replace X by its average over the left and right actions of G.
This preserves the lower bounds on curvature, and makes X bi-invariant and hence
a Killing field. Hence, LXg = 0, so the weighted curvatures equal the unweighted
curvatures. ❐

In particular, the previous two propositions have the following corollary.

Corollary 4.9. A compact Lie group with a bi-invariant metric has positive
weighted sectional curvature if and only if it has positive sectional curvature.

In the simplest non-trivial case of a left-invariant metric not bi-invariant, a
computation shows that we again do not get new examples.

Proposition 4.10. If a left-invariant metric on the Lie group SU(2) supports
a vector field X such that secX ≥ λ or RicX ≥ λg, then sec ≥ λ or Ric ≥ λg,
respectively.

Proof. For a left-invariant metric on SU(2), choose an orthonormal frame
λ−1

1 X1, λ
−1
2 X2, λ

−1
3 X3 such that [Xi, Xi+1] = 2Xi+2 with indices taken mod 3.

It follows that

∇XiXi = 0

∇XiXi+1 =

(
λ2
i+2 + λ

2
i+1 − λ

2
i

λ2
i+2

)
Xi+2,

∇Xi+1Xi =

(
−λ2

i+2 + λ
2
i+1 − λ

2
i

λ2
i+2

)
Xi+2.

Now, since SU(2) is compact, we can assume by averaging that X is a left-
invariant vector field, which we will write as X = a1X1+a2X2+a3X3 for constants
ai. We have

(LXg)(Xi, Xi) = 2g(∇XiX,Xi) = 0,

(LXg)(Xi, Xi+1) = g(∇XiX,Xi+1)+ g(∇Xi+1X,Xi)

= 2ai+2(λ
2
i − λ

2
i+1).
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This shows that X is not a Killing field in general. However, secX(Xi, Xj) =
sec(Xi, Xj), so if secX ≥ λ, then sec(Xi, Xj) ≥ λ. Further computation also shows
that the basis X1 ∧ X2, X2 ∧ X3, X3 ∧ X1 diagonalizes the curvature operator,
and thus that all of the sectional curvatures are bounded by the maximum and
minimum curvatures of the sectional curvatures involving X1, X2, and X3. Thus,
we actually have sec ≥ λ. The basis X1, X2, X3 also diagonalizes the Ricci tensor,
so the statement about Ricci curvatures follows similarly. ❐

In general, Proposition 4.7 does not hold in the non-compact case, as we
have already seen in Example 3.2. We can generalize the Gaussian example in the
following simple way.

Example 4.11. Suppose that (M,g) is a simply connected space of non-
positive sectional curvature. The distance function to a point squared, d2, is a
smooth function. Moreover, Hess(d2) ≥ 2g. Therefore, if (M,g) has sectional
curvature bounded from below by −K, then, for f = Ad2, we have secf ≥ 2A−K,
which we can make arbitrarily large.

Letting (M,g) in the example be a hyperbolic space gives a noncompact ho-
mogeneous manifold with positive weighted sectional curvature and negative sec-
tional curvature. We also note that there are many examples of non-compact
homogeneous Ricci soliton metrics (i.e., metrics with RicX = λg) that do not
have Ric = λg. Examples of homogeneous metrics with Ricmf = λg that do not
have Ric = λg are also constructed in [HPW15].

5. RIEMANNIAN SUBMERSIONS AND CHEEGER DEFORMATIONS

We analyze the behavior of the weighted and strongly weighted directional curva-
ture operators under a Riemannian submersion π : M → B. For this, we restrict
ourselves to vector fields X on M for which the vector field π∗(X) on B is well
defined. Following Besse [Bes08, Chapter 9], let R, R̂, and Ř denote the curvature
tensors of M , the fibers, and the base, respectively, and let V and H denote the
projection maps onto the vertical and horizontal spaces, respectively.

Theorem 5.1 (O’Neill formulas). Let (M,g) be a closed Riemannian mani-
fold, let π be a Riemannian submersion with domainM , and let X be a smooth vector
field on M such that the map p ֏ π∗(Xp) is constant along the fibers of π . If Y and
Z are horizontal vector fields and U and V are vertical vector fields on M , then

RVX(U,U) = R̂
V
VX(U,U)+ g(TUV, TUV)

− g(TUU,TVV)− g(TVV,HX)g(U,U),

RZX(Y , Y) = Ř
π∗Z
π∗X(π∗Y,π∗Y)− 3g(AYZ,AYZ),

and likewise with RX , R̂VX and Řπ∗X replaced by the strongly weighted directional
curvature operators on M , the fibers, and the base, respectively.
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In particular, if (Y , Z) is an orthonormal pair of horizontal vector fields, then

secπ∗Yπ∗X(π∗Z) = secYX(Z)+
3
4

∣∣[Y , Z]V
∣∣2
,

and likewise for secX .
Analogous statements hold in the gradient case. There, one assumes that f

is a smooth function on M that is constant along the fibers of π . The function
f replaces X in the above formulas, and the induced map f̄ on the base replaces
π∗X. The gradient case follows from the general case since df̄ and Hess f̄ pull
back via π to df and Hess f , respectively.

As for sectional curvature, the O’Neill formulas show that the base of a Rie-
mannian submersion inherits lower bounds on weighted or strongly weighted sec-
tional curvatures. In particular, if the total space admits a vector field X with
positive weighted sectional curvature such that X descends to a well-defined vec-
tor field on the base, then the base too has positive weighted sectional curvature
(see Corollary 2.3).

Finally, the vector field X is arbitrary, and hence need not be horizontal or
vertical. For example, suppose π is the quotient map by a free, isometric group
action. The vector field X might be an action field (hence, vertical), basic (hence,
horizontal), or any smooth combination of the two (hence, neither).

Proof. Let ĝ and ǧ denote the metrics on the fibers and the base, respectively.
First, the conclusions in the strongly weighted cases follow immediately from the
weighted cases, since

g(X,V)2g(U,U) = ĝ(VX,V)2ĝ(U,U),

g(X,Z)2g(Y , Y) = ǧ(π∗X,π∗Z)
2ǧ(π∗Y,π∗Y).

Second, the weighted cases follow from the unweighted case once we establish that

1
2
(LXg)(V,V)g(U,U) =

1
2
(LVX ĝ)(V, V)ĝ(U,U)− g(TVV,HX)g(U,U),

1
2
(LXg)(Z,Z)g(Y , Y) =

1
2
(Lπ∗X ǧ)(π∗Z,π∗Z)ǧ(π∗Y,π∗Y).

Indeed these follow from the fact that U is vertical, the fact that Y is horizontal,
and the observations that

1
2
(LXg)(V, V) = g(∇VX,V)

= g(∇V (VX),V) + g(∇V (HX),V)

= ĝ(∇̂V (VX),V) − g(∇VV,HX)

=
1
2
(LVX ĝ)(V, V) − g(TVV,HX)
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and

1
2
(LXg)(Z,Z) = g(∇ZX,Z) = ǧ(∇π∗Zπ∗X,π∗Z)

=
1
2
(Lπ∗X ǧ)(π∗Z,π∗Z). ❐

Regarding the O’Neill formulas for mixed inputs (vertical and horizontal), we
note that one simply obtains weighted versions by adding the appropriate terms
from the definition of RX and R̄X . The formulas do not simplify as in Theorem
5.1, but one can still use them. To illustrate this with one easy example, we
generalize here a result of Weinstein [Wei80, Theorem 6.1] to the case of positive
weighted sectional curvature (cf. Florit and Ziller [FZ11] and Chen [Che14]).

Theorem 5.2 (Weinstein). Let π : M → B be a Riemannian submersion of
closed Riemannian manifolds with totally geodesic fibers. If there then exists a function
f ∈ C∞(M) such that secf > 0 on all orthonormal pairs of vectors spanning “verti-
zontal” planes, then the fiber dimension is at most ρ(dimB), where ρ(n) denotes the
maximum number of linearly independent vector fields on Sn−1.

Note that this reduces to the Weinstein result when f = 0. Recall also that
f ∈ C∞(M) is basic if it is constant along the fibers of π .

Proof. Since the fibers are totally geodesic, the T tensor vanishes. Hence, for
any orthonormal pair (V,Z), where V is vertical and Z is horizontal, the O’Neill
formula

R(Z,V, V, Z) = |AZV |
2 − |TZU|

2 + g((∇ZT)VV,Z)

implies
secVf (Z) = |AZV |

2 +Hess f (V,V)+ df (V)2.

At a point p ∈ M where f is maximized, df (V) = 0 and Hessf (V,V) ≤ 0
for all V . Hence, AZV ≠ 0 for all vertizontal pairs (V,Z) at p. The proof now
proceeds as in [Wei80] by constructing dim(Vp) linearly independent vectors on
the unit sphere in Hp, where Vp and Hp are the vertical and horizontal spaces at
p, respectively. ❐

Note that Theorem 5.2 relates to a conjecture of Fred Wilhelm, namely, that
dim(F) < dim(B) for any Riemannian submersion from a manifoldM with posi-
tive sectional curvature, where dim(F) and dim(B) denote the dimensions of the
fibers and the base, respectively. If one only assumes sec > 0 almost everywhere on
M , then there are counterexamples due to Kerin [Ker11]. On the other hand, the
above result suggests that the assumption of positive sectional curvature might be
weakened to cover manifolds with density. For example, Frankel’s theorem (The-
orem 7.1) in the weighted case implies the following: ifM admits a vertical vector
field X such that M has positive weighted sectional curvature, then the conclusion
of Wilhelm’s conjecture holds.
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As a second application, we discuss Cheeger deformations. These have been
used in multiple constructions of metrics with positive or non-negative sectional
curvature (see Ziller [Zil07] for a survey). Here, we establish the weighted curva-
ture formulas for the deformed metric in terms of the original. We will use the
formulas from this section in the proof of Theorem E.

The setup involves a Riemannian manifold (M,g), a subgroup G of the isom-
etry group, a bi-invariant metric Q on G, and a real parameter λ > 0. We are
interested in understanding how the weighted curvatures behave under these per-
turbations. Hence, we also fix a smooth vector field X on M . We assume that X
is G-invariant, which can be arranged if the subgroup G is compact (e.g., if G is
closed and M is compact).

The new metric on M is denoted by gλ. It is the metric for which the map
π : (G ×M,λQ + g) → (M,gλ) given by (h,p) ֏ h−1p is a Riemannian sub-
mersion. There is a (λQ + g)-orthogonal decomposition of T(e,p)(G ×M) as

{(Y , Y∗p ) | Y ∈ g}⊕
{
(−|Y∗p |

2Y,λ|Y |2Y∗p ) | Y ∈ g

}
⊕{(0, Z) | Z ∈ Tp(G·p)⊥}.

Here and throughout, g = TeG denotes the Lie algebra of G, and Y∗ denotes
the Killing field associated with Y ∈ g. The first of these summands is the vertical
spaceV(p,e) = ker(Dπ(e,p)) of the projection π . The last two summands together
form the horizontal space H(e,p) = V

⊥
(e,p).

The horizontal lift of Y∗ ∈ Tp(G ·p) ⊆ TpM is

1
|Y∗p |2 + λ|Y |2

(−|Y∗p |
2Y,λ|Y |2Y∗p ),

and the horizontal lift of Z ∈ Tp(G · p)⊥ ⊆ TpM is (0, Z). Note that |Z|gλ =
|Z|g , while

∣∣Y∗
∣∣2
gλ
=

λ|Y |2 |Y∗|2

|Y∗|2 + λ|Y |2
.

As λ → ∞, |Y∗|gλ increases and converges to |Y∗|g , and hence |Y∗|gλ ≤ |Y
∗|.

We will use this in the proof of the connectedness lemma.
Our goal now is to compute the weighted and strongly weighted directional

curvature operators of (M,gλ, X) in terms of those of (M,g,X).

Lemma 5.3 (Curvature tensors after Cheeger deformations). Let R = Rg

and Rgλ denote the curvature tensors of (M,g) and (M,gλ), respectively. For vector
fields Wi on M , if W̃i = (W̃G

i , W̃
M
i ) denote the horizontal lifts in G ×M , then

gλ
((
Rgλ

)W1

X (W2),W3
)
= λQ

(
(RQ)W̃

G
1 (W̃G

2 ), W̃
G
3

)

+ g
((
Rg
)W̃M

1
X (W̃M

2 ), W̃
M
3

)

+ (λQ + g)
(
AW̃1

W̃2, AW̃1
W̃2
)
.
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In particular, if Z1 and Z2 are vector fields in M that are everywhere orthogonal to the
G-orbits, then

gλ
((
Rgλ

)Z1

X (Z2), Z2
)
≥ g

((
Rg
)Z1

X (Z2), Z2
)
.

If, in addition, (Z1, Z2), forms an orthonormal pair with respect to g (equivalently,

with respect to gλ), then
(

secgλ
)Z1

X (Z2) ≥
(

secg
)Z1

X (Z2).

Proof. Consider the vector field (0, X) on G × M . It is G-invariant, and
π∗(0, X) = X, where π : (G×M,λQ+g)→ (M,gλ) is the Riemannian submer-
sion defining gλ. The first claim follows directly from the (first) O’Neill formula
in the weighted case applied to π . The second and third claims follow from the
fact that the horizontal lift of Z ∈ Tp(G · p)⊥ is (0, Z) ∈ T(G ×M). ❐

6. WEINSTEIN’S FIXED POINT THEOREM AND APPLICATIONS

In the next two sections, we demonstrate how Synge-type arguments extend to
the case of positive weighted sectional curvature. The only technical ingredient
required is Lemma 2.4. We first prove Weinstein’s fixed point theorem in the
weighted case.

Theorem 6.1 (Weinstein’s fixed point theorem). Let (Mn, g) be a closed,
orientable Riemannian manifold equipped with vector field X such that (M,g,X)
has positive weighted sectional curvature. If F is an isometry of M with no fixed point,
then F reverses orientation if n is even, and preserves it if n is odd.

Proof. Corollary 2.2 implies we may assume without loss of generality that X
is invariant under isometries. In particular, F∗(X) = X.

The proof now proceeds as in Weinstein [Wei68]. Using compactness, choose
p ∈ M such that d(p, F(p)) is minimal. Choose a unit-speed, minimizing ge-
odesic γ : [a, b] → M from p to F(p). As in [Wei68], there exists a special
unit-length, parallel vector field V along γ, and it suffices to show that the index
I(V, V) of γ is negative. One of the properties of γ is that F∗(γ′(a)) = γ′(b).
By Lemma 2.4, it suffices to show that

g(γ′(t),Xc(t))
∣∣t=b
t=a = 〈γ

′(b),Xγ(b)〉 − 〈γ
′(a),Xγ(a)〉 = 0.

Indeed, this is the case since F carries γ′(a) to γ′(b) and Xγ(a) to XF(γ(a)) =
Xγ(b). ❐

We derive three corollaries of Weinstein’s theorem, all of which are analogues
of what happens in the unweighted case. The first is the textbook application of
Weinstein’s theorem to prove Synge’s theorem.

Corollary 6.2 (Synge’s theorem). If (Mn, g,X) is closed and also has positive
weighted sectional curvature, then the following hold:

• If n is odd, then M is orientable.
• If n is even and M is orientable, then π1(M) is trivial.
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This is proved in [Wy115], but we indicate another proof based on Wein-
stein’s theorem. Depending on whether n is odd or even, one applies Weinstein’s
theorem in the weighted case to the free action of Z2 orπ1(M), respectively, on the
orientation or universal cover of M equipped with the pullback metric and vector
field or function. For this, it is important that π1(M) is finite (see Theorem 2.1).

Weinstein’s theorem, together with O’Neill’s formula, also provides another
proof of Berger’s result (see [BER66, GS94]).

Corollary 6.3 (Berger’s theorem). If (Mn, g,X) is closed and has positive
weighted sectional curvature, then the following hold:

• If n is even, then any Killing field has a zero. Equivalently, any isometric
torus action has a fixed point.

• If n is odd, any torus acting isometrically on M has a circle orbit. In particu-
lar, there exists a codimension-one subtorus that has a fixed point.

We remark that the even-dimensional case is also proved in [Wy115].

Proof. The equivalence of the conclusions about Killing fields and torus ac-
tions is based on the fact that the isometry group of M is a compact Lie group.
Consider an isometric action on M by a torus T . Without loss of generality, we
assume that X is invariant under the action of T . The conclusion follows by
choosing F ∈ T that generates a dense subgroup of T , and applying Weinstein’s
theorem to F .

The odd-dimensional case follows from the even-dimensional case and the
O’Neill formula, as proved in Grove and Searle [GS94]). Since the even-dimen-
sional case and O’Neill’s formula hold in the weighted case, the proof is complete.

❐

Finally, it was observed in [Ken] that Weinstein’s theorem pairs nicely with a
result of Davis and Weinberger to provide an obstruction to free group actions on
positively curved rational homology spheres of dimension 4k+ 1, as follows.

Theorem 6.4 (Davis-Weinberger factorization). Let (M4k+1, g,X) be closed
with positive weighted sectional curvature. If the universal cover of M is a rational
homology sphere, then π1(M) ≅ Z2e × Γ for some odd-order group Γ .

Proof. Since π1(M) is finite (see Theorem 2.1), we may consider the free ac-
tion of π1(M) on the universal cover of M , which is a compact, simply connected
manifold with the same weighted curvature bound as M . By Weinstein’s theorem
in the weighted case, the action of π1(M) is (rationally) homologically trivial. As
dim(M) ≡ 1 mod 4 and the surgery semicharacteristic

∑
i≤2k(−1)i dimHi(M ;Q)

is odd, the factorization of π1(M) follows from Theorem D in [Dav83]. ❐

7. FRANKEL’S THEOREM AND WILKING’S CONNECTEDNESS LEMMA

In this section, we prove generalizations of Frankel’s theorem and Wilking’s con-
nectedness lemma in the weighted case. Specifically, we assume throughout this
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section that (Mn, g,X) is a Riemannian manifold equipped with a vector field X
such that (M,g,X) has positive weighted sectional curvature.

Theorem 7.1 (Frankel). Assume (Mn, g,X) is closed with positive weighted
sectional curvature. Assume N1 and N2 are closed, totally geodesic submanifolds of M
such that X is tangent to Ni for i ∈ {1,2}. If dim(N1) + dim(N2) ≥ n, then N1

and N2 intersect.

Before proving this, we record an easy corollary we will use in the next section.

Corollary 7.2. Let (Mn, g,X) be closed with positive weighted sectional cur-
vature. Suppose G1 and G2 are subgroups of the isometry group of M , and suppose
that N1 and N2 are components of the fixed-point sets of G1 and G2, respectively. If
dim(N1)+ dim(N2) ≥ n, then the submanifolds intersect.

To deduce the corollary, one replaces X by X̃ such that X̃ is invariant under
isometries of (M,g) and (M,g, X̃) has positive weighted sectional curvature (see
Corollary 2.2). For p ∈ N1, it follows that Xp ∈ (TpM)G1 = TpN1; hence, X is
tangent to N1, and likewise for N2. The corollary follows since the Ni are closed
and totally geodesic.

Remark 7.3. Note that both Theorem 7.1 and the corollary fail if we remove
the assumption that M is compact. Indeed, consider the flat metric on Euclidean
space, and let f = 1

2d
2, where d is the distance to a fixed point in M . Clearly,

secVf (U) = Hess f (V,V) = 1 for all orthonormal pairs (U,V), yet any two parallel
hyperplanes are disjoint, closed, totally geodesic, and have dimensions adding up
to at least dimM .

In fact, N1 and N2 are fixed-point components of reflection subgroups G1 ≅

Z2 and G2 ≅ Z2 of the isometry group. However, the subgroup generated by G1

and G2 is infinite, so we cannot replace X by a G1- and G2-invariant vector field
as in Corollary 2.2 and proceed as in the proof of the corollary.

Proof of Frankel’s theorem. Let M , N1, N2, and X be as in the theorem. We
proceed now as in Frankel [Fra61]. By compactness, there is a minimizing geodesic
γ : [a, b] → M connecting N1 to N2. By the first variation formula, γ is normal
to N1 and N2 at its endpoints. Since X is tangent to N1 and N2,

g(γ′(b),Xγ(b)) = g(γ
′(a),Xγ(a)) = 0.

Using Lemma 2.4, the rest of the proof is as in the unweighted case. ❐

Wilking proved a vast generalization of Frankel’s result (see Theorem 2.1 in
[Wil03]). The generalization to the weighted case is the following result.

Theorem 7.4 (Wilking’s connectedness lemma). Let (Mn, g,X) be closed
with positive weighted sectional curvature. The following hold:

(1) If X is tangent to Nn−k, a closed, totally geodesic, embedded submanifold of
M , then the inclusion N → M is (n− 2k+ 1)-connected.



Positive Weighted Sectional Curvature 453

(2) If X and Nn−k are as above, and if G acts isometrically on M , fixes N point-
wise, and has principal orbits of dimension δ, then the inclusion N → M is
(n− 2k+ 1+ δ)-connected.

(3) If X is tangent to Nn−k1
1 and Nn−k2

2 , a pair of closed, totally geodesic, em-
bedded submanifolds with k1 ≤ k2, then N1 ∩N2 → N2 is (n − k1 − k2)-
connected.

As in the corollary to Frankel’s theorem, this result applies to inclusions of
fixed-point components of isometric group actions.

Proof. The proof in each case proceeds as in Wilking [Wil03, Theorem 2.1],
where the result is reduced to an index estimate. In the first and third cases, this
estimate involves parallel vector fields, and hence extends to the weighted case
exactly as in the proof of Frankel’s theorem above in the weighted case.

In the remaining case, the index estimate is a bit more involved, so we repeat
it here, modifying it as necessary to cover the weighted case. The setup in [Wil03]
is as follows. The metric gλ on M is a Cheeger deformation of g, there is a
geodesic c : [a, b] → M that starts and ends perpendicular to N, and there is a
(n− 2k+ 1+ δ)-dimensional vector space W of vector fields V along c such that
the following hold:

• V is tangent to N at the endpoints of c.
• V is orthogonal to the G-orbits at all points along c.
• V ′ = ∇c′V is tangent to the G-orbits at all points.

By the argument in [Wil03], it suffices to show that, for all V ∈ W , there exists
λ > 0 such that the index form with respect to gλ of c evaluated on V is negative.
We show this first under the assumption that secX > 0 on M .

By Equation 2.1, the index form can be written as

∫ b

a

(∣∣V ′
∣∣2
gλ
−
(
Rgλ

)c′
X (V, V) − 2gλ(c′, X)gλ(V, V ′)

)
dt + gλ(c

′, X)
∣∣V
∣∣2
gλ

∣∣∣
t=b

t=a
.

First, we show that the last term in this expression is zero. Without loss of
generality, we may assume that X is G-invariant and hence tangent to N. Since
the G-orbits in N are trivial, X is orthogonal to the orbits. Hence, the horizontal
lift of Xc(t) at t ∈ {a,b} is (0, Xc(t)), and

gλ(c
′, X)

∣∣t=b
t=a = g(c

′, X)
∣∣t=b
t=a = 0.

Second, the O’Neill formula in the weighted case implies (Rgλ)c
′

X (V, V) ≥

Rc
′

X (V, V). Since this lower bound is independent of λ > 0, the proof will be
complete once we show both of the following:

• |V ′|2gλ → 0 as λ→ 0.
• gλ(c′, X)gλ(V, V ′)→ 0 as λ→ 0.
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Indeed, since V ′ is tangent to the G-orbits, |V ′|gλ → 0 as λ → 0. This proves
the first statement. The second statement follows from the first, together with the
estimate

|gλ(c
′, X)| |gλ(V, V

′)| ≤ |c′|gλ |X|gλ |V |gλ |V
′|gλ ≤ |c

′|g |X|g |V |g |V
′|gλ .

Here, the second inequality follows since Cheeger deformations (weakly) decrease
lengths, that is, | · |gλ ≤ | · |g for all λ > 0.

This completes the proof if secX > 0. Consider now the case where X = ∇f
and secf > 0. Here, we consider the vector space

Wf = {Y = e
fV | V ∈ W},

and show that, for all Y ∈ Wf , there exists λ > 0 such that the index Ic(Y , Y) of
Y along c is negative. Since dim(Wf ) = dim(W), this would complete the proof
in this case. This is easily accomplished by proceeding as in the previous case and
using the alternative formula for the index given in Equation 2.2. ❐

8. TORUS ACTIONS AND POSITIVE WEIGHTED SECTIONAL

CURVATURE

Throughout this section, we consider closed Riemannian manifolds (M,g) that
are equipped with a vector field X such that (M,g,X) has positive weighted sec-
tional curvature. In addition, we assume a torus T acts isometrically on M . Ap-
plying Corollary 2.2, if necessary, we assume X is invariant under the torus action.

Our first result is the following generalization of a result of Grove-Searle
[GS94].

Theorem 8.1 (Maximal symmetry rank). Let (Mn, g,X) be closed with posi-
tive weighted sectional curvature. If T r is a torus acting effectively by isometries on M ,
then r ≤ ⌊(n + 1)/2⌋. Moreover, if equality holds and M is simply connected, then
M is homeomorphic to Sn or CPn/2.

The upper bound on r is sharp and agrees with Grove and Searle’s result.
However, in the unweighted case, Grove and Searle prove an equivariant diffeo-
morphism classification when the maximal symmetry rank is achieved. We obtain
this weaker rigidity statement by a different argument that relies on Wilking’s con-
nectedness lemma and a lemma in Fang and Rong [FR05]. For a more detailed
argument along these lines, we refer to [Pet06, Section 7.1.3].

Proof. By Berger’s theorem (Corollary 6.3) in the weighted case, there exists
x ∈ M fixed by either T r or a subtorus T r−1, according to whether n is even or
odd. Since this subtorus embeds into SO(n) via the isotropy representation, it
follows that r ≤ ⌊(n+ 1)/2⌋.

We proceed to the equality case. First, if n ∈ {2,3}, then M is homeomor-
phic to a sphere since it is simply connected by the resolution of the Poincaré
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conjecture. Suppose therefore that n ≥ 4. By arguing inductively as in Grove-
Searle, it follows that some circle in T r fixes a codimension-two submanifold N.
By the connectedness lemma in the weighted case, we conclude that the inclusion
N ֓ M is dim(N)-connected. It follows immediately from the Poincaré duality
that M and N are integral cohomology spheres or complex projective spaces (see,
e.g., [Wil03, Section 7]). If M is an integral sphere, then it is a homeomorphism
sphere by the resolution of the Poincaré conjecture. If M is an integral complex
projective space, then the fact that N represents the generator of H2(M ;Z) implies
that M is homeomorphic to complex projective space, by Lemma 3.6 in Fang-
Rong [FR05]. ❐

We note that there are a number of generalizations of Grove and Searle’s result.
These include results of Rong and Fang in the cases of “almost maximal symmetry
rank” or non-negative curvature (see Fang and Rong [Ron02,FR05], Galaz-Garcia
and Searle [GGS11, GGS14], and Wiemeler [Wie15]).

Returning to the case of positive curvature, there are additional results that
assume less symmetry. We focus here on the following homotopy classification
due to Wilking [Wil03, Theorem 2].

Theorem 8.2 (Wilking’s homotopy classification). LetMn be a closed, simply
connected, positively curved manifold, and let T r act effectively by isometries on M .
If n ≥ 10 and r ≥ n/4 + 1; then, M is either homeomorphic to Sn or HPn/4 or
homotopy equivalent to CPn/2.

By Grove and Searle [GS94] and Fang and Rong [FR05], this result actually
holds for all n ≠ 7. Additionally, the conclusion in this theorem has been im-
proved to a classification up to tangential homotopy equivalence (see Dessai and
Wilking [DW04, Remark 1.4]). We prove the following analogue of Wilking’s
classification under a slightly stronger symmetry assumption.

Theorem 8.3. Let (Mn, g,X) be closed and simply connected, and with positive
weighted sectional curvature. If M admits an effective, isometric torus action of rank
r ≥ n/4+log2n, thenM is homeomorphic to Sn or tangentially homotopy equivalent
to CPn/2.

Note that HPn/4 does not appear in the conclusion. This is consistent with
Theorem 3 in Wilking [Wil03], which states that the maximal rank of a smooth
torus action on an integral HPm is m+ 1.

One reason for the larger symmetry assumption is that Wilking’s original
proof invokes the full strength of Grove and Searle’s equivariant diffeomorphism
classification. Since we do no prove this here, we cannot use exactly the same
proof. In addition, the larger symmetry assumption allows us to side-step some
of the more delicate parts of Wilking’s proof, and thereby allows for a quick ar-
gument that captures the essence of his induction machinery, as described in the
introduction of [Wil03].

Proof of Theorem 8.3. We first note that it suffices to prove that M has the in-
tegral cohomology of Sn or CPn/2. Indeed, a simply connected integral sphere
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is homeomorphic to the standard sphere by the resolution of the Poincaré con-
jecture. Moreover, it is well known that a simply connected integral complex
projective space is homotopy equivalent to the standard one, and the classification
up to tangential homotopy follows directly from Dessai and Wilking [DW04].

Second, note that the theorem holds in dimensionsn ≤ 13 by the extension of
Grove and Searle’s result (Theorem 8.1). We proceed by induction for dimensions
n ≥ 14. By examining the isotropy representation at a fixed-point of T r (or T r−1

in the odd-dimensional case), one sees that an involution ι ∈ T r exists such that
some component N of its fixed-point set has codimension cod(N) ≤ (n + 3)/4
(see, e.g., [Ken14, Lemma 1.8. (1)]). By replacing ι by another involution, if
necessary, we may assume cod(N) is minimal. In particular, the induced action of
the torus T r/ker(T r |N) has rank at least r − 1.

If cod(N) = 2 and N is fixed by a circle, the claim follows as in the proof of
the Grove-Searle result. Otherwise, T r/ker(T r |N) is a torus that acts effectively
and isometrically on N with dimension at least 1

4 dimN + log2(dimN). Since N
is a fixed-point set of an involution in T r , the vector field X is tangent to N, and
N inherits positive weighted sectional curvature. By the connectedness lemma,
N is simply connected. By the induction hypothesis, N is an integral sphere or
complex projective space. By the connectedness lemma again, it follows that M
too is an integral sphere or projective space. This concludes the proof. ❐

The theorems of this section should be viewed as a representative, as opposed
to exhaustive, list of the kinds of topological results we can now generalize to the
weighted setting. Indeed, the tools discussed in this paper have been applied to
similar, weaker topological classification problems for positively curved manifolds
with torus symmetry. Invariants calculated or estimated include the fundamental
group (see Wilking [Wil03, Theorem 4], Frank-Rong-Wang [FRW13], Sun-Wang
[SW09], and [Ken]), the Euler characteristic (see work of the first author and
Amann [Ken13, AK14, AK]), and the elliptic genus (see Dessai [Des05, Des07]
and Weisskopf [Wei]). Much of this work now can also be extended to the
weighted case by using the results in this article.

On the other hand, it is much less clear whether some other prominent clas-
sification theorems for manifolds with positive curvature and torus symmetry can
be extended to the weighted setting. Principal among these is the situation in
low dimensions. In Section 3, we discussed why closed manifolds with positive
weighted sectional curvature in dimension two and three are diffeomorphic to
spherical space forms. In dimension four, Hsiang and Kleiner [HK89] proved that
a closed, simply connected manifold M with positive curvature and an isometric
circle action is homeomorphic to S4 or CP2. This result has been generalized in
a number of ways. Recently, Grove and Wilking strengthened the conclusion to
state that the circle action onM is equivariantly diffeomorphic to a linear action on
one of these two spaces (see [GW14] and references therein for a survey of related
work). A natural question is whether this result also holds for positive weighted
sectional curvature.
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Question 8.4. Let (M4, g,X) be simply connected and closed, and with positive
weighted sectional curvature. Is every effective, isometric circle action on M equivari-
antly diffeomorphic to a linear action on S4 or CP2?

In dimension five, Rong [Ron02] proved that a positively curved M5 with
an isometric 2-torus action is diffeomorphic to S5. This result has also been
improved to an equivariant diffeomorphism classification (see Galaz-Garcia and
Searle [GGS14]), giving the following question.

Question 8.5. Let (M5, g,X) be simply connected and closed, and with positive
weighted sectional curvature. Is every effective, isometric torus action of rank two on
M equivariantly diffeomorphic to a linear action on S5?

9. FUTURE DIRECTIONS

In addition to addressing Questions 8.4 and 8.5, another avenue of research is
to consider compact manifolds with density that admit positive weighted curva-
ture and an isometric action by an arbitrary Lie group G. To make this prob-
lem tractable, one can assume that G is large in some sense, for example, that
G or its principal orbits have large dimension. Notable are classification results
in this context due to Wallach [Wal72] and Bérard-Bergery [BB76] for transitive
group actions, Wilking [Wil06] for more general group actions, Grove and Searle
[GS97] and Spindeler [Spi14] for fixed-point homogeneous group actions, and
Grove and Kim [GK04] for fixed-point cohomogeneity-one group actions. In
the non-negatively curved case, especially in small dimensions, there have been
some extensions of these results due to DeVito [DeV14, DeV], Galaz-Garcia and
Spindeler [GGS12], Simas [Sim], and Gozzi [Goz15].

A particularly interesting case is where G is so large that the principal or-
bits have codimension one. Manifolds that admit a cohomogeneity-one metric
with positive sectional curvature have been classified by Verdiani [Ver04] in the
even-dimensional case, and by Grove, Wilking, and Ziller [GWZ08] in the odd-
dimensional case (see also [VZ14] and the recent generalization to the case of polar
actions by Fang, Grove, and Thorbergsson [FGT]).

The classification is actually incomplete in dimension seven, as there are two
infinite families of manifolds that are considered “candidates” to admit positive
curvature. There are very few examples of manifolds that admit positive curva-
ture, so it was remarkable that one of these candidates was recently shown to ad-
mit positive sectional curvature by Dearricott [Dea11] and Grove-Verdiani-Ziller
[GVZ11]. It remains to be seen whether the others admit positive curvature.

It would be interesting to examine these results in the case of manifolds with
density. Doing this would hopefully lead to new insights into the question posed
in the Introduction: if (M,g,X) is compact with positive weighted sectional cur-
vature, does M admit a metric with positive sectional curvature?

The most prominent missing ingredient when trying to generalize results to
the weighted setting is a Toponogov-type triangle comparison theorem and the
resulting convexity properties of distance functions. These crucial tools would be
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needed to address Questions 8.4 and 8.5, the equivariant diffeomorphism rigidity
in Grove and Searle’s theorem (Theorem 8.1), and the results above for general
group actions.

The examples in Section 3 show that the classical statement of the Topono-
gov theorem is false for positive weighted sectional curvature. On the other hand,
we can make an analogy here with the situation of Ricci curvature and Bakry-
Emery Ricci curvature. For positive Ricci curvature, instead of convexity of the
distance function, one obtains Laplacian and volume comparisons. These com-
parisons, strictly speaking, do not hold for positive Bakry-Emery Ricci curvature,
but they have modified weaker versions that are still enough to recover topological
obstructions (see [WW09]). We believe there should be some form of modified
convexity for distance functions one obtains from positive weighted sectional cur-
vature, which may lead to generalizations of all of the results mentioned above.
This will be the topic of future research.
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sion impaire à courbure strictement positive, J. Math. Pures Appl. (9) 55 (1976), no. 1, 47–67
(French). MR0417987.
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