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Abstract— Radar-based human motion recognition is crucial
for many applications, such as surveillance, search and res-
cue operations, smart homes, and assisted living. Continuous
human motion recognition in real-living environment is necessary
for practical deployment, i.e., classification of a sequence of
activities transitioning one into another, rather than individ-
ual activities. In this paper, a novel dynamic range-Doppler
trajectory (DRDT) method based on the frequency-modulated
continuous-wave (FMCW) radar system is proposed to recognize
continuous human motions with various conditions emulating
real-living environment. This method can separate continuous
motions and process them as single events. First, range-Doppler
frames consisting of a series of range-Doppler maps are obtained
from the backscattered signals. Next, the DRDT is extracted
from these frames to monitor human motions in time, range,
and Doppler domains in real time. Then, a peak search method
is applied to locate and separate each human motion from the
DRDT map. Finally, range, Doppler, radar cross section (RCS),
and dispersion features are extracted and combined in a multido-
main fusion approach as inputs to a machine learning classifier.
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This achieves accurate and robust recognition even in various
conditions of distance, view angle, direction, and individual
diversity. Extensive experiments have been conducted to show
its feasibility and superiority by obtaining an average accuracy
of 91.9% on continuous classification.

Index Terms— Continuous human motion recognition, dynamic
range-Doppler trajectory (DRDT) method, frequency-modulated
continuous-wave (FMCW) radar, fusion of multidomain features,
machine learning.

I. INTRODUCTION

UMAN motion recognition has attracted great interest
for different purposes, such as surveillance, search and
rescue operations, smart home, and senior people care in
assisted living facilities [1]-[5]. Various methods for human
motion recognition have been proposed [6]-[9]. The employed
sensors can be categorized into wearable and contactless
solutions. Wearable sensors, such as bracelets and ankle
monitors, must be worn or carried constantly, and thus are
inconvenient, may be easily broken or forgotten, and have
high false alarm rates [10]. Given these limitations, contactless
detection technologies have gained wide research interests.
The most common contactless sensors include cameras [8],
microphones [9], and radar systems. Cameras are vulnerable to
lighting conditions and blind spots. Microphones are sensitive
to ambient noise interferes. Furthermore, they both infringe
privacy issues, especially when deployed in private homes.
Radar-based human motion recognition may complement
the conventional technologies because of its potential for
high accuracy, robustness, and privacy preservation [11]. Typ-
ically, micro-Doppler features are utilized to detect, identify,
and recognize human beings and their motions [12]-[17].
For example, Vandersmissen er al. [12] investigated micro-
Doppler features from gait to identify five indoor persons
with a classification error rate of 21.54%. Kim and Ling [13]
utilized a continuous-wave (CW) radar to extract Doppler
features for a support vector machine (SVM) classifier to
recognize seven human motions. The accuracy of the clas-
sification results was 92.8%. Based on the rapid development
of low-cost frequency-modulated continuous-wave (FMCW),
stepped-frequency continuous wave (SFCW), and ultraw-
ideband (UWB) radar, range and other information are
involved [18]-[26]. A multidimensional principal component
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analysis (MPCA) was proposed to combine time, Doppler,
and range information to improve fall detection based on
an FMCW radar system [18]. An SFCW radar was used
to extract phase information contained in the complex high-
resolution range profile (HRRP) to derive instantaneous veloc-
ity, acceleration, and jerk of human body for fall detection and
monitoring [19]. Radar cross section (RCS) information was
also used to distinguish fall and other abrupt movements [20].
Bryan ef al. [21] applied PCA in feature extraction to classify
eight human activities based on UWB radar and achieved a
recognition accuracy of over 85%. Recently, deep learning
methods emerged as an effective tool in human motion recog-
nition using different radar systems [27]-[30].

However, most studies focused on motion recognition in
a laboratory environment, whereby the different activities
are recorded as separate and individual snapshots. Practi-
cal applications would need to deal with continuous human
motion recognition in real-living conditions, where the human
subject monitored can perform activities one after another with
unknown durations and transitions in between.

In this paper, a novel method is proposed to explore and
demonstrate its feasibility and performance from snapshot
motion recognition to continuous motion recognition with
various conditions from real-living environments. A novel
dynamic range-Doppler trajectory (DRDT) method is intro-
duced to obtain DRDT map from backscattered radar signals,
which can help monitor human motions in range, Doppler,
and RCS domains in real time. This makes it possible to
apply a peak search method to initially locate and separate
the contributions of each individual activity in a continuous
recording, and then process them as single events. In addition,
not only the commonly used micro-Doppler features but also
time-varying features in radar multidomains are extracted
as inputs to machine learning classifiers in a multidomain
perspective. This leads to accuracy and robust recognition
performance even in various conditions of distance, view
angle, direction, and individual diversity.

The rest of this paper is organized as follows. Section II
introduces the theory and algorithm of the DRDT method.
In Section III, the FMCW radar system and experimental setup
are described. Section IV presents analysis and discussion of
the recognition results. Section V is the conclusion.

II. THEORY AND ALGORITHM

In daily life, falling is among the leading causes of fatal
and nonfatal injuries, especially for senior people [31]. There-
fore, falling and its similar human activities are selected for
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Ilustration of six typical human motions. (a) Falling. (b) Stepping. (c) Jumping. (d) Squatting. (e) Walking. (f) Jogging.

TABLE I
S1Xx HUMAN MOTIONS UNDER STUDY

Motions DESCRIPTION

Falling Drop forward to the floor under the influence of gravity.
Stepping Abrupt movement toward radar.

Jumping Jumping forward with swinging arms and legs.
Squatting Sitting in a crouching position with knees bent.

Walking Walking forward at a moderate speed while swinging arms.
Jogging Running at a gentle pace with fist at the height of chest

recognition in this paper. These include falling, stepping,
Jjumping, squatting, walking, and jogging. An illustration of
these human motions is shown in Fig. 1, and the detailed
descriptions are given in Table I. In order to recognize these
human motions in a real-living environment, a novel DRDT,
DRDT method, is proposed.

This approach can be divided into five steps summarized
here and detailed in Sections II-A-II-E. First, by processing
the backscattered radar signals, a series of range-Doppler
maps called range-Doppler frames can be obtained with given
time windows [20], as detailed in Section II-A. Section II-B
explains how the DRDT is extracted from the above frames
to describe human motion in time, range, Doppler, and RCS
domains. Section II-C then describes how a single motion is
identified and separated from a series of continuous activ-
ities with a peak search method. Section II-D shows how
the features in multiple domains are extracted based on the
DRDT map. Finally, Section II-E introduces the subspace
K -nearest neighbor (KNN) classifier [32] used to obtain the
final recognition results.

A. Conventional Range-Doppler Frames

The received signals can be rearranged in a matrix, whose
rows represent the slow time and columns contain the received
signals in fast time. By performing an FFT along the fast
time, the signals are discretized and the values are stored
in an N x M matrix R(n,m). n = [1,2,..., N] indicates
the index of slow time and m = [1,2,..., M] indicates
the index of the beat frequency corresponding to range bins.
Then, a range-Doppler map can be obtained by performing
an FFT along the slow time direction with a sliding time
window. To obtain time-varying range-Doppler information,
i.e., a continuous sequence of range-Doppler frames over time,
a single range-Doppler frame can be achieved by setting a time
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Fig. 3. Tllustration of DRDT processing. (a) Conventional range-Doppler frames. (b) DRDT of falling and stepping.

window with limited duration
L
F(k,m) =Y R(n,m)e />"*/t ()
=1
where k indicates the index of frequency and L is the length
of the time window, which corresponds to 0.2-s time duration
of each range-Doppler frame.

B. Proposed Dynamic Range-Doppler Trajectory

DRDT is utilized to describe and monitor human motions
in range, Doppler, and RCS domains in real time. This is
obtained by extracting key information from conventional
range-Doppler frames. One frame corresponds to one point
in a DRDT map.

P frames are selected as effective frames to describe an
entire human motion denoted as F,(k, m), p € [1, P]. In this
paper, the value of P is set to 6, corresponding to 1.2 s.
There is a tradeoff on the number of frames in order to cover
an entire human action while avoiding the inclusion of too
many uninformative frames. The value of P was empirically
verified through observations of the most common human
motions. Fig. 2 shows an example of six range-Doppler frames
for falling. Each frame indicates range, Doppler, and RCS
information of human body during falling motion.

Since the other motions may have high Doppler components
similar to the case of falling, the baseband signals close to
0 Hz are initially removed by an empirical Doppler threshold
corresponding to a velocity of 0.45 m/s in each range-Doppler
frame. Next, the top Q points in energy, i.e., those related
to high RCS, are selected as points of interest denoted as
Fp(kpg, mpg), where g = [1,2,..., Q] indicates the index
of the points of interest. Then, the weighted average for the
points of interest is calculated to constitute a DRDT map.

Fig. 3 shows the process of extracting typical DRDT maps
of falling and stepping. Every trajectory point in the DRDT
map represents one dynamic range-Doppler frame. Its coordi-
nates are obtained as shown in (2) and (3) in the corresponding
frame, and its size in Fig. 3 indicates the energy calculated
with (4)

Q
2
Epg = Fplkpgsmpq)*,0pq = Epg/Y_Epg ()

g=1
0
(kp,mp) = Z”M(kpq’mpq) 3)
g=1
1 Y
E,=—~ Z Epq “4)
0 =
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Fig. 4. Two continuous motions of stepping — falling in DRDT map.

where F),(kpq,mpq) is the gth point of interest in the pth
frame, E,, represents its energy, o, is the weighted coeffi-
cient defined according to E ,q, (kpq, mpq) is the Doppler and
range coordinates of the DRDT, and E, is its corresponding
energy.

As shown in Fig. 3(b), the blue circles indicate the trajectory
of falling, while the red rectangles represent stepping. Their
sizes represent the energy level relating to the target RCS
information of each frame. At the beginning of the falling
motion, the trajectory rises up slowly and smoothly along
with a decreasing distance and increasing Doppler and energy.
Then, it reaches a sudden high peak. The peak has the
maximum Doppler for the highest radial velocity, while its
energy decreases sharply due to the lowest RCS caused by
the orientation of the body on the floor and being at an angle
from the center of the radar beam. On the other hand, red
rectangles represent stepping. It shows a similar trend in the
range and Doppler domains with a lower maximum Doppler
and range span. However, the RCS of human body does not
change much during stepping, which is different from falling.

C. Continuous Motion Recognition

In real-living environments and conditions, continuous
motion recognition is a challenging task, as accurately locating
and separating each activity in a long period of time is not
trivial. One needs to characterize not only each individual
activity but also the transitions between them and their dura-
tion. Fig. 4 shows the two continuous motions of stepping
followed by falling in the proposed DRDT map. The black
circles indicate DRDT. It is obvious that besides stepping (red
window) and falling (yellow window) samples, there are a
lot of transition samples which by themselves do not belong
to any meaningful motion labels, highlighted by the green
window in Fig. 4. They are called and labeled as transition.
A classic approach would be to use a sliding window method
to extract each time sequence of length P as a sample for
feature extraction and machine learning. However, a large
amount of transition samples can be observed with the sliding
window method, and this may lead to complex calculations
and instability. The key point of continuous motion recognition
is to locate meaningful single motions and remove transitions
as much as possible.
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In this paper, a peak search method based on DRDT is pro-
posed to address this problem. Since all the motions of interest
in the application have high Doppler components, these can
be characterized by a peak in DRDT maps. Therefore, a peak
search is applied to locate and extract samples containing
local maxima, which may correspond to meaningful motion
labels. Different from the standard peak search method, only
the trajectory points whose Doppler frequency is larger than
both its former and later two points, i.e., (kp+, mp+), kps > kp,
p € [p* —2, p* + 2], can be selected as local maxima. The
choice of 4+/— two points is a tradeoff between leakage alarm
rate and false alarm rate, which was adjusted empirically to
maximize performance.

Fig. 5 shows the diagram of the proposed peak search
method. The red asterisks in both Figs. 4 and 5 indicate local
maxima extracted by the peak search method. As mentioned
in Section II-A, each motion is assumed to occupy six frames,
i.e., a six-point window in the DRDT map. This means that
once the peak is identified, the most appropriate six-point
window should be selected as an effective set of data repre-
senting the activity to be classified, rather than the transitions.
However, due to the variability of motions and differences
in the signatures even for the same motion, the peak may
be located at any position in the most appropriate window,
except for the beginning and the end. Therefore, among the
six candidate windows, the four with their peaks located at
the second, third, fourth, and fifth positions, respectively, are
selected to be passed to the feature extraction and classification
stage. As shown in Fig. 5, four candidate trajectories of a
stepping motion were selected and represented by red dashed
lines after the peak was located. Then, features extracted
from these four trajectories were fed into the machine learn-
ing classifier to obtain their independent recognition result.
Finally, a vote decision was conducted with these results based
on the principle of minority obeying majority. In particu-
lar, only when there are four recognition results for fran-
sition, the final decision is labeled as transition. Otherwise,
the motion labels are combined with majority voting and the
transition is disregarded. Furthermore, if there is a situation
of a tie between two meaningful motion labels, which rarely
happens, the former meaningful motion is chosen as the final
decision.
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Fig. 6. Features extracted from typical examples of six human motions. (a) Dynamic Doppler frequency D. (b) Dynamic range change AR. (c) Dynamic

energy change AE. (d) and (e) Dynamic dispersion of Doppler and range Disp and Disg.

D. Feature Extraction
In feature extraction, a comprehensive fusion of time, range,
Doppler, RCS, and dispersion features is applied; 28 features
of four types are extracted based on DRDT maps as follows.
1) Dynamic Doppler Frequency—D: This feature consists
of a time sequence of the Doppler value along the trajectory.
It represents the time-varying intensity of human motions

D(p) = kp &)

Fig. 6(a) shows the dynamic Doppler frequency D of each
motion in DRDT maps. Note that as an abrupt motion, falling
is characterized with a high and rapid Doppler peak, while
Jjumping has a stable up and down trend. The dynamic Doppler
frequency features of jogging are generally higher than the
ones of walking although they have similar trajectory trends.
It is difficult to distinguish between stepping and squatting
only with Doppler features.

2) Dynamic Range Change AR: Range information is cru-
cial for human motion recognition. Fusion of range and time
is considered with a time sequence of range coordinates.
Furthermore, for situations of different detection distances,
it is adjusted as a time sequence of relative range change.
This feature describes the relative range change during human
motion and, to some degree, indicates motion velocity and
range span

AR(G)=mjy1 —m;, i€[l,P—1]. (6)

As shown in Fig. 6(b), all motions in the figure are per-
formed moving toward the radar because of positive values
of AR. In addition, a rapid increase of range can be found
during the falling. Walking and jogging both have a stable
increase in range and the latter has a faster velocity. In this
figure, stepping can be distinguished from squatting for its
larger range span and peak in the middle of the trajectory.

3) Dynamic Energy Change—A E: Considering the effects
of distance, this feature is based on the time-dependent energy
change. It indicates the time-varying RCS, which is important
to discriminate motions that are similar in range and Doppler,
e.g., falling and jumping or fast stepping

AE(i)=Eip1 — Ei, ie[l,P—1]. (7)

Fig. 6(c) describes the dynamic energy change AE of six
typical motions. As falling happens, its energy increases at first
when the body approaches the radar. Then, it drops rapidly
to the minimum due to the orientation of the body deviating
from the center of the radar beam. On the other hand, during
Jjumping, the takeoff part contributes to a high positive dynamic
energy change at first. Then, the following half-squat landing
leads to a negative energy change. The last straightening up
causes a positive change again. Other motions always have a
positive energy change for approaching the radar, but there is
a negative one in squatting, as the human subject leaves the
center of the radar beam.

4) Dynamic Dispersion of Range and Doppler Disp and
Disg: These features are obtained from the standard devia-
tion (STD) of range and Doppler coordinates for the points
of interest. Two time sequences of range and Doppler STD
reflect features of limb movement. A large STD corresponds
to a large amplitude limb movement

Disp(p) = STD(kpq)

. ()
Disg(p) = STD(m ).

Fig. 6(d) and (e) shows the dynamic dispersion of Doppler
and range, respectively. There exists spontaneous swinging
arm during falling, which contributes to large Disp and Disg.
It is the same in jumping. In addition, Disp of jogging is
higher than that of walking, while the contrary occurs in the
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TABLE 11
KEY PARAMETERS OF THE FMCW RADAR SYSTEM
Center frequency 5.8GHz
Transmitted bandwidth 320MHz
Sampling frequency 44.1KHz
Frequency ramp repetition period 10ms
Average transmitted power 8dBm

case of Disg caused by the difference between putting fists on
the chest and swinging arms.

E. Machine Learning

In statistics and machine learning, ensemble methods use
multiple learning algorithms to obtain better classification
performance [33]. Unlike a statistical ensemble in statisti-
cal mechanics, which is usually infinite, a machine learning
ensemble refers only to a concrete finite set of alternative
models, but it typically allows for much more flexible struc-
ture to exist among those alternatives. After comparing each
ensemble classifier, subspace KNN is adopted to analyze the
above features based on the Classification Learner Tool in
MATLAB R2016b.

III. EXPERIMENTAL SETUP

The block diagram of the FMCW radar system used in
this paper is shown in Fig. 7 [34]. A pair of 2 x 2 patch
antenna arrays are used to transmit and receive C-band sig-
nals. The waveform generator generates a linear chirp signal
around 5.8 GHz, which is fed to the power divider with
a baseband synchronization signal locked to the sawtooth
oscillator control signal. The coherence of the system is
achieved by simultaneously sampling the beat signal from
the receiver output and the synchronization signal from the
waveform generator. A data acquisition interface is employed
to digitize the baseband output through the audio card of a
laptop, facilitating real-time signal processing in the laptop.
The key parameters of the radar system are listed in Table II.

The experimental setup is shown in Fig. 8. The radar system
was set at a height of 1 m. Six typical human motions
were selected in this paper, as shown in Fig. 1 and detailed
in Table I. Eight volunteers, including five males and three
females, were enrolled in this paper. Table III gives a brief
physical description of the volunteers. Their ages ranged from
23 to 28 years and weights ranged from 50 to 85 kgs, with
height from 1.58 to 1.80 m.

In the first scenario, the volunteers performed single
human motion in indoor environment under the line-of-
sight condition. However, practical human motion recognition

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
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TABLE III
BRIEF PHYSICAL DESCRIPTION OF THE VOLUNTEERS

Volunteers| Gender Age (yr) Weight (kg) Height(m) BMI (kg/m?)

1 M 23 85 1.75 27.76

2 M 28 78 1.80 24.07

3 M 24 72 1.79 22.47

4 M 25 70 1.77 22.34

5 M 23 68 1.80 20.99

6 F 24 50 1.58 20.03

7 F 23 55 1.62 20.96

8 F 25 64 1.68 22.68

Total |M/F(5/3) 24.4+1.7 678114 1.72+0.09 22.66+2.41

in real-living environment may face additional challenges,
such as variations in distance, view angle, movement direction,
and individual characteristics. To evaluate their effects on
the proposed method, eight volunteers performed six motions
toward the radar at 2~3 m with the view angle of 0° as a
reference group. Then, experiments with different conditions
were recorded as validation groups. Detailed illustrations and
descriptions are provided in Table IV. In each condition, eight
volunteers performed each motion for five times to obtain a
total of 240 measurements.

In the second scenario, unlike separate and individual snap-
shots, the volunteers performed any two of the aforementioned
motions continuously, one after the other, to evaluate motion
recognition performance of the proposed method. For this
purpose, ten combinations were selected to cover as many
practical situations as possible, including: walking — falling,
stepping — falling, jogging — falling, jumping — falling,
walking — jumping, walking — stepping, jogging — squat-
ting, stepping — squatting, jumping — stepping, jumping —
squatting. Each combination was performed 15 times with two
volunteers.

IV. RESULTS

To evaluate the feasibility and performance of the pro-
posed method in human motion recognition, two tests were
performed, i.e., single motion recognition and continuous
motion recognition. In Section IV-A, the results for sin-
gle motion recognition are analyzed to demonstrate human
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TABLE IV
ILLUSTRATION AND DESCRIPTION OF EXPERIMENTS IN VARIOUS CONDITIONS
Variations Ilustration Description
o]
Distance ,)))., d N Volunteers perform each motion at the
different distance of d (d=2 ~ 4m)
o
_ - [E'] Volunteers perform each motion at the
View angle < - different view angle of & (a =0°, 15°,30°)
.,))‘ 1% _ _ ___.
_> . .
o Volunteers perform each motion with the
Direction .))),v d > different direction (towards and backwards
radar)
- iff 1 fi h ion i
Individual _’))'z d 5 Different volunteers perform eac motion 1n
above situations
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Fig. 9. Classification accuracy with a different number of points from a

range-Doppler frame.
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Fig. 10. Confusion matrix of single motion recognition.

motion recognition performance of the DRDT method with
different distances, view angles, directions, and individuals.
In Section IV-B, recognition results demonstrate the good
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Fig. 11. Classification accuracy in different scenarios.
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Fig. 12. Boxplot of recognition accuracy in individual diversity study.

(a) Recognition accuracy in different conditions. (b) Legend of boxplot

performance of the proposed DRDT method for continuous
motion recognition.

A. Single Motion Recognition

First, volunteers performed the six motions toward the radar
at the distance of 2~3 m with the view angle of 0° as a
basic experiment (walking and jogging were performed in a
range scope of 2~4 m). To confirm the optimal value of Q,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

o DRDT
* Local Maxima

120

100

80 TteL 7T e

N

T

3

= o o
S 60 4

a

Range (m) Time (s)

(@

Fig. 13.

the number of points to be extracted from each range-Doppler
frame and the classification results with different selections
of Q are compared. As shown in Fig. 9, when Q is set as
150, classification of all the six motions achieved the highest
accuracy rate of 94.2%.

Fig. 10 shows the corresponding confusion matrix. It is
shown that the proposed solution achieved a high classification
accuracy for all human motions considered. In particular,
falling and jogging obtained the highest level of classification
accuracy of 97.5%. On the other hand, squatting had the lowest
accuracy of 92.5%, as 7.5% of them were misclassified as
stepping. This is conceivable—squatting forward with high
amplitude is similar to a slow stepping.

To evaluate the robustness of the proposed method at
different target distances, 240 measurements with the same
eight volunteers and the same experimental setup but at 3~4 m
were conducted. This provided a validation data set to test the
existing model trained by 2~3-m data (walking and jogging
were performed in a range scope of 2~4 m). As shown
in Fig. 11, an average validation accuracy rate of 95.8% was
achieved because the adopted dynamic range change feature
AR can decrease the influence of detection distance.

In addition, robustness for different view angles was also
evaluated using 480 measurements at the degree of 15° and
30° to test the above model at 0°. As shown in Fig. 11, at a
view angle of 15°, the classification accuracy rate was 95.8%,
which is similar to the line-of-sight case. However, only 86.7%
of motions were recognized correctly at 30°, as the target got
too close to the edge of the main beam, resulting in a loss of
useful information.

Regarding experiments with different directions, it is obvi-
ous to distinguish between backward motions and forward
ones owing to the dynamic range change and Doppler features.
Among 240 samples of backward motions, the DRDT method
also achieved a high recognition accuracy of 95.4% with the
tenfold CV procedure.

The effect of individual diversity on the proposed DRDT
method is also investigated. Indeed, classifying human motions
of unknown people based on trained data from known people
is a realistic and practical situation. A leave-out technique
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Fig. 14. Confusion matrix of two continuous motions’ recognition.

is chosen to test the performance for the eight volunteers.
The samples from seven individuals were used to train the
algorithm and then it was tested on the person that was left
out. In each different condition considered, each test with
the eighth subject was repeated for 35 times to get a robust
evaluation. Test results are shown as typical boxplot in Fig. 12.
The boxplot indicates the distribution of the test accuracy
rates in each condition. The upper and lower boundaries of
the blue box represent the third and first quartiles of all the
accuracy rates, which are denoted by Q3 and Q1, respectively.
This means half of the test accuracy rates are located in the
blue box. The size of the box, indicated by 7 Q R, corresponds
to its robustness. The red line in the box means the median
value, which is denoted by Q». Points with values higher than
(Q3 + 1.5 x IQR) or lower than (Q; — 1.5 x IQR) are
identified as outliers and marked by red crosses. As shown
in Fig. 12, the test accuracy in each condition was distributed
in a relatively small box (<6.67%), which means a small
discrepancy for different individuals. In the experiment at 30°,
although there was a large gap between the minimum test
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accuracy of 70.0% and the maximum of 91.7%, most of them
were distributed around the median accuracy of 81.7%. These
results demonstrated the robust performance of the proposed
DRDT method for different individuals.

B. Continuous Motion Recognition

In this section, continuous human motion recognition based
on the DRDT method is evaluated. One-third of data was
selected as a training group. Then, the peak search method
was applied to extract samples of interest from the remaining
data to test the training model.

Fig. 13 shows typical examples of two continuous motions
in the DRDT map. As shown in Fig. 13(a), three local maxima,
i.e., peaks marked as red asterisks were found during the
measurement. The samples containing the first two peaks were
recognized as jogging, while the remaining was squatting. Jog-
ging is characterized with high and rhythmic Doppler, steady
velocity, and large dispersion in both range and Doppler.
The DRDT of squatting is similar to that of stepping but
with a lower Doppler peak, weaker RCS, and smaller range
span. Fig. 13(b) describes one combination of walking —
jumping. The samples containing the first three peaks were
classified as walking. Compared with jogging in Fig. 13(a),
walking had a lower Doppler and velocity. The fourth peak
represented the transition between walking and the following
Jjumping, which was indicated by the last peak. Note that there
were more labels obtained for walking and jogging in one
measurement, which is reasonable as walking and jogging are
usually performed continuously for a relatively long duration
in practical situations.

Fig. 14 shows the confusion matrix of all the test results.
The average recognition accuracy was 91.9%. In addition,
transition instances could also be recognized with an accuracy
of 89.1%. Furthermore, the number of labels, i.e., extracted
peaks, of falling, stepping, jumping, and squatting was con-
sistent with the ground truth. This indicated that the proposed
peak search method can accurately extract samples of interest
during these motions and reduce a large amount of calculation
at the same time.

Furthermore, the performance of the proposed DRDT
method in a more complex situation close to a completely
uncontrolled environment was also investigated. The volun-
teer performed a series of motions in front of the radar at
random distances with arbitrary view angles in all directions.
An example corresponding DRDT map is shown in Fig. 15.
As mentioned in Section II-C, the most appropriate windows
were decided after a majority vote and marked in different
colors according to the recognition results. From the figure,
all motions of the volunteer can be monitored. At first, the
volunteer walked toward the radar as indicated by the red
circles. After a short pause, blue circles indicated that the
subject began to jump toward the radar. Between these two
motions, there was also a transition marked in green. Then,
the subject turned back and took a step backward. The follow-
ing motion can be recognized as squatting. Finally, the subject
turned back, faced radar again, and fell down toward the radar.

V. CONCLUSION

Going further than typically studied single human activity
recognition in a laboratory environment, this paper proposed a
novel DRDT method for continuous human motion recognition
in conditions emulating real-living environments, where the
people monitored can perform activities one after the other
with unknown duration and with transitions in between. With a
peak search method, continuous human motions can be located
and accurately separated during a long-time monitoring with
little calculation. In addition, besides micro-Doppler, mul-
tidomain information, including time, range, Doppler, RCS,
and dispersion, was utilized in feature extraction. Experiments
in varying conditions achieved robust recognition accuracies
reaching about 95%. The performance degraded with view
angle at about 30°, which is reasonable as the target got
too close to the edge of the radar bandwidth. Recognition
of continuous motions also achieved good performance with
an average accuracy of 91.9% which enabled free-motion
recognition in a real-living environment.

As this is a preliminary investigation in continuous human
motion recognition, there is a large scope of further work
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in the future. First, data from senior human subjects will
be obtained to expand the database. Algorithm will also
be improved to use fewer empirical parameters and enable
recognition of motions with small Doppler. In addition, a more
realistic environment with clutters, such as animals or multi-
human targets, should be considered as a great challenge for
indoor human motion recognition. Furthermore, the feasibility
of a real-time human motion recognition system will be
explored.
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